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What is the relative importance of factors influencing teenage pregnancy or global
warming? How should corporate costs or profits be allocated? And what is the
relative importance of assets in an investment portfolio?

This paper presents an economic theory of attribution capable of addressing these
questions that is based on the general question: “What is the probability that any
order of model factors is correctly ordered by their relative importance?” Elemen-
tary axioms identify two probability distributions over factor orders. In proportional
marginal attribution (PMA), a factor’s expected contribution share is equal the prob-
ability it is most important. In linear attribution (LA) all orders are equally likely.

This work is based on and contributes to cooperative game theory, a mathematical
approach to the study of bargaining. Cooperative game theory provides models for
the representation of the joint effects inherent in bargaining and methods for their
attribution. The simplest n-person bargaining game provides a sturdy but limited
model of bargaining, yet a perfect structure for the attribution problems studied here.

von Neumann (1928/1952) first defines the n-person cooperative game. The Shap-
ley (1953) value is today the central solution concept. A versatile axiomatically de-
fined mathematical structure, it is also the equilibrium outcome of noncooperative
bargaining games such as Gull (1988) and Hart and Mas-Colell (1996). It and its gen-
eralization to games with a continuum of players, the Aumann-Shapley (1974) value,
have been applied to diverse problems, including cost allocation (e.g., Shubik (1962)
and Young (1985)), general equilibrium (e.g., Shapley (1964)), and price setting (e.g.,
Billera and Heath (1982)). Roth (1988) and Hart (2006) provide reviews.

Shapley (1953) shows his value represents the expected marginal contributions of
players to a growing coalition when all orders of “arrival” are equally likely. Weber
(1988) characterizes the set of all linear random order values. A significant literature
has developed (e.g., Khmelnitskya (1999) and Segal (2003)). Linearity, however,
prevents the worths of coalitions from influencing the random order arrival process.

Consistency in cooperative games has been based on special games that “reduce”
players from an initial game. If a solution concept is consistent, allocations to the
remaining players are unchanged. Hart and Mas-Colell (1988) define a reduced game
and use it to characterize the Shapley value with consistency. Feldman (1999, 2002)
shows parallel results for the proportional value using the same reduced game.

Random order consistency requires that an inert player or factor, one having no
joint effects with others, not disturb the probabilities of suborders in which it is not
included. The random order approach to consistency does not require a reduced
game. This facilitates practical application. Random order consistency is shown to
provide a simple and powerful expectations-based approach to cooperative value.

The proportional value (Ortmann (2000) and Feldman (1999, 2002)) satisfies a
proportional gain rule instead of the balanced (equal) contributions rule of Myerson
(1980) and is defined by a ratio potential rather than the linear Hart and Mas-Colell
(1988) potential. Feldman (2002) shows the proportional value induces a random



order process influenced by coalitional worths and that it is the equilibrium outcome
of a noncooperative bargaining game where players’ probabilities of proposing are
proportional to their expected payoff. Khmelnitskya and Driessen (2001) and Calvo
and Driessen (2003) study generalizations.

Section 1 of this paper presents a microeconomic model of relative importance
based on set marginal contributions in a random order model. Random order consis-
tency and other axioms are used to directly identify a probability distribution over
orders. The Shapley and proportional values are identified in a common framework,
without assuming linearity or proportionality, though the change of a single axiom.

Section 2 defines restricted potentials and obtains proportional value derivatives
and coalition formation results. The proportional value is shown not converse mono-
tonic. A family of values including the Shapley and proportional values is shown.

* * *

Attribution involves a single monotonic utility function. Players in the corresponding
bargaining problem must be assumed to have identical linear utility functions. In
attribution, factors and factor sets replace players and coalitions. The worth of a
factor set is based on the utility resulting from the presence of its factors or the
restriction of utility maximization to the variation of its factors. Three examples
demonstrate the potential of this theory of attribution.

Statistical tests ignore joint effects by design. Linear attribution of OLS R2 as
a measure of relative importance is proposed by Hoffman (1960), Lindeman, et al.
(1980), Kruskal (1987) and Chevan and Sutherland (1991). McNally (2000) initiates
its use in ecology studies. Soofi, et al. (2000) develop a model of linear attribution in
categorical analysis. Linear attribution of model R2 allows a factor to appear impor-
tant due only to correlations with factors in the true model. Feldman (2005a) first
proposes an exclusion axiom which requires that such a factor receive zero attribu-
tion share, and with other axioms, characterizes proportional marginal attribution
of model R2 (there called proportional marginal variance decomposition or PMVD).
Grömping (2006, 2007) provides attribution tools and studies OLS LA and PMA.

Section 3 studies econometric attribution. The model objective function is con-
sidered to be the utility function of an analyst. Random order consistency is found
compatible with econometric attribution. Attributions are found stable and compa-
rable across a variety models based on data from Fair (1977). PMA identifies factor
relative importance and model relationships missed by joint significance tests.

Section 4 considers utility attribution in microeconomic models more generally.
Random order consistency is found to be an acceptable axiom whenever an attribution
problem can be composed with an independent problem. A portfolio optimization
example illustrates utility attribution in a typical microeconomic context. The exam-
ple provides methods for evaluating the relative importance of assets in an investor’s
portfolio and the per-dollar contributions of assets to investor utility.
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Section 5 considers cost allocation as an attribution problem. Random order
consistency is found to be an appropriate axiom for cost attribution. An example
illustrates the relative vulnerability of LA to strategic definition of cost centers.

The conclusion summarizes, compares random order and reduced game consis-
tency and considers the common assumption that proportional solutions are transla-
tion dependent in the light of results of developed here. Extended proofs follow.

1 Basic results

1.1 General framework

Transferrable utility (TU) games represent the worth of a coalition by a single number.
Let N = {1, 2, . . . , n} be the players or factors. A standard TU game v is a map
v : 2N → R+ ∪ 0 from all S ⊆ N to the nonnegative real numbers, with v(∅) ≡ 0.
The S ⊆ N are coalitions or factor sets. Let ī = {i} and 1̄2̄ = {1, 2}. Set subtraction
of ī from S is written S \ ī. Games are assumed weakly monotonic: v(S ∪ ī) ≥ v(S).

In an attribution problem, v(S) is the expected utility of a single decision maker.
If S represents binary characteristics, then v(S) is the utility resulting from the joint
presence of the factors.1 Factor set S may instead provide the decision maker with
decision space ∆S, with σS ∈ ∆S being a possible choice. Then v(S) is the maximum

v(S) = max
σS∈∆S

U(σS)− U(∅), (1)

where the null utility U(∅) represents the utility obtained when there are no opti-
mization choices. The null utility is the basis point of Feldman (2005b). It is clearly
needed with exponential and other utility functions that can generate negative utility.
Its importance in other circumstances will become apparent.

The weak monotonicity of v corresponds to the assumption that maximization
over a greater number of factors cannot result in a decline in expected utility.

The dual game to v represents the marginal contributions of all coalitions or factor
sets. The dual worth w(S) is v(N) minus the worth of the complement of S:

w(S) = v(N)− v(N \ S). (2)

1.2 The random order model

Attribution is based on a random order model of relative importance. A discrete
marginality replaces the more typical economic focus on continuous marginal condi-
tions. In this model factors “arrive,” one at time, to join a growing factor set. Factors

1A monotonic cover game, where v∗(S) = maxR⊂Sv(R), can be used to ensure monotonicity.
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could be indexed by arrival order. However, due to the central role of joint marginal
contributions, it is simpler to consider the “last to arrive” as the first in an order.
The last to arrive can instead be thought of as “first to leave.”

An order r = (r1, r2, . . . , rn) is a permutation of the factors (or players) of N . The
set of all orders of N is R(N). Define Sr

k = {r1, . . . , rk} to be the set (coalition) of
the first k factors (players) in the order r. These are the last k factors to arrive in
order r. If S has k factors, S is included in r, written S ∈ r, if and only if S = Sr

k.
Thus w(Sr

i ) is the joint marginal contribution of the last i factors to enter. Let r(i)
be the position of i in order r, so that rr(i) = i. When factors are ordered according
to relative importance, r1 is least important and rn is most important.

Let rS be an order of the factors of a set S ( N and consider an r ∈ R(N). Assume
that for any i and j in S such that rS(i) > rS(j), it is also true that r(i) > r(j). The
order of the factors in rS is preserved in r, so rS is a suborder of r, written rS ⊂ r.
Also, r is a superorder of rS, written r ⊃ rS.

