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Abstract. The appearance of a Brownian term in the price dynamics on a
stock market was interpreted in [De Meyer, Moussa-Saley (2003)] as a conse-

quence of the informational asymmetries between agents. To take benefit of

their private information without revealing it to fast, the informed agents have
to introduce a noise on their actions, and all these noises introduced in the

day after day transactions for strategic reasons will aggregate in a Brownian

Motion. We prove in the present paper that this kind of argument leads not
only to the appearance of the Brownian motion, but it also narrows the class

of the price dynamics: the price process will be, as defined in this paper, a
continuous martingale of maximal variation. This class of dynamics contains

in particular Black and Scholes’ as well as Bachelier’s dynamics. The main

result in this paper is that this class is quite universal and independent of a
particular model: the informed agent can choose the speed of revelation of his

private information. He determines in this way the posterior martingale L,

where Lq is the expected value of an asset at stage q given the information
of the uninformed agents. The payoff of the informed agent at stage q can

typically be expressed as a 1-homogeneous function M of Lq+1 − Lq . In a

game with n stages, the informed agent will therefore chose the martingale Ln

that maximizes the M -variation. Under a mere continuity hypothesis on M ,

we prove in this paper that Ln will converge to a continuous martingale of

maximal variation. This limit is independent of M .

JEL Classification Numbers: G14, C72, C73, D44.

1. Introduction

Brownian motion is omnipresent in finance analysis. Its appearance in the price
dynamic is often explained exogenously. Bachelier was the first to use a Brownian
motion to model the price evolution even before its precise definition by Einstein
and Wiener. The first sentence in his thesis [Bachelier (1900)] illustrates quite well
this kind of explanation: ”The influences that determines the price variations on
the stock market are uncountable, past, present or even future expected events,
having often nothing to do with the stock market have repercussion on the prices.”

Aside this exogenous explanation, there could also be a strategic reason for its
appearance: Institutionals have clearly a better access to information on the market
than other agents: they are better skilled to analyze the flow of information and in
some cases they are even part of the board of directors of the firms whom they are
trading the shares. So, institutionals are better informed and this informational
advantage is known publicly. As a consequence, each of their moves on the markets
is analyzed by the other agents to extract its informational content. If informed
agents act naively, taking moves that depend deterministically on their information,
they will completely reveal their information to the other agents, and doing so, they

0 The main ideas of this paper were developed during my stay at the Cowles Foundation for
research in Economics at Yale university. I am very thankfull to all the members of the Cowles

foundation for their hospitality. I would like to thank John Geanakoplos and Pradeep Dubey for

fruitful discussions.
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will lose their strategic advantage for the future. The only way to take benefit of the
information without revealing it to fast is to introduce a noise on their moves: this
comes to select random moves with lotteries that depend on their information. The
main idea in [De Meyer, Moussa-Saley (2003)] is that the noises introduced by the
informed agents in the day after day transactions will generate a Brownian motion.
To illustrate this idea, [De Meyer, Moussa-Saley (2003)] analyzes the interactions
between two asymmetrically informed market makers.

1.1. The game Gn(P ). The game considered there is as follows: Two market
makers are trading a risky asset R against a numéraire N .

Asymmetry of information: At the beginning of the game, market maker 1,
hereafter referred to as player 1 (P1), receives a private message M concerning the
risky asset. The message M can be either a good news G or a bad news B. The a
priori probability that M = G is P . Market maker 2 (P2) knows that player 1 got
the message and and also knows P , but he does not observe M .

Liquidation value: The message M will be publicly revealed at a future date
T, say at the next shareholder meeting. The price L of R at that date is called
the liquidation value of R. It will depend on M . We considered in [De Meyer,
Moussa-Saley (2003)] the case L(G) = 1 and L(B) = 0. The liquidation value of
N is independent of M and is fixed to be 1.

Trading mechanism: In the game Gn(P ), there are n trading periods before date
T . As market makers, P1 and P2 have to post, at period q (q = 1, . . . , n), a price
pn1,q and pn2,q. We suppose that at each period, the choice of pn1,q and pn2,q is made
simultaneously and independently by the players based on their prior observations
and their private information. It is then publicly announced.

Since market regulations stipulates explicitly that the bid ask spread by market
makers has to be small, we toke it to be 0 and, therefore, only one price per market
maker has to be considered.

The price p posted by a market maker is a commitment to sell or buy a limited
amount –say one share– of R in counterpart of p units of N . On the markets, if a
trader wants to trade more than this limited amount, it will be at negotiated price.
We do not allow for such out of the counter transactions in our model.

Clearly, if pn1,q 6= pn2,q, a trader will see a possibility of arbitrage, and he will buy at
the lowest price the maximal number –one– of shares R to sell it immediately at the
highest price. To simplify the analysis– this will lead to a zero sum game—, instead
of considering two different transactions with an external trader, we considered only
one transaction between the market makers: if pn1,q 6= pn2,q, one unit of R goes from
the lowest pricing market maker to the highest pricing one in counterpart of a
common price in Numéraire that was fixed in our initial model to be the maximal
price. (Other choices of the common price would have led to the same results).

