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Abstract

I propose a new solution concept, behavioral equilibrium, to study environments with players

who are naive in the sense that they fail to account for the informational content of other

players�actions. A behavioral equilibrium requires that: (i) players have no incentives to deviate

given their beliefs about the consequences of deviating, (ii) these beliefs are consistent with the

information obtained from the actual equilibrium play of all players, and (iii) when processing

this information, naive players fail to account for the correlation between other players�actions

and their own payo¤ uncertainty. I apply the framework to certain adverse selection settings

and show that, contrary to the received literature, the adverse selection problem is exacerbated

when naive players fail to account for selection. More generally, the main distinguishing feature

of the framework is that in equilibrium beliefs about both fundamentals and strategies are

jointly restricted. Consequently, whether a bias may arise or not is determined endogenously in

equilibrium.
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1 Introduction

A large literature presents evidence that people�s behavior is a¤ected by both psychological and

cognitive biases. This evidence raises the question of what the e¤ects of these biases are and whether

they can persist at all in economic settings where people strategically interact with each other and

have the opportunity to learn from their experience.1 In this paper, I introduce a game-theoretic

equilibrium framework to study these questions in the context of a particular bias: people�s failure

to take into account the informational content of other people�s actions. I then apply the framework

to a class of games that arise naturally in adverse selection settings, and show that the adverse

selection problem is exacerbated when players su¤er from this bias.

To illustrate the main ideas, consider how this bias a¤ects outcomes in a trading game in the

spirit of Akerlof (1970). A feature of this adverse selection setting is that lower prices select worse

quality, which itself provides the buyer with incentives to o¤er lower prices. This feature is often

provided as an intuition for why markets are thinner and gains from trade are lower in the presence

of information asymmetries between buyers and sellers. Given this intuition, it may be expected

that the adverse selection problem will be mitigated if buyers ignore that the seller�s willingness to

trade provides information about quality.

The previous literature (Kagel and Levin (1986), Holt and Sherman (1994), Eyster and Rabin

(2005)) models a buyer who fails to account for selection by assuming that she incorrectly believes

that the quality of traded objects is given by the unconditional expectation, rather than by the

expectation conditional on the information that the seller wants to trade at the o¤ered price. Since

the unconditional expectation is higher than the conditional one when valuations of the buyer and

seller are positively related, a biased buyer has an incentive to choose higher prices relative to

a non-biased buyer (i.e. relative to Nash equilibrium). In a common value auction, which is an

extension of the simple trading game, this overbidding phenomenon is known as the winner�s curse.

Two features of the standard approach motivate the alternative approach in this paper. First,

a biased buyer believes she will on average obtain objects worth the unconditional expectation,

while in equilibrium the quality of traded objects will be lower. But if the buyer were to face this

situation repeatedly and learn from her experience, her beliefs would eventually be contradicted.

A question is then raised as to whether the bias would still persist. Second, how does the buyer

know what the unconditional expected quality is to begin with? In many settings, it is reasonable

to instead assume that the buyer�s beliefs about quality depend on her past trading experience.

The solution concept that I propose, behavioral equilibrium, makes clear that while players may

adjust their behavior when beliefs are contradicted by experience, they may still not realize how

their learning experience would have been di¤erent had they chosen to behave di¤erently. When the

buyer receives feedback about the value of traded objects, she must then have correct beliefs about

1See Rabin (1998) and Gilovich, Gri¢ n, and Kahneman (2002) for a review of several biases, and Fudenberg
(2006) for a discussion of the need of an appropriate equilibrium framework for behavioral economics.
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the expected quality of objects that are traded at the price she chooses in equilibrium. Hence, the

overpricing incentive described above disappears. However, a buyer who is naive, in the sense that

she fails to account for selection, does not realize that higher prices would increase quality, so on

the margin she has lower incentives to increase prices relative to a non-naive buyer. Therefore, in

(a behavioral) equilibrium, the adverse selection problem is exacerbated if the buyer is naive. This

example is further discussed in Section 2, where a dynamic learning interpretation is also provided

to justify the proposed equilibrium concept.

While the above simple example illustrates the main intuition, the framework is applicable to a

wide range of settings. Failing to account for the informational content of other peoples�actions

is analogous to ignoring a potential selection problem. This problem may arise in general adverse

selection settings, where the terms of the contract often select the type of people with whom trade

will be conducted. For example, while a �rm may know how di¤erent terms of trade would a¤ect

its number of customers, it may still either ignore or not know how di¤erent terms of trade would

select di¤erent types of customers. More generally, this selection problem is present in any game

that has some common value component and where players act based on privately held information.

Most evidence for people�s failure to account for the informational content of other peoples�actions

comes from experiments in auction-like environments (see Kagel and Levin (2002) for a review of

the evidence), and discussions of this bias have appeared in �eld settings as well, including the oil

industry (Capen, Clapp, and Campbell (1971)), professional baseball�s free agency market (Cassing

and Douglas (1980)), and corporate takeovers (Roll (1986)). One implication of this paper is that it

is important to distinguish between the bias itself and the e¤ect that the bias may have in di¤erent

settings. While not trivial to disentangle, the previous literature does provide some support for the

existence of this bias. However, as discussed further in Section 5, the results in this paper suggest

that the e¤ects attributed to the bias by the previous literature may be related to the fact that, in

experiments, subjects are informed about the true distribution over fundamentals.

Additional motivation is provided by the fact that the bias can be formally modeled as a failure

to account for the correlation between the actions of other players and payo¤-relevant uncertainty.

Complexity of the environment may preclude people from understanding what are the relevant

relationships in the data for the problem at hand.2 Certain organizational structures may also

promote this bias. For example, a �rm may have one division, say the research department, that

produces estimates about uncertain demand conditions using past data, and a di¤erent division,

say the pricing division, that keeps track of its competitors�prices. If competitors choose prices

based on their own estimates of demand conditions, then these two pieces of information are likely

to be correlated, but if these divisions do not communicate with each other this correlation is likely

to be ignored. Finally, to the extent that selection problems often pose challenges for empirical

researchers, it seems plausible that economic agents may not always account for selection when

2See Aragones, Gilboa, Postlewaite, and Schmeidler (2005) for a justi�cation of why people may fail to see
regularities in the data.
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learning about their environment.

I distinguish between two types of players, each having a di¤erent and exogenously given model

of the world : those who are not aware of the potential selection problem (naive players), and those

who are aware (sophisticated players). Within their constrained model of the world, both types

of players: (1) use available data to form beliefs about the consequences of their actions; and (2)

choose actions that maximize utility subject to these beliefs.

A behavioral equilibrium is based on the idea of a self-con�rming equilibrium (Dekel, Fudenberg,

and Levine, 2004), which is a static, steady-state solution concept requiring that players have

no incentives to deviate given their beliefs about the consequences of deviating, and restricting

these beliefs to be consistent with the experience that results from equilibrium behavior.3 In

contrast, Nash equilibrium is more restrictive since it requires beliefs about the consequences of

deviating to any strategy to be correct. While sophisticated players behave as in a self-con�rming

equilibrium, the beliefs of naive players are restricted to be naive-consistent : information obtained

from actual equilibrium behavior still constrains their beliefs, but when processing this information

naive players ignore the potential correlation between other players�actions and their own payo¤-

relevant uncertainty.

I apply the new framework to a class of monotone selection games that satisfy two properties:

(i) a monotone selection property (MSP), which requires �lower� actions to result in a �worse�

selection of outcomes, and (ii) complementarity between beliefs and actions, which in turn requires

beliefs about a �worse� selection of outcomes to encourage �lower�actions. These properties are

present in many standard settings with adverse selection and additional applications are discussed

in Section 4. Under reasonable assumptions on information feedback, I �nd that naive-consistent

beliefs can be supported in equilibrium and that the presence of players who ignore the (adverse)

selection problem actually exacerbates this problem. This result turns out to be true with respect to

both players who have correct beliefs (as in a Nash equilibrium) and players who are sophisticated

(e.g. know that price and quality are positively related in a lemons market, but ignore what the

exact relationship is).

The result that in some settings markets are thinner in the presence of naive players implies

that information asymmetries may be of even greater concern for the functioning of markets than

previously thought. When players are aware of these information asymmetries, some institutions

may naturally arise to mitigate this problem, initiated either by the party having more information

(Spence, 1973) or the party which is less informed (Rothschild and Stiglitz, 1976). However, when

players fail to account for selection, the adverse selection problem will not only be more severe but

these institutions may be less likely to arise.

The most closely related work is a paper by Eyster and Rabin (2005). They provide the �rst

3Previous versions of self-con�rming (or conjectural) equilibrium in games of complete information appear in
Battigalli (1987) and Fudenberg and Levine (1993a). A self-con�rming equilibrium is often interpreted as the outcome
of a learning process, in which players revise their beliefs using observations of previous play. Explicit learning-
theoretic foundations have been provided by Fudenberg and Levine (1993b).
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systematic equilibrium analysis of the same bias that I study in this paper by introducing the notion

of a cursed equilibrium. The main conceptual di¤erence, discussed further in Section 5, is that Eyster

and Rabin independently place restrictions on structural and strategic beliefs. In contrast, I place

restrictions directly on information feedback and on information-processing capabilities that in turn

endogenously imply joint restrictions on structural and strategic beliefs. As a result, whether a

bias (or incorrect model of the world) may arise is determined endogenously in my framework and

depends on assumptions about the feedback that players obtain regarding equilibrium outcomes. In

addition, the set of equilibria when players are either naive, sophisticated, or have correct beliefs can

be unambiguously compared for a general class of settings where cursed equilibria predicts either

ambiguous results or results in the opposite direction (e.g. mitigation of the adverse selection

problem).

