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Abstract

The paper investigates information sharing communities. The environment is
characterized by the anonymity of the contributors and users, as on the Web. It
is argued that a community may be worth forming because it facilitates the in-
terpretation and understanding of the posted information. The admission within
a community and the stability of multiple communities are examined when in-
dividuals differ in their tastes.
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Résumé
Le papier étudie la formation de communautés partageant des informations

dans un environnement qui est caractérisé par l’anonymité des utilisateurs et con-
tributeurs à l’instar du Web. L’analyse est basée sur la valeur de l’information au
sens de Blackwell (1953). Nous examinons le choix des critères d’admission dans
une communauté et la stabilité des communautés dans un modèle de divergence
de goûts.
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1 Introduction

Group structures on the Web such as peer-to-peer (P2P) systems aim at sharing
various goods and disseminating information in a fully decentralized way. Quite
often, information is non rivalrous and returns to scale are not decreasing. Why
then do communities form with a free but restricted access ? This paper argues
that a basic rationale is related to the value of information.

A tremendous quantity of information is posted on the Web, on blogs for
instance. Search engines help Internet users to find pages that are relevant to
their queries. In some situations however, all this information is useless. As
an illustration, consider a page in which an individual provides her opinion on
movies. If she says that it is worth watching movie A, or that she prefers movie
A to movie B, do I benefit from this knowledge ? If the peer is a critic, and I am
pretty aware of her tastes, her judgment may be valuable to me. If instead I have
no idea at all about her preferences, I learn nothing. In other words, how useful
a person’s statement is much depends on whether the preferences of this person
are known. This suggests that defining criteria on the peers who contribute
to a platform facilitate the understanding and the usefulness of the conveyed
information. How criteria of access are determined ? Are they too restrictive or
too loose, in a sense to be made precise ? This paper builds a simple model to
investigate these questions.

The analysis relies on the value of communities in providing information to
its members. There are individuals who regularly look for a piece of advice on a
particular topic, on movies for instance. Individuals differ in their tastes. Due to
these differences, search engines may not be helpful. The reason is that, given a
search, an engine provides a ranking based on various criteria such as the num-
ber of clicks and the structure of the links. Thus, a search engine can be seen as
an aggregator of preferences2 that is valuable to users who share similar tastes
and know it. In particular the observed behaviors of those who have already
experimented the topic reveal to others the common ranking on which they all
agree. In this paper instead there is no common ranking. To take an analogy with
industrial organization models, I consider a horizontal differentiation model à la
Hotelling (1929), as opposed to a vertical one. Furthermore, individuals are as-
sumed to be located on a circle (Salop 1979), so that any anonymous aggregation
of preferences over the whole population yields a complete flat ranking. In such a

2 Dwork and al 2001 takes this point of view and borrows tools from social choice the-

ory in order to study aggregation over different engines under a common underlying

ranking.
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situation, rankings provided by search engines can only be attributed to chance
or to bias. This provides a rationale to communities : a community forms with
members whose preferences allow for a useful aggregation.

The value of information as defined by Blackwell (1953) is our basic tool to
investigate how communities form. The anonymity of contributors is shown to
play a crucial role. More specifically, pieces of information posted by peers are
valuable to other peers only if all share similar tastes. Furthermore, posted in-
formation without control on the contributors may not only be useless but also
detrimental by introducing some noise in the information relevant to other peers.
The admission rule in a community is therefore essential in determining the value
that each peer derives from the information provided by the community’s mem-
bers. This leads us to analyze preferences over admission rules. Community’s
members do not fully agree on admission criteria owing to their differences in
tastes, even if all of them benefit from the community. We analyze this diver-
gence and assume that a leader/initiator of a community has some control on the
members’ characteristics. We perform comparative statics on the chosen commu-
nity with respect to some parameters, participation rate for instance. We then
study the coexistence of several communities, called a configuration, relying on
stability concepts borrowed from cooperative game theory. Conditions are dis-
played under which communities are too large in most stable configurations. In
such situations, external effects are predominant: Whereas each peer would like
its community to increase and to accept newcomers, increasing the number of
communities by decreasing their size would have an overall positive effect on
welfare.

This paper is related to the growing literature on the behavior of Inter-
net users. Various algorithms have been proposed for detecting communities
through a link structure, as surveyed in Newman (2001), or to analyze ’authori-
tative’ sources from the hyperlink structure as in Kleinberg (1999), and Gibson
and all (1998). Here instead, we investigate in a specific context why a com-
munity forms in the first place. Another body of recent research is concerned
with ”bad” behavior due to the public good aspect of Internet: free riding and
excessive overload of the platform on which peers operate. The main question is
whether the generated difficulties are severe enough to call for the implementa-
tion of incentives schemes (see Feldman and all 2004 and Ng, Chiu, and Liu 2005
for example). The public good aspect is present in our model through the con-
tribution rate within a community. Not surprisingly, this rate is shown to play
an important role in the analysis.
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The plan of the paper is the following. Section 2 sets up the model, Section 3
studies a single community, and Section 4 analyzes configurations of commu-
nities, their stability and efficiency properties. Proofs are gathered in the final
section.

2 The model

I focus on situations in which individuals differ in their tastes. In particular, there
is no unanimous ranking on the alternatives. The simplest way to represent such
a situation is a horizontal differentiation model in which individuals are ‘located’
on a circle. An object, a movie or a restaurant for instance, is also characterized
by a point on the same circle. An individual located at θ is called a θ-individual
and similarly an object located at t is a t-object. An individual who buys an
object derives a utility gain that is non increasing in his distance to the object.
The utility gain for a θ-individual who buys a t-object is given by u(d(θ, t))
where d(θ, t) is the distance on the circle between θ and t and u is non increasing,
identical for all individuals. To make the problem interesting, the utility gain is
neither always positive nor always negative: there is a threshold value d∗ for
which u(d) > 0 for d < d∗ and u(d) < 0 for d > d∗. Furthermore function u is
continuous and derivable except possibly at d∗. I shall often consider a simple
function called binary in which individuals either enjoy or not consuming the
object:3

for some positive g and b : u(d) = g, d < d∗, u(d) = −b, d > d∗. (1)

The society is uniformly distributed on the circle. If the characteristics of
a particular object is perfectly known, the set of individuals who benefit from
buying it is given by those located at a distance smaller than d∗. Thus, under
perfect information, whatever an object’s location, the same proportion p of
the people buy it, where p = d∗/π. Under imperfect information on objects’
characteristics, an individual forms some assessment on the location and decides
whether to buy a particular object by comparing the expected utility gain from
buying it with 0. It is assumed that objects are a priori uniformly distributed
on the circle. Thus, without further information, the expected utility gain is
computed according to this prior.

We take the following assumptions. First d∗ is not larger than π/2, meaning
that at most half of the objects are worth to an individual. Second we assume
3 The utility level at d∗ does not matter in the sequel because the probability of an

object being distant of d∗ to a person is null.
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either risk neutrality, u(d) = d∗−d, or a weak form of risk aversion : faced with
the lottery of buying two objects with equal probability, the peer prefers not to
buy if the sum of the distance is 2d∗: u(d) + u(2d∗ − d) < 0 for d < d∗. With
d∗ = π/2 for example, a risk-neutral individual is indifferent between buying or
not an object, and a risk-averse one does not buy (since objects are uniformly
distributed on the circle). For a binary function, weak risk aversion is satisfied
if the loss b in case of a ’bad’ is larger than the gain g in case of a ’good’.

