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Abstract. It was asked in [3] whether or not the Mertens and the Neyman
values coincide on a certain large space of games. We answer to the negative.
Surprisingly, the counterexample is a game of the form f ◦ µ where f is Lips-
chitz, i.e. - the Neyman and Mertens values already different on ”reasonable”
games. This answer suggests that given a non-differentiable game f ◦µ we may
use different ”marginals” of f to construct different price mechanisms. Finally
we extend the value formula derived in [3, section 6.1] and use it to prove that
these values coincide on a large space of games.

1. Introduction

A solution concept for a set Q of cooperative games with an underlying coalitional
structure (I, Σ) is a correspondence S : Q → P(M(I)) between games in Q and
sets of measures over I, which follows a list of desirable axioms. During the years
many different axioms were formulated. Among the most common axioms we may
find efficiency (i.e.- ∀v (Sv)(I) = {v(I)}), symmetry (i.e. - ∀θ ∈ Aut(I, Σ)∀v ∈
Q, S(θ∗v) = θ∗(Sv) monotonicity (i.e.- v ∈ Q+ ⇒ Sv ⊂ M+(I)) etc’. One of
the most basic solution concepts of cooperative game theory is the Shapley value.
It was first introduced in the setting of n-players games, where it can be viewed
as the players’ expected payoffs. It has a wide range of applications in various
fields of economics and political science. In many such applications it is necessary
to consider games that involve a large number of players s.t. most of them are
”insignificant”. Among the typical examples we find voting among stockholders
of a corporation and markets with perfect competition. In such cases it is fruitful
to model the game as a cooperative game with an underlying coalitional structure
([0, 1], C), i.e.- a game with a ”continuum of players”. [1] expanded the definition
of value to games with a continuum of players. The value was defined using the
axioms of efficiency, symmetry and monotonicity.

When we define a solution concept S on a set of games Q, it is natural to ask
wither this solution is unique. The core of a cooperative game, the nucleus and
the Shapley value are examples for solution concepts of cooperative games which
are unique under certain conditions. In [1] it is shown that the value exist and is
indeed unique on some spaces of games with a continuum of players (e.g. - the
space of all ”differentiable” market games). It was unknown for quite a long time
wither there exist a value on the spaces of games which are not ”smooth”. An
example is the space of all market games. [2] introduced a value on a very large set
of ”non-differentiable” games. [3] introduced a value on yet another very large set
of ”non-differentiable” games. Both values are obviously not unique, due the use of
Banach limits in the construction. Yet, [3] asked wither ”modulo Banach limits”,
do these values coincide on the intersection of their domains? This work answers
this question to the negative, thus proving that the value on the intersection of
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domains is not unique. This demonstrates another nice property - the Shapley,
Aumann-Shapley, Mertens and Neyman values were constructed as some average
over ”marginal values”; This work shows that in the setting of ”non-differentiable”
games there is great importance to the question ”which marginal value?”.

2. Preliminaries

2.1. The Mertens Value.

Definition 2.1. An extension operator is a linear and symmetric map ψ from
a linear symmetric space of games to real-valued functions on B+

1 (I, C), with
(ψv)(0) = 0, s.t. (ψv)(1) = v(I), ||ψv||IBV ≤ ‖v‖, ψv is finitely additive whenever
v is finitely additive and a constant sum whenever v is constant sum.

Mertens [2] proves the existence of an extension operator on a large symmetric
space Q. In the same paper he defined the following spaces; 1. Let QD ⊂ Q the
space of all games for which the following integral and limit exist:

(2.1) (ϕDv)(χ) = lim
τ→0

1∫

0

v̄(t + τχ)− v̄(t− τχ)
2τ

dt

2. For every w in the range of ϕD and every ξ, χ ∈ B(I, C) let

(2.2) [w]ξ(χ) = lim
τ→0

v̄(χ + τξ)− v̄(χ− τξ)
2τ

.

Let QM be the closed symmetric space generated by all games v in QD s.t. either
ϕD(v) ∈ FA or ϕD(v) is a function of finitely many non-atomic measures.

