Gradient-based algorithms for finding Nash equilibria in extensive

form games
Andrew Gilpin Samid Hoda
Computer Science Department Tepper School of Business
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA, USA Pittsburgh, PA, USA
gilpin@cs.cmu.edu shoda@andrew.cmu.edu
Javier P@a Tuomas Sandholm
Tepper School of Business Computer Science Department
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA, USA Pittsburgh, PA, USA
jfp@andrew.cmu.edu sandholm@cs.cmu.edu

March 31, 2007

Abstract

We present a computational approach to the saddle-point formulation for the Nash equilibria of two-person, zero-
sum sequential games of imperfect information. The algorithm is a first-order gradient method based on modern
smoothing techniques for non-smooth convex optimization. The algorithm reqife&) iterations to compute
an e-equilibrium, and the work per iteration is extremely low. These features enable us to find approximate Nash
equilibria for sequential games with a tree representation of atwdtnodes. This is three orders of magnitude
larger than what previous algorithms can handle. We present two heuristic improvements to the basic algorithm and
demonstrate their efficacy on a range of real-world games. Furthermore, we demonstrate how the algorithm can be
customized to a specific class of problems with enormous memory savings.

1 Introduction

Extensive form games model the interaction of multiple, self-interested agents in stochastic environments with hidden
information. The goal of each agent is to maximize its own utility. Since the outcome for a particular agent depends on
the actions of the other agents, each agent must reason about the other agents’ behavior before acting. A fundamental
solution concept for these games is thash equilibriumi.e. a specification of strategies for each agent such that

no agent is better off by deviating from their prescribed equilibrium strategy. Generally, Nash equilibrium strategies
involve randomized actions (calledixed strategies For two-player zero-sum sequential games of imperfect infor-
mation, the Nash equilibrium problem can be formulated using the sequence form representation [13, 7, 15] as the
following saddle-point problem:

in (Ay,x) = mi Ay, x). 1
g e,) = g, g U @
In this formulation,x is player 1's strategy ang is player 2's strategy. The bilinear terfdly, x) is the payoff that
player 1 receives from player 2 when the players play the strategaesly. The strategy spaces are represented by
Q; C RIS wheres; is the set of sequences of moves of playeandQ; is theset of realization plansf playeri.
Thusx (y) encodes probability distributions over actions at each point in the game where player 1 (2) acts. The set

Q; has an explicit linear description of the fofm > 0 : Ez = e}. Consequently, problem (1) can be modeled as a
linear program (see [15] for details).

The linear programs that result from this formulation have size linear in the size of the game tree. Thus, in
principle, these linear programs can be solved using any algorithm for linear programming such as the simplex or
interior-point methods. For some smaller games, this approach is successful [8]. However, for many games the size
of the game tree and the corresponding linear program is enormous. For example, the Nash equilibrium problem for
Rhode Island Hold’em [14], after a substantial reduction in size vigstlmmeShrinkossless abstraction algorithm [5],
leads to a linear program with abol® variables and constraints, whose solution using the state-of-the-art CPLEX
interior-point linear programming solver takes over one week on a 1.65GHz IBM eServer p5 570, and consumes 25
GB of memory [5]. Prior to the work presented in this paper, this was the largest poker game instance solved to date.
Recently there has been substantial interest in two-player limit Texas Hold’em poker, whose game tree Has%about
variables and constraints. The latter problem is well beyond current computational technology.

A recent and fruitful approach to this problem is to solessy abstraction$l, 4, 5] to approximate the Nash
equilibrium. These abstractions yield smaller games that capture some of the main features of the full game. The
quality of the approximate Nash equilibrium solution depends on the coarseness of the abstraction. The main current
limitation on the degree of coarseness is the magnitude of the abstracted game that standard linear programming
solvers can handle. With the current state-of-the art CPLEX solver the dimension is limited to games whose tree
representation has abol” nodes (due primarily to memory limitations of the interior-point method; the simplex
method is unusable due to slowness [5]).

We propose a new approach to the approximation of Nash equilibria that directly tackles the saddle-point formu-
lation of Equation 1. In particular, we are able to compute&)ii/¢) iterations, strategies* andy* such that

max (Ay”, x) — min (dy,x") <e.)