2.1 Signals

Under incomplete information, there is some scope for information sharing. In-
dividuals who have bought an object may post their opinion on it. Stating a
detailed judgment is difficult. To account of this, signals are assumed to be lim-
ited. A signal s on an object takes two values, yes or no, which have the following
interpretation: a peer who has bought the object recommends it or not (in the
case of a binary function, this is not a restriction). In opposite to some situations
such as financial markets for instance, there is no benefit from sending a false
signal. So signals are assumed to be truthful : a θ-individual having bought a
t-object sends yes if u(d(θ, t)) ≥ 0 and no if the inequality is reversed. (A known
percentage of malicious individuals could be easily incorporated).

A community as in next section is represented by an arc. By convention, an
arc [θ, θ′] designates the arc from θ to θ′ going clockwise. Its size is defined by
(θ+θ′)/2. Let us consider a signal4 s̃ on an object from a member of community
[θ, θ′]. Anonymity is preserved, as often in P2P communities. As a consequence,
the sender is considered as drawn at random from the community. In the sequel
s ∈ [θ, θ′] refers to a signal sent by a member of community [θ, θ′].

The value of a signal can be analyzed from the viewpoint of Blackwell (1953).
Signal s̃ is valuable to an individual if it enables him to make ‘better’ decisions
in the sense that his expected payoff is increased. More precisely, the signal is
used as follows. The joint distribution of (t̃, s̃) for a signal s̃ sent by a member
of community [θ, θ′] can be computed. After learning the realized value of a
signal, peers revise their prior on the characteristic t according to Bayes’ formula
and decide to buy or not. Clearly a signal that does not change the prior on
the object’s location is useless. The ignorance of the sender’s location in the
community has the following consequences.

– (i) A signal s̃ from the whole society is useless.

4 A random variable is denoted by x̃, and its realization (when observed) by x.
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– (ii) A signal from a community smaller than the whole society may be useful :
it changes the prior.

– (iii) Adding a signal may deteriorate current information.

Point (i) is straightforward. A signal sent by an individual chosen at random
in the whole group does not modify the prior, hence is not informative.

Point (ii) is also clear. Let us illustrate as in figure 1 for d∗ = π/2. Each peer
in the community sends no for an object located in [alpha + π/2,−α − π/2].
Thus the posterior density conditional on the signal being yes is null on that
arc: the posterior clearly differs from the prior density (which is constant equal
to 1/2π)?5

 -α α

α+Π/2

  

−α−Π/2

no

Fig. 1. d∗ = π/2

To show point (iii), consider a signal from a community reduced to a point,
say 0, so that the sender’s preferences are known. The signal is informative:
5 The posterior density conditional on a yes ∈ [−α, α], α ≤ π/2, can easily be com-

puted (see the proofs’ section) : on [0, π], it is equal to 1/π for t ≤ −α + π/2 (every

peer says yes) 0 for t ≥ α + π/2 (every peer says no) and linear in between. The

density on [−π, 0] is obtained by symmetry.
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Conditional on a yes for example and taking again d∗ = π/2, the posterior
density on [−π/2, π/2] is 1/π, which is the double of the prior, and null elsewhere.
Add a signal sent from [π]. The important point is that on the receipt of the two
signals, it is not known which peer has sent which signal. The two signals, which
are always opposite to each other, give no information because the prior is not
changed. In this simple example, the new signal not only adds no information
but also destroys the information conveyed by the first signal. In contrast, under
the standard framework, adding a signal is never harmful because it can simply
be ignored. The difference is due to anonymity. in our framework, adding a signal
introduces an additional source of randomness: the identity/preferences of the
sender.

Finally, note that the value of an informative signal to a person depends on
his/her location. Take u(d) = π/2 − d and note that without information, an
individual achieves a null expected gain whatever his decision. Consider com-
munity [−π/2, π/2]. For an individual located at one of the extreme points, by
symmetry, the expected gain from buying conditional on the materialized signal
being yes is null, as without signal : the individual does not benefit from infor-
mation. For a peer located at the center instead, the conditional gain derived
from buying is strictly positive if the materialized signal is yes, and negative if
it is no. By following the recommendations, that is buying only upon receiving
yes, the peer achieves a strictly positive expected payoff : the value of the signal
is positive.

2.2 Communities

In a community, the role of contributors and users can a priori be distinguished.
Contributors add to the content by providing information on the objects they
have tested while users have access to the posted information. Here the set
of contributors and users will be identical. This is induced by the following
assumptions. First we assume that there is no intrinsic motive to contribute
such as altruism. Thus, for a community to be ’viable’ as defined in next section,
contributors are also users so as to draw some benefit. Furthermore, even though
there may be no direct cost (nor benefit) in allowing users not to contribute,
it may be worth restricting access to contributors simply to encourage them to
contribute. In that case users and contributors coincide. This can be implemented
by an anonymous system as follows.

Users have access to the posted information through a fully decentralized
mechanism such as Gnutella and Freenet. These mechanisms propagate queries
through a P2P network without the need of a server. A query is sent to neighbors
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who provide an answer if they have one or otherwise pass the query to their own
neighbors and so on until an answer is reached.6 The system can be anonymous
by recognizing members by an address only. Records, which are not public, can
keep track of peers’ behavior. Sanctions such as exclusion are based on these
records and automatic. Records on peers’ contributions for instance allow the
community to sustain some participation level. In particular, they can be used
to exclude users who do not contribute.

We consider a technology characterized by two data: the probability of suc-
cess and an individual cost. In line with decentralized behavior, the size of a
community determines the probability of finding a recommendation for a par-
ticular object in reasonable time. Let us denote this probability by P (α) for a
community of size α (such a community is up to a rotation [−α, α]). P is assumed
to be increasing and concave. For example, the process of successful search may
follow a Poisson process with intensity proportional to the size of the commu-
nity: Probability writes as P (α) = 1−e−λα for some positive parameter λ which
reflects the contribution rate of the community members and the efficiency of
the search mechanism.

The participation cost includes the cost for searching and contributing. Nor-
malizing by the average number of requests, it is denoted by c. It is likely to be
small and does not play an essential role in the analysis.

The probability P and the cost c are first assumed to be given. A minimal
amount of contributions can be asked for to increase the success probability P .
Section 3.4 investigates this point more closely.

Our purpose is to analyze how a community forms. In opposite to a set up
in which a firm organizes the community, there is no clear criteria such as the
maximization of profit for choosing a community. Even if all community members
benefit from it, they may have conflicting views about its scope.

3 Community choice

3.1 Viable community

Anybody is free not to join a community. A community is said to be viable if
each of its members benefits from it, accounting for the failure of search and the
participation cost.