A complementary literature postulates non-equilibrium models of behavior where players follow

particular decision rules characterized by a �nite depth of reasoning about players�beliefs about

each other (Stahl and Wilson (1994), Nagel (1995), Costa-Gomes, Crawford, and Broseta (2001),

Camerer, Ho and Chong (2004), Crawford and Costa-Gomes (2006)). Crawford and Iriberri (2005)

show that behavior that arises from some of these decision rules matches the experimental evidence

of overbidding in both private and common value auctions. In contrast, I focus on settings where

players repeatedly face similar strategic environments and learn from this experience based on the

feedback they receive.

In Section 2, I present an example that illustrates the approach previously taken by the litera-

ture, the alternative approach that I propose, the result that naive players exacerbate the adverse

selection problem, and a dynamic justi�cation for the proposed steady-state solution concept. In

Section 3, I introduce the de�nition of behavioral equilibrium for general games and show that

equilibrium can be characterized as a �xed point of a generalized best response correspondence.

I exploit this characterization in Section 4, where I apply the framework to monotone selection

games and characterize the set of equilibria when players are naive, sophisticated, or have correct

beliefs. I conclude in Section 5 by discussing the conceptual contribution of the new framework,

implications for the experimental literature, and some extensions. All proofs are in the appendix,

and additional results are provided in an online appendix available at my website.

2 An Illustrative Example

Consider a trading game with one-sided asymmetric information of the sort introduced by Akerlof

(1970). The seller values the object at s while the buyer values the object at v = s + x, where

s is the realization of a random variable es that is uniformly distributed on the interval [0; 1] and
x 2 (0; 1] is a parameter that captures gains from trade. The seller knows her valuation, but the

buyer has no private information either about s or v. The buyer and seller simultaneously make

o¤ers to buy at price p and to sell at price ask, respectively. If ask > p there is no trade, the seller
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keeps the object, and the buyer obtains her reservation utility of zero. If ask � p, the object is

traded and the buyer pays p and obtains utility u(p; v) = v � p. I restrict attention to equilibria
where the seller plays his weakly dominant strategy, ask = s.

2.1 Nash equilibrium, the selection problem, and cursed equilibrium

In a Nash equilibrium, the buyer o¤ers a price p to maximize her expected pro�ts

�NE(p) = Pr(es � p)� [E (ev j es � p)� p] : (1)

Under the current assumptions, equation (1) becomes �NE(p) = p�
�
x� 1

2p
�
and the optimal (i.e.

Nash equilibrium) price is pNE = x.

In this example, the buyer faces a selection problem: the price that she o¤ers selects the type of

objects that are traded in equilibrium. In a Nash equilibrium, the buyer accounts for selection by

conditioning her belief about the value of the object on the information that the seller is willing

to trade. The literature has modeled the behavior of a buyer who fails to account for selection by

assuming that such a buyer does not realize that her valuation depends on the price she o¤ers but

rather believes that it is given by the unconditional expectation, E(ev). Following Eyster and Rabin
(2005), call such a buyer a cursed buyer. The perceived pro�ts of a cursed buyer are then

�Cursed(p) = Pr(es � p)� [E (ev)� p] ; (2)

and the optimal (i.e. cursed equilibrium) price is pCursed = 1
2(x+

1
2). Hence, relative to the Nash

equilibrium, a cursed buyer over-prices for x < 1=2 and under-prices for x > 1=2.4

The following intuition for the previous under/over-pricing result is a crucial step for understand-

ing the logic behind the main result in this paper. A cursed buyer believes her valuation to be

higher than what a non-cursed buyer believes, since E(ev) � E (ev j es � p) for all p (in general, this
is true if ev; es are a¢ liated). This level e¤ect increases a cursed buyer�s willingness to o¤er higher
prices in order to obtain the object. However, a cursed buyer does not realize that increasing her

o¤er would also increase the expected quality of objects she receives. This slope e¤ect provides a

cursed buyer with a weaker incentive to increase her bid relative to a buyer who has correct beliefs,

as in a Nash equilibrium. Depending on whether the level or slope e¤ect dominates, a cursed buyer

can either over-price or under-price relative to a buyer in a Nash equilibrium.

4This case corresponds to Eyster and Rabin�s (2005) fully cursed equilibrium, and in the context of the trading
game it was originally discussed by Kagel and Levin (1986) and Holt and Sherman (1994). This last paper was the
�rst to show that both under and over-pricing are possible.

6



2.2 Behavioral Equilibrium: naive and sophisticated buyers

A cursed buyer makes her pricing decision under the belief that the expected value of the object

is E(ev), but if she repeatedly follows her cursed strategy, her expected valuation of objects traded
in equilibrium is lower, E

�ev j es � pCursed�. If she repeatedly obtains feedback about the value of
traded objects, then it may be reasonable to expect a cursed buyer to revise her beliefs about her

expected valuation and therefore o¤er a di¤erent price. In addition, a question arises as to how a

cursed buyer may know the true unconditional expected value of the object to begin with.

In contrast, the solution concept proposed in this paper requires beliefs to be consistent with the

feedback obtained from actual equilibrium play. By emphasizing the role of information feedback, it

captures the essence of the selection problem: a buyer�s pricing decision a¤ects the average quality

of objects that are traded and therefore the sample that she uses to form beliefs about quality. I

consider two types of buyers: a naive buyer ignores the selection e¤ect, while a sophisticated buyer

is aware of its potential existence. However, a sophisticated buyer may still have incorrect beliefs

about the quality of objects that would be traded at prices that, for example, she has not tried

out in the past. This is in contrast to a buyer with correct beliefs (as in a Nash equilibrium), who

knows the exact price-quality schedule in equilibrium.

A behavioral equilibrium depends on restrictions on players�beliefs that the modeler wishes to

impose, which are in turn motivated by the feedback that players obtain from repeatedly playing

the equilibrium strategies. In the context of the trading game, I assume that both naive and

sophisticated players observe their own payo¤s and that the auctioneer reveals the seller�s ask price

at the end of each encounter. According to the formal de�nition of equilibrium in Section 3, these

assumptions in turn imply that in equilibrium the buyer has correct beliefs both about her expected

payo¤s from following the equilibrium action and about the probability of trade at any possible

price.

Equilibrium with a naive buyer. The following function (and its appropriate generalization)

plays an important role in developing the results in this paper:

�N (p; p�) = Pr(es � p)� [E (ev j es � p�)� p] : (3)

Equation (3) represents a naive buyer�s equilibrium belief about her expected payo¤ from deviating

to a price p given that in (a hypothetical) equilibrium she repeatedly chooses p�.5 Beliefs about

the probability of trade at each price are correct because of the assumption that in equilibrium

the distribution of ask prices is known. Beliefs about the expected value of the object: (i) are

determined by the price she chooses in equilibrium, p� (rather than just being the unconditional

expected value of the object, as in a cursed equilibrium); (ii) do not depend on the price p to which

5 Implicitly, the buyer does not know that ev = es + x; whatever she learns about her valuation depends on the
feedback she obtains. A general version of (3) is derived in Proposition 2. This equation actually holds true for
p� > 0. Otherwise, no objects are traded, no feedback is obtained, and therefore beliefs can be quite arbitrary.

7



she considers deviating (this is the failure to account for the selection problem); and (iii) are correct

for p = p�.

As de�ned in Section 3, in a behavioral equilibrium a naive buyer chooses a price pN such that

given her perceived pro�t function �N (�; pN ); it is indeed optimal to choose pN . Hence, the set of
equilibria with a naive buyer is given by the set of �xed points of HN (p) � argmaxp0 �

N (p0; p).

A straightforward calculation yields HN (p) = 1
2x +

1
4p, so that when the buyer is naive there is

an (essentially) unique equilibrium price pN = 2
3x that is lower than the Nash equilibrium price

pNE = x for any parameter value x 2 (0; 1]. Hence, a naive buyer o¤ers a lower price than a buyer
with correct beliefs, leading to a lower probability of trade and to lower gains from trade.6

The result that the adverse selection problem is exacerbated in the presence of naive players is

not a coincidence of this particular example but rather a more general result. Its intuition can

be grasped by observing Figure 1a, which compares the perceived pro�t function �N (�; p�) of a
naive buyer choosing p� to the correct pro�t function in equation (1), �NE(�). The restriction that
requires a buyer to have correct beliefs about her expected payo¤ from playing the equilibrium price

eliminates the desire to over-price (i.e. the level e¤ect) discussed earlier. Now, due to the selection

e¤ect, only the slope e¤ect remains: a naive player thinks that pro�ts from deviating to a lower

price are higher than they actually are; while she believes that pro�ts from deviating to a higher

price are lower than they actually are. Since only the incentives to under-price are present, naive

buyers always under-price relative to buyers with correct beliefs. Figure 1a also illustrates that the

price p� in that �gure cannot constitute a naive equilibrium price, since a naive player choosing p�

would rather deviate to a higher price. Figure 1b depicts HN and the (essentially) unique naive

equilibrium price pN .