Let mP (r) be an n-vector of positional marginal contributions defined by r. Ele-
ment i, mP

i (r), represents the marginal contribution of the factor in position i in r.
This quantity is defined as follows with respect to the dual game:

mP
i (r) = w(Sr

i )− w(Sr
i−1), i = 1, 2, . . . , n, (3)

where Sr
0 = ∅ and w(∅) = 0. Let mS(r) be the n-vector of set marginal contributions:

mS
i (r) = w(Sr

i ) = v(N)− v(N \ Sr
i (r)), i = 1, 2, . . . , n. (4)

The probability p(r) that any order r ∈ R(N) is the realized order of arrivals is
defined by a likelihood function L(r) with L(r) ≥ 0 for all r:

p(r∗) =
L(r∗)∑

r∈R(N)

L(r)
. (5)

The expected utility contribution of factor i with respect to distribution p is then

φi(v) = Ep[m
P
r(i)(r)] =

∑

r∈R(N)

p (r) mP
r(i)(r). (6)

1.3 Axioms and the fundamental theorem

Axioms are used to identify probability distributions over orderings and not the value
function itself. Such a distribution may be understood to represent the probability
that any order is correctly ordered by the relative importance of its factors.
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A factor z is inert if and only if it adds exactly its own non-zero worth to every
coalition: v(z̄) > 0 and, for any S ⊆ N \ z̄, v(S ∪ z̄) = v(S) + v(z̄). Let v∗ be the
game created by adding a set of inert factors Z, so that N∗ = N ∪ Z.

Axiom 1.1 Random order consistency: p (r | v) =
∑

r∗∈R(N∗)
r∗⊃ r

p (r∗| v∗).

Random order consistency requires that an inert factor or factor set have no effect
on the probability of any suborder of the remaining factors. Consider an order r in
R(N). Then the sum of the probabilities of all orders r∗ ∈ R(N∗) such that r ⊂ r∗

relative to the game v∗ must equal the probability of r relative to v.

If the axiom holds for a likelihood L in games of cardinalities m and n, then L is
random order consistent between these cardinalities. If L is random order consistent,
then it is random order consistent between all cardinalities m and n, 2 ≤ m < n.

Compared to Hart and Mas-Colell (1988) reduced game consistency, random order
consistency requires the existence of inert factors, but does not require a reduced game
or directly constrain value allocation when inert factors are not present.

Axiom 1.2 Exclusion: If mS
1 (r) = 0 when r(z) = 1 and mS

1 (r∗) > 0 when r∗(j) =
1, for all j 6= z, then for any r∗ such that r∗(z) > 1, p (r∗) = 0.

Assume z makes zero final marginal contribution (arriving last in any order r) and
all other factors make positive final marginal contributions. Exclusion then requires
that only orders where z arrives last are assigned positive probability.

The basic idea of exclusion is that a factor making zero final marginal contribution
should receive no attribution share. This outcome, however, is not demanded when
there are two or more such factors (cf., Feldman (2002), Section 6.1).

Exclusion will considered in the limit as marginal contributions grow small. Let v0

be strictly monotonic. Define a sequence of games v1, v2, . . . , v∞ where vt(S) = v0(S)
for S 6= N \ z̄ and limt→∞ vt(N \ z̄) = v0(N). If r(z) = 1 then limt→∞ mS

1 (r| vt) = 0.
Exclusion requires that if r∗(z) > 1, then limt→∞ p (r∗| vt) = 0.

Axiom 1.3 Separability: L(r) =
∑

li(m
S
i (r)) or L(r) =

∏
li(m

S
i (r)).

Separability requires the likelihood function be a sum or product of subliklihoods.
Separability limits complexity but does not imply separability of p or φ.

Axiom 1.4 Anonymity: If mS(r∗) = mS(r), then L(r∗) = L(r).

Anonymity requires L(r) depend only on the marginal contributions of the factor sets
included in r.
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Axiom 1.5 Inclusion: If mS
r(i)(r) > 0, then there is an r∗ such that p (r∗) > 0 and

mP
r∗(i)(r

∗) > 0.

Inclusion requires that if a factor makes a positive positional contribution in any order
r that there must be an order r∗ with positive probability in which the factor also
makes a positive positional contribution. It could be that r∗ = r.

The following result is proved in the next two subsections.

Theorem 1.1 (The Fundamental Theorem of Attribution) Let v be a game
representing an attribution or bargaining problem, and let w be its dual. Require
that the value attributed to factors or players equal the their expected marginal contri-
bution resulting from a probability distribution over orders in the random order model
of relative importance.

(i) The Shapley and proportional values of w, corresponding to linear and propor-
tional marginal attribution, are the only random order consistent, anonymous
and separable values.

(ii) The Shapley value of v is the unique value that additionally satisfies inclusion.

(iii) The proportional value of w uniquely additionally satisfies exclusion.

Remark 1.1 Random order consistency is uniquely associated with cooperative value.
The reduced game approach only establishes consistency with respect to a particular
two-player solution. Complete characterization requires specific axioms for the two-
player case (e.g., Hart and Mas-Colell (1988), Theorem B’). Many solution concepts
are consistent with respect to the Hart and Mas-Colell reduced game, including equal
split, average cost pricing, serial cost sharing (Moulin and Shenker, 1992), fixed pro-
portions, path methods (Friedman, 2004), dictatorial and priority rules (see Leroux
(2006) for further discussion). An additional complication of the reduced game ap-
proach is still other solutions are consistent with respect to other reduced games.

1.4 Relative importance likelihood functions

A likelihood L is exogenous if it is independent of v, i.e., ∂L(r)/∂v(S) = 0 for
all r ∈ R(N) and S ⊆ N . If L is not exogenous, it is endogenous. Random order
consistency, anonymity and inclusion identify a unique exogenous likelihood. Random
order consistency, separability and exclusion identify a unique endogenous likelihood.

Lemma 1.1 The unique (up to scaling) endogenous separable likelihood function that
satisfies random order consistency is

L¦(r) =

( ∏
S∈ r

w(S)

)−1

.
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Further, L¦ is anonymous and positive.

Proof: See Appendix A (Sec. 7.1).

Lemma 1.2 The likelihood function L∗(r) = c > 0 with p(r)=1/n! is uniquely iden-
tified (up to scaling) by anonymity, inclusion and random order consistency. It also
formally satisfies both additively and multiplicative separability.

Proof: L∗(r) is anonymous and p(r) = 1/n! for any L∗ = c > 0. It is inclusive since for
all r, p(r) > 0. It is random order consistent since for any r0 in N \ z̄, where z is inert,∑

r⊃r0
p(r) = n/n! = 1/(n − 1)!. Inclusion is necessary since L¦ satisfies anonymity

and random order consistency. Random order consistency is necessary because many
likelihoods satisfy anonymity and inclusion, e.g., Lo(r) =

∑
S∈r w(Sr

i ). It is sufficient

to show the necessity of anonymity when n ≤ 3: Let lωi (Sr
i ) = ωr(i)/

∑i
j=1 ωr(j) and

Lω(r) =
∏

lωi (Sr
i ), where ωi > 0, i = 1, 2, 3, are exogenous weights. Lω is inclusive.

It is easy to determine that Lω((1, 2, 3)) + Lω((1, 3, 2)) + Lω((3, 1, 2)) = Lω((1, 2)).
(This is the weight system of the weighted Shapley value, cf., e.g., Kalai and Samet
(1987).) Thus, Lω is random order consistent for m = 2 and n = 3 and anonymity
is necessary. Let l∗i (S) = c1/n, L∗(r) =

∏n
i=1 l∗i (S) = c and L∗ is multiplicatively

separable. Let l∗i = c/n, L∗(r) =
∑n

i=1 l∗i (S) = c and L∗ is additively separable. ¤

Lemma 1.3 L¦ is the unique likelihood function to satisfy separability, random order
consistency and exclusion.

Proof: L∗ cannot satisfy exclusion as p(r) > 0 for all r ∈ R(N). L¦ satisfies exclusion.
To see, consider an dual attribution problem w0 where the final marginal contribution
of z is very small and a sequence of games {wt}∞t=1, where limt→∞ wt(z̄) = 0; but
for all other sets S ⊆ N , wt(S) = w0(S) > 0. For any rΩ ∈ R(N) such that
rΩ
1 = z, limt→∞ L¦t (r

Ω) = +∞, however, clearly p¦t (r
Ω) = L¦t (r

Ω)/
∑

r∈R(N) L¦t (r) ≤ 1.

Further, for any r∗ with r∗1 6= z, limi→∞ p¦t (r
∗) = L¦t (r

∗)/
∑

r∈R(N) L¦t (r) = 0 since

limt→∞ L¦(r∗)/L¦(rΩ) = 0. A non-anonymous exogenous L could assign an r ∈ R(N)
zero probability, but exclusion would not be satisfied. ¤

Remark 1.2 Note that all separable likelihood functions with li(•) = lj(•) are random
order consistent when likelihoods are based on positional marginal contribution.