Consider a community of size α and an individual whose distance to the cen-
ter is θ. Let U(θ, α) denotes his expected utility per signal conditional on having
6 See for example Kleinberg and Raghavan (2005) for a description of decentralized

mechanisms and an analysis of the incentives to pass the information.
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an answer to a query. The criteria that determines whether he is indeed willing
to participate takes the form P (α)U(θ, α) ≥ c. Thus the viability condition takes
the form

P (α)U(θ, α) ≥ c for any θ ∈ [0, α]. (2)

To cover their cost, members must benefit form receiving a signal, that is U

must be positive. The benefit from receiving a signal is drawn by following
the recommendation, that is from buying the object in the case of a positive
signal and not buying it in the opposite case. (Albeit possible, this excludes the
possibility of community members who benefit from taking systematically the
opposite action to the signal.) Let us determine U(θ, α). Note that, whatever
community, the a priori probability for a signal to take value yes is equal to p

(which is d∗/2π), since, given an object at random, each individual says yes with
probability p. Furthermore, on the reception of a negative signal, an individual
achieves a conditional null payoff since he does not buy the object. Up to a
rotation, we can consider arcs centered at zero, of the form [−α, α]. This gives

U(θ, α) = pE[u(d(θ, t̃))|yes ∈ [−α, α])]. (3)

The viability condition implies that we can limit attention to a community of
size smaller than d∗. To see this, let two individuals be distant of 2d∗ or more.
Whatever the object, the sum of its distance to the two individuals is at least 2d∗.
Under risk aversion, surely one of the peers does not benefit from the community:
since u(d) + u(2d∗ − d) < 0, taking expectation over objects implies that the
sum of their utility levels is negative. Thus these two individuals distant of 2d∗

or more, cannot belong to the same viable community (even for a null cos c).
Viable sizes are smaller than d∗ (possibly equal to d∗ under risk neutrality and
null cost).

Some simple properties of U are useful to analyze further viability. As we have
just seen, a signal sent by a community on an object changes the assessment on
its location. This change is more or less beneficial to a peer depending on his
position in the community. Proposition 1 below states how the expected value
per signal varies with the position θ and the size α.

Proposition 1.

– (i) Given7 While we assume that a user of a community is also a member α,
α ≤ d∗, utility U(θ, α) decreases with the distance θ to the center, θ ≤ d∗.

7 The utility of an individual outside the community who follows the recommendation

can be derived, so we do not restrict θ to be lower than α.
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– (ii) Given θ θ ≤ d∗, utility U(θ, α) decreases with α on [0, d∗].

Point (i) is natural given the symmetry. It says that the expected benefits derived
from following a signal decrease with the distance to the center. In particular
they are are the largest for individuals at the center.

According to point (ii), the expected value per signal is greater the smaller
the community, that is the less uncertain the sender. This is easy to understand
for the center. As α increases, objects whose distance to the center is more than
d∗ are more likely to be recommended and those closer to the center get less rec-
ommended. Thus increasing α is clearly harmful for the center since the objects
that he dislikes are more recommended and the ones he likes are less recom-
mended. For an individual who is not at the center, the distribution of signals is
‘biased’ with respect to his own preferences and as α increases some objects that
he likes get more recommended. According to (ii) this benefit is however small
enough so that increasing α is still harmful. This result obtains because, as α

increases, the distribution of the distance to a peer of the recommended objects
becomes riskier in the sense of first order stochastic dominance. An implication
of property (ii) is the superiority of an expert ’everything equal’. More precisely,
a system in which an expert sends as many signals as the communities’ members
at the same total cost makes every peer better off.

Proposition 1 is helpful to analyze the size of a community. First, it simplifies
the viability condition since, according to point (i), the peers who achieve the
lowest benefit are located at the extreme points of the community. Thus all peers
in a community are willing to participate if those at the extreme are willing to
do so. Let us denote by V (α) the expected utility per signal for a peer located
at an extreme point of a community of size α:

V (α) = U(α, α) (4)

The viability condition can be written simply as

P (α)V (α) ≥ c. (5)

Note that V is positive for α small enough. Hence, under a small enough
cost, the set of viable sizes is non empty.

Property (ii) points out a trade-off faced by peers : increasing the size in-
creases the probability of getting an answer but decreases the value of an answer.

To analyze the choice of community’s size, we shall take throughout the
following assumptions.

A0 (concavity assumption) the functions U(θ, α) and V (α) are logconcave
with respect to α.
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A1 (elasticity conditions)

−V ′

V
(α) ≥ −U ′

α

U
(0, α) ≥ −U ′

α

U
(θ, α). (6)

Under A0, the set of viable sizes is a nonempty interval [α, α] under a low
enough cost c (because PV is log concave as a product of logconcave functions).

Let us interpret the elasticity assumption A1. The second inequality of (6)
says that the relative loss incurred by a peer due to an increase in the size is
larger for the center. The first inequality says that these relative losses are all
smaller than the relative decrease in the utility of an individual located at an
extreme. This decrease includes not only the variation due to the size but also
the variation due to the position (because V ′(α) = [U ′

α + U ′
θ](α, α). Since the

latter is negative (U decreases with the distance to the center) inequalities (6)
are compatible. For example, assumptions A0 and A1 hold for a binary function,
as shown in the appendix.

3.2 Peers’ choices

In practice, a ‘leader’ initiates a community and possibly defines criteria for ac-
cepting peers. The leader’s optimal community size is given by the value α0 that
maximizes the payoff P (α)U(0, α). This will be the leader’s choice provided it is
viable. Similarly let αθ denote the value that maximizes the payoff P (α)U(θ, α),
that is the preferred size of a θ-peer in a community centered at zero.

Proposition 2.

1. The leader’s optimal size is less than the peers’ optimal one : α0 ≤ αθ.
2. The leader’s choice is

(a) either the leader’s optimum α0 if P (α0)V (α0) > c; in that case some
outsiders would achieve a positive payoff by joining but the community
is closed to them.

(b) or the maximal viable size α.

Thus, the leader’s choice is the minimum of α0 and α.

Point 1 makes precise the direction of possible disagreements with the leader:
peers all prefer a larger size than the leader. Thus, disagreement occurs in case
(a) where the leader can choose his preferred size because it is viable. Further-
more, since the viability condition is strict, P (α0)V (α0) > c, individuals at
the extreme achieve a positive payoff. Hence by continuity of the payoffs, close
enough outsiders would achieve a positive payoff by joining. Even if they wanted



12 March 21, 2007 – 18 : 56

to join (which may depend on the other opportunities they face, as we shall see
in next section) they are not allowed to do so. the community is closed. Accord-
ing8 to point (b), it is never the case that the leader’s optimum is not viable
because it is too small. Instead all peers, including the leader, would benefit from
an increase in the community size up to α0. However no outsiders want to join
and peers at the extreme of the community just cover their cost.

We shall perform some comparative exercises and illustrate them with a
binary function as given by (1). In that case one has (see appendix)

U(θ, α) = pg[1− k(α + θ2/α)] with k =
(1 + b/g)

4d∗
(7)

Comparative statics Various policies can influence the probability of successful
search. Next section studies policies that entice the peers within a community to
contribute more (possibly at some cost for them). Other factors, the efficiency
of the technology or the number of Internet users for instance, result in an
exogenous change of the probability of success. The impact of such a change
is easily illustrated with a Poisson process P (α) = 1 − e−λα. An increase in
the population of Internet users other things being equal is represented by an
increase in the parameter λ. Figure 2 depicts the maximal viable size α (the
increasing line) and the leader’s optimum α0 (the decreasing line) as a function
of λ for a binary function. Since the leader’s choice is the minimum of these two
values, the following configurations obtain as λ increases: first there is no viable
community for λ low enough, second the leader’s choice is constrained equal to
the maximal viable size, and third the leader can choose his optimum value.

