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Abstract
This paper models a good for which there are dynamic network exter-

nalities, and investigates the properties of the Markov Perfect equilibrium
(MPE) that arises when there is monopoly or oligopoly supply. The
framework is a continuous-time overlapping-generations model with con-
stant probability of death in which every member of a cohort born at some
time t must make a once-and-for-all decision as to whether to purchase
a good which enhances such a member�s income. (One interpretation of
such a good would be education; the key idea, though, is to capture the
notion that the size of the network has a positive externality, which has
application beyond education). Each cohort is heterogeneous in regards
to the e¤ect of this good on an individual�s earnings. Furthermore, the
enhancement of earnings at every moment depends on how many other
people at that time also possess the good. Hence, each member of a co-
hort faces the problem of forecasting how many people in the future will
purchase the good. Key results are that positive network externalities
may lead to steady-state price less than marginal cost, disadvantageous
market power, and multiple equilibria (only one of which is the limit of a
�nite-horizon solution).

1 Introduction

This paper models a good for which there are dynamic network externalities, and
investigates the properties of the Markov Perfect equilibrium (MPE) that arises
when there is monopoly or oligopoly supply. The framework is a continuous-time
overlapping-generations model with constant probability of death in which every
member of a cohort born at some time t must make a once-and-for-all decision
as to whether to purchase a good which enhances such a member�s income. One
interpretation of such a good would be education; the key idea, though, captures
the notion that the size of the network has an externality, which has application
beyond education. Each cohort is heterogeneous in regards to the e¤ect of this
good on an individual�s earnings. Furthermore, the enhancement of earnings at
every moment depends on how many other people at that time also possess the
good. Hence, each member of a cohort faces the problem of forecasting how
many people in the future will purchase the good. Such a forecast is predicated
on the assumption that future generations (like present and past generations)
attempt to maximize the present discounted value of lifetime resources. All
consumers also understand that suppliers follow time-consistent strategies, i.e.,
cannot commit to an entire path of output.
With this structure of dynamic demand, we investigate the MPE for both

monopoly and oligopoly supply, and contrast this with the equilibrium outcomes
when �rms are perfect competitors and when �rms are assumed able to commit
to paths of output through time. Our key results are:

1. With increasing marginal costs of production and su¢ ciently large positive
network externalities, there exist parameter values such that steady-state
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level of monopoly output is greater than the steady-state level of perfectly
competitive output. When this occurs, steady-state price is less than
marginal cost. This is similar to the �nding in Driskill and McCa¤erty
(2001) for addictive goods.

2. With su¢ ciently large positive network externalities, market power may
be disadvantageous in the sense that industry pro�ts are not maximized
by monopoly.

3. For the in�nite-horizon model, there exist parameter values for which there
are two stable MPE. We prove that only one of them is the limit of a
�nite-horizon equilibrium as the horizon tends to in�nity.

2 The model.

The basic building blocks of this model are speci�cations of consumer and �rm
behavior. The key assumption about consumers is that they know whether
�rms can commit to paths of output or whether they cannot and instead choose
time-consistent, i.e., Markov, strategies. This distinction, familiar from the
durable goods monopoly problem, allows us to highlight the importance of the
assumption of time-consistent behavior by �rms in this dynamic analysis. The
more compelling assumption to us is that of a Markov strategy space for �rms,
but the assumption of commitment ability provides a useful benchmark.

2.1 Demand

Consider an overlapping generations model in which, at every moment, a gen-
eration of size � is born. Each member faces a constant probability of death
also equal to �. At the moment of birth, individuals must make an irrevocable
choice of whether or not to purchase a good at price p which a¤ects their life-
time earnings. If they choose to not purchase the good, they receive through
the rest of their life a constant �ow of income Ra. If they choose to purchase
the good, they receive a �ow income Rm that depends on the total number of
people alive who have also purchased the good. Let u denote the size of the
group of members of a generation that choose to purchase the good and z denote
the size of the total group of people who are alive and have also purchased the
good. The evolution of the stock of people alive who have bought the good is
thus governed by the di¤erential equation