So, let yRq and zRq denote the numbers of R shares in P1 and P2’s portfolios
after the q-th trading period, and similarly, let yNq and zNq denote the numbers of
N shares. Then the above described trading mechanism can be summarized by
the following formulas, where yq := (yRq , y

N
q ) and zq := (zRq , z

N
q ) are the players’

portfolios:
yq = yq−1 + t(pn1,q, p

n
2,q) and zq = zq−1 − t(pn1,q, p

n
2,q)

with
t(p1, p2) := 11p1>p2(1,−p1) + 11p2>p1(−1, p2)

We assume in this model that the initial endowments y0 and z0 are large enough
so as to avoid situations where one player ran out of R or of N . The constraints
yq ≥ 0 and zq ≥ 0 are therefore not binding and are ignored in the model.
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Players’ utility: The players are supposed to be risk neutral, and they aim to
maximize the expected liquidation value of their final portfolio. So P1’s utility is:
E[yRnL(M) + yNn ] and P2’s is E[zRn L(M) + zNn ]. Since y0 and z0 are initially fixed,
the liquidation values of the initial portfolios are constants that can be subtracted
from player’s utilities without affecting their behavior in the game. This turns out
to be equivalent to assume y0 = z0 = (0, 0), allowing for negative entries in the
portfolios. With that hypothesis, we get clearly yn = −zn and the game Gn(P ) is
then a zero sum game.

This conclude the depiction of Gn(P ). In [De Meyer, Moussa-Saley (2003)],
Gn(P ) is proved to have a value Vn(P ) and a full description of optimal behavior
strategies is given. The main result there concerns the asymptotic of the price
dynamic at equilibrium as n goes to ∞. More precisely, let Πn be the continuous
time representation of the process pn1,q, that is for t ∈ [0, 1]: Πn

t := pn1,[[nt]], where
pn1,0 := P and [[a]] is the greatest integer less or equal to a. Then, if the players are
using their optimal strategies, Πn converges in finite dimensional distribution to a
process Π (i.e. for all finite set J ⊂ [0, 1], the random vectors (Πn

t )t∈J converges
in distribution to (Πt)t∈J). Furthermore, Π is fully described there: it is a mar-
tingale on a Brownian filtration referred to hereafter as the continuous martingale
of maximal variation corresponding to the distribution µ of the liquidation value L
(L = 1 with probability P and 0 with probability 1− P ).

So, the unique exogenous random event in Gn(P ) is the toss of a (biased) coin
to select the message. To play optimally, the players have then to introduce mixed
moves and all these random moves generate in the limit a Brownian motion, which
appears therefore for strategic reasons in the price dynamic.

1.2. The game Gn(µ) and the continuous martingales of maximal vari-
ation. The model has been generalized in [De Meyer, Moussa-Saley (2002)] to a
more general type of messages. Since clearly the important part of the message
M is the corresponding liquidation value L(M), we can identify the message with
L(M). This leads us to analyze the following game Gn(µ):

Let ∆ be the set of probability distributions on (R,BR), where BR is the Borel
tribe on R. In the sequel, if µ ∈ ∆, we will use the notation L ∼ µ to indicate
that the random variable L is µ distributed. We also write ‖µ‖Lp for ‖X‖Lp where
X ∼ µ, and we set ∆p := {µ ∈ ∆ : ‖µ‖Lp <∞} and ∆1+

:= ∪p>1∆p.
For µ ∈ ∆1, Gn(µ) is the game where a lottery selects initially L ∼ µ. P1 is then

privately informed of L but P2 gets no information: he only knows µ. The game
follows then exactly as in Gn(P ).

In [De Meyer, Moussa-Saley (2002)], we can prove that, for µ ∈ ∆1, the game
Gn(µ) has a value Vn(µ) and we also characterize the optimal strategies of both
players.

To describe the asymptotic of Πn, we need to introduce the following notations:
Let Z be a gaussian random variable: Z ∼ N (0, 1). For µ ∈ ∆, as it is well known
there is a unique right continuous increasing function fµ such that fµ(Z) ∼ µ.
Namely fµ(x) = F−1

µ (FN (x)), where FN and Fµ are the cumulative distribution
functions of N (0, 1) and µ and where F−1

µ (y) := inf{s : Fµ(s) > y}.
Let B be a standard one dimensional Brownian motion on a filtered probability

space (Ω,A, P, (Gt)t≥0). If µ ∈ ∆1+
, the martingale Πµ

t := E[fµ(B1)|Gt] will be
referred to as the continuous martingales of maximal variation of final distribution
µ. This terminology will be justified in section 3.8.

The main result in [De Meyer, Moussa-Saley (2002)] is that, at equilibrium in
Gn(µ), Πn converges in finite dimensional distribution to Πµ, as n→∞.
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So given the distribution µ, we have the explicit asymptotic distribution of the
price dynamic. Observe that since B is Markovian, Πµ

t is a function g(Bt, t). Since
fµ is increasing, g(x, t) is increasing in x, even strictly increasing for t < 1 whenever
fµ is not a constant. Finally, Πµ is a martingale, and therefore g must satisfy the
heat equation and with Itô’s formula, we get dΠµ

t = h(Bt, t)dBt, where h(x, t) :=
∂
∂xg(x, t). In turn, since g is strictly increasing in x, Bt is an increasing function
of Πµ

t , and h(Bt, t) is then a function a of (Πµ
t , t). We get in this way a diffusion

equation for Πµ: dΠµ
t = a(Πµ

t , t)dBt
So, the above theory not only justifies the appearance of the Brownian motion

in the price dynamics, but it also stipulates a class of dynamics.
My conviction is that this class of dynamics contains the right models for the

price evolution on the stock market.
Are there statistical evidences to sustain such an assertion? Well, indirectly, since

when µ is a log normal distribution, the corresponding process Πµ follows then the
Black and Scholes dynamic, which is currently one of the most used dynamic in
finance for price modeling. Bachelier’s dynamic is also included in this class as the
particular case corresponding to a normal distribution µ .