This can be explained as follows. Increasing the population within a commu-
nity makes it more attractive to outsiders. When the community is constrained
by viability, for intermediate values of λ, these outsiders are welcome. As a re-
sult, the size is increased. Instead, when the community is closed, for a large
enough λ, increasing the population allows the leader to choose a community
restricted to peers whose tastes are more and more similar to his owns: the size
decreases and information becomes more precise. Thus, increasing the popula-
tion has different effects on the leader’s choice depending on whether this choice
is constrained or not. As the precision of information within a community is neg-
atively related to its size, the impact of the contribution rate on the size directly
translates into an impact on the precision of information : as the contribution
rate increases, information is first made less precise (but the higher chance of
getting one compensates the loss) and then more and more precise.

8 In the boundary case, the leader’s optimum α0 is just viable, equal to α.
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Fig. 2. c = 0.1 and b/g = 1.5
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Advertising Ads provide revenues that may change the leader’s choice criteria.
To simplify, assume that peers do not mind ads and that ads do not influence
their preferences on the object on which they are searching information. Let the
revenues generated by ads be proportional to the number of peers and consider
two alternative ways of distributing them.

First, the leader captures all ads revenues. In that case he sets up a com-
munity that maximizes a combination of his own interests and the revenues.
His choice is unchanged if the viability constraint binds. Otherwise, instead of
choosing his own optimum, α0, he chooses a larger size (between α0 and α).
The more he cares about revenues, the closer his choice to the maximal viable
size. As a result, information is less precise. The effect can be substantial for
large λ because the maximal viable size α is large and α0 is small. Whereas a
community could be tailored to his specific tastes, the leader may choose a loose
criteria so as to capture ads revenues.

Second, ads revenues are distributed equally among peers, which amounts
to diminish cost c. This results in an increase in the maximal viable size and
leaves the optimal leader’s size unchanged. Hence, the leader’s choice is closer
and more often equal to his optimal value. In Figure 2, the maximal viable size
is drawn for two distinct values of the cost: c = 0.1 (the plain increasing line)
and c = 0.07 (the dashed line).

3.3 Voting

Consider a community with size α0, the leader’s optimum. Peers who are not
located at the center would all like to increase the community (since αθ > α0).
Thus, a community with the same center and slightly larger than α0 is preferred
by a majority (more precisely, for any qualified majority, one can find α larger
than α0 for which community [−α, α] is preferred to [−α0, α0] by the required
majority). This suggests some instability. A different and more sensible way of
changing the community is that some peers propose to accept newcomers who are
close to their own tastes. (In view of the preceding discussion, only an increase
of the community may be worth considering.) This amounts to change only
one boundary at a time. Consider the voting game in which members vote on
accepting new members on one side, that is on changing one of the boundaries,
say increasing α keeping −α fixed.

The impact of an accepted unilateral change depends on whether the com-
munity size is at the leader’s optimum α0 or at the upper bound α. Consider
for example a proposal to accept individuals with characteristics at the right
boundary. If the size is α, increasing the community on one side implies that
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some individuals on the other side will leave: accepting the proposal can only
result in a rotation of the community which becomes [−α + dα, α + dα]. If ac-
cepted, peers in [−α, dα/4[ either leave or are further away from the center (with
no change in size) and hence are made worse off (this follows from point (i) of
Proposition 1) : A strict majority of incumbents vote against the proposal. If
instead the community size is α0, accepting the proposal results in [−α0, α0+dα]
(assuming dα small enough). Not only the community is enlarged but also the
center is modified. Now the impact is unclear for individuals on the negative
side because there are two opposite effects: a possible benefit from an increase in
the size and a loss from being further away from the center. According to next
Proposition, the loss outweighs the benefit under the following assumption A2,
which is satisfied for a binary function.

A2 [Uα + Uθ](θ, α0) decreases with θ in [0, α0]

Proposition 3. Assume A2. At the leader’s choice, there is no strict majority
for changing only one side of the community.

3.4 Enticing contribution

The success probability partly determines the viability and the choice of the
size of a community. Whereas in previous section, it was taken as exogenous,
we consider here that it is influenced by the peers’ contribution rates. As said
previously, a minimum rate can be asked for, implemented through records on
peers’ contributions. This section analyzes this choice.

We assume that the peer’s participation cost c is an increasing function of
his contributions. As a result, no peer will contribute more than the minimum
required rate: his cost would increase with a null benefit since the impact of
a single individual on the success probability is negligible. This is a standard
effect in public good provision. Thus, given the minimum required rate λ, let
P (λ, α) and c(λ) denote respectively the probability of success when each peer
contributes λ and the incurred individual cost. P is non decreasing and concave
and c is non decreasing and convex. The maximal viable size now depends on λ;
it is denoted by α(λ).

Consider the situation in which the leader chooses both the size and the
minimal contribution rate. Without constraint on viability, the leader’s optimum
is the value of (λ, α) that maximizes P (λ, α)U(0, α)− c(λ).

Proposition 4. The leader’s choice is
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(a) the leader’s optimum values if the community is viable; the commu-
nity is closed to outsiders. Other peers would prefer to increase the size
and decrease the participation.

(b) a community with maximal viable size α(λ) for the chosen rate; the
choice of λ trades off the benefits from increasing contribution and the
loss due to a smaller community size (i.e. α(λ) decreases at the chosen
value of λ.)

We find the two regimes in which, given the chosen participation rate, the
choice of the size is dictated by the same considerations as in the previous sec-
tion. As for the contribution rate, note that the marginal benefit from increasing
the contribution rate is decreasing with the distance to the center : it is given by
PλU(θ, α)−c′, which decreases as U with respect to the distance θ. Hence, surely,
at the chosen contribution rate, the leader’s marginal benefit is nonnegative: oth-
erwise a Pareto improvement within the community would be found by reducing
the rate. Thus, in case (a), where the leader is not constrained by viability, all
peers would prefer to increase the size and to decrease the contribution rate. In
case (b), the leader would benefit from an increase in the contribution rate and
from an increase in size. He faces a trade-off because increasing contribution
incites some peers at the extreme to leave thereby decreasing the size.