_z = u� �z (1)

where _z � dz
dt . That is, increases in the stock equal new purchasers minus the

deaths of previous purchasers.
Members of each generation are heterogeneous in how their lifetime earnings

are a¤ected by the purchase of the good. Perfect annuity markets exist, there
are no bequest motives, and everyone can borrow and lend at the �xed interest
rate r, which is also each individual�s rate of time preference.
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A member of generation x, i.e., someone born at time t = x, maximizes
expected utility:

max
c

Z t=1

t=x

e��(t�x)U(c)e�r(t�x)dt (2)

subject to his or her budget constraint. If the individual does not purchase the
good, the budget constraint is:

_w = (r + �)w +Ra � ca (3)

where r is the constant rate of interest at which people can borrow and lend, w
is non-human wealth and ca is consumption. If the individual does purchase
the good, the budget constraint is

_w = (r + �)w +Rm � cm � p (4)

The optimal program requires consumption to be constant. Hence, the present
discounted value of this constant rate of consumption equals the present dis-
counted value of lifetime resources. If one does not purchase the good, the
present discounted value of lifetime resources isZ t=1

t=x

Rae
�(r+�)(t�x)dt =

Ra
r + �

(5)

where, as noted, Ra is a positive constant.
If one purchases the good, the present discounted value of lifetime resources

is Z t=1

t=x

Rm(z)e
�(r+�)(t�x)dt� p: (6)

Because consumption is constant, each member of generation x chooses whether
or not to buy the good based on which choice gives him or her the highest present
value of lifetime resources. We assume that there is an externality associated
with the number of people alive who have purchased the good. If there is
a positive externality, an individual�s earnings are an increasing function of z.
This might be the case if the good in question were basic education, for example:
the more people there are that can read and write, the more valuable it is to
any individual to be able to read and write. If there is a negative externality,
then an individual�s earnings are a decreasing function of z. This might occur
if the good in question has "congestion e¤ects."
To capture this externality, we assume that for individual i of generation x,

Ri;xm (z) = R̂i;xm + bAz(t); (7)

where bA is a constant (either positive or negative) and, for each individual, R̂i;xm
is a positive constant. Assume, though, that individuals in any generation are
heterogeneous in terms of R̂i;xm and that the distribution of R̂i;xm over members of
a generation is uniform with highest value �Rm and lowest value Rm: Without
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loss of generality, think of the members of any generation as being sequenced in
order of decreasing values of R̂i;xm . The relationship between R̂i;xm for the last
member of a generation that purchases the good and the size of the group of
members of a generation that purchase the good is thus:

R̂i;xm = �Rm � bau; ba � Rm �Rm
�

: (8)

For any generation x, an (interior) equilibrium distribution of its members be-
tween those that purchase the good and those that don�t is determined by
equality of lifetime resources for the marginal member:Z t=1

t=x

[R̂i;xm + bAz(t)]e�(r+�)(t�x)dt� p = Ra
r + �

: (9)

Using (7) and integrating and rearranging yields:

p = R� �u(x) +A
Z t=1

t=x

z(t)e�(r+�)(t�x)dt; (10)

where for notational convenience we have made the following de�nitions of new
variables

R � Rm �Ra
r + �

; � � ba
r + �

; A �
bA

r + �
(11)

The forecasting problem faced by members of generation x is thus determination
of the occupational choices of all future generations.
The solution to this forecasting problem depends upon which of two as-

sumptions are made about �rm behavior. The �rst assumption is that �rms
can commit to a path of output through time. This assumption, which means
that �rms do not follow time-consistent strategies, implies that the demand
curve that constrains �rms is simply equation (10).
The second assumption is that �rms choose Markov strategies. We as-

sume that individuals know the structure of the model, which means that along
with knowledge of parameters and functional forms for the various structural
equations in the model, they know that �rms use these time-consistent Markov
strategies in their attempts to maximize the present discounted value of pro�ts.
This knowledge, along with the equation of motion for z, allow people to infer
that future values of the equilibrium price and equilibrium output of the good
are a linear function of the state variable z:

p(t) = H + hz(t) (12)

u(t) = 0 + z(t): (13)

whereH; h; 0; and  are as-yet-to-be-determined coe¢ cients that are functions
of the underlying structural parameters of the model. Using (13) along with
(1), we can rewrite (10) as:

p(x) = �0 � �u+ �z (14)

5



where

� � A

r + 2��  (15)

and

�0 �
�0 +R

r + �
(16)