Equilibrium with a sophisticated buyer. In contrast, a sophisticated buyer who chooses

price p� in (a hypothetical) equilibrium perceives her pro�ts from deviating to p to be

�S(p; p�) = Pr(es � p) [�(p; p�)� p] ;
where �(p; p�) denotes her expectation about the value of objects that would be traded at price p. I

assume that a sophisticated buyer not only knows that there might be a potential selection problem

(so that �(p; p�) is not necessarily constant in p), but in addition also knows that this selection

problem is monotone, i.e. the quality of objects traded in equilibrium is nondecreasing in the price

that she o¤ers. Hence, �(�; p�) is a nondecreasing function for each p�. An implication is that
when choosing p�, a sophisticated buyer knows that the expected value of the object conditional on

trading at a price higher than p� is at least E (ev j es � p�). Hence, the perceived pro�t function of
6Both with a naive and sophisticated buyer, there is a no-trade equilibrium where the buyer believes objects are

worth zero and therefore o¤ers a zero price, trade then takes place with zero probability, and the buyer receives
no feedback, so that her beliefs are actually consistent. Some simple re�nements eliminate this equilibrium when
sustained by incorrect beliefs, e.g. requiring beliefs to satisfy �N (p; 0) = limp�#0 �

N (p; p�) for all p. Note also that
no-trade is a Nash equilibrium outcome when sellers are not restricted to play their weakly dominant strategy.
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a naive buyer who o¤ers p�, �N (p; p�), constitutes a lower bound for the perceived pro�t function

of a sophisticated buyer when p � p�: Similarly, it constitutes an upper bound when p � p�.
Furthermore, the assumption that a buyer jointly observes ask prices and realized valuations

when trade occurs implies that in an equilibrium where p� is o¤ered, the beliefs of a sophisticated

player are correct for prices lower than p�, i.e. �(p; p�) = E (ev j es � p) for p � p�: These restrictions
place tight bounds on the behavior of a sophisticated buyer:

1. The (essentially) unique equilibrium price with a naive buyer is a lower bound for the set of

equilibrium prices with a sophisticated buyer. To see this, suppose p < pN were an equilibrium price

with a sophisticated buyer. From Figure 1b, HN (p) > p, meaning that a naive buyer who o¤ers p

believes that she can do better by o¤ering a price higher than p rather than by choosing p. Since

the beliefs of a naive buyer constitute a lower bound for the beliefs of a sophisticated buyer for

prices higher than p, it follows that a sophisticated buyer must also believe that she can do better

by choosing a higher price. Hence, p cannot be chosen in equilibrium by a sophisticated buyer.

Note how this result uses the fact that H is monotone, a property that arises here since low prices

select low quality, which in turn induce the buyer to o¤er low prices.

2. The unique Nash equilibrium price constitutes an upper bound for the set of equilibrium prices

with a sophisticated buyer. Suppose, toward a contradiction, that p > pNE is an equilibrium price

with a sophisticated buyer. Since a sophisticated buyer must have correct beliefs in equilibrium for

those prices below p, it follows that she must know that she can do better by deviating to pNE . In

fact, for this particular example, the set of equilibrium prices with a sophisticated buyer (excluding

the no-trade equilibrium) is given by the interval [pN ; pNE ].

Therefore, the adverse selection problem is exacerbated in the presence of naive players not only

relative to a buyer with correct beliefs, as in a Nash equilibrium, but also relative to a sophisticated

buyer who knows that there is a monotone nondecreasing selection e¤ect but who may still have

incorrect beliefs about the correct price-quality schedule. In the rest of the paper, I generalize this

conclusion to a wider class of games, including games where more than one player acts strategically.

For example, Proposition 2 can be applied to show that in the trading game the results generalize

as long as es and ev are a¢ liated, and u is nondecreasing in v and supermodular in (p; v).7
2.3 Dynamics leading to naive equilibrium

Naive equilibrium can be justi�ed as the outcome of a simple dynamic learning process, hence

providing further understanding and motivation for the proposed steady-state solution concept.8

7 In some settings, it is natural to relax the assumption that players learn the reservation values of trading partners
(e.g. ask prices are revealed) with the assumption that the distribution of reservation values is known (e.g. demand
is known). All the results continue to hold except that Nash equilibrium is now not necessarily an upper bound to
the behavior of sophisticated players.

8See Fudenberg and Levine (1998) for dynamic models with steady states that correspond to Nash equilibrium
and to self-con�rming equilibrium (here, equilibrium with sophisticated players).
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Suppose the buyer knows the probability of trade at each price (presumably because she has

collected information about past trades in this market), but does not know the expected value

of objects in the market. Every period, the buyer chooses a price to maximize her perceived pro�ts,

which in the context of the example in this section are �Nt (p) = p � (yt � p); where yt is her
expectation of the value of the object at time t. Hence, at time t she o¤ers price p�t =

1
2yt. The

buyer starts with a prior about the expected value of the object, v1 > 0, and updates this prior

as she obtains additional information about the value of the object, which occurs when she trades.

No updating takes place if there is no trade, and a buyer simply o¤ers the same price in the next

period. For simplicity, the updating rule is given by yt = 1
t

Pt
i=1 vi, so that a buyer�s estimate

of the expected value of the object is the average of all observed valuations (including her initial

prior).

Proposition 1 Under the above dynamics, price converges in probability to a naive equilibrium

price.

While the dynamics above may capture how people learn in certain situations, a closer look

reveals why learning is actually naive. The buyer does not realize that by choosing di¤erent prices,

she is endogenously selecting the sample from which she will learn, and therefore pools all the

information together as if arising from a common data generating process. A sophisticated buyer,

on the other hand, understands that her actions may a¤ect the data generating process from

which realizations are drawn, and would therefore choose to behave di¤erently. For example, a

sophisticated player (who is patient enough) may decide to �x a price for a certain number of

periods until she approximately learns the expected value of the object conditional on that price,

and only then decide to choose a di¤erent price.

In the remainder of the paper I abstract from the dynamics leading to equilibrium and focus

instead on a steady state de�nition of equilibrium.

3 De�nition of Behavioral Equilibrium

There is a �nite set N of players who simultaneously choose actions. Each player i 2 N chooses

an action from a �nite, nonempty, action set Ai and obtains payo¤ ui(a; v) 2 R, where a = (ai)i2N
2 A � �iAi, v 2 V is the realization of a random variable ev that captures players�uncertainty
about payo¤s, and V is �nite. Before choosing an action, each player receives a signal realization

si from a random variable esi with �nite support Si. The signals and the parameters of the utility
function are jointly drawn according to an objective probability distribution  2 �(S � V ), where
S = �iSi. A (pure) strategy for player i is a function from the set of signals to the set of actions,

�i : Si �! Ai, and a strategy pro�le is denoted by � = f�igi2N .9

9The assumptions that the game is �nite and that players choose pure strategies are made for ease of exposition
and can be relaxed. Existence of equilibrium is not guaranteed under these assumptions, but I will appeal to
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Players know their utility function, the set V of parametric uncertainty, and their set of feasible

actions. I do not restrict beliefs about opponents�utility functions (or about their rationality). The

conditional distribution over (ea�i; ev) given a pro�le of opponents�strategies ��i and a signal si is
denoted by

pi(si; ��i)(a�i; v) �
X
s�i

(s; v)P
s0�i;v

0 (si; s0�i; v
0)
� 1 f��i(s�i) = a�ig . (4)

Player i�s conjecture when she receives signal si is a probability distribution �i(si) 2 �(A�i � V )
that need not coincide with (4).10

The standard Nash assumption can be interpreted as requiring that in equilibrium players max-

imize expected utility given conjectures that are correct. However, in certain situations it may be

sensible to make less restrictive assumptions on equilibrium beliefs. For example, when players

form conjectures based on past experience that includes only an aggregate statistic of how other

players behave, the modeler might actually want to restrict players to have correct beliefs about the

distribution of this aggregate statistic, and not about each of the actions that a¤ect the statistic but

are never observed. Similarly, in games with incomplete information the realization of an uncertain

variable may not be observed unless a player takes a particular action. The modeler might then

want to relax the assumption that players who never take such an action have correct beliefs about

the distribution of this variable.

Following the literature on self-con�rming equilibrium, information feedback is formalized via

partitions Pi for each player over the state space 
 = A � V , where Pi(!) denotes the element of
the partition that contains ! 2 
, and P = fPig is the collection of partitions. The interpretation
is that when the (past) outcome of the game is !, player i cannot distinguish that feedback from the

outcome being any other !0 2 Pi(!). Letting ai(!) represent the action of player i that corresponds
to state !, I assume that ai is Pi-measurable, i.e. ai is constant on each element of Pi, for every
i. Hence, players at least get feedback about their own actions. Examples of information feedback

partitions include: (a) fully-revealing: Pi(!) = f!g for all !; (b) action-revealing: !0 =2 Pi(!)

if ai(!0) 6= ai(!) for some i; (c) payo¤-revealing: !0 =2 Pi(!) if ui(!0) 6= ui(!); (d) only payo¤-

revealing: Pi(!) = f!0 : ui(!0) = ui(!), ai(!0) = ai(!)g.
A behavioral equilibrium restricts conjectures to be consistent with actual equilibrium play. For

sophisticated players, I adopt the de�nition of consistency from the literature on self-con�rming

equilibrium. For naive players, I propose a new de�nition that captures their mistake when learning

from feedback.