Strategies that satisfy this inequality are calteelquilibria. This class of game-theoretic solution concepts encapsu-
lates strategies in which either player can gain at madst deviating to another strategy. For most applications this
type of approximation is acceptablesifs smalll The algorithms of this paper are anytime algorithms and guarantee
thate approaches zero, and quickly find solutions that have a very small

Our approach is based on modern smoothing techniques for saddle-point problems. A particularly attractive feature
of our approach is its simple work per iteration as well as the low cost per iteration: the most complicated operation
is a matrix-vector multiplication involving the payoff matrix. In addition, we can take advantage of the structure
of the problem to improve the performance of this operation both in terms of time and memory requirements. As a
result, we are able to handle games that are several orders of magnitude larger than games that can be solved using
conventional linear programming solvers. For example, we compute approximate solutions to an abstracted version of
Texas Hold’em poker whose LP formulation has 18,536,842 rows and 18,536,852 columns, and has 61,450,990,224
non-zeros in the payoff matrix. This is more than 1,200 times the number of non-zeros in the Rhode Island Hold’em
problem mentioned above. Since conventional LP solvers require an explicit representation of the problem (in addition
to their internal data structures), this would require such a solver to use more than 458 GB of msanmyyto
represent the problen©On the other hand, our algorithm only requires 2.49 GB of memory.

The algorithm we present herein can be seen as a primal-dual first-order algorithm applied to the pair of optimiza-
tion problems

max f(x) = Jnin o(y)
where
f(x) = min (Ay,x) and ¢(y) = max (Ay,x).

It is easy to see thaf and ¢ are respectively concave and convex non-smobgh ot differentiable) functions.
Our algorithm is based on a modern smoothing technique for non-smooth convex minimization [12]. This smoothing
technique provides first-order algorithms whose theoretical complexity to find a feasible primal-dual solution with gap
e > 0is O(1/e) iterations. We note that this is a substantial improvement to the black-box generic complexity bound
O(1/€?) of general first-order methods for non-smooth convex minimization (concave maximization) [11].

1There has been work on findirgequilibriain matrix gameg9], but those algorithms are based on sampling, and thus quite different than the
ones discussed here.

Some recent work has applied smoothing techniques to the solution of large-scale semidefinite programming prob-
lems [10] and to large-scale linear programming problems [3]. However, our work appears to be the first application
of smoothing techniques to Nash equilibrium computation in sequential games.

2 Nesterov’'s excessive gap technique (EGT)

We next describe Nesterov’s excessive gap smoothing technique [12], specialized to extensive form gaines. For
1,2, assume tha$; is the set of sequences of moves of playand@; C R/ is theset of realization plansf player
1. Fori = 1,2, assume that; is a strongly convex function of;, i.e. there existg; > 0 such that

1
di(az + (1 — a)w) < ad;(z) + (1 — a)d;(w) — 5pa||z —w|? 3)
forall « € [0,1] andz, w € Q,. The largesp; satisfying (3) is thestrong convexity parametef d;. For convenience,
we assume thahin,cq, d;(z) = 0.
Theprox functionsi; andds, can be used temooththe non-smooth functiong and¢ as follows. Foruy, ps > 0
consider

fua (%) = yrrelian {{(Ay,x) + pada(y)}

and
by (y) = max {{Ay,x) — pndi(x)} .

Becausel; andd, are strongly convex, it follows [12] that,, and¢,,, are smoothi(e. differentiable). Notice that
f(x) <¢(y)forallx € @1,y € Q2. Consider the following relateeixcessive gap condition:

fltz (x) Z Gu (Y) 4)

Let D; := maxyeq, di(z). If p1,p2 > 0, x € Q1,y € Q2 and(p1, 2, x,y) satisfies (4), then [12, Lemma 3.1]
yields
0<9¢(y) = f(x) < D1 + p2Ds. (5)

This suggests the following strategy to find an approximate solution to (1) generate a seguendex”,y*),
k=0,1,..., with ¥ andu decreasmg to zero dsincreases, whil&* € Q,, y* € @, and while maintaining the
loop invarlant thatu¥, ub, x*, y*) satisfies (4). This is the strategy underlying the EGT algorithms we present in this
paper.