Under the assumption that �rms choose Markov strategies, equation (14) is
the downward-sloping instantaneous demand curve that constrains �rms at any
moment in time. This demand curve shifts through time as the value of z, the
stock of people alive who have purchased the good, changes. The direction of
this shift is determined by the sign of �, which in equilibrium is a function of
all the structural parameters in the model. We will eventually show that � T 0
if and only if A T 0. That is, we will show that if there is a positive externality
(A > 0), then the demand curve shifts out as z increases. If there is a negative
externality (A < 0), then the demand curves shifts in as z increases.
Equations (15) and (16) describe a pair of relations between (; �) and

(0; �0). Firm behavior will provide another pair of relationships for these
four variables. These four relationships then determine the four equilibrium
values of these variables.
What is useful for our purposes is that the demand curve (14) and the

relationships (15) and (16) are isomorphic to those derived from the model of
addictive behavior in Driskill and McCa¤erty (2001). Thus, we can graft onto
this demand model the oligopolistic supply model in Driskill and McCa¤erty
(2001), and exploit the theorems proved there.

2.2 Firm behavior

Now consider �rms. We �rst specify a cost structure, and then investigate opti-
mal behavior under the aforementioned two assumptions about �rm strategies:
one in which �rms can commit to a path of output through time, and a second
in which �rms choose time-consistent Markov strategies.

2.2.1 Cost structure

We follow Driskill and McCa¤erty (2001) in that we allow for the possibility of
multiplant �rms and rising marginal costs of production. In particular, there are
n identical �rms indexed by i, each of which owns l=n ofM identical production
units, each unit indexed bym and having instantaneous cost of production given
by

Cm = Fm + c0um +
ĉ

2
u2m;m = 1; 2; :::;M; (17)

where Fm denotes plant �xed costs, umis plant output, and c0 and ĉ are non-
negative constants. Assuming �rms minimize costs by producing equal amounts
at each plant, �rm cost of production will be given by

Ci = c0ui +
nc

2
u2i + Fi;c =

ĉ

M
; i = 1; 2; :::; n (18)
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where ui is �rm output and Fiare �rm �xed costs. This assumption about
cost functions leaves the industry cost function invariant to the number of �rms
within the industry.1 Note that for simplicity we ignore integer constraints and
take the number of plants and number of �rms as exogenous2 .

2.2.2 The commitment equilibrium

Firms take as given other �rms�strategies and the optimal behavior of consumers
as embodied in equation (10). It is useful for this problem to de�ne

�c � A

Z t=1

t=x

z(t)e�(r+�)(t�x)dt

and re-write (10) as:
p = �c +R� �u; ((10.i))

_�c = �c(r + �) +Az ((10.ii))

The ith �rm�s problem is to choose a strategy ui(t) so as to maximize the present
discounted value of pro�ts:

max
ui2Si

�i �
Z 1

0

fp(�c; u; z)ui � (c0)ui �
nc

2
u2i ge�rtdt

s:t: _z = u� �z

and
p = �c +R� �u
_�c = �c(r + �) +Az

where u �
nP
i=1

ui and Si, the �rm�s strategy space, is de�ned as Si = fui(t)

such that ui(t) is continuous and di¤erentiableg.
De�ne the current-value Hamiltonian as:

Hi = f�c +R� �ugui � (c0)ui �
nc

2
u2i + �i[u� �z]

+�i[�c(r + �) +Az]

First-order conditions are:

�+R� �u� �ui � (c0)� ncui + �i � ��i = 0
_�i = (r + �)�i +A�i

1This feature means that a merger, for example, that would simply change the number of
�rms but not the number of plants, would not change the industry cost function.

2Endogenization of the number of plants and �rms would be desirable, but is simply beyond
our modeling abilities. One way to think of our speci�cation is as an intermediate-length
�run�where number and scale of plants and number of �rms is �xed; only in the �long run�
are these choice variables.
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_�i = ���i � ui:

Because our interest in this commitment equilibrium is primarily as a bench-
mark, we leave out the details of the dynamic analysis and analyze the steady
state. The steady-state equilibrium level of output of the symmetric equilib-
rium, denoted as uC(n), where the subscript "C" is mnemonic for commitment
and the parenthetical "n" signi�es that the value depends on the number of
�rms, is computed as

uC(n) =
R� c0

�+ c� A
�(r+�) +

1
n

n
�� A

�(r+�)

o (19)

This will provide a benchmark for comparison that will aid in understanding the
results from the more appealing assumption of time-consistent �rm behavior.