Aside this statistical argument, there is also theoretical justifications for this class
of dynamics. The appearance of continuous martingales of maximal variation in
Gn(µ) is not accidental, due to some particular details in Gn(µ). As I aim to prove
in this paper, this appearance is on the contrary quite universal and independent
of the model.

1.3. The game Γn(µ). To support this assertion, we analyze in this paper a gen-
eralized game Gn(µ), referred to as Γn(µ), where two asymmetrically informed
agents, not necessarily market makers, are trading R against N using an abstract
trading device T .

An abstract trading mechanism T is simply a game characterized by two action
sets endowed with a σ-algebra (I, I) and (J,J ), (we will assume that finite sets in
I or J are measurable) and by an outcome function

T : I × J → R2 : (i, j) → T (i, j) := (Aij , Bij),

which is measurable from (I × J ) to the Borelean tribe of R2. If the players play
(i, j), Aij and Bij represent the respective numbers of R and N shares P1 receives
from P2. ( Typically one is positive an the other negative).

So, in the generalized Γn(µ), at trading period q (q = 1, . . . , n), the players select
an action pair (iq, jq) independently of each others, based on their prior observa-
tions and private information. Actions are then made public and the portfolios
are then incremented: yq = yq−1 + T (iq, jq) and zq = zq−1 − T (iq, jq). T could
clearly represent any bargaining mechanism or auction procedure, actions being
then strategies in these mechanisms.

A particular example is the bid ask version of our previous game: At each period
both market makers post a bid bq and an ask aq, with bq ≤ aq ≤ bq(1 + ε), where
the second constraint represent the limit on the spread imposed by the market
regulator. In this case, iq = (b1,q, a1,q), jq = (b2,q, a2,q), and

Aiq,jq = 11b1,q>a2,q − 11b2,q>a1,q and Biq,jq = 11b2,q>a1,qb2,q − 11b1,q>a2,qb1,q.

In the generalized game Γn(µ), players are not posting prices any more, so what
is the price process in this case? One possible definition of the price of R at period
q could be − Biq,jq

Aiq,jq
, but this definition would lead to technical problems in case

Aiq,jq = 0. Another possibility, adopted in this paper, is to define the price Lq
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as the price at which P2 would agree to trade with another uninformed player:
Lq = E[L|i1, . . . iq, j1, . . . , jq].

We prove in theorem 1 that under very general and natural hypotheses on T ,
the continuous version Πn

t := L[[nt]] of the price process Lq at equilibrium in Γn(µ)
converges in finite distribution to Πµ. So the asymptotic distribution of the price
process is basically independent of the exchange mechanism.

1.4. A sketch of the proof. The proof of this result presented here relies on
ingredients that could also appear in many other financial models of incomplete
information, even non zero sum games, and this let me hope that the appearance of
continuous martingales of maximal variation is not limited to the zero sum games
analyzed in this paper.

The first ingredient of the proof is that in an n-period game, the informed player
may decide to link or not his actions at stage q with his private information. He
controls in this way the martingale Ln := (Lnq )q=0,...n+1, with Lnn+1 := L, and
where Lnq is the expected value of L given the public information Fq after stage q.
The martingale Ln belongs thus to Mn(µ): the set of martingales of length n+ 1
with µ-distributed final value. We can then see the maximization problem P1 faces
as a two stage problem: He first chooses a martingale Ln ∈ Mn(µ) and he then
picks his action iq at stage q as a function of (Lnk )k≤q.

The second ingredient is that when replying to such a strategy of player 1, the
uninformed player is assumed to know the strategy to which he replies. So, to
compute the max min of the game, we may assume that, when playing stage q,
player 2 has observed Lnk for k < q. Therefore, when choosing iq(Ln1 , . . . , L

n
q ),

player 1 has not to care about the information his action will reveal, since in any
case, player 2 will observe Lnq before playing the q + 1-stage. Player 1 will thus
picks the action iq(Ln1 , . . . , L

n
q ) that maximizes his stage payoff: Aiq,jqL

n
q +Biq,jq .

If [Lnq |Ln1 , . . . , Lnq−1] denotes the conditional law of Lnq given Ln1 , . . . , L
n
q−1, the game

he is facing at the q-th stage is thus Γ1([Lnq |Ln1 , . . . , Lnq−1]), and the best he can do
is to play optimally in this game, obtaining V1([Lnq |Ln1 , . . . , Lnq−1]).

As proved in section 2.3, the optimal martingale Ln is thus the one in Mn(µ)
that maximizes

E[
n∑
q=1

V1([Lnq |Ln1 , . . . , Lnq−1])].

The conditions on the trading mechanism T are presented in the next section. One
of them referred to as Invariance with respect to the risk-less part of the risky asset
implies in particular that for all constant β, for all random variable L, V1([L+β]) =
V1([L]), where [L] denotes the law of L. This indicates that the optimal martingale
Ln will also maximize VV1

n (Ln), where, for a function M : ∆ → R, VMn (Ln) is
defined as

VMn (Ln) := E[
n∑
q=1

M([Lnq − Lnq−1|Ln1 , . . . , Lnq−1])].

The second part of the paper is devoted to the analysis of the martingales Ln

maximizing VMn (Ln). We prove in theorem 9 that under a continuity and a homo-
geneity condition on M , any sequence of maximizing martingales Ln converge to
the continuous martingale of maximal variation corresponding to µ. This limit is
thus independent of M . This result relies on a central limit theorem.