1.5 Attribution and value

The Shapley values of v and its dual w are equal and are the expectation when L∗ is
used in (6). Thus Lemma 1.2 proves
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Theorem 1.2 Let the likelihood of the distribution over orders in the random or-
der model of relative importance satisfy random order consistency, anonymity and
inclusion. Then the resulting attribution is equal to the Shapley value of the problem.

Remark 1.3 Weighted Shapley (1953) values might be identified by random order
consistency and inclusion (as suggested in the proof of Lemma 1.2).

Define the function P (S) for any S ⊆ N as

P (S) =


 ∑

r∈R(S)

L¦(r)



−1

. (7)

P (N) is then the normalizing factor that relates L¦ to the implied distribution p¦:

p¦(r) = P (N)L¦(r). (8)

Feldman (2002), Lemma 2.1 shows that formula (7) is one form of the ratio potential
of a cooperative game and that P (S) is also recursively defined by the formula

P (S) = w(S)

(∑
i∈S

P (S \ ī)−1

)−1

. (9)

Substitution of formula (8) into the expectation (6) gives

ϕi(w) = P (N)
∑

r∈R(N)

L¦(r)mP
r(i)(r). (10)

Lemma 1.4 P (N \ ī) =


 ∑

r∈R(N)

L¦(r) mP
r(i)(r)



−1

.

This is proved in Appendix B (Sec. 7.2) and by Feldman (2002), Lemma 2.9.

Corollary 1.1 ϕi(w) =
P (N)

P (N \ ī)
.

The discrete derivative of the ratio potential with respect to i is one definition of i’s
proportional value (Feldman (1999) equation (3.6), Ortmann (2000) Definition 2.2).
Thus Lemma 1.1, expectation (10) and Lemma 1.4 prove

Theorem 1.3 Let the likelihood of the distribution over orders in the random order
model of relative importance satisfy random order consistency, exclusion and separa-
bility. Then the attribution of v is equal to the proportional value of w, its dual.
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2 Properties of the proportional value

2.1 Elementary properties

Random order consistency directly implies the following lemma, where ϕ(v, S) is the
proportional value of v when v is limited to the factors in S.

Lemma 2.1 If z is inert then ϕi(v, S \ z̄) = ϕi(v, S).

Now let N = {1, 2}. Then P (̄i) = w(Sij
i ) = w(̄i) = v(1̄2̄)− v(j̄) and

P (12 ) =
w(12 )

P (1̄)−1 + P (2̄)−1
=

w(12)

w(1̄)−1 + w(2̄)−1
=

w(1̄)w(2̄)w(1̄2)

w(1̄) + w(2̄)
,

so that

ϕi(w) =
P (N)

P (N \ ī)
=

w(̄i)

w(1̄) + w(2̄)
w(12). (11)

Myerson (1980) shows the Shapley value is defined by balanced contributions:

Shi(S, v)− Shi(S \ j̄, v) = Shj(S, v)− Shj(S \ ī, v).

Adding j to S helps i in the same measure that adding i helps j. Ortmann (2000),
Theorem 2.6 characterizes the proportional value with an analogous ratio perserving
condition (called equal proportional gain in Feldman (1999 and 2002)):

ϕi(S, v)

ϕi(S \ j̄, v)
=

ϕj(S, v)

ϕj(S \ ī, v)
. (12)

Lemma 2.2 Let v be a cooperative game with n players and require ĉ > 0.

(i) Let v∗(S) = v(S) if |S| 6= k for a k < n and v∗(S) = v(S) + c when |S| = k.

Then Sh(v∗) = Sh(v).

(ii) Let v∗(S) = v(S) if |S| 6= k for a k < n and v∗(S) = ĉ v(S) when |S| = k.

Then ϕ(v∗) = ϕ(v).

(iii) Let v∗(S) = v(S) if S 6= N and v∗(N) = v(N) + n c.

Then Sh(v∗) = Sh(v) + c.

(iv) Let v∗(S) = v(S) if S 6= N and v∗(N) = ĉ v(N), v∗ still monotonic.

Then ϕ(v∗) = ĉ ϕ(v).
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Proof: The Shapley results are obvious. Proportional value results follow directly
from formulas (7) or (9) and Corollary 1.1. ¤

Corollary 2.1 The proportional value is the unique random order consistent and
separable value in the random order model of relative importance that (a) is invariant
to a proportional change in the worth of all coalitions of any cardinality s < n or (b)
scales with changes in v(N).

2.2 The probability of being most important

Lemma 2.3 The probability that factor i is most important in a proportional marginal
attribution is ϕi(w)/w(N).

Proof: The probability of i being most important in a PMA implies arriving first in
the random order model of relative importance. This also implies being in position
n and that worths are relative to the dual game w. Thus

p (rn = i|w) = P (N,w)
∑

r∈R(N)
r:rn=i

n∏
i=1

w(Sr
i )
−1

=
P (N, w)

w(N)P (N \ ī, w)
=

ϕi(w)

w(N)
.

The first line above follows from formula (8), The substitution on the second line
follows from factoring out w(N) and applying Lemma (1.4). ¤

2.3 Your enemy’s enemy may be your friend

Feldman (1999), Lemma 3.5, shows the proportional value is monotonic. It is shown
here the proportional value is not converse monotonic. The value of i can increase
with an increase in the worth of S even if i 6∈ S.

The restriction of a game v by a coalition S∗ includes only coalitions T ) S∗ that
include S∗ as a proper subset. Let RP (S∗, S) be the restricted potential for S in v
restricted by S∗. Define RP (S∗, S∗) = 1 and define RP as in the following lemma.

Lemma 2.4 For any T : S∗ ( T ⊆ N ,

RP (S∗, T ) = v(T )


 ∑

i∈T\S∗
RP (S∗, T \ ī)−1



−1

=




∑
r∈R(T )
S∗=Sr

s

∏
S∈r

S)S∗

v(S)−1




−1

.
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The first part of the equivalence is the definition. The proof of the second equivalence
is by recursive substitution, as in Feldman (2002), Lemma 2.1. The value of a player
i 6∈ S∗ in the game v restricted by S∗ is ϕi(S

∗, N, v) = RP (S∗, N)/RP (S∗, N \ ī).

Lemma 2.5 The derivative of ϕi(v) with the worth of any coalition S∗ ⊂ N is

∂ϕi(v)

∂v(S∗)
=





ϕi(v)
P (N)

v(S∗)P (S∗)RP (S∗, N)
, i ∈ S∗,

ϕi(v)
1

v(S∗)P (S∗)

(
P (N)

RP (S∗, N)
− P (N \ ī)

RP (S∗, N \ ī)

)
, i 6∈ S∗.

Proof: The result follows from the value of ∂P (S)/∂v(S∗) for any S : S∗ ( S ⊆ N .

∂P (S)

∂v(S∗)
= [P (S)]2v(S∗)−1

∑

r3v(S∗)

∏
S∈r

v(S)−1

= [P (S)]2
[
v(S∗)P (S∗)RP (S∗, N)

]−1

The first result is from straightforward differentiation. The second result follows as
the sum of products in the first is equal to [P (S∗)RP (S∗, S)]−1 for S ) S∗. ¤

It follows that ∂ϕi(v)/∂v(N) = ϕi(v)/v(N) (thus
∑

i∈N ∂ϕi(v)/∂v(N) = 1) and
that ∂ϕi(v)/∂v(S∗) > 0 for an i ∈ S∗. On the other hand, the sign of ∂ϕi(v)/∂v(S∗)
is not clear for an i 6∈ S∗. Multiplying the LHS and RHS results of Lemma 2.5 by
RP (S∗, N)/P (N \ ī) shows

∑
i∈N ∂ϕi(v)/∂v(S∗) = 0 and the following.

Corollary 2.2 For any i ∈ N \ S∗,
∂ϕi(v)

∂v(S∗)
∝ ϕi(v)− ϕi(S

∗, N, v).

If i’s value in v restricted by S∗ is less than in v, then ϕ is not converse monotonic.
This seems possible since formula (11) shows that adding a c > 0 to all worths can
reduce the value of a dominant player. The Shapley and weighted Shapley values are
converse monotonic of their linearity.

Table 1 presents an example that demonstrates the proportional value is not con-
verse monotonic. In v, 1 is weakest and 3 is strongest. 2 is strong in combination
with 3, but less so in combination with 1. The proportional value (ϕ), the Shapley
value (Sh) and the nucleolus (Nuc) all provide qualitatively similar allocations.