2.2.3 The competitive benchmark

As a focus of comparison, consider the competitive equilibrium, found by assum-
ing price equals marginal cost. The steady state of this equilibrium, denoted as
u1; (where the subscript "1" is used to emphasize that price equals marginal
cost also results from letting n!1) is readily computed as:

u1(n) =
R� c0

�+ c� A
�(r+�)

(20)

2.2.4 Comparison between perfect competition and commitment

Note that the di¤erence between the two steady-state levels of output is the
following term in the denominator of uC(n) :

1

n

�
�� A

�(r + �)

�
: (21)

Hence, steady-state output in the commitment equilibrium is less than steady-
state output in the perfect competition equilibrium whenever A < ��(r + �),
and is greater if A > ��(r+ �): Heuristically, we can understand this result by
noting that if A � 0, monopolistic or oligopolistic �rms would restrict output
relative to perfect competition. For A > 0, the case of positive externalities, a
tension arises between the impulse of �rms with market power to restrict output
in the face of downward-sloping demand and the impulse to "build" demand by
expanding output. The value of A at which these two forces just counterbalance
each other is ��(r+�). For positive network externalities of greater magnitude
than this, the "build demand" force is su¢ ciently large that steady-state output
exceeds the competitive level.
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2.2.5 Firm behavior with Markov strategies

Continue to assume that �rms take as given other �rms� strategies, but now
they are constrained by the demand curve (14). The ith �rm�s problem is to
choose a strategy ui(t; z) from a strategy space Si so as to maximize the present
discounted value of pro�ts:

max
ui2�

�i �
Z 1

0

f(p(u; z))ui � c0ui �
nc

2
u2i ge�rtdt (22)

s:t: _z = ui +
X
j 6=i

uj(z; t)� �z (23)

p = x0 � �u+ xz (14)

where u �
nP
i=1

ui and Si, the �rm�s strategy space, is de�ned as Si = fui(z; t)

such that ui(z; t) is continuous and di¤erentiable in (z; t)g.
First-order conditions are:

p+
@p

@ui
ui � c0 � ncui + �i = p� �ui � c0 � ncui + �i = 0 (24)

_�i = �i(r + ��
X
j 6=i

uj(z; t))� �ui + �
X
j 6=i

uj(z; t) (25)

lim
T!1

�i(T )e
�rT = 0 (26)

where �i is the �rm�s current-value costate variable that, as is well known, mea-
sures the marginal increase in the maximized value of (22) from an in�nitesimal
increase in z.
Observe from (24) that the oligopolist�s �rst-order condition di¤ers from a

one-shot oligopolist�s by the value of the costate variable, �i. That is, a one-
shot oligopolist would choose output such that instantaneous marginal revenue
would equal instantaneous marginal cost:

MRz }| {
p� �ui �

MCz }| {
(c0 + ncui) = 0

If �i > 0, output is greater than the one-shot level, and if �i < 0, output is
less than the one-shot level. If this were to be the case, �rms would invest
(de-invest) in building (reducing) demand by producing more (less) today than
would be produced under the myopic rule of (instantaneous) marginal revenue
equals (instantaneous) marginal cost. Also observe that if it were the case that
�i + �ui > 0, then output would be so high that marginal cost would be above
price. What we will show is that for A > 0, at any moment �i > 0. We also
show that for A > 0 and su¢ ciently large, there are some structural parameter
values such that �i + �ui > 0 in the steady state.
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Time-di¤erentiating (24), equating this to (25), and substituting (24) for �i
in the resulting expression yields a linear relationship between ui and z. This
linear relationship is the �rm�s strategy: ui = K + kz. Assuming a sym-
metric equilibrium, aggregation of this relationship yields a linear relationship
between u and z. Noting that in equilibrium this must equal (13), equating
coe¢ cients yields the following pair of relationships between (�; ) and (�0; 0),
respectively, derived from �rm optimization:

� =
f�(1 + 1

n ) + cgfr + 2�g � 
2(2�+ (2� 1

n )c)

fr + 2�� 2(1� 1
n )g

� �() (27)

�fr + �� (1� 1

n
)gfc0��0g = (28)

0[f�(1 +
1

n
+ cgfr + �� (2� 1

n
)g

+�(1� 1

n
) + �(

n� 1
n2

)]

where  = nk and 0 = nK.