The hypothesis on the trading mechanism called invariance with respect to the
Numéraire scale indicates that V1 fulfills the required homogeneity property and
theorem 9 can thus be applied to prove our results on Γn(µ).
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2. The main result on Γn(µ)

2.1. Strategies Γn(µ). Let us first start by defining strategies in Γn(µ). A mixed
strategy for P2 in Γ1(µ) is a probability distribution τ on (J,J ). However, since
Aij and Bij are a priori unbounded, we have to restrict a little bit this definition.
Let ∆(J) be the set of probability distributions τ on (J,J ) such that,

∀i ∈ I :
∫
J

|Aij |dτ(j) <∞ and
∫
J

|Bij |dτ(j) <∞.

For τ ∈ ∆(J), we set: Aiτ :=
∫
J
Aijdτ(j) and Biτ :=

∫
J
Bijdτ(j). In the same

way, we define ∆(I) and, for σ ∈ ∆(I), Aσ,j and Bσ,j .
A strategy τ in Γn(µ) is a sequence (τ1, . . . , τn) of ∆(J)-valued transition proba-

bilities τq : (Hq−1,Hq−1) → (J,J ), where (Hq,Hq) := ((I×J)q, (I×J )q). In other
words: ∀hq−1 ∈ Hq−1, τq(hq−1) ∈ ∆(J) and ∀A ∈ J : the map hq−1 → τq(hq−1)[A]
is Hq−1-measurable.

In the same way, a strategy σ in Γn(µ) is a sequence (σ1, . . . , σn) of ∆(I)-valued
transition probabilities σq : (R×Hq−1,BR×Hq−1) → (I, I). Sn will denote hereafter
the set of P1’s strategies.

With Tulcea theorem, a triplet (µ, σ, τ) will induce a unique probability π(µ,σ,τ)

on (R×Hn).
Still the payoff function could be undefined in general for integrability reasons

and we have to restrict our notion of strategy. The intergrability problem can be
illustrated as follows: suppose that τ2 is just a function of j1 so that Bi2τ2(j1), is a
finite function of j1, but it could fail to be integrable with respect to τ1.

This leads us to the definition of admissible strategy: A strategy τ is said admis-
sible if for every history h1 ∈ In, the probability π2

(h1,τ) induced on Jn by (h1, τ)
is such that for all q, the random variables |Aiq,jq | and |Biq,jq | have finite expecta-
tion with respect to π2

(h1,τ). T
adm
n will denote the set of P2’s admissible strategies.

Observe that π2
(h1,τ) is just the conditional probability π(µ,σ,τ) on Jn given h1.

So, An(h1, τ) := Eπ2
(h1,τ)

[
∑n
q=1Aiq,jq ] and Bn(h1, τ) := Eπ2

(h1,τ)
[
∑n
q=1Biq,jq ] are

the expected R and N quantities in yn given that player 1 played h1. These are
finite measurable functions of h1.

Let us now write formally the payoff in Γn(µ). Notice that yn is independent
on L conditionally to h1, since P2’s moves depend on h1 but not on L. Therefore,
with expectations taken with respect to π(µ,σ,τ), and assuming the integrability of
LyRn + yNn , we could write:

(1)
E[LyRn + yNn ] = E[E[LyRn |h1]] + E[E[yNn |h1]]

= E[E[L|h1] · E[yRn |h1]] + E[Bn(h1, τ)]
= E[LAn(h1, τ) + Bn(h1, τ)]

Observing the last formula, the best player 1 can do to reply to τ is to play a
history h1(L) depending on L, that solves the problem:

(2) φnτ (L) := sup
h1

LAn(h1, τ) + Bn(h1, τ)

Optimal solution could fail to exist, but measurable ε-solution exist. Therefore a
strategy τ guarantees Eµ[φnτ (L)] to P2. As supremum of a family of affine functions
of L, φnτ (L) is a convex l.s.c. function from R to R∪{∞} and is therefore measurable.
Since µ ∈ ∆1, we also have: Eµ[φnτ (L)] > −∞.

Notice that there could be integrability problems in equation (1) in general and
it could be the case that E[LyRn + yNn ] is undetermined (meaning that both the
positive and the negative part of LyRn + yNn have infinite expectation) although
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E[LAn(h1, τ)+Bn(h1, τ)] is finite. This remark leads us to define the payoff function
in Γn(µ) as gn(µ, σ, τ) := Eπ(µ,σ,τ) [LAn(h1, τ) + Bn(h1, τ)].

This definition of the payoff could still be undetermined for some pairs of strate-
gies. However, if Eµ[φnτ (L)] < ∞, then the payoff function gn(µ, σ, τ) is possibly
equal to −∞, but there is never indeterminacy, whatever the strategy σ is.

The minimal amount player 2 can guarantee is V n(µ) := infτ∈Tn
Eµ[φnτ (L)].

A strategy τ of player 2 is optimal in Γn(µ) if V n(µ) = Eµ[φnτ (L)].
A strategy σ is admissible for player 1, if, for all admissible strategy τ :

E[min(LAn(h1, τ) + Bn(h1, τ), 0)] > −∞,

which implies that gn(µ, σ, τ) is well defined in R ∪ {∞}. Let Sadmn be the set of
admissible strategies for P1.

A strategy σ ∈ Sadmn guarantees α to P1 if, ∀τ ∈ T admn : gn(µ, σ, τ) ≥ α.
The maximum amount P1 can guarantee in Γn(µ) is

V n(µ) := sup
σ∈Sadm

n

inf
τ∈T adm

n

gn(µ, σ, τ).