The building blocks of our algorithms are the mappiaggmax and the proceduresmitial andshrink. Letd
be a strongly convex function with a convex, closed, and bounded daphairR”™. Letsargmax(d,-) : R" — @ be
defined as

sargmax(d, g) := argmax{(g, x) — d(x)}. (6)

xXEQ
By [12, Lemma 5.1], the following procedurmitial yields an initial point that satisfies the excessive gap
condition (4). The notatiofj A|| indicates an appropriate operator norm (see [12] and Examples 1 and 2 for details),
andVd; (%) is the gradient ofl, atx.

initial(A,dy,ds)

=Oo

1. u3:

2. y := sargmax (dg, 0)
3. x” := sargmax (1, 0Ay)
4. y" := sargmax (dg, Vds (% H%ATXO)

5. return (uf, 19, x°,y°)

The following procedurehrink enables us to redugg andp. while maintaining (4).

shrink(A, i, po, 7,X,y, d1,d2)

1. ¥ :=sargmax (dg, —iATX)
2y =01-71)y+71y
3. X := sargmax (dl, ﬁAy)

4. ¥ := sargmax (dg, Vds (¥) + mAT&)
xTi=(1-71)x+71%
yri=(1-7)y+7y

pz = (1= 7)o

© N o O

retun (i, x*,y*)

By [12, Theorem 4.1], if the inpufyy, 12, X, y) to shrink satisfies (4) then so do¢g,, 3, x+,y*) as long as
7 satisfiesr? /(1 — 7) < pypap1p2||Al|?. Consequently, the iterates generated by proceGEoelow satisfy (4). In
particular, afterV iterations, AlgorithmEGTyields pointsx’¥ € Q; andy” € @, with

41|A DD
0 < max(Ay",x) — min (Ay,x") < 1Al 1D2

x€Q1 YEQ2 - N P1P2 ’
EGT
1. (u9, 149,x% yY) = initial(A,dy,ds)
2. For k=0,1,...
2
(b) If k is even: [/ shrink 142
I, (M§+lvxk+17yk+1) = shrink(A,p’f,ug,T, Xk7ykadlvd2)
iyt =
(c) If Kk is odd: /I shrink 11
i, (/Llf+17yk+17xk+1) = Shrink(AT7 _:u]f’ _u]§777 ykvxkad27d1)
i k. k
i psT = s

Notice that AlgorithmEGTis aconceptuablgorithm that finds am-solution to (1). It is conceptual only because
the algorithm requires that the mappingsgmax(d;, -) be computed several times at each iteration. Consequently, a
specific choice of the functiong andd; is a critical step to convert AlgorithfBGTinto an actual algorithm.

2.1 Nice prox functions

Assume() is a convex, closed, and bounded set. We say that a funétidp — R is anice prox functiorfor @ if it
satisfies the following three conditions:

1. dis strongly convex and continuous everywher@)iand is differentiable in the relative interior 6f,

2. min{d(z) : z € Q} = 0;
3. The mappingargmax(d, -): R® — @ is easily computables.g, it has a closed-form expression.

We next provide two specific examples of nice prox functions for the simplex

An:{xeR":sz,inzl}.

i=1

Example 1 Consider theentropyfunction

d(z1,...,2n) = lnn—l—in Inz;.

i=1

The functiord is strongly convex and continuous4yy, andminyea, d(x) = 0. Itis also differentiable in the relative
interior of A,,. It has strong convexity parameter = 1 for the 1-norm inR", namely,||x|| = > |z;|. The
corresponding operator normjjA||, for this setting is simply the value of the largest entrydinin absolute value.
Finally, the mappingargmax(d, g) has the closed-form expression

eJi

n .
Z edi
i=1

sargmax(d, g); =

Example 2 Consider the (squaredjuclidean distanc® the center of\ ,, that is,

n

d(or, . w) =Y (xi_i)Q.

=1

This function is strongly convex, continuous and differentiabl&,inandminyea, d(x) = 0. It has strong convexity

parameterp = 1 for the Euclidean norm, namelyjx|| = (X", |xi|2)1/2. The corresponding operator norfid||,
for this setting is the spectral norm df, i.e. the square root of the largest eigenvalueddf A. Although the mapping
sargmax(d, g) does not have a closed-form expression, it can easily be compuf¥aitog n) steps [3].