2.3 The Markov perfect equilibrium

De�nition: A Markov Nash equilibrium for the above game is:

1. A decision rule u� = d(p; z; t) that satis�es the consumer�s dynamic opti-
mization problem 8z; t;

2. An n-tuple of Markov strategies fu�1(t; z); u�2(t; z); :::; u�n(t; z)g 2 S1�S2�
:::� Sn such that for every possible initial condition fz0; t0g:

J i(u�i ; u
�
j ) � Jj(ui; u

�
j )

for every ui 2 Si; i; j = 1; 2; :::; n; i 6= j;

3. A market-clearing condition that requires 8z; t;

u� =
X
�

u�i (z; t)

Note that the market-clearing condition implies that there exists an equi-
librium price function p = (z; t), implicitly de�ned by equating d(p; z; t) toP
i

u�i (z; t):

3 Solution

As noted, even though the structure of the demand side of this model di¤ers
from the addictive structure found in Driskill and McCa¤erty, it leads to an
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instantaneous demand curve that is isomorphic in form to that of Driskill and
McCa¤erty (2001). The supply side is identical to the supply side of Driskill
and McCa¤erty (2001). Thus, we can exploit the theorems from Driskill and
MCa¤erty (2001), albeit the interpretations will be di¤erent.
First, let us note that the value of  that solves �() =  () can be used

recursively to solve for �; �0; and 0. The features of the equilibrium value of
 are described in the following proposition.

Proposition 1 If

A <
�(r + �)h
r +

�
2�
r+�

�i �� �r�1 + 1

n

�
+
2�

n

�
+ c

�
r +

�

n

��
then there exists a unique solution � < � to the equation �() =  (): Fur-
thermore, if

0 < A <
�(r + �)h
r +

�
2�
r+�

�i �� �r�1 + 1

n

�
+
2�

n

�
+ c

�
r +

�

n

��
;

then

0 < � < �;

� > 0;

h > 0:

If
A = 0

then
� =  = h = 0:

If
A < 0

then

 < 0;

� < 0;

h < 0:

Proof. See Driskill and McCa¤erty (2001), appendix A.

Remark 2 We look for restrictions in parameter values to insure existence of
values of � < � because we are interested in stable equilibria. It turns out
that there are positive values of A that don�t satisfy the above restriction but for
which there exist two solutions, both of which are less than �. We will address
this issue later and show that only one of these values is consistent with the
equilibrium of a �nite-horizon analogue of this model. The interesting feature
of the upper bound restriction on A is that, for any value of A; there exists a
large enough value of c, the marginal cost parameter, to ensure existence of a
unique, stable equilibrium.
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With these solutions in hand, the key features of the equilibrium for this
model are described in the following proposition.

Proposition 3 Given the equilibrium solutions (�0; 
�; ��0; �

�); the perfect Markov
equilibrium of the preceding game is fully described by the following equations
that characterize �rm strategies, consumer decision rules, and equilibrium price
and output functions:

u�i =
0
n
+


n
z (strategies)

where  solves
�() =  ();

p = �0 � �u+ �z (demand)

where � = h+ � =  () = �();

u�MPE = uMPE � z + z (output)

p = p� hz + hz (price)

where an overbar denotes a steady state value and

uMPE =
R� c0

�+ c� A
�(r+�) +

1
n

�
�(r+�)��

r+��( 1
1+n )

� ;
p = R+ uMPE

�
A

�(r + �)
� �

�
;

z =
uMPE

�
:

Proof. See Driskill and McCa¤erty (2001), appendix A.