The game v∗ is a version of v modified only by increasing 1’s individual worth to
10. The proportional value is not converse monotonic because 3’s value is larger than
in v. Further, player 1’s share of value and dominance over the next largest player
have both increased. This appears a plausible outcome in economic, political and
military competition. The Shapley value shows similar allocations before and after,
with 2 still stronger than 1. The nucleolus (Schmeidler, 1969) does not change.
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v(1̄) = 1, v(2̄) = 2, v(3̄) = 25,
v(12 ) = 20, v(13 ) = 30, v(23 ) = 60,

v(123 ) = 100

v∗(S) = v(S), S 6= 1̄, v∗(1̄) = 10

ϕ1(v) = 7.58, ϕ2(v) = 29.21, ϕ3(v) = 63.20
ϕ1(v

∗) = 20.61, ϕ2(v
∗) = 10.69, ϕ3(v

∗) = 68.70
∆ϕ1 = 13.03, ∆ϕ2 = −18.52, ∆ϕ3 = 5.50

Sh1(v) = 17.50, Sh2(v) = 33.00, Sh3(v) = 49.50
Sh1(v

∗) = 20.50, Sh2(v
∗) = 31.50, Sh3(v

∗) = 48.00
∆Sh1 = 3.00, ∆Sh2 = − 1.50, ∆Sh3 = − 1.50

Nuc1(v) = 12.00, Nuc2(v) = 36.00, Nuc3(v) = 52.00
Nuc1(v

∗) = 12.00, Nuc2(v
∗) = 36.00, Nuc3(v

∗) = 52.00
∆Nuc1 = 0.00, ∆Nuc2 = 0.00, ∆Nuc3 = 0.00

Table 1: Your enemy’s enemy may be your friend.

Corollary 2.3 The Shapley value is the unique random order consistent, anonymous,
separable and converse monotonic value.

2.4 Coalition formation

Simple coalition formation results are implied by Sections 2.2 and 2.3. The coalition
S forms if its members all arrive before any members of N \S. Lemma 2.3 implies the
probability that i is most important and j is second most important in the random
order model of relative importance is ϕi(N, w)/w(N)× ϕj(N \ ī, w)/w(N \ ī), or, in
terms of potentials, P (N, w)/P (N \ īj̄, w) × [w(N)w(N \ ī)]−1. When the probabil-
ity that S forms is summed over all such orders, the sum of worth products is the
restricted potential RP (S,N, w). Results change in a standard random order model
based on v, where the first in an order is the first to arrive. The player arriving last
is now most important. If one player has zero individual worth, this player will arrive
first with probability one (and receive zero value, see Feldman (2002), Section 6).
Then the probability of S forming in v is the probability that N \ S arrive last.

Lemma 2.6 The probability of a coalition S forming in the random order model of
relative importance is

p(S|w) =
P (N,w)

P (N \ S,w) RP (N \ S, N, w)
,
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where P (∅, w) ≡ 1 and RP (∅, N, w) ≡ P (N, w). The probability that S forms in a
random order model of the proportional value based on v instead of its dual is

p(S| v) =
P (N, v)

P (S, v) RP (S,N, v)
.

Corollary 2.4 The derivatives of the proportional value for any member i ∈ N rel-
ative any S ⊆ N in the game v or its dual w are as follows.

∂ϕi(v)

∂v(S)
=





ϕi(v)

v(S)
p(S| v), i ∈ S,

ϕi(v)

v(S)

[
p(S, N | v)− p(S,N \ ī | v)

]
, i 6∈ S, and

∂ϕi(w)

∂w(S)
=





ϕi(w)

w(S)
p(N \ S|w), i ∈ S,

ϕi(w)

w(S)

[
p(N \ (S ∪ ī), N |w)− p(N \ (S ∪ ī), N \ ī |w)

]
, i 6∈ S.

This corollary results from substitution of the results of Lemma 2.6 into Lemma 2.5.
(Note that for any i ∈ S, ∂Shi(v)/∂v(S) = 1/s pSh(S| v) = (s − 1)!(n − s)!/(s n!).)
This corollary provides the intuition that the proportional value is not converse mono-
tonic for an i with respect to S 63 i in v when the importance of S (the probability
of forming) is greater in N than in N \ ī. The probability that S arrives and then i
is determined by Lemma 2.6, giving the following (computationally very inefficient)
representation of the proportional value in classical marginal contribution form.

Corollary 2.5

ϕi(v) =
∑

S⊂N \̄i

P (S ∪ ī)P (N)

v(̄i)RP (̄i, S ∪ ī)P (S) RP (S, N)

(
v(S ∪ i)− v(S)

)
.

2.5 Linear-proportional family of values

Feldman (2005) Section 5.1 shows the linear and proportional values are both included
in a one-parameter family of values. This family results from replacing random order
consistency with a weaker axiom, which requires that effect on likelihood of a marginal
change of the worth of any coalition Sr

i included in an order r be the same.

Axiom 2.1 Proportional effect:
∂ ln L(r)
∂ ln w(Sr

i )
= α, i = 1, . . . , n.
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It is straightforward to show that proportional effect, exclusion and anonymity
identify the following likelihood (see Feldman (2005) Sections 3.3 and 5.1)

Lα(r) =

( ∏
S∈ r

w(S)

)−α

, α > 0. (13)

The case α = 0 is covered by Lemma 1.2. Define the normalizing factor Pα(N) =(∑
r∈R(N) Lα(r)

)−1

, and a family of probability distributions pα, indexed by α results:

pα(r) = Pα(N)Lα(r). (14)

The induced expectation when (14) used to generate expectation (6) is is clearly
the Shapley value when α = 0 and the proportional value when α = 1. Note,
however, that these are the only random order consistent members of this family and
that Pα(N) is not a potential for α 6= 1.

3 Econometric attribution

An independent variable completely orthogonal to all others in an econometric model
will not affect their model parameters or statistical significance levels. It is inert in
the implied attribution problem. Random order consistency requires only that such a
variable not affect other attributions. The theory of attribution can thus be applied
to tasks such as variance and likelihood decomposition across a wide range of models.

Proposition 3.1 If adding a factor z to an attribution problem based on likelihood
function increases the likelihood of the model but leaves the individual and joint sta-
tistical significance of all other variables unchanged, then z is an inert factor.

Proof: Let v and v∗ represent the joint log likelihoods of factors in models based on
N and N∗ = N ∪ z̄, respectively, with duals w and w∗. Measure the joint significance
of any factor set with the likelihood ratio test, which is based on their joint marginal
likelihood contribution. Thus w∗(S) = w(S) for all S ⊆ N \ z̄, and v∗(N ∪ z̄)−v∗(N ∪
z̄ \ S) = v∗(N)− v∗(N \ S) for all S ⊆ N . Since w∗(z) > 0, z is inert in w. ¤

Exclusion requires that a factor making zero final marginal contribution to model
performance, when all others have positive final marginal contribution, receive zero
attribution share. Such a factor will have zero statistical significance (e.g., p = 1 that
β = 0). Exclusion makes attribution as closely related to statistical significance as
possible given the mutual correlation of explanatory factors.

Feldman (2005a) proposes four admissibility criteria for estimators of statistical
relative importance: nonnegativity, proper exclusion (here, simply exclusion), proper
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inclusion and full contribution. Proper inclusion requires factors making positive (fi-
nal) marginal contribution receive positive attribution. Full contribution requires that
the sum of attributions for factors in a set S equal their joint marginal contribution
if they are uncorrelated with all factors in N \ S. PMA is an admissible estimator.

Feldman (2005a) also shows PMA components can be estimated consistently, de-
velops properties and presents examples of LA, PMA and CVD (see fn. 4, below).
Feldman (2005a) and Grömping (2007) note the potentially lower level of precision
of PMVD components.2

In econometric attribution the utility function (1) can be understood to belong to
an analyst and to be the model objective or likelihood function. Since OLS maximizes
R2 and R2 is set monotonic, the marginal contribution to variance or R2 can be the
basis of attribution. Measures such as adjusted R2, SIC and BIC cannot be used in
attribution because they are not set monotonic. A further logical restriction for eligi-
ble measures is that it should be possible to use the measure to construct statistical
significance tests. Such measures are more likely to be useful for the assessment of
relative importance of model factors. F -tests can be constructed from R2 values.

3.1 Indirect effects

Grömping (2007) proposes that LA should be used when interested in indirect effects.
For example, if x = f(y) and y = g(z) then z will receive a zero PMA share in the
attribution of x = f ′(y, z), but will receive an LA share if x and z are directly
correlated. The following is a direct implication of the Fundamental Theorem.