Consistency of beliefs for sophisticated players. Consistency restricts players to have

complementarity conditions to establish existence in �nite games. Allowing for mixed strategies would not guarantee
existence of naive equilibrium since payo¤s need not be continuous in mixed strategies if players can distinguish
between the consequences that result from each of the actions in the support of the mixed strategy.
10A di¤erence with the de�nition of self-con�rming equilibrium in Dekel, Fudenberg, and Levine (2004) is that I

do not necessarily restrict these conjectures to come from separate beliefs about opponents�strategies and the joint
distribution of signals and payo¤ uncertainty.
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correct beliefs about the probability of observing each of the feedback signals they obtain, here

represented by elements of their partition, given the strategies that they and their opponents play.

For example, if Pi is fully-revealing then consistency requires player i to have correct conjectures (as
in a Nash equilibrium), while if Pi is payo¤-revealing consistency requires player i to have correct
beliefs about the expected payo¤ from following her current strategy.

De�nition 1 (consistency) The conjecture of player i when she receives signal si, �i(si), is Pi-
consistent for (ai; ��i) if �i(si) [Pi(!)] = pi(si; ��i) [Pi(!)] for all ! 2 
 such that ai(!) = ai.11

Consistency of beliefs for naive players. The conjectures of naive players are also restricted

by equilibrium feedback, but naive players fail to account for the possible correlation between the

actions of other players and payo¤ parameters in V . Hence, naive players are modeled as drawing

inferences from the observed subsamples of A�i and V separately, but ignoring that a more precise

picture would be learned by looking at the two samples jointly.

Formally, let

Vi(!) = fv 2 V : 9 a 2 A s.t. (a; v) 2 Pi(!)g

denote the set of realized payo¤ parameters that player i cannot rule out given that the outcome

of the game is !. Similarly, let

Ai(!) = fa 2 A : 9 v 2 V s.t. (a; v) 2 Pi(!)g

and

Ui(!) =
�
u 2 R : ui(!0) = u; !0 2 Pi(!)

	
The sets Vi(!), Ai(!), and Ui(!) represent the marginal information feedback obtained regarding

payo¤ parameters, actions, and payo¤s, respectively. For some state !, it is possible that Vi(!)

reveals partial marginal information, meaning that it is neither a singleton nor V (and similarly for

Ai(!)). In that case, obtaining a belief over the probability of an element of Vi(!) requires player

i to assign a probability to such an element when all she gets feedback about is that the outcome

was some element in Vi(!). The de�nition of naive-consistency for this general case is given in

the online appendix. The de�nition for the particular case where there is no partial revelation of

marginal information, which is the case in all the examples in the paper, appears below.

Let P Vi (si; ��i) denote the probability, according to pi(si; ��i), over the states ! such that that

Vi(!) is a singleton, i.e. the probability that i receives precise feedback about the realized payo¤

parameter, and similarly let PAi (ai; si; ��i) denote the probability that Ai(!) is a singleton, when

restricted to ! such that ai(!) = ai.

11For a probability distribution p over A�i � V , and for 
0 � 
, let p[
0] � pf(a�i; v) : 9 ai s.t. (ai; a�i; v) 2 
0g.
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De�nition 2 (naive-consistency) Suppose that Pi is such that there is no partial revelation of
marginal information. The conjecture of player i when she receives signal si, �i(si), is Pi-naive-
consistent for (ai; ��i) if the following conditions are satis�ed:

1. �i(si) = �Vi (si) � �
A�i
i (si), where �Vi (si) and �

A�i
i (si) are probability distributions over V

and A�i, respectively, that satisfy:

(a) for all v 2 V;

�Vi (si)(v) =
X

!:Vi(!)=fvg

pi(si; ��i) [!]

P Vi (si; ��i)
; (5)

(b) for all a�i 2 A�i;

�
A�i
i (si)(a�i) =

X
!:Ai(!)=f(ai;a�i)g

pi(si; ��i) [!]

PAi (ai; si; ��i)
; (6)

2. for all (a�i; v), �i(si) (Ui(ai; a�i; v)) = pi(si; ��i) (Ui(ai; a�i; v)), where

Ui(ai; a�i; v) �
�
(a0�i; v

0) : Ui(ai; a
0
�i; v

0) = Ui(ai; a�i; v)
	
:

Condition 1 requires players to believe that ea�i and ev are independent and to form their beliefs

from each of the subsamples of A and V separately. For example, the marginal probability for

v 2 V is obtained by adding the probability that feedback fvg is obtained, normalized by the
probability that feedback about one of the elements of V is obtained. In addition, to the extent

that players also receive some feedback about their own payo¤s, condition 2 requires their beliefs

about observed payo¤-feedback to be consistent with their beliefs about the distribution of ea�i andev and with knowledge of their utility function. It is possible that there is no conjecture satisfying
both conditions 1 and 2, so that Pi-naive-consistent conjectures may not exist for some particular
(ai; ��i; ) (e.g. the trading game in Section 2 if the buyer always receives feedback about the value

of the object). The online appendix includes a su¢ cient condition for existence and uniqueness of

naive-consistent conjectures. When uniqueness holds, de�ne the naive pro�t function

�Ni (ai; a
�
i ; si; ��i) � E�i(si)ui(ai;ea�i; ev);

where �i(si) is Pi-naive-consistent for (a�i ; ��i).

De�nition and characterization of Behavioral Equilibrium. A behavioral equilibrium

requires that players choose strategies that are optimal given their conjectures, where these con-

jectures are restricted by two sources. The �rst source is the consistency condition introduced
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above, which in turn depends on a behavioral assumption (i.e. whether the player is naive or so-

phisticated), and on the information feedback partition. Second, �i(si) are restricted to belong to

Mi(si) � �(A�i � V ), capturing additional restrictions on beliefs which cannot necessarily be in-
ferred from actual equilibrium behavior. For example, I appeal to such a restriction when assuming

(as in Sections 2 and 4) that sophisticated players know that selection is monotone.12

Consider a partition of the set of players into a set of sophisticated and a set of naive players,

N = NS [NN , and let M = fMig.

De�nition 3 (behavioral equilibrium) A pro�le of strategies � is an (P;M;N) behavioral equi-
librium if for every player i 2 N and for every si 2 Si there exists a conjecture �i(si) 2 Mi(si)

such that

i) �i(si) maximizes expected utility given conjecture �i(si);

ii) �i(si) is Pi-[naive]-consistent for (�i(si); ��i) if i 2 NS [if i 2 NN ].

When P; M; and N are understood from the context, I sometimes omit explicit reference to

them. In addition, when considering games where either all players are naive or all players are

sophisticated, I refer to a behavioral equilibrium as a naive or sophisticated equilibrium, respectively.

A feature of behavioral equilibrium that I exploit in Section 4 is that it can be characterized

as the set of �xed points of an appropriate generalization of a best response correspondence. Let

Hi(�i; ��i) denote the set of player i�s strategies that maximize, for all si, expected utility given

conjectures that belong to Mi(si) and are either Pi-consistent or naive-consistent for (�i(si); ��i);
depending on whether i is sophisticated or naive. The generalized best response correspondence is

then the set of �xed points of the correspondence Hi;

BRi(��i) = f�i : �i 2 Hi(�i; ��i)g ;

and I refer to it as sophisticated-BR, naive-BR, or Nash-BR, depending on whether the player is

sophisticated, naive, or has correct conjectures. Letting BR = fBRigi2N , a behavioral equilibrium
can then be characterized as a �xed point of the BR correspondence.

4 Games with Monotone Selection

I apply the equilibrium framework in Section 3 to a class of games with monotone selection, which

I de�ne below in terms of non-primitives in order to emphasize the main economic intuition behind

the results. Later, I present conditions on the primitives of a class of models such that the following

properties are satis�ed.
12 Implicitly, restrictions across signals are not allowed. While this assumption is easily relaxed in the general setup,

it is important for the application to games with monotone selection.
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De�nition 4 In a game with monotone selection, Ai � R and there exists a unique naive

pro�t function �Ni for every si; ��i. In addition, the following properties are satis�ed:

(i) P is payo¤-revealing,

(ii) [strict] monotone selection property (MSP): �Ni is [increasing] nondecreasing in a
�
i , for every

i; ai; si; ��i,

(iii) kMSP: sophisticated players know that MSP is satis�ed,

(iv) action-belief complementarity: �Ni is single-crossing in (ai; a�i ) for every i; si; ��i.

The assumptions on the action space and on the uniqueness of naive conjectures are made for

simplicity and can be relaxed to some extent.13 The assumptions driving the results in this section

are (i)-(iv).