4 Comparisons

4.1 The competitive solution

Comparison between the steady-state level of output under perfect competition
and the steady-state solution in the preceding proposition shows that whether
or not the competitive level of output is greater or less than the oligopolistic
level of output depends on the sign of �(�+r)��. The variable �, of course, is
endogenous. Insight into the comparison comes from considering the �rst-order
condition for the �rm, equation (24), which we re-write here in a useful form:

p�
MCz }| {

(c0 + ncui) = � (�i � �ui) (29)
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At any instant, (�i � �ui) thus measures the gap between the competitive con-
dition of price equal to marginal cost. Now, from the de�nitions of steady-state
variables, we can �nd that

�
�
�i � �ui

�
=

�(�+ r)� �
r + �� (n� 1)k

Because in a stable equilibrium, r+ �� (n� 1)k > 0; this implies that p TMC

as �(�+ r) T �.
What � measures is the value of building (or depleting) future demand. Big

positive values of � infer that changes in z lead to big shifts in the demand
curve. Of course, � is endogenous, and the question is what parameter values
give rise to di¤erent values of �. The following propositions describe these
relationships for the case of monopoly. The �rst proposition deals with results
for which the parameter A is restricted by an upper bound �(r + �)2. The
second proposition deals with results for which the parameter A lies within the
interval (�(r+ �)2; �(r+ �)2+��(r+ �), while the third proposition deals with
results for which A � �(r + �)2 + ��(r + �).

Proposition 4 Assume the conditions for existence and uniqueness are satis-
�ed. Then, if A � �(r + �)2, the competitive steady-state level of output is
greater than the monopoly steady state value of output.

Remark 5 For A < 0, the solution to the model is isomorphic to a model
of durable goods with adjustment costs (corresponding to the parameter � in
this model), depreciation (corresponding to the parameter � in this model) and
increasing marginal cost (corresponding to the parameter c in this model). As
shown in Karp (1993) and Driskill (1997, 2001), in such a model the steady-
state competitive level of output is greater than the oligopoly level. What this
proposition indicates is that the implications of time-consistent behavior also
make this the case even with A > 0:

Proposition 6 Assume the conditions for existence and uniqueness are satis-
�ed. Then, if �(r+�)2 < A < �(r+�)2+��(r+�); the competitive steady-state
level of output may be greater than, less than, or equal to the monopoly steady-
state level of output, depending on the value of c.

Remark 7 The behavior of the steady-state level of output is not monotonic in
c. A su¢ ciently large value of c is necessary to insure existence of a unique
equilibrium, but beyond that larger values of c reduce uMPE :

Proposition 8 For A � �(r + �)2 + ��(r + �) and for c su¢ ciently large to
satisfy the condition for a unique stable equilibrium, the competitive steady-state
level of output is less than the monopoly steady-state level of output, depending
on the value of c.
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For the case of increasing marginal cost (of su¢ cient magnitude), the last
two propositions tell us that monopoly output could be greater than competitive
output. For such cases, a further implication is that, in the steady state, price
is below marginal cost:

Proposition 9 If uMPE > u1, then p < MC:

Proof. Steady-state price is

p = R+ uMPE(n)

�
��+ A

�(r + �)

�
:

Thus, p minus marginal cost is

R� c0 + uMPE(n)

�
��� c+ A

�(r + �)

�
:

For this equation to be negative, it must be that

uMPE(n) >
R� c0

�+ c� A
�(r+�)

= u1 (30)

Remark 10 Of course, there must be restrictions satis�ed such that pro�ts in
such a case are su¢ cient to cover �xed costs.

4.1.1 Comparison with the commitment equilibria

Insight into the above results can be developed by a comparison between the
commitment and Markov equilibria. For positive externalities, we focus on
results for monopoly, which are analytically tractable, and then provide a con-
jecture for the more general case.
By comparison of uMPE and uC , we see that: uC(n) 7 uMPE(n) asn

�� A
s(r+s)

o
?
�

�(r+s)��
r+s�(1� 1

n )

�
: For the case of negative externalities, we

have the following proposition that says that uMPE < uC .

Proposition 11 If A < 0, then uC < uMPE :

Proof. From the consumer�s problem, we know that

� =
A

r + 2��  :

Hence, A = ��+ �(r + �� ): Because  < � and � < 0 if A < 0, this implies
that A is the sum of two negative numbers, �� and �(r + � � ), so A < ��.