In order to apply AlgorithnEGTto problem (1) for sequential games we need nice prox-functions for the realiza-
tion sets); and@- (which are more complex than the simplex discussed above in Examples 1 and 2). This problem
was recently solved [6]:

Theorem 1 Any nice prox-function) for the simplex induces a nice prox-function for a set of realization plgans
The mappingargmax(d, -) can be computed by repeatedly apply#aggmax (v, -).

Later in this paper we will present experiments regarding the two nice prox functions (entropy and Euclidean).

3 Heuristics for improving speed of convergence

While Algorithm EGThas theoretical complexit®(1/¢), and (as our experiments &G Tshow later in this paper)

EGTis already an improvement over the state of the art (in particular, the simplex method and standard interior point
methods for solving the game modeled as a linear program), we introduce two heuristics for E@Kidgastically

faster. The heuristics attempt to speed up the decreage &md .o, and thus the overall convergence time of the
algorithm, while maintaining the excessive gap condition (4).

3.1 Heuristic 1. Aggressiveu reduction

The first heuristic is based on the following observation: although the vatie-02/(% + 3) computed in step 2(a) of
EGTguarantees the excessive gap condition (4), computational experiments indicate that this is an overly conservative
value, particularly during the first few iterations. Instead we can use an adaptive procedure to choose a larger value of
7. Since we now can no longer guarantee the excessive gap conditiarp(iyri, we are required to do posterior
verification which occasionally leads to adjustments in the parametarorder to check (4), we need to compute the
values off,,, and¢,,,. To that end, consider the following mappisgax, which is simply a variation ofargmax.

Assumed is a prox-function with domai® C R™. Letsmax(d, -) : R — R be defined as

smax(d, g) := mgg{(g,x) —d(x)}. (7)
Itisimmediate thatmax(d, -) is easily computable providedrgmax(d, -) is. Notice thatp,,, (y) = smax(ds, “%Ay)
andf,,(x) = —smax(ds, —iATx). To incorporate Heuristic 1 in AlgorithfBGTwe modify the procedurghrink
as follows.

decrease(A, u1, p2, 7,%,y, d1,dz)

1. (M;vx+ay+) = Shrink(AvﬂlaNQaTa X7Yad17d2)

2. while smax(d;, L Ay*) > — smax(ds, ;—J}ATxﬂ

M1

/I reduced too much, T is too big

@ 7:=7/2
(b) (/,L;,X+,y+) = Shrink<Aa,ula,uQ?T?Xayadlad2)

3. return (g, xt,y")

By [12, Theorem 4.1], when the inp(t, uu2, X, y) to decrease satisfies (4), the procedudecrease will halt.

3.2 Heuristic 2: balancing and reduction ofu; and p.

Our second heuristic is motivated by the observation that after several calls @dhease procedure, one ofi;
and o may be much smaller than the other. This imbalance is undesirable because the larger one dominates in the
bound given by (5). Hence after a certain number of iterations we perfbataacingstep to bring these values closer
together. The balancing consists of repeatedly shrinking the larger gneaofd .

We also observed that after such balancing, the valugs @ind 2 can sometimes be further reduced without
violating the excessive gap condition (4). We thus include a final reduction step in the balancing heuristic.

This balancing and reduction heuristic is incorporated via the following procédure.

2We set the parameter8.0 and1.5) based on some initial experimentation (details omitted in this short paper).

balance(ug, p2,X,y, 4)

1. while ps > 1.5u1 /1 shrink 142

(t2,X,y) := decrease(A, u1, u2, 7,X,y,d1,ds)
2. while py > 1.5u9 /I shrink 1

(p1,y,x) == decrease(AT, — M2, —H1, T, Y, X, da, d1)
3. while smax(d;, 7o—Ay) > — smax(dz, ;o ATx)

0.9/1,1 0.9”2
/I decrease p1 and puo if possible

w1 = 0.9p1
2 = 0.9us

We are now ready to describe the varianE@ Twith Heuristics 1 and 2.