A strategy σ is optimal if it guarantees V n(µ).
It is always true that V n(µ) ≤ V n(µ). When equality holds, the game Γn(µ) is

said to have a value Vn(µ) := V n(µ) = V n(µ).
If the game has a value, and if σ∗ and τ∗ are optimal strategies, then (σ∗, τ∗)

is a Nash equilibrium of the game. Conversely, if (σ∗, τ∗) is a Nash equilibrium of
the game, then the game has a value and σ∗ and τ∗ are optimal strategies.

2.2. The hypotheses on the trading mechanism. Let us first present the hy-
potheses we will make on the trading mechanism T . The abstract trading device
T could clearly be used to trade other shares than R and N . The idea of the first
hypothesis is simply that if T is used to trade R against the dollar, it will lead to
the same transactions in value as if was used to trade R against the cent. This
means that the same number of R shares would be exchanged in both cases, but
the number of cents given in counterpart in the second case would be a hundred
times the number of dollars given in the first case. Clearly, the players will not use
the same actions when trading in dollars or in cents. Instead, there is a translation
rule that maps the the actions in dollar to the actions in cents. This leads us to
the following hypothesis:

H1: Invariance with respect with the numéraire scale. ∀α > 0, there exist mea-
surable one to one mappings ψ1 : I → I and ψ2 : J → J such that ∀i, j :

Aψ1(i),ψ2(j) = Ai,j and Bψ1(i),ψ2(j) = α ·Bi,j .

In the original game Gn(µ), where the actions were prices p1, p2, the mappings
ψ1 and ψ2 corresponding to α would simply be defined by ψ1(p) = ψ2(p) = αp.

The next hypothesis is also quite natural for the trading device T : consider a
risky asset R′ which consists of a basket of one share of the risky asset R and one
bill of $100. The hypothesis H2 requires that trading R′ against the dollar with T
will lead to the same trade in value as trading R against the dollar: more precisely,
we require that the number a of exchanged R′ and R shares is the same in both
cases, but the counterpart in dollar for R′ is just the counterpart for R plus a ·$100.
This leads us to the following hypothesis:

H2: Invariance with respect to the risk-less part of the risky asset. ∀β ∈ R, there
exist measurable one to one mappings ψ1 : I → I and ψ2 : J → J such that ∀i, j :

Aψ1(i),ψ2(j) = Ai,j and Bψ1(i),ψ2(j) = Bi,j + β ·Ai,j .
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In a trading mechanism based on prices such as in Gn(µ), the translation maps ψi
consist of increasing prices by β. Clearly the bid ask version of Gn(µ) also satisfies
H1 and H2. We present in section 2.4 a canonical way to obtain trading mechanisms
satisfying these hypotheses.

We will not deal in this paper with the technical question of existence of the
value for Γn(p), so that we just assume it in the next hypothesis.

H3: Existence of the value. For all µ ∈ ∆1, for all n, the game Γn(µ) has a
value Vn(µ) and both players have optimal strategies in this game.

The next hypothesis is that there exists a situation where player 1 can take ben-
efit of his information. This hypothesis is not insignificant: it means in particular
that P2 is not free to avoid trading with the more informed player 1.

H4: Positive value of information. ∃µ ∈ ∆2 : V1(µ) > 0.
H5: Continuity of V1. There exists p ∈ [1, 2[ and A ∈ R such that, if X and Y

are two random variables on the same probability space with respective distributions
µ and ν, then |V1(µ)− V1(ν)| ≤ A‖X − Y ‖Lp .

This last hypothesis will be in particular satisfied with p = 1 if ∀i, j : |Ai,j | ≤ A.

We are now ready to state our main theorem concerning Γn:

Theorem 1. Under H1, H2, H3, H4, H5, and for a fixed µ in ∆2, consider a
sequence (σn, τn), where ∀n, (σn, τn) is an equilibrium in Γn(µ), and let Ln be
the price process in this game, defined as Lnq := Eπ(µ,σn,τn)[L|i1, . . . , iq, j1, . . . , jq].
Then the continuous time representation Πn of Ln defined as Πn

t := Ln[[nt]] converges
in finite dimensional distribution to the continuous martingale of maximal variation
Πµ.

This theorem will be proved in the next sections. As a remark, let us observe that
the game Gn(P ) where players have to post prices in a discrete grid fails to fulfill
H1 since the size of the grid is fixed and independent of the scale of numéraire. This
game was analyzed in [De Meyer, Marino (2005)] and indeed it does not display
the same asymptotic for the price process.

2.3. The a posteriori martingale. In this section we show that the choice of a
strategy for player 1 turns out to be a choice of the optimal rate of revelation. The
revelation process, represented by the posterior martingale must be optimal in the
maximization problem (4) here below.

If Y is a random variable on a probability space (Ω,A, P ) and if H ⊂ A is a
σ-algebra, the probability distribution of Y will be denoted [Y ], and the conditional
distribution of Y given H will be [Y |H]. We will also write Γn[Y ] and Vn[Y ] instead
of Γn([Y ]) and Vn([Y ]). In particular V1[Y |H] is anH-measurable random variable1.
Let Wn(µ) be the set of pairs (F , X) where F := (Fq)q=0,...,n+1 is a filtration on

1 The set ∆ of probability measures on R may be endowed with the weak*-topology: the

weakest topology such that φg : µ → Eµ[g] is continuous, for all continuous bounded function

g : R → R. If Y is a random variable on a probability space (Ω,A, P ) and if H ⊂ A is a σ-algebra,
the conditional distribution [Y |H] can then be seen as a measurable map from (Ω,H) to (∆,B∆)
where B∆ denotes the Borel σ-algebra on ∆ corresponding to the weak*-topology. Let ∆2

r be the

set of µ ∈ ∆ such that ‖µ‖L2 ≤ r. ∆2
r is a closed subset of ∆. (Indeed ∆2

r = ∩nφ−1
gn ([0, r2]),

where gn(x) := min(x2, n).) We next prove that the restriction of V1 to ∆2
r is continuous:

If {µn}n∈N ⊂ ∆2
r converges weakly to µ, then, according Skorokhod embeding theorem, there

exists a sequence Xn of random variables with Xn ∼ µn that converges a.s. to X ∼ µ. Since

‖Xn −X‖L2 ≤ 2r, we conclude that |Xn −X|p is a uniformly integrable sequence (p < 2), and
thus ‖Xn −X‖Lp → 0, implying with H5 that V1[Xn] → V1[X]. So V1 is indeed continuous on
∆2

r. Therefore V1 : ∆2 → R is measurable on the trace B∆2 of B∆ on ∆2. Since if [Y ] ∈ ∆2,

[Y |H] maps Ω to ∆2, we get that V1[Y |H] is measurable as composition of measurable functions.
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a probability space, and X = (Xq)q=0,...,n+1 is an F-martingale X whose n+ 1-th
value Xn+1 is µ-distibuted. For (F , X) ∈ Wn(µ), we define Vn(F , X) as:

(3) Vn(F , X) := E[
n−1∑
q=0

V1[Xq+1|Fq]]

Let us also define Vn(µ) as

(4) Vn(µ) := sup{Vn(F , X) : (F , X) ∈ Wn(µ)}

Lemma 2. For all µ ∈ ∆1: Vn(µ) ≥ Vn(µ).

Proof: Given (F , X) ∈ Wn(µ) on a probability space (Ω,A, P ), we have to prove
that P1 can guarantee Vn(F , X) in Γn(µ). At the initial stage of Γn(µ), nature
selects a µ distributed random variable L and informs P1 of its choice. We can
clearly assume that nature uses the probability space (Ω,A, P ) as lottery, and sets
L = Xn+1, since Xn+1 ∼ µ. We can also assume that P1 observes the whole space
(Ω,A, P ). He can therefore adopt the following strategy in Γn[Xn+1]: at stage q
he plays an optimal strategy in Γ1[Xq+1|Fq]. The payoff at that stage will then
be: E[Aiq,τqXn+1 +Biq,τq ]. Since the distribution of iq just depends on Xq+1 and
E[Xn+1|Fq+1] = Xq+1, the payoff is also equal to: E[Aiq,τq

Xq+1+Biq,τq
], and since

the move of P1 is optimal in Γ1[Xq+1|Fq], he gets at least V1[Xq+1|Fq] conditionally
to Fq. The result follows then easily.

Lemma 3. For all µ ∈ ∆1: Vn(µ) ≤ Vn(µ).

Proof: We will prove that P1 will not be able to guarantee a higher payoff than
Vn(µ). Indeed, let σ be an optimal strategy of P1 in Γn(µ). To reply to σ, P2 may
adopt the following strategy: since he knows σ1, he may compute the distribution
of L1 := E[L|i1]. He plays then an optimal strategy τ1 in Γ1[L1]. At period q,
he computes [Lq|Hq−1], with Hq := σ(i1, j1 . . . iq, jq), where Lq := E[L|iq,Hq−1],
and plays an optimal strategy τq in Γ1[Lq|Hq−1]. Clearly, we also have Lq =
E[L|Hq], since conditionally to Hq−1, the move jq is independent of L. Therefore,
with Hn+1 := σ(L,Hn), Ln+1 := L, H0 := {∅, (I × J)n × R}, L0 := E[L], L :=
(Lq)q=0,...,n+1 and H := (Hq)q=0,...,n+1, the pair (H, L) belongs to Wn(µ).

With that reply P1’s conditional payoff at period q, given Hq−1 is the at most
V1[Lq|Hq−1] and the overall payoff in Γn(µ) is then less than Vn(H, L) ≤ Vn(µ).

Theorem 4. For all µ ∈ ∆1: Vn(µ) = Vn(µ). Furthermore, if σ, τ are optimal
strategies in Γn(µ), if Lq := Eπ(µ,σ,τ)[L|Hq], where Hq := σ(i1, j1 . . . iq, jq), and
L := (Lq)q=0,...,n+1, then (H, L) solves the maximization problem (4).

Proof: The first claim follows the two previous lemmas.
Let next assume that the players are playing a pair (σ, τ) of optimal strategies

in Γn(µ).
Let us then first observe that, for all q, the expectation, conditional to Hq, of the

sum of the next n− q stage payoffs must clearly be at least Vn−q[L|Hq]. Otherwise
P1 could deviate from stage q+1 on to an optimal strategy in Γn−q[L|Hq], obtaining
thus a higher payoff against τ than with σ, which is impossible since (σ, τ) is an
equilibrium of the game.

At period q, P2 may compute vq−1 := V1[Lq|Hq−1] and uq−1 := E[Aiq,jqLq +
Biq,jq |Hq−1]. On the event {vq−1 < uq−1}, P2 could then deviate at stage q with
an optimal strategy in Γ1[Lq|Hq−1], bringing the expected payoff of that stage to
less than vq−1, that is strictly less than the payoff uq−1 P1 would obtain with τ .
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If P2 then follows with an optimal strategy in Γn−q[L|Hq], the payoff of P1 in the
n−q last stages will be less than Vn−q[L|Hq], which is, as observed above, less than
the payoff P1 gets with the pair (σ, τ). Therefore, π(µ,σ,τ)[vq−1 < uq−1] = 0, since
otherwise, P2 would have a profitable deviation.