Consequently, A
�(r+�) <

�
r+� ; which implies

n
� A
�(r+�)

o
>
n
� �
r+�

o
: Thus,�

�� A

�(r + �)

�
>

�
�� �

r + �

�
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Now, A < 0)  < 0; so

�
�� �

r + �

�
>

8<: �� �
(r+�)

1� (1� 1
n )

r+�

9=;
That is, we are multiplying

n
�� �

r+�

o
by a number that is less than or equal

to one (1), namely 1

1� (1� 1
n
)

r+�

Hence,

�
�� �

r + �

�
>
1

n

8<: �� �
(r+�)

1� (1� 1
n )

r+�

9=; =
1

n

�
�(r + �)� �

r + �� (1� 1
n )

�

where again we multiply

(
�� �

(r+�)

1� (1� 1
n
)

r+�

)
by a number less than or equal to one

(1); namely 1
n : Hence,�

�� A

�(r + �)

�
>
1

n

�
�(r + �)� �

r + �� (1� 1
n )

�
:

For the case of positive externalities (A > 0) we focus on the case of
monopoly. In this case, we also �nd that the steady-state commitment equilib-
rium level of output is greater than the steady-state MPE level of output:

Proposition 12 If A > 0; then uC(1) < uMPE(1):

Proof. Again, A = �� + �(r + � � ): Because if A > 0; then  < � and
� > 0 , this implies that A is the sum of two positive numbers. Hence, A > ��.

Consequently, A
�(r+�) >

�
r+� ; which implies

n
� A
�(r+�)

o
<
n
� �
r+�

o
: Thus,�

�� A

�(r + �)

�
<

�
�� �

r + �

�
Comparison of the expression for uMPE(1) and uC(1) shows that this means
uMPE(1) < uC(1):

5 Disadvantageous market power

The above comparisons also suggest that there may be disadvantageous market
power. Again we can exploit the isomorphism between Driskill and McCaf-
ferty (2001) and report the following results on what Karp (1996) has dubbed
"disadvantageous market power."
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Proposition 13 Assume the conditions for a unique stable equilibrium are sat-
is�ed. Then for A � �(r+�); there exists n > 1 such that steady-state industry
pro�ts are maximized. For �(r + �) < A < �(r + �) + �(r + �)2; steady state
industry pro�ts are greater under perfect competition than under monopoly.

Proof. See Driskill and McCa¤erty (2001).

6 Multiple stable equilibria and a selection cri-
terion

When A > 0, the model can be characterized as one with increasing returns.
As might be expected in a model with increasing returns, there are parameter
values for which there exist two stable equilibria. We demonstrate this for the
tractable case of duopoly, and show that only one of the two stable equilibria is
the limit of the solution to the �nite-horizon version of the model.
For the case of duopoly, the equation �() =  () reduces to the following

quadratic equation:

2 � 3
4
(r + 2�) + eA = 0; eA � A

2�
: (31)

For the roots to this equation to be real, we need the following restriction on
the parameters of the model:

eA <
9

64
(r + 2�)2 (32)

We assume throughout that this is satis�ed. Denote the smaller root of (31) as
1 and the larger as 2: If eA � 0, 1 � 0 and 2 > �: If eA > 0, two possibilities
emerge. First, if 0 < eA < 3

4r� +
1
2r�

2, then 0 < 1 < � < 2.
3 On the other

hand, if 34r� +
1
2r�

2 < eA < 9
64 (r + 2�)

2 and 2� > 3r, then 0 < 1 < 2 < �.
For example, if � = 2; r = 1; and eA = 224:75

64 ; then 1 =
29
16 and 2 =

31
16 .

Because most of the literature has viewed as less problematic the case of
multiple equilibria where only one of the equilibria is stable, our primary interest
is in situations in which multiple stable equilibria exist, that is, in situations in
which parameter values are such that 0 < 1 < 2 < �. Note, though, that
our results apply to the case where one stable and one unstable equilibria exist,
that is, for the case where parameters are such that 1 < � < 2.
Assume a horizon of length T . The �rst-order conditions for the consumer

di¤er from those in the in�nite-horizon case only in that, in the �nite-horizon
case, �c(T ) = 0. This means that at T consumers act myopically and choose
consumption so as to equate price to instantaneous marginal utility:

p(T ) = R� �u(T ) (33)

3Note that 3
4
r�+ 1

2
r�2 < 9

64
(r + 2�)2:
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The other di¤erence between the �nite and in�nite-horizon game is that
the equilibrium output function in the �nite-horizon game has time-varying
parameters:

u�(t) = 0(t) + (t)z(t): (34)