EGT-2
1. (/’L(l)vﬂgvxoayo) = initial (AanaQQ)
2. 7:=0.5
3. For £=0,1,...:
(@ If k is even: [/ Shrink 42
I (u1{+17xk+17yk+1) = decrease(A, ,ulf,,ug,'r, kayk7d17d2)
iyt =
(b) If £k is odd: // Shrink 1
i. (le+1,yk+1,xk+1) := decrease(— AT,y ub, 7 y* x* do, dy)
iyt = ph
(¢) If k mod10=0 // balance & reduce
balance(uf, ub, x*,y*, A)

4 Customizing the algorithm for poker games

The bulk of the computational work at each iteration of AlgorithBGTandEGT-2 consists of some matrix-vector
multiplicationsx +— ATx andy ~— Ay in addition to some calls to the mappingsax(d;, -) andsargmax(d;, -). Of

these operations, the matrix-vector multiplications are by far the most expensive, both in terms of memory (for storing
A) and time (for computing the product).

4.1 Addressing the space requirements

To address the memory requirements, we exploit the problem structure to obtain a concise representation for the
payoff matrix A. This representation relies on a uniform structure that is present in poker games and many other
games. For example, the betting sequences that can occur in most poker games are independent of the cards that are
dealt. This conceptual separation of betting sequences and card deals is used by automated abstraction algorithms [5].
Analogously, we can decompose the payoff matrix based on these two aspects.

The basic operation we use in this decomposition isktanecker produgtdenoted byx. Given two matrices

B e R™*™ andC € RP*4, the Kronecker product is

b11C -+ b1, C
BeC=| : Do | e RTPXM
bmlc e bmnc

For ease of exposition, we explain the concise representation in the context of Rhode Island Hold’em poker [14],
although the general technique applies much more broadly. The payoff rAater be written as

Ay
A= Ay
As

whereAd, = F} ® By, Ay = F, ® By, andA3 = F3 ® B3 + S ® W for much smaller matrices;, B;, S, andW.

The matrices; correspond to sequences of moves in roiiticht end with a fold, and' corresponds to the sequences

in round 3 that end in a showdown. The matrid&sencode the betting structures in rouhdvhile W encodes the
win/lose/draw information determined by poker hand ranks. (We omit the exact details of these matrices due to limited
space.)

Given this concise representation .df computingx — ATx andy — Ay is straightforward, and the space
required is sublinear in the size of the game tree. For example, in Rhode Island Hold’em, the dimensioris of the
and S matrices arel0 x 10, and the dimensions dB;, By, and B3 are13 x 13, 205 x 205, and 1,774x 1,774,
respectively—in contrast to thé-matrix, which is 883,741 883,741. Furthermore, the matrices B;, S, andWW
are themselves sparse which allows us to use the Compressed Row Storage (CRS) data structure (which stores only
non-zero entries).

Table 1 provides the sizes of the four test instances; each models some variant of poker, an important challenge
problem in Al [2]. The first three instancel)k , 160k , andRI , are abstractions of Rhode Island Hold’em [14] com-
puted using th&ameShrinkautomated abstraction algorithm [5]. The first two instances are lossy (non-equilibrium
preserving) abstractions, while tR# instance is a lossless abstraction. The last instareas , is a lossy abstrac-
tion of Texas Hold’em. We wanted to test the algorithms on problems of widely varying sizes, which is reflected by
the data in Table 1. We also chose these four problems because we wanted to evaluate the algorithms on real-world
instances, rather than on randomly generated games (which may not reflect any realistic setting).

Name Rows Columns Non-zeros
10k 14,590 14,590 536,502
160k 226,074 226,074 9,238,993
RI 1,237,238 1,237,238 50,428,638
Texas 18,536,842| 18,536,852| 61,498,656,400

Table 1: Problem sizes (when formulated as an LP) for the instances used in our experiments.

Table 2 clearly demonstrates the extremely low memory requirements of the EGT algorithms. Most notably, on
the Texas instance, both of the CPLEX algorithms require more than 458 GB simpigpi@senthe problem. In
contrast, using the decomposed payoff matrix representation, the EGT algorithms require only 2.49 GB. Furthermore,
in order to solve the problem, both the simplex and interior-point algorithms would require additional memory for their
internal data structuresTherefore, the EGT family of algorithms is already an improvement over the state-of-the-art
(even without the heuristics).