So for all q, E[vq−1] ≥ E[uq−1]. Summing up all these inequalities, we get
Vn(H, L) ≥ gn(µ, σ, τ) = Vn(µ) = Vn(µ), and the second assertion is proved.

2.4. The canonical representation of Γ1(µ). The aim of this section is double:
on one hand we will derive the properties of V1 implied by the hypotheses H1, H2.
On the other hand, we will provide a generic way to create trading mechanism
having these properties.

In the one shot game, a strategy of player 2 is just an element τ of ∆(J), the
history h1 reduces to i, and we get A1(h1, τ) = Aiτ , B1(h1, τ) = Biτ . The function
φ1
τ introduced in (2) will simply be denoted φτ in this section. It becomes then:
φτ (L) = supi∈I LAi,τ +Biτ . We get therefore:

(5) V1(µ) = min
τ
Eµ[φτ (L)] = min

φ∈Φ
Eµ[φ(L)].

where Φ is the set of l.s.c. convex functions φ such that φ ≥ φτ for some τ ∈ ∆(J).
Notice that in this formula, we wrote min instead of inf, since the infimum is
reached at the optimal strategy τ which exists according to H3.

Lemma 5. Φ is a convex set of convex functions.

Proof: Indeed, at fixed L, the map τ → LAi,τ +Biτ is linear in τ , and therefore,
as supremum of linear maps, the map τ → φτ (L) is convex. Therefore, if φ, φ′ ∈ Φ,
if λ, λ′ ≥ 0, with λ+λ′ = 1, then the function φ′′ = λφ+λ′φ′ is clearly convex u.s.c.
and, if φ ≥ φτ and φ′ ≥ φτ ′ , then φ′′ ≥ λφτ + λ′φτ ′ ≥ φτ ′′ , where τ ′′ = λτ + λ′τ ′.
Hence, φ′′ belongs to Φ which results to be a convex set.

Let us now look at the implications of H1 and H2:

Lemma 6. If φ belongs to Φ, then for all α > 0, φα : L → φα(L) := αφ(Lα ) also
belongs to Φ.

If φ belongs to Φ, then for all β ∈ R, φβ : L → φβ(L) := φ(L + β) also belongs
to Φ.

Proof: For α > 0, let ψ1 and ψ2 be translation mappings corresponding to α in
H1. Let τ ∈ ∆(J), and let τα be the τ ’s image probability on J by ψ2: τα is the
probability distribution of ψ2(j) when j is τ distributed. Then, ∀i ∈ I :

Aψ1(i),τα
= Eτ [Aψ1(i),ψ2(j)] = Eτ [Ai,j ] = Aiτ

Bψ1(i),τα
= Eτ [Bψ1(i),ψ2(j)] = Eτ [αBi,j ] = αBiτ .

Therefore, since ψ1 is one to one,

φτα
(L) = supi∈I LAi,τα

+Bi,τα

= supi∈I LAψ1(i),τα
+Bψ1(i),τα

= supi∈I LAiτ + αBiτ
= α supi∈I

L
αAiτ +Biτ

= αφτ (Lα ).

So, if φ belongs to Φ, there exists τ such that φ ≥ φτ . Therefore φα ≥ φτα , and
hence φα also belongs to Φ.

For β ∈ R, let now ψ1 and ψ2 be translation mappings corresponding to β in
H2. Defining τβ as the τ ’s image probability on J by ψ2, we get now ∀i ∈ I :

Aψ1(i),τβ = Eτ [Aψ1(i),ψ2(j)] = Eτ [Ai,j ] = Aiτ
Bψ1(i),τβ = Eτ [Bψ1(i),ψ2(j)] = Eτ [Bi,j + βAi,j ] = Biτ + βAi,τ .
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Therefore φτβ (L) = φτ (L + β), and, if φ belongs to Φ, there exists τ such that
φ ≥ φτ . Therefore φβ ≥ φτβ , and hence φβ also belongs to Φ.

Lemma 7. The function V1[·] is 1-homogeneous, positive, and invariant by trans-
lation by a constant. In other words, for all random variable X, ∀α ≥ 0, ∀β ∈ R:

i) V1[X] ≥ 0
ii) V1[X + β] = V1[X]
iii) V1[β] = 0
iv) V1[αX] = αV1[X].

Proof: Let us first prove ii): The map φ ∈ Φ → φβ is clearly one to one. Therefore:
V1[X + β] = infφ∈ΦE[φβ(X)] = infφ∈ΦE[φ(X)] = V1[X]

Let us next prove iv) for a strictly positive α. Then the map φ ∈ Φ → φα is
clearly one to one. Therefore: V1[αX] = infφ∈ΦE[φα(αX)] = α infφ∈ΦE[φ(X)] =
αV1[X].

With X = 0 and α = 2, we get thus V1[0] = 2V1[0] and so V1[0] = 0. This implies
in particular that iv) holds also when α = 0.

Next, with ii), we get, ∀β ∈ R : 0 = V1[0] = V1[β] and iii) is proved.
Finally, due to Jensen’s inequality: for all φ ∈ Φ : E[φ(X)] ≥ φ(E[X]). Therefore

V1[X] ≥ V1[E[X]] = 0, and i) is proved.

One easy consequence of iii) is that Φ is a set of positive functions. Indeed, for
all φ ∈ Φ : φ(β) = E[φ(β)] ≥ V1[β] = 0.

Given a convex set Φ of finite positive convex functions on R, stable for the α
and β transforms (i.e. ∀a > 0,∀β ∈ R : φα, φβ ∈ Φ, whenever φ ∈ Φ.), there exists
a transaction mechanism T satisfying H1, H2 such that V1[X] = infφ∈ΦE[φ(X)].