4 Configurations of communities

We have so far considered a single community. Our aim in this section is to ana-
lyze the coexistence of several communities. We shall assume that an individual
is willing to join one communiy at most. Individuals are free to join whatever
community that is open to them, or not to join any. Thus, faced with a set of pro-
posed communities, they pick up their preferred choice. We look at equilibrium
situations under which individuals correctly expect the value they derive from
a community. As explained below, without coordination failure, it follows that
communities can be described by non overlapping arcs, meaning that the arcs
do not intersect except possibly at their boundaries. In that case the probability
of success is still given by function P .9

9 As a simple example of coordination failure let a single viable community be pro-

posed. Viability is computed under an assumption on the participation embodied in

the function P . If nobody joins the proposed community, the probability of success

drops down to zero and it is indeed rational not to join.
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Justifying non overlapping commuities Let two proposed communities with in-
tersecting sets of characteristics: (α1, β1) and (α2, β2) with α2 < β1. We have to
distinguish the members in the community, denoted by C1 and C2, from the sets
of characteristics. Individuals whose characteristic belongs to the intersection
(α2, β1) can choose either of the two communities. They base their choice on the
comparison between the distributions of the signals and the expected success
probability (In the previous section, P is the success probability under the par-
ticipation of all individuals in the community. If communities overlap, P gives an
upper bound to the success probability). These distributions in turn depend on
who joins each community, and cannot be directly derived from the admissible
set of characteristics. If for example all individuals in the intersection choose
C1, the distributions of the signals for C1 and C2 are as if the proposed com-
munities were (α1, β1) and (β1, β2). Let us consider the distribution of objects
conditional on a recommendation from C1. The distribution depends on who
joins the community. Assume its density has a single peak which is in (α1, α2).
Using a similar argument as in the proof of Proposition 1 gives that the utility
for a signal stemming from C1 decreases with the distance to the peak. Taking
the similar assumption for C2 gives that if a θ-peer weakly prefers C1 to C2 then
all peers in the intersection who are closer than θ to C1’s center strictly prefers
C1 to C2 (and similarly exchanging C1 and C2). It follows that there is a thresh-
old value θ∗ for which all individuals in (α2, θ

∗) choose C1 and all in (θ∗, β1)
choose C2. This means that the two communities C1 and C2 can be replaced by
(α1, θ∗) and (θ∗, β2). Furthermore this behavior ensures that the hypothesis on
the monotonicity of the densities is fulfilled.

Remark Due to coordination problems, we cannot derive from rational be-
havior this hypothesis on single peaked densities. Assume for instance that for
some θ∗ all individuals in the intersection (α2, β1) choose C2 if their θ is smaller
than θ∗, and choose C1 if it is larger than θ∗. Thus the characteristics of mem-
bers of C1 are in two disjoint intervals, (α1, α2) and (θ∗, β1), and those in C2

are in (α2, θ
∗) and (β1, β2, ). Because peers contribute to the signals of their

community, we cannot exclude non monotone densities. This can be qualified
as a coordination failure, because everybody would be better off if there was
an exchange of peers of equal measure between C1 and C2 : this would keep
the probability of success constant for both communities but would improve the
quality of the information to everybody.

From now on, we consider configurations that are composed with arcs that
do not overlap (i.e. they intersect at most at one of their extreme points). A
configuration is said to be full if every individual belongs to a community : it
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α1

α2
  

ß1 ß2

is composed of consecutive arcs that fill the entire circle (individuals who are
located at a common boundary of two communities are negligible so that there
is no need to specify to which community they belong if they are indifferent
between both). I focus on symmetric configurations. A symmetric configuration
is given by n non overlapping communities of equal size α, with n at most equal
to π/α. For n exactly equal to π/α the configuration is full, and otherwise, there
are gaps between any two neighbors.

Our aim is to determine which configurations may last, and which ones are
optimal in a sense to be made precise. various stability tests can be contemplated.
These tests depend on the proposals to deviate that are possible and the criteria
according to which such proposals are successful.

4.1 Stability

The stability of a configuration requires that no proposal of change is accepted.
Here, a proposal is said to be accepted if all members in the new community
are better off than under the standing configuration. This notion is basically the
blocking condition of cooperative game theory. Observe that insiders who are
not included in the proposal have no say. It is appropriate in a setting where
there are no ’property rights’.
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Let us describe formally stability notions. Denote by ū(θ) the utility level
achieved by a θ-individual at the standing configuration :

ū(θ) = P (α)U(d, α) if the individual belongs to a community and d is his
distance to the center

ū(θ) = 0 if he does not belong to any community.
I consider here proposals to form a new community that contains a commu-

nity’s leader, who can be assumed to be located at zero. Let U(θ, [−α′, α′′]) de-
note the utility of a θ-peer in community [−α′, α′′] (which is equal to U(θ−m,α)
where m is the middle of the community and α its size). A proposal to form
community [−α′, α′′] is accepted if

P ([α′ + α′′]/2)U(θ, [−α′, α′′]) > ū(θ) for each θ in [−α′, α′′].

Acceptance obtains if all insiders who are included in the proposal benefit
from it and outsiders, if any, are all willing to join. Observe that benefits are
evaluated under the assumption that everybody joins, which is indeed rational
if the proposal is accepted.

We shall distinguish stability with respect to proposals that are larger in
size than the existing community from those that are smaller. A symmetric
configuration with communities’ size α is stable against enlargement if there
is no proposal [−α′, α′′] with size [α′ + α′′]/2 larger than α that is accepted.
Similarly it is stable against reduction if there is no proposal [−α′, α′′] with size
smaller than α that is accepted.

Stability against enlargement. Let αext be the maximum of PV , the payoff to
an extreme individual. Observe that αext is less than α0, thanks to assumptions
A0 and A1 (the function log(PV ) is concave and is decreasing at α0 since
P ′

P (α0) + V ′

V (α0) ≤ P ′

P (α0) + U ′
α

U (0, α0) = 0).

Proposition 5.

A symmetric configuration with gaps is stable against enlargement if and only
the communities size is larger than the leader’s choice.

A full symmetric configuration with communities size larger than αext (the
maximizer of PV ) is stable against enlargement.

For a configuration with gaps, it is easy to understand why stability requires
communities size not to be smaller than the leader’s choice. Recall that the
leader’s choice is min(α0, α). If α < min(α0, α), consider a slight enlargement
with the same leader. The new members, who do not belong to any community,
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are willing to join (because α < α) and furthermore all insiders benefit from
such an enlargement (because α < α0 and using Proposition 2).

For a full configuration, the external stability condition is much weaker. Since
communities are adjacent, outsiders, whatever close, achieve a positive payoff at
the standing configuration. Thus outsiders are more difficult to attract in a
full configuration, which explains why smaller sizes than the leader’s choice are
compatible with external stability.

Stability against reduction.

Proposition 6. A symmetric configuration is stable against reduction if the
communities’ size is smaller than some value αint, where αint > α0.

The distinction between configuration with or without gaps is not relevant as
far as reduction is concerned. The reason is that stability can be checked by
considering only proposals to reduction that are included in the community, as
shown in the proof. Such a proposal consists of excluding insiders too distant
from the center and outsiders play no role.

Whereas stability to reduction requires communities not to be too large,
stability to enlargement requires them to be large enough. From the previous
results, both stability conditions are compatible.

Corollary. A symmetric configuration with communities’ size equal to the leader’s
choice is stable both against enlargement and reduction.

4.2 Efficient configurations

Our objective here is to assess the efficiency properties of a stable configuration
in particular of the one determined by leader’s choices.

To simplify the analysis, individual cost is taken to be nil. In a setup as
here in which utility is not transferable, there is not a unique welfare criteria to
evaluate the efficiency properties of configurations. In line with our framework,
we restrict ourselves to anonymous criteria. Such a criteria is characterized by
an increasing scalar function Φ, that weights a utility level v by Φ(v) : the total
welfare reached by a community of size α is given by∫ α

−α

Φ[P (α)U(θ, α)]dθ (8)

where function Φ is assumed to be continuous. A concave function Φ represents
an aversion to inequality, and at the opposite a convex one puts relative more
weight on large utility levels. The average welfare value per member (that is the
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value given by (8) divided by 2α) lies between the minimum and the maximum
of the range of Φ(v) over the community. The minimum is reached for a Rawl-
sian criteria, obtained as a limit of increasingly concave functions Φ, and the
maximum is reached by taking a limit of increasingly convex functions.