Corollary 3.1 Linear attribution is the only anonymous random order consistent
attribution that recognizes indirect contributions to econometric model performance.

Indirect effects can also be explicitly attributed with an assumed non-simultaneous
causal structure. The result is a nesting of attribution problems. Owen (1977) shows
that nested games can be interpreted as a composition of random order models.

Proposition 3.2 Consider nested OLS models x = f(y) and y = g(z). The variance
of x indirectly explained by z is σ2

xR
2
xyR

2
yz.

Proof: First, x̂ = a+σxy/σ
2
yy. The projection of x̂ on z gives x̂, the part of x explained

by y that is explained by z: x̂ = b + σx̂z/σ
2
zz, where σx̂z = σxy/σ

2
yσyz. The variance

of x̂ is [σxyσyz]
2/[σ2

yσ
2
z ]

2σ2
z . The variance share of x thus explained by z is then

R2
xz =

[σxyσyz]
2

σ2
x[σ

2
y]

2σ2
z

=
ρ2

xyσ
2
xσ

2
yρ

2
yzσ

2
yσ

2
z

σ2
x[σ

2
y]

2σ2
z

= ρ2
xyρ

2
yz = R2

xyR
2
yz ¤

2Grömping (2006) describes the relaimpo package for R statistical freeware, which estimates
several relative importance metrics for models and computes bootstrap confidence intervals.
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3.2 The structure of econometric attributions

Econometric attribution is based on the model objective function to be maximized:

v(S) = Θ(S)−Θ(∅), for all S : S ⊆ N,S 6= ∅, (15)

where Θ(S) is the objective function value when the factors in S are in the model and
those in N \ S are not. Θ(∅) is the null utility of formula (1), the model objective
value when not including any factors in N . For OLS with R2 as the objective and
an intercept, and when the intercept is not a factor, Θ(∅) = 0. With log-likelihoods,
typically v(S) < 0 without normalization. If v∗(S) = abs[Θ(S)], v∗ is not monotonic
and results are useless. Also, likelihood (e.g., v∗(S) = exp[Θ(S)]) is not a substitute
for log-likelihood because it is not used in significance tests.

Attribution shares, and not magnitudes or differences, are the essential informa-
tion. It may be difficult to properly determine the null likelihood for some models.3

In such cases, linear attribution shares cannot usefully be defined because they are a
function of Θ(∅). PMA shares, however, are invariant to changes in Θ(∅), so long as
monotonicity is maintained, because in the dual game to v the worths of all S ( N
are invariant to changes in Θ(∅). Changes in the dual worth w(N) only scale PMA
components. These relationships are consequences of Lemma 2.2.

Corollary 3.2 Let v∗(S) = c v(S) + d, c > 0 for all S and let w∗ be the dual of v∗.
Then ϕi(w

∗)/w∗(N) = ϕi(w)/w(N). PMA is share scale and translation invariant.

OLS R2 attributions sum to the R2 of the model, but can be normalized to sum
to 100%. R2-like measures that indicate the relative explanatory power of some max-
imum likelihood models have been constructed (see Maddala (1983), Section 2.11).

3.3 Fair’s (1978) infidelity study

Econometric attribution is studied here in the context of Fair’s (1978) study of 601
responses of first-time married individuals to a 1969 sex survey conducted by Psychol-
ogy Today. Fair studies the predictors of the frequency of marital infidelity. Green
(2003) reanalyzes this publicly available data. Fair’s original model is first analyzed
using OLS, tobit and Poisson regression. The determinants of marital happiness are
then examined with OLS and ordered probit. In addition to model results, LAs,
PMAs and covariance decompositions (CV Ds) are reported.4

3A linear model without an intercept is a simple example.
4CVD is a standard approach to variance decomposition in economics and finance. The CVD

component of a factor i is βi1′NΣβ, where β is the model coefficient vector, Σ is the factor covariance
matrix and 1N is a n × 1 vector of ones. See Feldman (2005a) Sections 4.3, 4.4 and 5 for results
concerning CVD and examples. CVD can be described as a form of LA that results when the
optimization of formula (1) is applied to only to the complete model.
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Factor beta st. dev. t-stat. PMA LA CVD

OLS
Age -0.050 0.022 -2.278 4.83% 5.73% -10.27%
Years married 0.162 0.037 4.387 20.16% 23.59% 38.87%
Religious -0.476 0.111 -4.279 18.92% 19.63% 18.54%
Occupation 0.106 0.071 1.491 2.14% 1.84% 2.21%
Happiness -0.712 0.118 -6.021 53.94% 49.21% 50.66%
R2: 0.1314

Tobit
Age -0.179 0.079 -2.27 5.30% 5.33% -10.09%
Years married 0.554 0.135 4.12 19.22% 22.64% 39.27%
Religious -1.686 0.404 -4.18 20.16% 20.78% 21.30%
Occupation 0.326 0.254 1.28 1.89% 1.59% 1.84%
Happiness -2.285 0.408 -5.60 53.44% 49.65% 47.69%
Log(scale) 2.110 0.067 31.44
Model ln L: -705.5762, null model ln L: -744.7375

Poisson
Age -0.032 0.006 -5.51 4.86% 5.68% -11.28%
Years married 0.116 0.010 11.68 23.12% 25.71% 45.09%
Religious -0.354 0.031 -11.46 20.88% 21.19% 22.95%
Occupation 0.080 0.019 4.11 2.61% 2.13% 3.08%
Happiness -0.409 0.027 -14.95 48.54% 45.29% 40.16%
Model ln L: -1180.05, null model ln L: -1462.75

Table 2: Reanalysis of Fair (1978). Independent variable: frequency of infidelity.

The response variable studied by Fair is the self-reported frequency of infidelity.
The explanatory factors include the respondent’s sex, age, education and occupation,
the number of years married, whether the respondent has children and the respon-
dent’s (self reported) level of religious belief and marital happiness.5

Fair excludes sex, education and having children as predictive factors based on
their joint statistical insignificance. In attributions based on the complete model,
all attribution methods assign these factors small attribution components, consistent
with their low individual test statistics. The respective t-statistics are (0.18, 0.41,
0.21). The corresponding PMA components are (0.03%, 0.21% 0.05%). PMA and
t-statistics can together better motivate efficient multivariate hypothesis testing than
t-statistics alone. LA results, (0.15%, 3.12%, 0.29%), are not as clear for education.

5Fair (1978) provides descriptive statistics. The data set is available online.
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Factor beta st. dev. t-stat. PMA LA CVD

OLS
Sex -0.070 0.103 -0.69 1.45% 0.75% 0.27%
Age -0.006 0.008 -0.78 4.33% 19.92% 11.25%
Years married -0.035 0.014 -2.52 58.54% 35.13% 48.50%
Children -0.207 0.120 -1.74 10.74% 19.83% 18.63%
Religious 0.085 0.038 2.22 7.17% 5.44% 2.43%
Education 0.074 0.022 3.41 16.08% 17.71% 19.73%
Occupation -0.025 0.030 -0.83 1.69% 1.21% -0.81%
R2 : 0.0894

Ordered probit
Sex -0.092 0.106 -0.86 2.09% 1.04% 0.92%
Age -0.005 0.008 -0.68 3.21% 19.72% 9.70%
Years married -0.037 0.014 -2.60 58.64% 36.18% 49.57%
Children -0.262 0.125 -2.09 15.60% 23.18% 23.82%
Religious 0.087 0.039 2.20 6.87% 5.16% 2.07%
Education 0.069 0.022 3.10 12.08% 13.70% 14.31%
Occupation -0.025 0.031 -0.81 1.51% 1.03% -0.40%
Model ln L: -1180.05, null model ln L: -1462.75

Table 3: Data from Fair (1978). Independent variable: Self-rated marital happiness.

Table 2 presents results based on Fair’s original model. Factor coefficients are not
directly comparable, Greene (2003) discusses the expected relationships. OLS and
probit t-statistics are similar. Poisson factor t-statistics are considerably higher. Age
and happiness reduce infidelity, but years married increases it.

PMA, LA and statistical significance rankings are identical in this case. CVD
consistently finds year married about twice as important as PMA or LA. CVD also
finds years married more important than happiness in the Poisson regression. Model
choice, in this case, affects coefficients and their precision, but has little effect on LA,
PMA or the relative magnitudes of t-statistics. Note that LA and PMA give identical
results when factors are uncorrelated. CVD results then also agree for OLS.