Since P is payo¤-revealing, players are restricted to have correct beliefs about their expected

payo¤ from playing their equilibrium strategies. MSP requires that higher actions lead to a selection

of outcomes that are �better�for a player. When MSP holds, a naive player believes that choosing

an action that is higher than her equilibrium action would result in a lower payo¤ than it actually

would.14 kMSP is a re�nement on the beliefs of sophisticated players that requires them to know

that selection is monotone, and it is formally de�ned in the appendix. MSP and action-belief

complementarity are standard properties in some adverse selection settings. For example, in a

lemons market, the lower the price that is o¤ered by the buyer, the worse the quality of objects

traded (this is MSP), which in turn induces the buyer to choose even lower prices. Hence, action-

belief complementarity holds since the lower the price o¤ered, the lower the price that is optimal

for a naive player whose beliefs are determined by the price that she o¤ers. As a result, HN is

monotone, hence generalizing the fact that HN lies above the 450 line for p < pN in Figure 1b.

The following result compares generalized best responses of players who are naive, sophisticated,

or have correct beliefs. As the intuition in Section 2 makes clear, only conditions (i) and (ii) above

are used to compare naive and Nash best responses. The standard product order is used, so that

a strategy �i is higher than �0i if �i(si) � �0i(si) for all si 2 Si.

Theorem 1 (Comparing Generalized Best Responses) Consider a game with monotone se-

lection where the strategies of all other players are �xed. Then:

1. for every naive-BR there is a Nash-BR that is higher (and if MSP is strict, then every naive-

BR is lower than any Nash-BR); and

2. every sophisticated-BR is higher than the lowest naive-BR.

13The online appendix shows that the results extend to a multidimensional action space as long as selection is
unidimensional.
14While MSP assumes nondecreasing selection, all the results extend (but go in the reverse direction) if selection

is nonincreasing.

15



Theorem 1 generalizes the results in Section 2 �it can be applied to compare equilibria in settings

with only one truly strategic player. In settings with more strategic players, it is well-known that

a speci�c comparison of best responses does not necessarily extend to a comparison of equilibria,

except under additional assumptions. Following the literature on modern comparative statics (e.g.

Milgrom and Roberts, 1990), a su¢ cient condition for that extension is that the game has strategic

complementarities. A game with monotone selection has Nash strategic complementarities if �NEi
is single-crossing in (ai; ��i) for all i; si; while it has naive strategic complementarities if �Ni is

single-crossing in (ai; ��i) for all i; a�i ; si.
15

Theorem 2 (Comparing Equilibria) Consider a game with monotone selection and both Nash

and naive strategic complementarities.

1. The sets of Nash, naive, and sophisticated equilibria are each nonempty; and the sets of Nash

and naive equilibria each have lowest and highest elements.

2. The highest naive equilibrium is lower than the highest Nash equilibrium. (If MSP is strict,

then in addition the lowest naive equilibrium is lower than the lowest Nash equilibrium).16

3. Every sophisticated equilibrium is (weakly) higher than the lowest naive equilibrium.

The results in Theorem 2 can also be extended to some settings without strategic complemen-

tarities, such as symmetric games where the strategic players have no private information (see the

online appendix), and certain auctions (see Section 4.2). The statements in Theorem 2 hold for

these settings, when restricted to the set of symmetric equilibria.

4.1 A class of games with monotone selection

Consider the framework in Section 3 where payo¤s are u�i (ai; �) when (a�i; t) 2 �i(ai) and zero
otherwise, where v = (�; t) 2 �� T represents payo¤ uncertainty, ai 2 Ai � R is player i�s action,
and Ai is nonempty and �nite. The interpretation is that there are two possible outcomes, each of

which occurs depending on players�actions and a random variable et.17 In addition, suppose that
attention is restricted to nondecreasing strategies.

15The result below slightly di¤ers from the standard proof in that di¤erent equilibrium concepts are being compared
(rather than a parameterized model under the assumption that a Nash equilibrium is played), and that the sets of
best responses are not ordered by the strong set order relation. Theorem 2 also extends trivially to the case where
naive, sophisticated, and �Nash�players coexist.
16Naive strategic complementarities is not needed to compare naive and Nash equilibria, but without it existence

of a naive equilibrium is not guaranteed.
17At the expense of additional notation, the setting can be slightly generalized to encompass, e.g., the k-th unit

auction and the e¤ort game discussed in Section 4.2.
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Given action ai and the pro�le of opponents�strategies ��i, let 'i(ai; si; ��i) denote the probabil-

ity that the non-zero outcome occurs, conditional on si. Suppose, for simplicity, that this probability

is never zero.18 In addition, consider the following assumptions on the economic environment and

on players�beliefs.

Assumptions on fundamentals. F1. (et;e�; es) are a¢ liated; F2. u�i is nondecreasing in � for
all i; F3. u�i is supermodular in (ai; �) for all i; F4. for all i: �i(a

0
i) � �i(ai) whenever a0i � ai;

i.e. the probability of the non-zero outcome is nondecreasing in a player�s own action; F5. �i is

nondecreasing in the strong set order for all i.

Assumptions on beliefs. B1. P is only payo¤-revealing; B2. every player i has correct beliefs
about �i for every ai, given the equilibrium strategies of other players; B3. every player i believeset is independent of (e�;ea�i); B4. kMSP holds.19
Proposition 2 The previous environment is a game with monotone selection when F1-F5 and

B1-B4 hold.

As the proof makes clear, B1-B3 imply existence of a unique naive pro�t function, adding F1,

F2, and F5 implies MSP, and further adding F3-F4 implies action-belief complementarity.

4.2 Additional examples

Several standard economic settings can be modeled as games with monotone selection. I discuss

how the results in the paper can be applied in the context of some concrete examples.

(1) Monopoly/monopsony. The setting in Section 2 is ubiquitous in applications of adverse

selection to insurance, labor, �nancial, credit, and used goods markets, as suggested by substituting

the names buyer/seller with insurer/insuree, �rm/worker, market maker/informed trader, venture

capitalist/entrepreneur, etc. In many of these examples, a �rm faces a given supply or demand, and

it is reasonable to assume that while a �rm may know the willingness-to-trade in the population,

it may either ignore or not know the relationship between willingness to trade and the types of

potential customers. Something to note is that the selection e¤ect may also be monotone decreasing.

For example, in an insurance context the higher the price of insurance, the lower the �quality�of the

customers that the �rm obtains, which in turn provides incentives to increase prices even further,

18As discussed in Section 2, if the zero outcome occurs with probability one, then a player is likely to receive no
feedback about e�, so that multiple conjectures may be entertained.
19B2-B4 are captured by placing restrictions on conjectures through Mi. B2 requires players, e.g., to know the

demand/supply they face (i.e. willingness to pay in the population), but not necessarily the relationship between
willingness to pay and the types of potential customers. In some settings (e.g. Section 2), B2 holds when P is
action-revealing.
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implying that the HN correspondence is still monotone nondecreasing in this setting. It can be

shown that the results in Section 2 are then reversed, e.g. every equilibrium with naive �rms is

either above the highest NE or is a NE itself, which con�rms that the adverse selection problem is

exacerbated in the presence of naive players irrespective of whether the selection e¤ect is monotone

nondecreasing or nonincreasing.

(2) Duopoly with adverse selection. The monopoly examples can be extended by incorpo-

rating competition in the less-informed side of the market. For concreteness, suppose two �rms

compete to attract workers by simultaneously o¤ering wages wi. Each worker has private informa-

tion s about her (home) productivity and prefers to work for �rm i rather than stay home whenever

s � gi(wi), where g is increasing. In addition, a worker prefers working for �rm 1 rather than �rm

2 if and only if h(w1; w2) � t, where h is nondecreasing in w1 and nonincreasing in w2 (so that

higher values of t indicate a higher preference for working for �rm 2). If the worker works for �rm

i, then �rm i makes pro�ts u�i (wi; �); where � is the worker�s productivity at work. Pro�ts are

zero when a worker is not hired. Assumptions F1-F3 and B1�B4 are natural in this context, and

the corresponding �i satis�es F4 and, if et is assumed to be independent of (e�; es), F5 as well. If
the latter independent assumption is dropped, then MSP does not necessarily hold since now an

increase in wages may steal the least attractive workers from the other �rm.

With the above assumptions, this is a game with monotone selection, and therefore if either �rms

are symmetric (see the online appendix) or if �rms are asymmetric but the game has strategic

complementarities,20 then the adverse selection problem is exacerbated and both wages and the

quality of hired workers are lower when �rms are naive. Due to softened competition, there are

examples where �rms are actually better o¤ when being naive.

(3) Symmetric �rst price auctions and kth unit auctions. Consider an auction where

valuations have a common-value component. By increasing her bid, a bidder would win objects

that she would have otherwise not won, and this event occurs when the highest opponent bid is

between her original bid and her new, increased bid. Under the a¢ liation assumption, these objects

are of higher expected quality than the objects she wins at her original bid. Hence, MSP holds and,

in turn, this induces bidders to choose even higher bids, so that action-belief complementarity also

holds. While symmetric �rst price auctions are not games with strategic complementarities, it is

possible to use the comparative statics results in Esponda (2006) to conclude that, in a symmetric

equilibrium, bidding is less aggressive when all bidders are naive.