The total welfare at a configuration is the sum of the welfare within each
community. Consider a symmetric configuration with community size α. We
may restrict to viable sizes, and to the maximal number communities. We shall
neglect integer problems and take that there are n = π/α communities. Thus
total welfare is given by

W (α) =
π

α

∫ α

−α

Φ[P (α)U(θ, α)]dθ. (9)

An optimal configuration is given by the value αΦ that maximizes W . To un-
derstand its determinants, observe that there are two effects as the size of each
community increases: a pure size effect within a community as if everybody could
stay at the same distance to the leader, and a position effect, due to rearrange-
ment of the communities following a reduction in their number. The position
effect increases the distance to the leader on average, which is detrimental. The
size effect may or may not be beneficial to peers depending on their positions
and the community’s size. An optimal size balances the two effects.

The position and size effects just described are summarized by applying the
intermediate value theorem to (20): welfare is proportional to the welfare of a
’representative’ individual, more precisely it is equal to 2πΦ[P (α)U(θ̂(α), α)] for
some θ̂(α). At α0, the ’representative’ individual would benefit from an increase
in size if his distance to the leader was unchanged but he will become at the
same time more distant from the center. Depending on which effect is stronger,
the optimal size may be larger or smaller than α0.

In the binary case for example with Φ linear, Φ(v) = v, welfare is equal to
2πP (α)U(α/

√
2, α), that is the ’representative’ individual is located at α/

√
2.

One can show that the position effect is stronger : αΦ is smaller than α0. This
is more generally true under the following assumption.

A3 [Uα + θ
α0 Uθ](θ, α0) decreases with θ in [0, α0]

Proposition 7. Under A3, whatever criteria Φ

αext < αΦ < α0

In particular, whatever criteria Φ the optimal size of communities is smaller
than the leader’s optimum.
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An implication of the proposition is that communities can be too large at a
stable configuration. Recall that the preferred size of any peer is larger than the
leader’s one (since α0 ≤ αθ from Proposition 2). Thus, if the communities’ size
is between αΦ and α0, whereas everybody expects to benefit from an increase
in his community, such an expansion has a negative impact on welfare. This is
due to negative external effects due to the changes in position that are not taken
into account by peers when they assess the size of their own community : some
communities have to disappear, leading to an increase in the distance to leaders.

Concluding remarks. This paper considers a community as a cluster of individ-
uals with similar preferences. The possible improvement in the value of infor-
mation determines the scope of a community. The analysis is conducted under
strong assumptions. A peer belongs to a single community at most and uses
the first signal to which he has access. Also, signals are not aggregated within
a community. A natural development is to investigate different behaviors for
individuals or communities. Many questions are raised. Let us mention a few:

(i) How does the value of information generated by a group depend on the way
the individuals’ opinions are transmitted, or aggregated ?

(ii) Can we predict whether some aggregation criteria are more apt to ensure
some sort of efficiency, of stability ?

(iii) How is the analysis modified if individuals benefit from joining several com-
munities ?

Another direction of investigation is to introduce firms with profit criteria
and to study their coexistence with communities.
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5 Proofs

Consider a θ-individual in [−α, α] who follows the recommendations from the
community. To simplify notation let us consider Y (θ, α) the expected utility
conditional on receiving a yes. From (3),

Y (θ, α) =
∫ π

−π

fα(t)u(d(θ, t))dt (10)

where fα(t) is the density of an object conditional on the receipt of a yes from
[−α, α]. We have U(θ, α]) = pY (θ, α) where P (yes ∈ [−α, α]) = p = d∗/π. Hence
all properties can be shown on Y . Proof of Proposition 1 It is first useful
to compute fα(t). By viability, we restrict to α ≤ d∗. Bayes formula gives

fα(t) = P (yes ∈ [−α, α]|t) f(t)
P (yes ∈ [−α, α])

where f(t) = 1/(2π) is the prior distribution of t and P (yes ∈ [−α, α]) = p =
d∗/π. Given t, individuals with a type θ in [t− d∗, t + d∗] say yes and others say
no. Hence

P (yes ∈ [−α, α]|t) =
1
2α

∫ α

−α

1[t−d∗,t+d∗](θ)d(θ)

In community [−α, α], each member sends a signal yes for t ∈ [α− d∗,−α + d∗],
which we call the acquiescence zone, and each one sends no on [α+d∗,−α−d∗],
which we call the refusal zone. Outside these two zones there is disagreement.
Since α ≤ d∗ ≤ π/2, all zones are non empty. By symmetry fα(t) = fα(−t).
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Restricting to t ≥ 0 one has :

1
2d∗

for t ∈ [0,−α + d∗] acquiescence zone

fα(t) =
α + d∗ − t

4d∗α
for t ∈ [−α + d∗, α + d∗] disagreement zone

0 for t ∈ [α + d∗, π] refusal zone

Hence the density conditional on a yes is twice the unconditional one on the
acquiescence zone, is null on the refusal zone, and linear in between.

Observe from expression (10) that Y (θ, α) is the expectation of u(d) under
a distribution of the distance to θ that depends of α. Since u is decreasing, it
suffices to show that these distributions are ordered by first order stochastic
dominance as θ or α varies. Given δ, denote

F (θ, α; δ) = Proba(d(θ, t) ≤ δ|yes ∈ [−α, α]).

F (θ, α; .) is the cumulative distribution of the distance to θ of the objects that
are recommended by community [−α, α] We have

F (θ, α; δ) =
∫ π

−π

fα(t)1[θ−δ,θ+δ](t)dt. (11)

and
Y (θ, α) =

∫ π

−π

u(δ)dF (θ, α; δ)

(i) Y decreases with positive θ if for any δ, 0 ≤ δ ≤ π, any θ′, θ with θ′ ≤ θ

F (θ, α; δ) ≤ F (θ′, α; δ)

Expression (11) shows that F is derivable with respect to θ with a derivative
equal to fα(θ + δ)− fα(θ− δ). This term is always non positive10 for θ positive
because the point θ − δ is closer to the center than θ + δ.

(ii) Similarly, Y (θ, α) decreases with respect to α for θ in [−d∗, d∗] if for any
δ, 0 ≤ δ ≤ π, any α′, α, 0 ≤ α′ ≤ α

F (θ, α; δ) ≤ F (θ, α′; δ)

that is F (θ, α) decreases with respect to α. F is derivable since function fα(t) is
derivable almost everywhere with respect to α. Note that fα has a null derivative
10 The proof shows the more general property claimed in section 4 : if the density of

the recommended objects by a community has a single peak, the utility for a signal

stemming from that community decreases with the distance to the peak.
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except on the disagreement zones. Hence taking the derivative under the integral,
one has ∂F/∂α = I + J where

I =
∫ α+d∗

−α+d∗
fα

α (t)1[θ−x,θ+x]dt where fα
α (t) = −d∗ − t

8d∗α2
.

and J is defined similarly over the negative disagreement zone. We show I ≤ 0.
Note that fα

α is negative on [−α + d∗, d∗] and antisymmetric around d∗. The
middle of [θ − δ, θ + δ], θ, is by assumption less than d∗ the middle of [−α +
d∗, α + d∗]. Hence I is surely non positive. The same argument applies to show
J ≤ 0, hence ∂F/∂α ≤ 0, as desired.