The negative CVD components for age in all models are problematic and causes
the high CVD importance of years married. When age is removed from the OLS
model of infidelity the CVD relative importance of years married falls to 25%, and
that of happiness rises to 53%, similar to PMA and LA results.

Table 3 shows OLS and ordered probit models of marital happiness. Estimated
coefficients of both models are similar, the except probit estimate of the effect of hav-
ing children is almost 30% larger, and the PMA component is almost 50% larger. The
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increase in the LA component is just above 15%. Explained variance is proportional
to the square of the beta in uncorrelated OLS, which would imply a 69% increase.

For the OLS and ordered probit models of marital happiness, all attribution meth-
ods indicate years married is most important. The bootstrap probability that PMA
years married is larger (more important) than PMA education is greater than 85%. In
contrast, t-statistics seem to show education is most precisely estimated. In practice,
this result is commonly interpreted as indicating that education is most important.

Age and years married are highly correlated (ρ = .78), which degrades statistical
test values. Indeed, when age is excluded the years married t-statistic becomes largest
(-4.44 for OLS). Age, however, may be a valid predictor for marital happiness. If so,
its exclusion from the model could bias the model and attribute its explanatory power
to the factors with which it is most correlated. Also, the LA for years married rises to
51% when age is excluded, indicating the relative sensitivity of LA to model definition.

An F -test of the joint significance of sex and age in the OLS model is rejected
(p=0.76). But removing age increases the magnitude of the years married beta by
22%. It would be a mistake to exclude age if the goal was to obtained unbiased
coefficient estimates unless it could be maintained that age did not belong in the
model in the first place. The age PMA of 4.33% signals this result.

4 General microeconomic models

4.1 Inert factors and utility attribution

Is random order consistency an acceptable axiom for utility attribution? Consider
this question in the context of portfolio optimization. Uncorrelated assets, e.g., risk-
free assets, are not inert factors: Their utility contribution is not independent of other
assets. Further, an investment option of zero utility cannot be inert by definition.

The ability to define an inert factor must thus rely on a factor that is not a
portfolio choice. Its utility must be independent of the portfolio. These conditions
are satisfied if utility is additively separable in the investment and the inert factor.

There is no reason why two completely independent choice problems could not, in
principle, be composed into a single optimization problem. This simple fact appears
to allow the definition of an inert factor in almost any choice problem. Random order
consistency becomes applicable once it is established the existing attribution problem
could be composed with a suitable independent problem as a larger attribution.

Proposition 4.1 A factor in an attribution problem is inert if the attribution can be
redefined as two independent attributions, one including only this factor.
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Risk and return Correlation
Asset Mean Std. Sharpe LC SC Intl Gvt Corp Bills
Large Cap 0.0106 0.041 0.258 1.000 0.729 0.619 0.116 0.217 0.069
Small Cap 0.0110 0.053 0.209 0.729 1.000 0.529 -0.015 0.110 -0.053
Int’l 0.0062 0.048 0.128 0.619 0.529 1.000 0.009 0.082 -0.068
LT Gvt. 0.0082 0.026 0.320 0.116 -0.015 0.009 1.000 0.948 0.079
LT Corp. 0.0079 0.021 0.384 0.217 0.110 0.082 0.948 1.000 0.069
T-Bills 0.0037 0.002 — 0.069 -0.053 -0.068 0.079 0.069 1.000

Table 4: Asset performance data, monthly 1988-2004.

4.2 Portfolio attribution

Let N be a set of n assets with expected return vector µ and covariance matrix Σ.
Using quadratic utility and formula (1), v(S) for any set of assets S is

vmvo(S) = U(S)− U(∅) = max(0, max
ωS∈∆S

ω′SµS − λω′SΣSωS), (16)

where λ is the index of quadratic risk aversion, µS, ωS and ΣS are restricted to the
members of S, ωS is the portfolio allocation and ∆S is the s− 1 dimensional simplex
of nonnegative portfolio weights that sum to unity. Here U(∅) = 0. The restriction
v(S) ≥ 0 allows not investing if v(S) < v(∅), as is possible when restricted to some
asset combinations. If exponential utility were used, then U(S) < 0 for all S ⊆ N
and the definition v(S) = U(S)−U(∅) is necessary, as in Section 3.2 for likelihoods.

Table 4 reports the assets used in this example, along with their monthly mean
total returns, standard deviations, Sharpe ratios and correlations for the period 1988
to 2004.6,7 Table 5 presents the optimal portfolios for an individual with quadratic
risk aversion level λ = 2, along with two sets of attributions. One is for all investment
options. The other excludes corporate bonds. For each set, PMA and LA results and
(discrete) marginal utility contributions are reported. All attributions are normalized
to 100%. The final column of Table 5 presents the proportional marginal performance
attribution (PMPA) of assets with positive portfolio allocations. The PMPA of an
asset is the ratio of its PMA to its portfolio weight.

6Monthly data from Ibbotson Associates covers the period January 1, 1988 to December 31,
2004. Large cap is the S&P 500, small cap is the Russell 2000, international is the MSCI Europe,
Asia and Far East Index, long-term government is the Ibbotson U.S. Long-Term Government Bond
Index, long-term corporate is the Ibbotson U.S. Long-Term Corporate Bond Index and t-bills is the
Ibbotson U.S. 30 Day T-Bill.

7The Sharpe ratio is the excess return of an asset over the risk free rate divided by its standard
deviation. The Sharpe ratio is a measure of excess return per unit of risk.
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Port. With LT Corp. W-out LT Corp.
Asset Wts. PMA LA Marg. PMA LA Marg. PMPA
Large Cap 37% 49% 25% 55% 49% 31% 19% 1.32
Small Cap 17% 7% 17% 19% 7% 21% 6% 0.41
Int’l 0% 0% 3% 0% 0% 4% 0% —
LT Gvt. 46% 44% 23% 26% 44% 33% 75% 0.96
LT Corp. 0% 0% 23% 0% — — — —
T-Bills 0% 0% 9% 0% 0% 11% 0% —

Table 5: Asset allocation and performance attribution when λ = 2.

The optimal portfolio monthly return and standard deviation are 0.0096 and 0.026
and its Sharpe ratio is 0.364. It is about 54% equity and 46% fixed income. The PMA
is in similar proportion (56%/44%). Only assets with positive portfolio weight receive
a PMA share, while every asset class receives some LA share. LA gives government
and corporate bonds almost equal importance even though corporate bonds receive
no portfolio weight. Marginal contributions are heavily weighted to equity because
of the substitutability of government and corporate bonds.8

PMPA provides a measure of an asset’s per dollar contribution to portfolio per-
formance. The PMPA ranking is differs from the Sharpe ratio ranking. Government
bonds have the highest Sharpe ratio of all allocated assets, followed by large cap
equity. But Large cap equities contribute most to portfolio performance per unit of
investment. The PMPA of large cap equity is more than three times the PMPA of
small cap equity even though its Sharpe ratio is only 23% higher. The Sharpe ratio
measures stand-alone performance, whereas PMPA evaluates performance relative to
a specific portfolio. (Note, corporate bonds have the highest Sharpe ratio but receive
no asset allocation.) Further, attribution is relative to a specific risk profile.

In the second set of attributions of Table 5, corporate bonds are not an option. The
PMA does not change. The LA equity share rises to 52%, but now government bonds
are seen as more important than large cap equity. The relative marginal contribution
of government bonds is now very high without substitution from corporate bonds,
and equity marginal contribution is weak because of equity mutual correlation.

If t-bills and international equity are also removed from the choice set, the LA
becomes (37%, 25%, 28%) and equity receives 62% total attribution. PMA results
are unchanged. When large cap and small cap shares are aggregated, the PMA is
(52%, 48%) and the LA is (53%, 47%). In all cases, PMA implies that a little over

8The Covariance decomposition is (83%, 59%, -42%) to the three allocated assets. Only portfolio
assets receive non-zero CVD allocations. CVD is based on portfolio weights and Σ (see footnote
4) and is commonly used in portfolio analysis. A marginal increase in government bonds reduces
portfolio risk. This is the essential meaning of the negative CVD coefficient. CVD weights marginal
risks by portfolio weights. Long term bonds, however, clearly both contribute to risk and utility.
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half of portfolio performance is attributable to equity and almost half to bonds. LA
implications depend strongly on details of the attribution analysis.

Unutilized assets are irrelevant for PMA because of exclusion. In this example,
and generally, PMA is not very sensitive to aggregation; but it is possible to construct
contrary examples. Linear attribution is sensitive to both unutilized factors and factor
aggregation (as in example 5.1, below). The differences between LA and PMA may
be a useful measure of the substitutability of factors. PMA offers a consistent method
of attributing joint effects in the creation of investment value, and thereby providing
insight into its sources.