Theorem 2.2 (Mertens [2], Section 2). Let v ∈ QM . Then for every ξ ∈ B(I, C)
[ϕD]ξ(χ) exists for P -almost every χ and is P -integrable in χ. In particular the
map ϕM : QM −→ FA given by

(ϕMv)(S) =
∫

[ϕD(v)]S(χ)dP (χ)

is a value of norm 1 on QM .

2.2. The Neyman Value. Let Q(µ) be the space of all bounded variation games
of the form f ◦ µ, where µ is a vector measure in

(
NA1

)k for some k, and f is
continuous in 0 and in 1k For any Rk valued non-atomic measure µ define a map
ϕδ

µ from Q(µ) to BV as follows:
Let Iδ(t) = I(3δ ≤ t < 1− 3δ) and x ∈ 2R(µ)− µ(I). Define,

(2.3) Ff,µ(δ, x, S) =

1∫

0

Iδ(t)
f(tµ(I) + δ2x + δ3µ(S))− f(tµ(I) + δ2x)

δ3
dt.

Let P δ
µ the restriction of Pµ to the set {x ∈ Rk : δx ∈ 2R(µ) − µ(I)}. The

function x 7→ Ff,µ(δ, x, S) is continuous and bounded and therefore,

(2.4) ϕδ
µ(f ◦ µ, S) =

∫

AF (µ)

Ff,µ(δ, x, S)dP δ
µ ,
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where AF (µ) is the affine space spanned by R(µ), is well defined.
Q(µ) is not symmetric and ϕδ

µ doesn’t map it into FA. ϕδ
µ is also not efficient nor

symmetric and its restriction to Q(µ)∩Q(ν) isn’t necessarily equal to ϕδ
ν . However,

these violations of the value axioms diminishes as δ −→ 0, and ϕδ
µ(f ◦ µ)− ϕδ

ν(g ◦
ν) −→ 0 as δ −→ 0 whenever f ◦ µ = g ◦ ν. This remains true even if the limit
exists only as some Banach limit (see [3], section 3.2 for details).

Let QN =
⋃

Q(µ), and define ϕN : Q −→ RC by

(2.5) ϕN (v)(S) = L(ϕδ
µ(v, S))

whenever v ∈ Q(µ). Then ϕN is a value of norm 1 on QN ( [3], Proposition 1).
We denote by Q′N the set of all games f ◦µ ∈ QN s.t. the limit φδ

µ(f ◦µ, ·) exists
in the usual sense (i.e. - not as a Banach limit).

3. Statement of Results

Theorem 3.1. There is a game v = f ◦ µ ∈ QM ∩ Q′
N , where f is Lipschitz and

ϕN (v) 6= ϕM (v).

Lemma 3.2. Let f ◦ µ ∈ Q′
N be a game s.t. f : [0, 1]n 7→ R and µ = (µ1, ..., µn)

is a vector of probability measures. Then for each coalition S ∈ C and ε > 0 there
is some open set Ωε ⊂ [0, 1] of measure at most ε s.t. the directional derivative
fy(x) exist for almost each x in a neighborhood of [0, µ(I)]\ (Ωε ·µ(I)), and for any
sufficiently small δ > 0

ψδ
µ(f ◦ µ, S) =

∫ ∫
Iδ(t) · χΩδ

fµ(S)(tµ(I) + δ2x)dtdP δ
µ(x)

is well defined and
ϕN (f ◦ µ)(S) = lim

δ→0+
ψδ

µ(f ◦ µ, S).

Theorem 3.3. Let f ◦ µ ∈ Q′
N ∩ QM be a game s.t. f : [0, 1]n 7→ R and µ is a

probability vector measure and for each coalition S ∈ S and each ε > 0,

lim inf
δ→0+

fµ(S)(tµ(I) + δ2x) ≥ (fx(tµ(I)))µ(S) ,

for almost each t ∈ [εµ(I), (1− ε)µ(I)] and almost each x ∈ AF (µ) then

ϕN (f ◦ µ) = ϕM (f ◦ µ)

Corollary 3.4. If v = f ◦ µ ∈ BV is a game as above s.t. there is a partition of
[0, 1]n into k polygonal areas P1, P2, ..., Pk where f |Pi is a polynomial then

ϕN (v) = ϕM (v)
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