Proof of proposition 2 The size αθ preferred by a θ-individual maximizes
P (α)U(θ, α) with respect to α. Let αmax be the size for which V (αmax) = 0. We
may restrict to size smaller than αmax, and by symmetry, to positive θ, that is
0 ≤ θ ≤ α ≤ αmax. Since U is positive, we consider instead the maximization of
logPU . Under A0, the function is concave with respect to α, with a derivative
given by [Pα

P
(α) +

Uα

U
(θ, α)

]
To prove that α0 ≤ αθ it suffices to show that this derivative is nonnegative
at α0. At α0, the derivative is null for θ = 0: Pα

P (α0) + Uα

U (0, α0) = 0. Hence,
assumption A1 ensures that Pα

P (α0) + Uα

U (θ, α0) ≥ 0, the desired result.
The optimal choice of the leader is the value of α that solves :
maximize P (α)U(0, α) under the viability constraint P (α)V (α) ≥ c.
Let µ be the multiplier associated with the constraint. The first order condi-

tion is

PαU(0, α) + PUα(0, α) + µ[PαV + PV ′](α) = 0 (12)

If µ is null, the optimal choice is α0 as expected. If µ is positive, the constraint
binds : α0 is not viable, i.e. outside the interval [α, α]. Furthermore the solution
solves P (α)V (α) = c, hence is either α or α. Note that PV increases at α and
decreases at α. From (12), the derivatives of PU and PV are of opposite sign.
If the latter derivative is positive, PV increases : the solution is α. Since under
A1, PαV + PV ′ > 0 implies PαU(0, α) + PUα(0, α) > 0, it must be that the
derivative of PV is non positive: the solution is α.

Proof of proposition 3

Let community [−α, α] be changed into [−α − dα, α]. The utility of a θ-
individual in [−α− dα, α]. is the same as that of a (θ + dα/2)-individual in the
community centered at zero [−α − dα/2, α + dα/2]. Hence a θ-individual will
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approve the change if

P (α + dα/2)Y (θ + dα/2, α + dα/2) > P (α)Y (θ, α).

By logconcavity of Y , this inequality is equivalent to PαU+PUα+PUθ(θ, α) ≥ 0.
We show that it is not satisfied at any θ.

Let f(θ) be this function for α = α0. For θ = 0, by definition PαU +
PUα(0, α0) = 0 and by symmetry of U Uθ = 0, hence f(0) = 0. For θ = α0,
f(α0) is equal to V ′(α0), which is negative by A2. Hence f is negative for each
θ > 0 if it decreases with θ. Since U decreases with θ, this is ensured by the
assumption that Uα + Uθ decreases with θ.

Proof of proposition 4 The optimal choice of the leader solves
P (λ, α)U(0, α)− c(λ) under the viability constraint P (λ, α)V (α)− c(λ) ≥ 0
Let µ be the multiplier associated with the constraint. The first order condi-

tions are

PαU(0, α) + PUα(0, α) + µ[PαV + PV ′](α) = 0 (13)

PλU(0, α)− c′(λ) + µ[PλV (α)− c′(λ)] = 0 (14)

When µ is null, the viability constraint does not bind, and the leader can
choose its optimal value. The same analysis as in proposition 2 yields that for
the chosen value of λ other peers would like the size to increase. As for the
contribution rate, since peers’ utility level U(θ, α) is less than that of the cen-
ter, (14) yields that aθ-peer would prefer a smaller contribution rate, that is
PλU(θ, α)− c′(λ) ≤ 0.

When µ is positive, we know that (13) and A1 implies that α is set at the
maximal viable size associated to the chosen λ, α(λ). From the first order
condition on λ (14), PλU(0, α)− c′(λ) and PλV (α)− c′(λ) are of opposite sign.
Since U(0, α) > V (α) it must be that the former is positive : the leader would
prefer to increase the contribution rate.

Proof of Proposition 5:
Consider a community with gaps. We proved in the text that a necessary

condition for stability against enlargement is that the community size α be
larger than the leader’s choice, that is larger than min(α0, α). Conversely let α

be between min(α0, α) and α. If α is the maximal viable size, an enlargement
is not viable so no outsider wants to join. If the size α is between α0 and α,
then it is stable for another reason: the individuals at or close to the leader do
not benefit from an increase in size and if the enlargement is not centered, half
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of them are further away from the leader, also diminishing their utility (from
Proposition 2).

Consider now a full community with size α larger than αV and a proposal
to an enlargement. At the standing configuration, the minimum utility level is
achieved by an individual located at an extreme point of a community, hence
ū(θ) ≥ (PV )(α) for each θ. Let us consider an individual located at an extreme
point of the proposal of size β larger than α. If the proposal is accepted, his ex-
pected payoff is (PV )(β). This is strictly lower than (PV )(α) since PV decreases
for size larger than αext. Thus individuals at or close to the extreme of the new
community would be strictly worse off by accepting: the proposal is rejected.

Proof of Proposition 6 The proof is divided in three steps.
Step 1. We first show that stability can be checked by considering proposals

that are centered at the leader’s position. Let [−m− β,−m + β] be a reduction
proposal, β < α, centered at −m, 0 < m. We have m < β because the leader
belongs to the proposal. We show that if [−m − β,−m + β] is accepted, then
[−β, β] is also accepted. Assuming

P (β)U(θ, [−m− β,−m + β]) > ū(θ), θ ∈ [−m− β,−m + β]. (15)

we have to show (using notation U(θ, [−β, β]) = U(θ, β))

P (β)U(θ, β) > ū(θ), θ ∈ [−β, β] (16)

Up to a rotation U(θ, [−m − β,−m + β]) = U(θ + m, [−β, β]) = U(θ + m,β)
therefore (15) can be written as

P (β)U(θ + m,β) > ū(θ), θ ∈ [−β, β]. (17)

Applying (17) to θ = 0 gives P (β)U(m,β) > ū(0). Hence, from the properties
of U (Proposition 1): P (β)U(θ, β) > ū(0) for 0 ≤ θ ≤ m.

Now take θ′, with β > θ′ > m. Let θ = θ′ −m. Note that both θ and θ′ are
in community [0, α] in the standing configuration and θ is closer to the center
than θ′. Therefore ū(θ) ≥ ū(θ′). Thus (17) applied to θ′ gives

P (β)U(θ′, β) > ū(θ) > ū(θ′), for θ′ ∈ [m,β].
Thus inequality (16) is met for any positive θ smaller than β, which gives

the result for any θ ∈ [−β, β] by symmetry of U .
Step 2. From Step 1, stability against reduction is satisfied if no centered

proposal is accepted, that is inequality (16) is not satisfied at any β, β < α. Since
[−β, β] is included in [α, α], we have ū(θ) = P (α)U(θ, α) for each θ ∈ [−β, β].