The same result can be easily obtained in a symmetric kth unit auction, where k identical objects

20Conditions under which a standard product-di¤erentiated oligopoly game satis�es strategic complementarities
are well known (Vives, 1999), but less is known about oligopoly games under adverse selection. In the �rm-worker
example, if p(w1; w2) denotes the probability that a worker prefers to work for �rm 1 rather than for �rm 2 when
the o¤ered wages are (w1; w2); then a su¢ cient condition for both the Nash and naive games to satisfy strategic
complementarities is that p and 1 � p are log-supermodular in w. (This assumption is satis�ed, for example, if p is
di¤erentiable, @2p

@w1@w2
= 0, @p

@w1
� 0, and @p

@w1
� 0.)
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are sold and the highest k bidders get an object but pay the k+ 1 highest bid (when k = 1, this is

the second price auction). If everyone plays the same strategy, then the expected value of objects

that are won by a player of type si is E [u(si; es�i) j eyk � si], where ey is the kth highest of the
opponents�signals. Since naive bidders ignore that the expected value of the object depends on

their bid, they essentially believe to be in a private-values environment, where it is a dominant

strategy to bid their valuation. Hence, a symmetric equilibrium with naive bidders is given by the

above conditional expectation, while the symmetric Nash equilibrium (Milgrom, 1981) is given by

the more aggressive bidding strategy �NE(si) = E [u(si; es�i) j eyk = si].
(4) Team e¤ort. A member of a team must take into account that: (i) her e¤ort a¤ects the

probability of success, and (ii) since other players choose e¤ort based on private information about

the value of a successful outcome, changing her e¤ort also a¤ects the expected value of a successful

outcome. A naive team member ignores the second e¤ect.

Assume that F1-F3 and B1-B4 hold, and let ci(ai) be the cost of choosing e¤ort ai. If the

team succeeds, each player obtains �, while if it fails, payo¤s are zero. Whether this is a game

with monotone selection depends on the technology translating e¤ort into success. Suppose that

success occurs if mini2N xi � t, where et is independent of e�. Then F4 and F5 hold, implying that
this is a game with monotone selection. Intuitively, since it is the minimum level of e¤ort that

matters for success, a player has no in�uence on success when (the realization of) the minimum

of other players� e¤ort level is lower than her e¤ort, but does increase the likelihood of success

when the minimum of other players�e¤ort is higher. Hence, by increasing e¤ort a player not only

increases the probability of success, but also makes it more likely that success occurs for higher

values of other players�e¤orts, which are indicative of higher realizations of e�. In addition, e¤orts
are complements and the game has Nash strategic complementarities, implying that a team of naive

players exerts less e¤ort than in a Nash equilibrium. If in addition the game is symmetric, or if it is

asymmetric but the game also has naive strategic complementarities, naive players also put lower

e¤ort compared to sophisticated ones.21

(5) Preemption Game. Two �rms simultaneously choose whether to act today or to wait and

act tomorrow. Firm(s) which act �rst are rewarded, but �rms would bene�t from coordinating

to move tomorrow, when the bene�ts of acting are known. Firms get feedback about the bene�ts

of acting only when they are the �rst to act. A �rm which decides to act today but evaluates

whether it should rather wait must account for two e¤ects: (i) the risk of being preempted, and

(ii) the fact that if it waits, it will only get to act tomorrow if the other �rm has not preempted it,

which (under monotone assumptions on the information structure, and given that �rms have private

information) is more likely to happen when the bene�ts from acting are lower. A naive �rm ignores

21The naive game may not have strategic complementarities since when other players exert more e¤ort, the marginal
e¤ect of e¤ort on the probability of success may increase, but, on the other hand, naive players fail to realize that
increasing e¤ort would also have a positive e¤ect on the rewards from e¤ort.
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the second e¤ect, and therefore believes the bene�t from acting is lower when it decides to wait than

when it decides to act today (MSP), making it more likely to wait (action-belief complementarity).

Hence, this is a game with monotone selection, and under standard assumptions the game also

has Nash strategic complementarities. Equilibrium with naive �rms involves more waiting (i.e.

better coordination) than in a Nash equilibrium, and assuming either symmetry or naive strategic

complementarities, the same is true with respect to sophisticated �rms.22

5 Discussion

In this paper, I provide a framework to study equilibrium behavior in the presence of players who

fail to account for the informational content of other players�actions. I introduce the concept of a

behavioral equilibrium and apply it to obtain new insights on the nature of the adverse selection

problem. Contrary to what may be expected without an appropriate equilibrium framework, players

who fail to account for selection actually exacerbate the adverse selection problem.

The distinguishing feature of the new framework is that both structural and strategic beliefs

are endogenously determined in equilibrium. In contrast, the standard literature (at least since

Harsanyi (1967-8)) makes a sharp distinction between uncertainty about fundamentals and un-

certainty about the strategies of other players. While the latter is determined endogenously in

equilibrium, the former is exogenous. Eyster and Rabin�s (2005) cursed equilibrium can be viewed

as an attempt to introduce selection bias while maintaining this standard distinction about beliefs.

In a fully cursed equilibrium, players�belief about fundamentals (such as the common valuation of

an object in an auction) is exogenously �xed to be correct, while their belief about the distribution

of other players�actions endogenously coincides with the equilibrium distribution. However, players

ignore the relationship between other players�private information and actions. This ignorance is

modeled by assuming that players incorrectly believe that each type pro�le of the other players

plays the same pro�le of mixed actions �which coincides with the true average distribution of

actions.23,24

The practical problem with this sharp distinction is that the underlying assumptions about

information feedback and information-processing biases that motivate restrictions on players�beliefs

about the actions of other players are also likely to endogenously motivate restrictions on players�

22On one hand, if the other �rm waits more often the preemption motive makes it more desirable to also wait more
often. However, if a �rm is naive and waits it will then believe the bene�t from acting has increased (since the other
�rm is waiting under more favorable information), which makes acting today more attractive.
23More generally, Jehiel and Koessler (2005) assume players make mistakes when forecasting the type-contingent

strategies of their opponents by bundling types into analogy classes. The same arguments that motivate the alternative
appoach that I follow in this paper apply to their framework.
24Eyster and Rabin (2005) also consider intermediate cases where players �underappreciate�the selection problem:

with some probability beliefs are as in a cursed equilibrium and with the remaining probability beliefs about opponents�
type-contingent strategies are correct (as in a Bayesian Nash equilibrium). In contrast, in a behavioral equilibrium
players are either aware or unaware of the selection problem, and it is only players who are aware (i.e. sophisticated)
who might now either under or overappreciate the informational content of other players�actions.
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beliefs about fundamentals. By placing restrictions on beliefs about fundamentals independently

of restrictions on beliefs about actions, it is not clear what the underlying assumptions on feedback

nor what the consequent restrictions on equilibrium beliefs are. As illustrated in Section 2, a player

in a cursed equilibrium may have incorrect beliefs about the expected payo¤ she receives from

playing her equilibrium strategy �hence implicitly implying that players obtain no feedback about

their past payo¤s.25

In contrast, in a behavioral equilibrium restrictions are made directly on information feedback

and on the information-processing capabilities of players, and such restrictions endogenously imply

joint restrictions on equilibrium beliefs about both structural and strategic uncertainty. Besides

obtaining results that go against the received wisdom (but which have a very clear intuition once

the details are spelled out), one important implication of the proposed framework is that whether

a particular bias may arise is determined endogenously in equilibrium. In addition, the framework

is set up so that it should be easy to modify to study other information-processing biases.

The separation between the assumption of a bias and whether that bias may actually arise in

equilibrium provides further insight into the relationship with experimental results. Consider the

trading game in Section 2, where a naive equilibrium exists under the reasonable assumption that

feedback about the value of the object is only obtained when the object is traded. Suppose, instead,

that feedback about the value of the object is always received, irrespective of whether the object

is traded or not. There are some situations where this alternative assumption may make sense,

such as a common value auction with resale, where the resale price is observed by everyone. Under

this alternative assumption, naive-consistent beliefs do not exist and therefore a naive model of the

world cannot persist in an equilibrium setting. The reason is that knowing the correct expected

quality of all objects but consistently obtaining objects of lower quality is a fact that cannot be

reconciled with a naive model of the world, i.e. the seemingly contradictory feedback cannot be

rationalized unless the player understands the selection problem.