5 Joint cost attribution

Cost allocation has traditionally been considered a bargaining problem by game the-
orists. In cost attribution, the utility function of formula (1) is an aggregate cost
(disutility) function. The arguments of the cost function are typically aggregate de-
mands for products or services over cost centers. The applicability of random order
consistency to cost attribution raises the same types of issues as considered for utility
attribution in Section 4.1. The potential existence of an inert cost center is no differ-
ent the potential existence of an inert factor in a utility or econometric attribution.

5.1 Linear or proportional marginal cost attribution?

Neither inclusion nor exclusion appear obviously appropriate for cost attribution.
While exclusion might seem appropriate for the attribution of profits, many might
find it problematic that somebody is getting something for nothing. Exclusion in cost
allocation requires that a party that imposes no final marginal cost should have no
attributed cost if all other parties impose final marginal costs.

Inclusion may appear an innocuous axiom in this context, however linear cost
allocation methods have not been widely adopted and were not well-received by ac-
counting researchers. Moriarity (1975), Banker (1981) and Gangolly (1981) explicitly
support or propose proportional alternatives. Banker writes that linear attribution is
“not consistent with our axioms, and hence with traditional cost allocation methods.”
(1981:127). Thomas (1977) provides examples that demonstrate the vulnerability of
linear attribution to strategic definition of cost centers.9

Example 5.1 The potential for strategic manipulation in cost attribution is illus-
trated in a simple sunk cost attribution problem. Assume n cost centers, sunk cost
C and fixed marginal cost c. Cost center i has usage xi. The cost of service to any

9Note also the conference proceedings Moriarity (1981). See Feldman (1999), Section 9.2, for
more on accountant’s perspectives.
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coalition of centers S is v(S) = C + c
∑

i∈S xi. The marginal cost of any coalition of
centers S 6= N , is represented in the dual game by w(S) = c

∑
i∈S xi. Thus, the game

w(S) is additive for all S ( N : w(S) =
∑

i∈S w(̄i ).

Lemma 2.2 implies PMAi = ϕ(w)i = C/xi because w can seen as a rescaling of
w∗(N) in a w∗ where w∗(N) = c

∑
i∈N xi. Similarly, LAi = cxi + C/n. When C is

very small, LA and PMA are approximately the same since then v(N) ≈ c
∑

i∈N xi.
However, allocations diverge as C increases. When c

∑
i∈N xi ¿ C, LA for all

centers approaches C/n, regardless of the disparities in usage between cost centers,
providing incentive for group managers to aggregate reporting units.

Corollary 5.1 The proportional marginal share of costs attributed to any cost center
is invariant with the magnitude of the fixed costs when fixed costs are scale invariant.

6 Discussion and conclusion

This paper introduces a new expectation-based random order approach to cooperative
value. Linear and proportional value are characterized in a common setting without
assuming linearity or proportionality. Random order consistency, the key element
of this approach, assumes only that we can see the “expectational mechanics” of
the random order process, and that these mechanics do not change if invisible inert
players or factors are added. These mechanics have specific interpretation regarding
the relative importance of factors in the theory of attribution developed here.

Random order consistency is key to both theoretical and applied results. Contrast
this with the limited power of reduced game consistency discussed in Remark 1.1.
Random order consistency is strongly and uniquely associated with cooperative value.

Consider the scope of this theory if based on reduced game consistency. The use of
reduced game consistency must imply some correspondence between the reduced game
and the original attribution. But few, if any, properties of a game or cost function are
preserved by reduction. The reliance on the dual game is also problematic. Consider
an attribution problem with a vector of demands x and cost function c(y) = yα, α 6= 1,
so w(S) = c(xN)− c(xN\S) = [

∑
i∈N xi]

α − [
∑

i∈S xi]
α. Let w∗ be the game resulting

from the reduction of player k, so that N∗ = N \ k̄ and w∗(S) = w(S ∪ k̄) − φk(w),
where φi(w) is Shi(w) or ϕi(w). In general, there will be no vector of demands x∗

such that w∗(S) = c(x∗N∗) − c(x∗N∗\S) for all S. Nor, in general, will there be a cost

function c∗ such that w∗(S) = c∗(x∗N∗)− c∗(x∗N∗\S) for all S.10

Random order consistency places minimal demands on the structure of an attri-
bution problem. Section 4.1 proposes it appropriate for any attribution problem that
can be composed with an independent attribution.

10Compare this perspective on the reduced game with Dubey’s (1982) discussion regarding the
the benefits of a direct characterization of a cost allocation problem based on its specific features.
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The specific applications studied here demonstrate practical potential applica-
tions. PMA appears to provide theoretically sound measures of the econometric
relative importance of model independent variables. These measures also appear to
allow comparison of relative importance across models and to be useful diagnostics
for model construction and evaluation. Feldman (2005a and 2006) applies a similar
approach with financial factor models to provide variance decomposition of an asset
manager’s return stream to identify the relative importance of factor drivers.

The portfolio attribution example shows the considerable knowledge of data and
preferences necessary for utility attribution, but, also, the potential benefit. Portfolio
PMA and PMPA are new investment analysis tools and examples of practical feasible
applications. They are distinctive in that they evaluate an asset’s total, as opposed to
marginal, performance both relative to a portfolio and an investor’s risk preferences.

In this theory of attribution, linear and proportional value emerge as parallel
expressions of an underlying value principle. This relative importance approach to
cooperative value is developed specifically for the single-utility function attribution
environment, but applies directly to TU bargaining as well. Feldman (2002) develops
similar results for the more general nontransferable utility (NTU) games using ratio
potentials. In this “dual” approach to value either the linear or proportional “mode”
might be more appropriate for a particular application.

Game theoretic interest in proportional solutions, including the proportional value,
has been hampered by the belief that they are translation dependent (see, e.g., Hart
and Mas-Colell (1988: 595n)). Real allocations seem to change with affine translation
of a player’s utility function. This outcome should arouse scrutiny as it implies the
incoherence of a basic distributive principle recognized at least since Aristotle.11

The apparent translation dependence of proportional solutions results from a miss-
ing element in the standard NTU cooperative game. The basis point, a vector of util-
ities, one for each player, allows determination of the marginal utility to any player
of any bargaining outcome. Feldman (2005b) demonstrates the existence of the basis
point and shows that proportional solutions are translation invariant when a player’s
basis utility and utility function are subjected to the same affine transformation.12

This theory of attribution is based on a single decision maker and, hence, would
be unaffected even if proportional bargaining solutions were translation dependent.
Examples presented here clearly demonstrate the relevance of the basis point in at-
tribution problems. Section 3.2 shows that econometric attributions are not uniquely
defined unless the null model objective function value can be defined and used as
the basis point. (Interestingly, PMA shares are invariant to the choice of the basis
point.) Similarly, Section 4.2 shows that utility attribution must specifically define
null model utility for utility functions where null model utility is not zero.

11Young (1994: 64) writes “[p]roportionality is deeply rooted in law and custom as a norm of
distributed justice.” Moulin (1999) starts by quoting Aristotle: “Equals should be treated equally,
and unequals, unequally in proportion to relevant similarities and differences.”

12Recognition of the basis point implies intrapersonal but not interpersonal comparison of utility.

24



Finally, researching the accounting literature, I was often surprised by the inten-
sity of the arguments against linear cost allocation, and sometimes by the palpable
frustration. Thomas (1977: 43), in his study of cost allocation and transfer pricing,
chooses the following epigraph (from Lousia M. Alcott’s Jack and Jill) for his chapter
on cost allocation using the Shapley value: “. . .Molly retired to wet her pillow with
a few remorseful tears, and to fall asleep, wondering if real missionaries ever killed
their pupils in the process of conversion.” Neutrality between linear and proportional
methods is theoretically sound and evolutionarily wise.

7 Proofs

7.1 Appendix A: Proof of Lemma 1.1

Proof: I. First consider multiplicative likelihoods. Endogenous random order con-
sistency requires that functions of the worths of factor sets including an inert fac-
tor factor out of the sum of likelihoods generated by a suborder. The terms in∑

r⊃ro

∏
i∈N li(w(Sr

i )) do not factor directly. An alternate approach is required.

Consider a single inert factor z ∈ N . Select any r0 in R(N \ z̄). By insert-
ing z at all possible positions in r0, all orders in N that include r0 are generated.
Define ri

0 ∈ R(N) as the order resulting when z is inserted at the ith position:
ri
0 = (r01 , . . . , r0i−1

, z, r0i
, . . . , r0n−1). Then let R∗ = {ri

0}n
i=1 = (r1

0, r
2
0, . . . , r

n
0 ).