So stability against reduction is satisfied if for no β, β < α

P (β)U(θ, β) > P (α)U(θ, α), θ ∈ [−β, β] (18)
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We show that under A1, this is equivalent to :

P (α)U(β, α) > P (β)V (β) for each 0 < β < α (19)

Inequalities (19) are sufficient : for no β (18) is satisfied at θ close to β. Con-
versely, let inequality P (α)U(α∗, α) ≤ P (α∗)V (α∗) be met for some α∗ smaller
than α: Proposal [−α∗, α∗] makes α∗- or −α∗-individuals at least as well off. The
elasticity conditions A1 then imply that all members in ]−α∗, α∗[ are strictly bet-
ter off. To see this, observe that the ratio11 U(θ,α)

U(θ′,α) decreases with α for θ < θ′.
For θ < α∗ < α, taking θ′ = α∗ gives

U(θ, α) ≤ U(θ, α∗)
U(α∗, α)
U(α∗, α∗)

.

Using inequality P (α∗)U(α∗, α∗) > P (α)U(α∗, α) gives that for each θ ∈] −
α∗, α∗[

P (α∗)U(θ, α∗) ≥ P (α)U(θ, α∗)
U(α∗, α)
U(α∗, α∗)

> P (α)U(θ, α)

Thus ( 18) is satisfied at β = α∗ : proposal [−α∗, α∗] is accepted.
Step 3. Let A be the set of sizes of configurations stable against reduction.

From Step 2. A is the set of viable sizes for which inequalities (19) hold. We
show that A is an interval of the form ]0, αint].

Note first that the set A contains ]0, αV ], hence is non empty. To see this,
recall that PV increases on [0, αV ]. Hence for α smaller than αV we have

P (α)U(β, α) > P (α)U(α, α) = P (α)V (α) > P (β)V (β) for each β, 0 < β < α

(the first inequality holds because U(β, α) decreases with α). The set A is
bounded by α. If A =]0, α], take αint = α. Otherwise, consider the smallest
value, αint for which (19) does not hold. We have

P (α)U(β, α) > P (β)V (β) for each α < αint and β < α. Furthermore, since
(19) does not hold at αint, there is some α∗ < αint with P (αint)U(α∗, αint) ≤
P (α∗)V (α∗). Therefore, by continuity, P (αint)U(α∗, αint) = P (α∗)V (α∗) and
the function α → P (α)U(α∗, α) decreases at αint. Since it is a concave function,
it decreases for larger values than αint, hence

P (α)U(α∗, α) ≤ P (αint)U(α∗, αint) = P (α∗)V (α∗).

Inequality (19) does not hold for a size larger than αint: the set A is the interval
]0, αint[.

11 The derivative with respect to α of the log of the ratio is Uα(θ,α)
U(θ,α)

− Uα(θ′,α)
U(θ′,α)

which is

negative under A’1.
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Proof of Proposition 7. Total welfare W (20) writes:

W (α) =
2π

α

∫ α

0

Φ[P (α)U(θ, α)]dθ. (20)

Take the derivative with respect to α:

W ′(α) = 2
π

α

{∫ α

0

Φ′[P (α)U(θ, α)][PUα + PαU ](θ, α)dθ + Φ[P (α)U(α, α)]

− 1
α

∫ α

0

Φ[P (α)U(θ, α)]dθ
}

(21)

Integration by parts of θ → θΦ[P (α)U(θ, α)] gives

αΦ[P (α)U(α, α)]−
∫ α

0

Φ[P (α)U(θ, α)]dθ =
∫ α

0

θΦ′[P (α)U(θ, α)]P (α)Uθ(θ, α)dθ

thus

W ′(α) = 2
π

α

∫ α

0

Φ′[P (α)U(θ, α)][PUα + PαU +
θ

α
PUθ](θ, α)]dθ.

The term [PUα + PαU ] represents the size effect. For a θ-peer, it depends on
the community size being lower or larger than the preferred size αθ. However,
if the community size is less than α0, the size effect due to a small increase is
beneficial to all peers. The term [ θ

αPUθ], which is always negative, reflects the
position effect. Since Φ′ is positive, let us focus on [PUα + PαU + θ

αPUθ]
It is non positive at the two extreme points of integration : at θ = 0 because

both the size and position effects are null; at θ = α0 because the integrand
is exactly equal (PV )′(α0), the variation of utility for an individual located
at the extreme of the community, which is negative from proposition 2. Under
assumption A3, [PUα + PαU + θ

αPUθ] + PU is decreasing with θ, hence stays
nonnegative on [0, α0] which gives the result.

Appendix : binary function. Given a binary function, set k = (1+b/g)
4d∗ . We

compute below that for θ ∈ [−d∗, d∗] and α ≤ d∗ U is given by

U(θ, α) = pg[1− kα(1 +
θ2

α2
)] for θ ∈ [−α, α] (22)

Let us check that assumptions A0, A1, A2 and A3 are satisfied.
Equation (22) gives V (α) = pg(1 − 2kα) and the maximum viable size (if c

is null) is αmax = 1/2k. and

−V ′

V
(α) =

2k

1− 2kα
and − Uα

U
(θ, α) = k(1− θ2

α2
)/[1− k(α +

θ2

α
)].
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A0 is met since U and V are concave in α.
A1. Since 2V (α) = g(1− 2kα), we have

−V ′

V
(α) =

2k

1− 2kα
>

k

1− kα
= −Uα

U
(0, α)

Also, the function −Uα

U (θ, α) is decreasing in θ2 if k
α < 1

α2 [1− kα] or equiv-
alently if 1− 2kα > 0. This condition is satisfied for α ≤ αmax = 1/2k.

A2 and A3. One has:

U(θ, α) = U(0, α)− pgk
θ2

α
, Uα(θ, α) = Uα(0, α) + pgk

θ2

α2
, Uθ(θ, α) = −2pgk

θ

α
.

This gives
[Uα + Uθ] = Uα(0, α)− pgk θ

α [2− θ
α ] and [Uα + θ

α0 Uθ] = Uα(0, α)− pgk θ2

α2 .
Both are decreasing with θ in [0, α].

Computation of (22). We shall use repeatedly that for t1, t2 in the (positive)
disagreement zone one has∫ t2

t1

fα(t)dt =
−1

8d∗α
(α + d∗ − t)2|t2t1 =

1
8d∗α

(t2 − t1)(2α + 2d∗ − (t2 + t1)) (23)

Let us first compute Y , the utility derived from buying conditional on a yes,
for a θ-individual in the community. For objects t ≥ 0, he achieves :

in the acquiescence zone [0,−α + d∗] : g,
in the disagreement zone [−α+d∗, α+d∗] : g for any object in [−α+d∗, θ+d∗],

and −b on [θ + d∗, α + d∗].
The refusal zone has not to be considered since a yes never comes from it.

This gives using (23)

g
d∗ − α

2d∗
+

1
8d∗α

[g(α + θ)(3α− θ)− b(α− θ)2].

By symmetry, the utility for a θ-individual on negative t is equal to that of
a (-θ)-individual on positive t. Thus the utility for t-objects with t ≤ 0 is equal
to:

g
d∗ − α

2d∗
+

1
8d∗α

[g(α− θ)(3α + θ)− b(α + θ)2]

Collecting terms gives Y , the overall utility of a θ-peer receiving a yes :

Y (θ, α) = g(
d∗ − α

d∗
) +

1
4d∗α

[g(3α2 − θ2)− b(α2 + θ2)]

Rearranging and multiplying by p gives (22).