An alternative assumption that leads to the same result is that the player knows a priori what the

true distribution of the value of the object is. Note that this assumption is satis�ed in experimental

settings, where subjects are told the distribution from which valuations are drawn before playing

the game. The framework in this paper limits itself to predicting that a naive equilibrium will not

exist in such a setting. Of course, players will still play in some way, and at least two possibilities

come to mind. First, players can rationalize the fact that they expect to get the unconditional

expected value but always get less by thinking that they are being unlucky, or even by ignoring

to take into account payo¤-feedback information altogether. In this case, players will behave as

25See Dekel, Fudenberg, and Levine (2004) for this critique in the context of a model with no biases, and the survey
by Fudenberg (2006) for a discussion of the problems with cursed equilibrium and the need for alternative equilibrium
concepts for behavioral economics. Esponda (2006) further pursues the argument in the text that no distinction should
be made between structural and strategic uncertainty and presents a framework that is an alternative to Harsanyi�s
Bayesian Nash equilibrium and extends the present paper by allowing people to learn not only from feedback but
also from introspection.
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predicted by Kagel and Levin (1986), Holt and Sherman (1994), and Eyster and Rabin (2005), and

it is no coincidence that the experimental evidence (reviewed by Kagel and Levin (2002)) agrees

with this prediction. Second, players may eventually rationalize that the seemingly contradictory

information is due to their failure to account for selection, and therefore update their model of

the world and stop being naive. A behavioral equilibrium is a steady-state concept that does not

postulate how the model of the world will be revised, but rather limits itself to answering whether

such a model of the world can persist in equilibrium or not. An interesting, nontrivial extension of

the framework that is left for future work is to understand how players update their model of the

world when it cannot rationalize what they observe.

There are two implications for the experimental literature. First, it is likely that the intuition and

experimental results developed in adverse selection settings are strongly driven by the assumption

that players know a priori the true distribution over the fundamentals. This assumption may not

be the most reasonable in many settings, and in addition it obscures the essence of the selection

problem, where players�choices endogenously select the sample from which players learn about their

environment. If naive players were to receive no information about the distribution of the value

of the object, the compelling intuition provided in this paper suggests that they would actually

underprice. Second, it would be interesting to extend the experimental literature by relaxing the

assumption that players know the distribution over the fundamentals but must rather learn it. Of

course, it is not trivial how one would make sure that players have enough opportunity to learn in

an experimental setting.26

Finally, the paper provides a dynamic justi�cation for the steady-state solution concept when

only one player is engaged in learning. It would be interesting to extend these dynamics to the

nontrivial case where several players are simultaneously learning in the presence of a selection

problem.

26This is not so much a critique of the experimental literature, which provides subjects with information about
distribution of random variables in order to test for Bayesian Nash equilibrium, but rather an assertion about the need
to extend the methodology of treating both structural and strategic uncertainty as endogenous to the experimental
literature as well.
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Appendix

First, I present some standard terminology and results from the literature on monotone compar-

ative statics. Then, I establish some preliminary results and use them to prove the statements in

the text.

A. Fixed points and monotone comparative statics27

Throughout, let X � RK denote a nonempty, �nite set, and let T be a nonempty, partially

ordered set. An element of x 2 X is the highest element of X if x � y for every y 2 X; it is the
lowest element if x � y for all y 2 X. A correspondence � : T �! X is increasing in the strong set

order if when t > t0, then for each x 2 �(t) and y 2 �(t0), sup(x; y) 2 �(t) and inf(x; y) 2 �(t0). A
function f : X �! R is supermodular if for all x; y 2 X, f(inf(x; y)) + f(sup(x; y)) � f(x) + f(y).
A function g : X � T �! R has increasing di¤erences in its arguments (x; t) if g(x; t) � g(x; t0)
is nondecreasing in x for all t � t0. A function g : X � T �! R is the single-crossing in (x; t)

if for x > x0 and t > t0, g(x; t0) � g(x0; t0) implies g(x; t) � g(x0; t) and g(x; t0) > g(x0; t0) implies

g(x; t) > g(x0; t). A function with increasing di¤erences in (x; t) is also single-crossing in (x; t), but

the reverse need not hold. The following results are used in the proofs.

FP1. (Tarski, 1955; Milgrom and Roberts, 1990) Suppose f : X � T �! X is nondecreasing

for each t 2 T . Then for each t, the set of �xed points of f is nonempty and has a lowest element
x(t) = inffx 2 X : f(x; t) � xg and a highest element x(t) = supfx 2 X : f(x; t) � xg: If in
addition f is nondecreasing in t for all x 2 X, then x(�) and x(�) are nondecreasing.

MCS1. (Milgrom and Shannon, 1994) For each t 2 T; h(t) � argmaxx2X�R f(x; t) is nonempty
and has a lowest element h(t) and a highest element h(t). If f is single-crossing in (x; t), then h(�)
and h(�) are nondecreasing.

MCS2. (Athey, 1998) Let u : A � S �! R be a function where A � RK and S � RK is

the support of a vector of a¢ liated random variables es. Let � : X �! S be a correspondence

that is nondecreasing in the strong set order. De�ne U(a; x) � E [u(a; es) j es 2 �(x)]. If u(a; �) is
nondecreasing in s, then U(a; �) is nondecreasing in x. If u is supermodular in (a; s), then U has

increasing di¤erences in (a; x).

A2. Proof of main results

The proofs are in order of appearance in the text, except for Proposition 1, which is proved

last. I start with two preliminary results. Let �Si (a
�
i ; si; ��i) denote the set of (pro�t) functions

E�i(si)ui(�;ea�i; ev) given a conjecture �i(si) that is Pi-consistent for (a�i ; ��i) and that belongs to
27See, e.g., Topkis (1998) and Vives (1999,2005).
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Mi(si). De�ne �Ni similarly for naive-consistent conjectures, and let �NEi (�; si; ��i) denote the
pro�t function for correct conjectures pi(si; ��i). Let BRNi , BR

S
i , and BR

NE
i denote the set of

naive, sophisticated, and Nash (i.e. correct) best responses.

PR1. Fix a�i ; si; ��i and let �
S
i 2 �Si (a�i ; si; ��i) and �Ni 2 �Ni (a�i ; si; ��i). If Pi is payo¤-

revealing, then

�Ni (a
�
i ; a

�
i ; si; ��i) = �

S
i (a

�
i ; a

�
i ; si; ��i) = �

NE
i (a�i ; si; ��i):

proof. Since Pi is payo¤-revealing, Ui(!) is a singleton for all !. Let �N (si) denote the naive-
consistent conjecture corresponding to �Ni (�; a�i ; si; ��i). Then:

�NEi (a�i ; si; ��i) =
P

(a�i;v)
ui(a

�
i ; a�i; v)� pi(si; ��i)(a�i; v)

=
P
u2R

u� pi(si; ��i) f(a�i; v) : ui(a�i ; a�i; v) = ug

=
P
u2R

u� pi(si; ��i) f(a�i; v) : Ui(a�i ; a�i; v) = fugg

=
P
u2R

u� �Ni (si) f(a�i; v) : Ui(a�i ; a�i; v) = fugg

=
P

(a�i;v)
ui(a

�
i ; a�i; v)� �Ni (si)(a�i; v)

= �Ni (a
�
i ; a

�
i ; si; ��i)

where the �rst, second and last equalities follow from de�nitions, the third and �fth equalities

follow since Ui(!) is a singleton, and the fourth equality from condition 2 in the de�nition of naive-

consistency. A similar proof shows that �Si (a
�
i ; a

�
i ; si; ��i) = �

NE
i (a�i ; si; ��i) (since condition 2 in

the de�nition of naive-consistency is implicitly required by the de�nition of consistency). �

Abusing notation, let �Ni (a
�
i ; p) be the union of �

N
i (a

�
i ; si; ��i) over (si; ��i) that induce p 2

�(A�i � V ). Condition kMSP is formally de�ned as follows: for all i 2 NS and si 2 Si, Mi(si) is

the set of all � 2 �(A�i � V ) such that �Ni (�; �) is strongly nondecreasing, i.e. for any a�0i � a�i ,

�0 2 �Ni (a�0i ; �), and � 2 �Ni (a�i ; �), it follows that �0(ai) � �(ai) for all ai.

PR2. Fix a�i ; si; ��i and let �
S
i 2 �Si (a�i ; si; ��i). If Pi is payo¤-revealing, kMSP holds, and

the game has a unique naive pro�t function, �Ni , then �
N
i (ai; a

�
i ; si; ��i) � �Si (ai; a

�
i ; si; ��i) for

ai � a�i and �Ni (ai; a�i ; si; ��i) � �Si (ai; a�i ; si; ��i) for ai � a�i .

proof. Let �Sa�i be the conjecture corresponding to �
S
i (�; a�i ; si; ��i) and let pi 2 �(A�i � V ) be

induced by (si; ��i). Note that �Ni (a
�
i ; �

S
a�i
) = �Ni (a

�
i ; pi) since by de�nition naive-consistent beliefs

depend only on the probability distribution over marginal feedback, and since �Sa�i is Pi-consistent for
(a�i ; ��i) then such distribution is the same for �

S
a�i
and pi. Then �Ni (a

�
i ; �

S
a�i
) =

�
�Ni (�; a�i ; si; ��i)
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by the assumption that there is a unique naive pro�t function. Now let ai � a�i and consider

�Ni (�; ai; si; ��i) 2 �Ni (ai; �Sa�i ). Then

�Ni (ai; a
�
i ; si; ��i) � �Ni (ai; ai; si; ��i)

= �Si (ai; a
�
i ; si; ��i);

where the inequality follows from kMSP and ai � a�i , and the equality follows from PR1 (i.e.

�Ni (ai; ai; si; ��i) are the �correct�beliefs from playing ai when the �true�distribution over (a�i; v)

is given by �Sa�i ). A similar proof establishes that �
N
i (ai; a

�
i ; si; ��i) � �Si (ai; a�i ; si; ��i) for ai � a�i .