Define S̄ as all nonempty factor sets included in r0, so that S̄ = {S : S ⊂ r0} =
{Sr0

i }n−1
i=1 . Let S̄z contain the singleton z̄ and the union of each factor set in S̄ with

z: S̄z = {S : S = T ∪ z, T ∈ S̄ or T = ∅}. Index the members of S̄ and S̄z by their
cardinality: S̄3 has cardinality three. Define S∗ = S̄ ∪ S̄z.

Set of sets S∗ helps to form a common denominator for multiplicative likelihoods.
For any ri

0 ∈ R∗, let R∗
i be the factor sets that are included in ri

0: R∗
i = {S |S ∈ ri

0}.
R∗

i ⊂ S∗. Define T ∗
i as the sets in S∗ not included in ri

0: T ∗
i = S∗ \ R∗

i . Let
K =

∏
S∈S∗ li(S)−1, where i is the cardinality of S. Then, for all i ∈ N ,

L(ri
0) =

∏

S∈ri
0

li(S) =
1

K

∏

S∈T ∗i

li(S)−1 ≡ 1

K
L̂(ri

0), (A1)

where L̂ is a partial likelihood with L̂i = l−1
i . For every j < n there are two sets in

S∗ with j factors. Only one of these factor sets is in any T ∗
i . These are Sro

j = S̄j

and S̄z
j = Sro

j−1 ∪ z. If one is in R∗
i then it is not in T ∗

i , and vice-versa. For j < i,
S̄z

j ∈ T ∗
i because S̄j ∈ R∗, and for j ≥ i, S̄j ∈ T ∗

i because S̄z
j ∈ R∗. Thus, T ∗

i =

{S̄z}i−1
j=1 ∪ {S̄}n−1

j=i . Note S̄z
n = N ∈ R∗

i and N 6∈ T ∗
i .
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Let T ∗i
j be the factor set in T ∗

j of cardinality i. Then

L̂(r1
0) + L̂(r2

0) =
n−1∏
i=1

li(T
∗i
1 )−1 +

n−1∏
i=1

li(T
∗i
2 )−1

=
(
l1(S̄

z
1)
−1 + l1(S̄1)

−1
) n−1∏

i=2

li(S̄i)
−1.

When w(S̄z
1) = w(z̄) > 0 factorization requires l1(S) = l2(S) = w(S)−1. Then

l(S)−1 = w(S) and, since z is inert, w(S̄z
2) = w(z̄) + w(S̄1). Note that any l with

l(0) = ∞ trivially allows factorization if w(z̄) = 0. (Thus the requirement that inert
factors have positive individual worth.) If and only if l1(S) = l2(S) = w(S)−1 can
these terms be combined and absorbed into the product

L̂(r1
0) + L̂(r2

0) = w(S̄z
2)

n−1∏
i=2

li(S̄i)
−1.

Induction is used to sum likelihoods. Assume that li(S) = w(S)−1 for all i < j
and that the following pattern holds for sums of the first j − 1 orders in R∗:

j−1∑
i=1

L̂(ri
0) =

j−1∏
i=2

w(S̄z
i )

n−1∏
i=j−1

li(S̄i)
−1.

Under the above assumptions, L̂(rj
0) may be written

L̂(rj
0) =

j−1∏
i=1

w(S̄z
i )

n−1∏
i=j

li(S̄i)
−1.

Adding and factoring the last two expressions gives the first formula below. The
second follows if and only if lj(S) = w(S)−1. The induction is a “zipper.”

j∑
i=1

L̂(ri
0) =

(
w(S̄z

1) + w(S̄j−1)
) j−1∏

i=2

w(S̄z
i )

n−1∏
i=j

li(S̄i)
−1

=

j∏
i=2

w(S̄z
i )

n−1∏
i=j

li(S̄i)
−1 (A2)

Evaluating (A2) at j = n and recalling (A1) and that S̄ = {S : S ∈ ro} gives

1

K

n∑
i=1

L̂(ri
0) =

1

K

n−1∏
i=2

w(S̄z
i ) = w(z̄)−1

∏
S∈r0

w(S)−1 = w(z̄)−1L¦(r0).
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The sum of likelihoods generated by an r∗0 ∈ R(N) divided by those generated
by r0 thus equals L¦(r∗0)/L

¦(r0), proving p¦(r0|w0) =
∑

ri
0⊃r0

p¦(ri
0|w), where w0 is

the dual game generated by N \ z̄ and p¦ is the distribution induced by L¦. Thus,
L¦ is random order consistent between games of cardinality n − 1 and n for any
n > 2. Consistency between games of cardinality m > 2 and n is established by
repeat reduction of individual inert factors. L¦ is random order consistent.

Any L′ = c L¦, where c > 0, is also random order consistent, but still generates
p¦. An L′ created by dropping any li or combination of li is not random order
consistent because the zipper will fail. The only way that the terms that depend on
all S̄z can be factored out of the sum

∑
r⊃r0

L(r) is by combining terms using the
relationship li(S̄i) + l1(S̄

z
1) = li+1(S̄

z
i+1), possible because z is inert. This restricts li

to li(S
r
i ) = w(Sr

i ) or li(S
r
i ) = w(Sr

i )
−1. Using the terms in L¦ directly (as opposed

to L̂¦) allows combination when li(S
r
i ) = w(Sr

i ), but combination is only possible
between r1

0 and r2
0. There are no other endogenous, nontrivially different {l′i}n

i=1 that
simultaneously allow combination of terms and addition of likelihoods. For example,
with l′i = w(Sr

i )
2, l′i(S̄i)

1
2 + l′1(S̄

z
1)

1
2 = l′i+1(S̄

z
i+1)

1
2 , but combining on this basis implies

L′(r0)
1
2 =

∑
r⊃r0

L′(r)
1
2 . Thus, L¦ is unique up to scaling.

L¦ is endogenous and multiplicatively separable. L¦ is anonymous. Non-anonymous
variants cannot be random order consistent because distinguishing orders will cause
the zipper to fail. Finally, L¦ is clearly positive when v is strongly monotonic.

II. Now consider additively separable endogenous likelihoods. Additive separabil-
ity allows the collection and regrouping of sublikelihood functions, yielding

∑
r⊃r0

L(r) = L(r0) +
n−1∑
i=1

(n− i− 1) li(S̄i) +
n∑

i=1

i li(S̄
z
i ).

Consider two orders r0 and r∗0 in R(N \ z̄) and the ratio
∑

r⊃r∗0
L(r)/

∑
r⊃r0

L(r).

This ratio must equal L(r∗0)/L(r0) if L is random order consistent. This implies

L(r∗0)
L(r0)

=

∑n−1
i=1 (n− i− 1) li(S̄i(r

∗
0)) +

∑n
i=1 i li(S̄

z
i (r

∗
0))∑n−1

i=1 (n− i− 1) li(S̄i(r0)) +
∑n

i=1 i li(S̄z
i (r0))

,

where the dependence on orders is indicated to avoid ambiguity. No further factor-
ization of terms involving z is possible. Thus, this equality can hold for arbitrary v
only when li(S̄

z
i (r0)) = li(S̄

z
i (r

∗
0)) for all i, i.e., when L is exogenous. ¤

7.2 Appendix B: Proof of Lemma 1.4

Proof: Select any r ∈ R(N \ ī) and let rj ∈ R(N), j = 1, . . . , n be the order created
by inserting i at position j, so that rj

j = i. If L¦(r) =
∑n

j=1 L¦(rj)mP
rj(i)(r

j), the result
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follows. The key to this reduction is more apparent when mP
rj(i)(r

j) is represented

as w(Sj
j ) − w(Sj

j−1). The sum can then be expanded into 2n − 1 separate terms.
Consider first the order n term, where w(Sn

n) = w(N) is the numerator and also in
the denominator. This term simplifies to L¦(r), the LHS value. Now pair terms for
orders rj and rj−1, for every j = 1, . . . , n, and the following equality results:

w(Sj−1
j−1)

w(Sj−1
1 ) · · ·w(Sj−1

j−1) · · ·w(Sj−1
n )

+
−w(Sj

j−1)

w(Sj
1) · · ·w(Sj

j−1) · · ·w(Sj
n)

= 0.

First, for all k 6= j − 1, w(Sj−1
k ) = w(Sj

k) since i has either not yet entered or has
already entered both Sj

k and Sj−1
k . Then, for position j − 1, where Sj−1

j−1 6= Sj
j−1, here

w(Sj−1
j−1) and w(Sj

j−1) are each on the top and bottom and cancel. ¤
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