Following the same steps as in the in�nite-horizon case, the consumer�s �rst-
order conditions can be manipulated to yield the following instantaneous de-
mand curve:

p(t) = �0(t)� �u(t) + �(t)z(t) (35)

where the constraints on �0(t); �(t); 0(t); and (t) obey the following di¤er-
ential equations:

_� = �(r + 2s� )�A (36)

_�0 = �0(r + s)�R� 0� (37)

Note that (33) and (35) together imply the following terminal conditions on
f�0(T ); �(T )g :

�0(T ) = �0 (38)

�(T ) = 0 (39)

Turning to �rm behavior, the only di¤erence between the �rst-order conditions
for �rms in the �nite-horizon and in�nite-horizon case is that, in the �nite-
horizon case, �i(T ) = 0. This means that at T , �rms act as one-shot pro�t
maximizers and choose output such that instantaneous marginal revenue equals
instantaneous marginal cost. The other key di¤erence is that �rm strategies
have time-varying parameters:

ui = k0(t) + k(t)z(t); i = 1; 2:

Repeated time-di¤erentiation and substitution of the �rst-order conditions along
with use of the equilibrium price and output functions yields the following di¤er-
ential equations that must be obeyed by the parameters f�0(t); �(t); 0(t); (t)g :

_ =
�2 + (r + 2�)

�
3
4

�
�A�

3
2

�
�

(40)

_0 =
�0
�
1
2

�
�

3
2

�
�

(41)

+
0[
�
3
2�
�
(r + 2��

�
3
2
�
) +

�
1
4�

�
�
�
1
2c

�
� (r + �)(�0 � c)]�

3
2

�
�

Equations (38) and (39) constitute a system of di¤erential equations in the four
parameters �0(t); �(t); 0(t); and (t): The system can be solved recursively
starting with (38), which only involves , and then moving to (39), and thence
to (36) and (37). By construction,the critical values of these parameters are

17



the values of the parameters from the autonomous in�nite-horizon problem.
Terminal conditions are derived from the �rst-order conditions at T :

(T ) = 0; (42)

0(T ) =
(R� c)�

3
2�
� (43)

We can now state the following proposition:

Proposition 14 Let ez; eu; and ep denote the equilibrium stock of consumption
capital, equilibrium industry output (and consumption), and equilibrium price,
respectively, in the �nite-horizon game. For any z0; t > 0 and any arbitrarily
small " > 0; there exists a horizon length T > t su¢ ciently large such that
jez(t)� z1(t)j < "; jeu(t)� u�1(t)j < "; and jep(t)� p�1(t)j < ":

Proof. We need to show that the parameters �0(t); �(t); 0(t); and (t) spend
more and more time �close�to the critical values ��0;1; �

�
1; 

�
0;1; and 

�
1: Because

of the recursive nature of the problem, it will su¢ ce to show that (t)! �1 as
T !1: Consider (28). Denote the r.h.s. as �(): The relevant properties of
� are:

�(0) = �2A
3�

= �((T )) < 0;

�0 =
�2 + 3

4 (r + 2�)
3�
2

;

�00 =
�4
3�

< 0;

�0((T )) =
1

2
(r + 2�) > 0:

That is, �() is a concave function with a value of zero at �1 and 
�
2: Further-

more,because �((T )) < 0 and �0((T )); it must be that (T ) < �1: Hence,
8t 2 (0; T ); _ < 0. Hence, as T !1; (t)! �1:
The above relationship between �((T )); �(), and  is illustrated in Figure

1:
�2x2 + 2x� :5

10.750.50.250
0

-0.125

-0.25

-0.375

gamma

theta

gamma

theta
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Figure 1

7 Conclusion

With less than perfect competition, the presence of strong positive dynamic
network externalities may lead to networks so large that steady-state price is
less than marginal cost. Furthermore, the presence of positive dynamic network
externalities also creates disadvantageous market power: steady-state industry
pro�ts will be lower with fewer �rms in the industry.
Finally, positive dynamic externalities may produce multiple stable equilib-

ria. In such a case, though, we prove that only the smallest equilibria is the
limit of a �nite-horizon solution.
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