�

Proof of Theorem 1. Part 1. Let �Ni 2 BRNi (��i) and �NEi 2 BRNEi (��i). Suppose that

�Ni (si) > �
NE
i (si) for some si 2 Si. Then:

�NEi (�Ni (si); si; ��i) = �Ni (�
N
i (si);�

N
i (si); si; ��i)

� �Ni (�
NE
i (si);�

N
i (si); si; ��i)

� �Ni (�
NE
i (si);�

NE
i (si); si; ��i)

= �NEi (�NEi (si); si; ��i);

where the two equalities follow from the fact that Pi is payo¤-revealing (PR1), the �rst inequality
follows from the de�nition of a naive-BR, and the second inequality follows from MSP and �Ni (si) �
�NEi (si). Therefore, �Ni (si) is also a Nash-BR for i; si, so that maxf�Ni ; �NEi g 2 BRNEi . Now

suppose strict MSP holds: the second inequality is then strict, which contradicts the fact that

�NEi (si) is a Nash-BR for i; si. Therefore, �Ni � �NEi .

Part 2. Let

hNi (a
�
i ; si; ��i) � argmaxai

�Ni (ai; a
�
i ; si; ��i);

so that

BRNi (��i) =
�
�i : �i(si) 2 hNi (�i(si); si; ��i) for all si 2 Si

	
:

Since �Ni is single-crossing in (ai; a�i ), then, by MCS1, h
N
i (a

�
i ; si; ��i) has a lowest element

hNi (a
�
i ; si; ��i) that is nondecreasing in a

�
i . Since h

N
i (�; si; ��i) : Ai �! Ai; by FP1 there is a

lowest �xed point of hNi (�; si; ��i), �i(si; ��i) = inf
�
ai 2 Ai : hNi (ai; si; ��i) � ai

	
. Then �i is the

lowest naive-BR.

Now �x �i such that �i(s�i ) < �i(s
�
i ; ��i) for some s

�
i 2 Si. Then hNi (�i(s�i ); s�i ; ��i) > �i(s

�
i ),
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and, letting a0i = h
N
i (�i(s

�
i ); s

�
i ; ��i),

�Si (a
0
i;�i(s

�
i ); s

�
i ; ��i) � �Ni (a

0
i;�i(s

�
i ); s

�
i ; ��i)

> �Ni (�i(s
�
i );�i(s

�
i ); s

�
i ; ��i)

= �Si (�i(s
�
i );�i(s

�
i ); s

�
i ; ��i);

where the �rst inequality follows from kMSP and a0i > �i(s
�
i ) (PR2), the strict inequality follows

by de�nition of a0i and since �i(s
�
i ) is not a �xed point of h

N
i (�; si; ��i), and the equality follows

since Pi is payo¤-revealing (PR1). Therefore, �i =2 BRSi (��i), implying the result. �

Proof of Theorem 2.

(a) Following the proof of part 2 of theorem 1, MCS1 and FP1 imply that there exist lowest

and highest Nash and naive best responses, denoted by BRNEi (��i); BR
NE
i (��i) and BRNi (��i);

BR
N
i (��i), respectively. In addition, since �

NE
i is single-crossing in (ai; ��i) and �Ni is single-

crossing in (ai; ��i), each best response is nondecreasing in ��i. For n 2 fN;NEg, let BRm(�) �
fBRmi (��i)gi2N be the lowest best response map. Letting X = �iASii denote the �nite set of

strategy pro�les, note that BRm : X �! X is nondecreasing in �, so that FP1 implies that there

is a lowest �xed point of BRm, given by �m = inff� 2 X : BRm(�) � �g. For any � that is a
�xed point of BRm; � � BRm(�). Therefore, �m is also the lowest �xed point of BRm, so that

�m is the lowest Nash (naive) equilibrium for m = NE (m = N). A similar proof establishes

the existence of a highest equilibrium. A sophisticated equilibrium exists since a Nash equilibrium

is always a sophisticated equilibrium (this is because correct beliefs are always Pi-consistent and
because correct beliefs belong to MS

i �i.e. the set of beliefs that satisfy kMSP �given that it is

actually true that MSP holds).

(b) By part 1 of Theorem 1, BR
N
(�) � BR

NE
(�) for all � 2 X. Let T = f0; 1g and de�ne

f : X � T �! X such that f(�; 0) = BR
N
(�) and f(�; 1) = BR

NE
(�). Then f is nondecreasing

in t 2 T , and from FP1, the highest �xed point of BR
N
(i.e. the highest naive equilibrium) is

(weakly) lower than the highest �xed point of BR
NE

(i.e. the highest Nash equilibrium). With the

additional assumption that MSP is strict, part 1 of Theorem 1 implies that BR
N
(�) � BRNE(�)

for all � 2 X; so that a similar application of FP1 yields that the lowest �xed point of BRNE (i.e.
the lowest Nash equilibrium) is (weakly) higher than the lowest �xed point of BR

N
, which is itself

(weakly) higher than the lowest naive equilibrium.28

(c) Let �S be a sophisticated equilibrium, i.e. �S 2 BRS(�S). I show that there exists a naive
equilibrium �N such that �N � �S . Consider X 0 = f� 2 X : � � �Sg. For any � 2 X 0,

BRN (�) � BRN (�S) � �S ; where the �rst inequality follows from BRN being nondecreasing and

the second inequality follows from the ordering of best responses established in part 2 of Theorem

28When MSP is strict, the proof of part (b) can be established along the lines of the proof of part (c) and does not
require that the naive game have strategic complementarities.
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1 (i.e. BRN (�) � �0 for any �0 2 BRS(�)). Hence, BRN (X 0) � X 0 and it follows from FP1 that

there exists a naive equilibrium �N 2 X 0:

Proof of Proposition 2. By B2, beliefs about 'i(ai; si; ��i) are correct for any ai, so consider

beliefs about Eu�i (ai;e�) when a�i is played. Since only payo¤s are revealed by Pi (B1), it follows that
players observe the exact realization of e� if and only if (��i(s�i); t) 2 �i(a�i ), and get no feedback
otherwise. In addition, player i believes that this conditional expectation does not depend on their

action a�i since: i) she believes et is independent of e� (B3), and ii) she is naive, so she ignores that
opponents�actions might be correlated with e�. Therefore, naive-consistency requires that beliefs
about Eu�i (ai;e�) be given by the conditional expectation

�(ai; a
�
i ; si) � E

�
u�i (ai;e�) j (��i(es�i);et) 2 �i(a�i ); es = si�

establishing uniqueness of a naive pro�t function �Ni = 'i(ai; si; ��i)� �(ai; a�i ; si).
Since (e�; es;et) are a¢ liated (F1), u�i is nondecreasing in � (F2), and �i is nondecreasing in the

strong set order (F5), it follows from (MCS2) and from the assumption that � is nondecreasing

that E
�
u�i (ai;

e�) j (��i(es�i);et) 2 �i(a�i ); es = si� is nondecreasing in a�i , so that MSP holds.
Since (e�; es;et) are a¢ liated (F1), u�i is supermodular in (ai; �) (F3), and �i is nondecreasing

in the strong set order (F5), it follows from (MCS2) and from the assumption that � is non-

decreasing that E
�
u�i (ai;

e�) j (��i(es�i);et) 2 �i(a�i ); es = si� has increasing di¤erences in (ai; a�i ).
Since 'i(ai; si; ��i) is nonnegative and nondecreasing in ai (F4) and since � is nondecreasing in

a�i (see above), it then follows that �
N
i has increasing di¤erences in (ai; a�i ), implying that it is

single-crossing in (ai; a�i ).

Together with kMSP (B4), the properties in de�nition 4 are then established. �

Proof of Proposition 1. Let t denote a time period where trade takes place, so that the realized

value of the object at time t is a draw from a random variable eheyt that is uniformly distributed in
the interval [x; x+ 1

2eyt] (since trade occurs when est � ep�t = 1
2eyt). Then eyt can be written as

eyt = t� 1
t
eyt�1 + 1

t
eheyt�1 ,

and the proof proceeds by showing that eyt converges in probability to y, where y is a solution to
y = Eehy = x + 1

4y, i.e. y =
4
3x. Hence, ept converges to p = 1

2(
4
3x) =

2
3x, which is the naive

equilibrium price.

The proof of convergence of eyt to y is as follows (alternatively, a law of large numbers for the
sum of asymptotically independent random variables can be applied). Write

eyT+k = T

T + k
eyT + 1

T + k

kP
j=1

eheyT+k�j (7)

30



and pick T , k(T ), and " > 0 such that limT!1 k(T ) =1 and T is large enough relative to k(T ) so

that Pr(jeyT � eyT+k�j j > ") = 0 for j = 1; :::; k � 1. Hence, (7) implies that Pr(
�����eyT � 1

k

kP
j=1

eheyT
����� >

") = 0. Now take T !1, so that k !1 and then by the law of large numbers 1k
kP
j=1

eheyT p! EeheyT =
x + 1

4eyT . Hence, limT!1 Pr(
��eyT � (x+ 1

4eyT )�� > ") = 0, so that limT!1 Pr(��eyT � 4
3x
�� > 4

3") = 0.

�
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