4.2 Speedup from parallelizing the matrix-vector product

To address the time requirements of the matrix-vector product, we can effectively parallelize the operation by simply
partitioning the work inton pieces whem CPUs are available. The speedup we can achieve on parallel CPUs is

3The memory usage for the CPLEX simplex algorithm reported in Table 2 is the memory used after 10 minutes of execution (except for
the Texas instance which did not run at all as described above). This algorithm’s memory requirements grow and shrink during the execution
depending on its internal data structures. Therefore, the number reported is a lower bound on the maximum memory usage during execution.

[Name [CPLEXIPM | CPLEX Simplex |

EGT |

10k 0.082 GB > 0.051 GB | 0.012GB
160k 2.25 GB > 0.664 GB | 0.035GB
RI 25.2GB > 3.45 GB 0.15GB
Texas > 458 GB > 458 GB 2.49 GB

Table 2: Memory footprint in gigabytes of CPLEX interior-point method (IPM), CPLEX Simplex, and EGT algo-
rithms. CPLEX requires more than 458 GB for thexas instance.

demonstrated in Table 3. The instance used for this test i$aRkas instance described above. The matrix-vector
product operation scales linearly in the number of CPUs, and the time to perform one iteration of the algorithm (using
the entropy prox function and including the time for applying Heuristic 1) scales nearly linearly, decreasing by a factor
of 3.72 when using 4 CPUs.

CPUs || matrix-vector product EGT iteration
time (s) speedup || time (s) | speedup
1 278.958 1.00x || 1425.786 1.00x
2 140.579 1.98x | 734.366 1.94x
3 92.851 3.00x || 489.947 2.91x
4 68.831 4.05x || 383.793 3.72x

Table 3: Effect of parallelization for thBexas instance.

The rest of the experiments in this paper do not reflect any parallelization.

5 Experiments regarding prox functions

Figure 1 displays the relative performance of the entropy and Euclidean prox functions, described in Examples 1 and
2, respectively. (Heuristics 1 and 2 wertleosnabled in this experimeq(‘g&<

3 3
102 Entropy —— 10 Entropy ——
10° | Euclidean) Euclidean
10t 10
0
101 10t
100
102 10°
0O 1 2 3 4 5 6 0 2 4 6 8 10 12
Time (hours) Time (hours)
104 RI 102 Texas
Entropy —— Entropy ——
Euclidean 7" TN _Eucidesn
3
10
10°
10! 10
0 2 4 6 8 10 12 0 12 24 36 48 60 72
Time (hours) Time (hours)

Figure 1: Comparison of the entropy and Euclidean prox functions. The value axis is th¢igamation 2).

The entropy prox function outperformed the Euclidean prox function on all four instances. Therefore, in the
remaining experiments we use the entropy prox function.

6 Experiments regarding Heuristics 1 and 2

Figure 2 demonstrates the impact of applying Heuristic 1 only. On all four instances, Heuristic 1 reduced the gap
significantly; on the larger instances, this reduction was an order of magnitude.

Because Heuristic 2 takes more time to compute, we experimented with how often the algorithm should run it.
(We did this by varying the constant in line 3(c) of AlgoritB&T-2. In this experiment, Heuristic 1 was turned off.)
Figure 3 shows that it is better to run it than to not run it, and on most instances, it is better to run it every 100 iterations

than every 10 iterations.

7 Conclusions and future research

We applied Nesterov’s excessive gap technique to extensive form games. We introduced two heuristics for improving
convergence speed, and showed that each of them reduces the gap by an order of magnitude. Best results were achieved
by using Heuristic 2 only every so often. It was best to use both heuristics together (Figure 1 vs. Figures 2 and 3).
We also observed that the entropy prox function yieled faster convergence than the Euclidean prox function. For
poker games and similar games, we introduced a decomposed matrix representation that reduces storage requirements
drastically. We also showed near-perfect efficacy of parallelization. Overall, our techniques enable one to solve orders

10k

160k

3 3
102 No Heuristics —— 10 No Heuristics ——
10 Heuristic 1) Heuristic 1
101 \‘\ .
0
101 10t
100
102 10°
0O 1 2 3 4 5 6 0O 2 4 6 8 10 12
Time (hours) Time (hours)
4 RI 5 Texas
10 i No Heuristics —— 10 No Heuristics ——
3 Heuristic 1 Heuristic 1
10
2
) 107 —
10
10t 10
0O 2 4 6 8 10 12 0 12 24 36 48 60 72

Time (hours)

Time (hours)

Figure 2: Experimental evaluation of Heuristic 1.

5 10k 4 160k
10 No Heuristics 10 No Heuristics ——
10? 10 Iterations 108 10 Iterations
100 Iterations - - - 100 Iterations = = =
10t 10°
\
10° \\I:‘EJ‘T"-'«%_____N 10t
10 10°
0O 1 2 3 4 5 6 0 2 4 6 8 10 12
Time ﬁhours) Time 1(hours)
4 R 120 X3
10 No Heuristics —— No Heuristics ——
10 Iterations 110 2 lterations
10° b 100 lterations = = = 100 10 Iterations = = =
. NOF ===
10 1 80 [
T 70
1ot — ===
0O 2 4 6 8 10 12 0 12 24 36 48 60 72

Time (hours)

Time (hours)

Figure 3: Heuristic 2 applied at different intervals.

of magnitude larger games than the prior state of the art.

Although current general-purpose simplex and interior-point solvers cannot handle problems of more than around
10° nodes [5], it is conceivable that specialized versions of these algorithms could be effective. However, taking
advantage of the problem structure in these linear programming methods appears to be quite challenging. For example,

10

a single interior-point iteration requires the solution of a symmetric non-definite system of equations whose matrix has
the payoff matrixA and its transposel’ in some blocks. Such a step is inherently far more complex than the
simple matrix-vector multiplications required B#GT-2. On the upside, overcoming this obstacle would enable us to
capitalize on the superb speed of convergence of interior-point methods. While first-order methodsQénlsye
iterations to find am-solution, interior-point methods require orli(log(1/¢)) iterations. We leave the study of these
alternative algorithms for Nash equilibrium finding as future work.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

El

[10]

[11]
[12]

[13]
[14]

[15]

D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron. Approximating game-theoretic
optimal strategies for full-scale poker. Rroceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence (IJCAl)pages 661-668, Acapulco, Mexico, 2003.

D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poksificial Intelligence 134(1-2):201-240,
2002.

F. A. Chudak and V. Ele@fio. Improved approximation schemes for linear programming relaxations of combinatorial opti-
mization problems. IHPCO, pages 81-96, Berlin, Germany, 2005.

A. Gilpin and T. Sandholm. A competitive Texas Hold’em poker player via automated abstraction and real-time equilibrium
computation. IrProceedings of the National Conference on Artificial Intelligence (AABdston, MA, 2006.

A. Gilpin and T. Sandholm. Finding equilibria in large sequential games of imperfect informati®noteedings of the ACM
Conference on Electronic Commerce (ACM-Ef3ges 160-169, Ann Arbor, MI, 2006.

S. Hoda, A. Gilpin, and J. Fa. A gradient-based approach for computing Nash equilibria of large sequential games.
Manuscript. Presented at INFORMS-06., 2006.

D. Koller and N. Megiddo. The complexity of two-person zero-sum games in extensive®ames and Economic Behavjior
4(4):528-552, Oct. 1992.

D. Koller and A. Pfeffer. Representations and solutions for game-theoretic probfetifcial Intelligence 94(1):167-215,
July 1997.

R. J. Lipton and N. E. Young. Simple strategies for large zero-sum games with applications to complexity themyebd-
ings of the Annual Symposium on Theory of Computing (ST@x@es 734—740, Montreal, Quebec, Canada, 1994.

Z. Lu, A. Nemirovski, and R. D. C. Monteiro. Large-scale semidefinite programming via a saddle point mirror-prox algorithm.
Mathematical Programming, Series B007. Forthcoming.

Y. Nesterov.Introductory Lectures on Convex Optimization: A Basic Coukdewer Academic Publishers, 2004.

Y. Nesterov. Excessive gap technique in nonsmooth convex minimizaBtWM Journal of Optimization16(1):235-249,
2005.

I. Romanovskii. Reduction of a game with complete memory to a matrix g&oéet Mathematic:678-681, 1962.

J. Shi and M. Littman. Abstraction methods for game theoretic pokeComputers and Gamgpages 333-345. Springer-
Verlag, 2001.

B. von Stengel. Efficient computation of behavior strategismes and Economic Behavjid#(2):220-246, 1996.

11