In this mechanism I = R, J = Φ, and for all x ∈ R, φ ∈ Φ, Ax,φ := φ′(x),
Bx,φ := φ(x)− φ′(x) · x, where the derivative φ′ is the right continuous selection of
the sub gradient of φ in case φ is not differentiable.

It is then easy to prove that with ψ1(x) := αx and ψ2(φ) := φα, the hypothesis
H1 is satisfied. Similarly, with ψ1(x) := x+ β and ψ2(φ) := φβ , H2 is satisfied.

Now observe that Ax,φL + Bx,φ = φ(x) + φ′(x)(L − x) ≤ φ(L), which proves
that P2 can guarantee E[φ(L)] in Γ1[L], and thus also infφ∈ΦE[φ(L)]. On the
other hand, by playing x(L) = L in Γ1[L], P1 guarantees the same amount so that
V1[L] = infφ∈ΦE[φ(L)].

Based on the previous properties of V1, theorem 1 becomes a particular case of
theorem 9 hereafter. The proof of this theorem will thus be postponed to section
3.2.

3. Martingales of maximal variation

3.1. The maximal covariation. In this section, we solve an auxiliary optimiza-
tion problem that will be quite useful to deal with the martingale optimization
problem analyzed in this part. Let µ be a probability distribution on R and Z a
N (0, 1) random variable on a probability space (Ω,A, P ). As it is well known there
is a unique right continuous increasing function fµ such that fµ(Z) ∼ µ. Namely
fµ(x) = F−1

µ (FN (x)), where FN and Fµ are the cumulative distribution functions
of N (0, 1) and µ and where = F−1

µ (y) := inf{s : Fµ(s) > y}.

Theorem 8. For µ ∈ ∆1+
, let us define α(µ) := sup{E[XZ] : X ∼ µ} then

1) α(µ) = E[fµ(Z)Z].
2) If {Xn}n∈N is a sequence of µ-distributed random variables such that E[XnZ]

converges to α(µ) then Xn converges in L1-norm to fµ(Z).
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Proof: Let us first prove the result for a measure µ such that µ([0,∞[) = 1. Let
X be a µ-distributed random variable. Since µ ∈ ∆1+

, XZ is in L1, and with
Fubini-Tonelli theorem

E[XZ] = E[
∫ ∞

0

11{c≤X}Zdc] =
∫ ∞

0

E[11{c≤X}Z]dc

Therefore

E[fµ(Z)Z]− E[XZ] =
∫ ∞

0

E[(11{c≤fµ(Z)} − 11{c≤X})Z]dc

Now observe that X and fµ(Z) have the same distribution. Therefore

∀c : E[(11{c≤fµ(Z)} − 11{c≤X})] = 0

and we infer that

E[fµ(Z)Z]− E[XZ] =
∫ ∞

0

E[(11{c≤fµ(Z)} − 11{c≤X}) · (Z − f−1
µ (c))]dc

where f−1
µ is the left continuous inverse of fµ: f−1

µ (c) := inf{s : fµ(s) ≥ c}.
An easy computation shows that

11{c≤fµ(Z)} − 11{c≤X} = 11{X<c≤fµ(Z)} − 11{fµ(Z)<c≤X}

Since c ≤ fµ(Z) if and only if f−1
µ (c) ≤ Z, we conclude that

E[fµ(Z)Z]− E[XZ] =
∫ ∞

0

E[h(X,Z, c)]dc

where
h(X,Z, c) := (11{X<c≤fµ(Z)} + 11{fµ(Z)<c≤X}) · |Z − f−1

µ (c)|.

Since h(X,Z, c) ≥ 0, we get E[fµ(Z)Z] ≥ E[XZ], and assertion 1) follows for µ.

Let next {Xn}n∈N be a sequence of µ-distributed random variables such that
E[XnZ] converges to α(µ). Then

∫∞
0
E[h(Xn, Z, c)]dc converges to 0, and, since

h(Xn, Z, c) ≥ 0, we conclude that h(Xn(ω), Z(ω), c) converges to 0 in P⊗λ-measure
on the measure space (Ω×R,A⊗BR, P ⊗λ), where λ is the Lebesgue measure and
BR is the Borelean tribe on R.

As a consequence, there exists a subsequence {X ′
n}n∈N of {Xn}n∈N, such that

that h(X ′
n(ω), Z(ω), c) converges P ⊗ λ-a.e. to 0. Next

h(X ′
n, Z, c) = l(X ′

n, Z, c) · |Z − f−1
µ (c)|

with l(X ′
n, Z, c) := (11{X′

n<c≤fµ(Z)} + 11{fµ(Z)<c≤X′
n}), so that

l(X ′
n(ω), Z(ω), c).11{Z(ω) 6=f−1

µ (c)}

converges P ⊗ λ-a.e. to 0.
Since ∀c: P (Z(ω) = f−1

µ (c)) = 0, l(X ′
n(ω), Z(ω), c) converges also P ⊗ λ-a.e. to

0, and since l is bounded by 2, we conclude with Lebesgue dominated convergence
theorem that for all K <∞: limn→∞

∫K
0
E[l(X ′

n, Z, c)]dc = 0. Now, observe that∫K
0
E[l(X ′

n, Z, c)]dc = E[
∫K
0

(11{X′
n<c≤fµ(Z)} + 11{fµ(Z)<c≤X′

n})dc]
= E[|X ′

n ∧K − fµ(Z) ∧K|],
where a ∧ b is the minimum of the two numbers a and b. Now

‖X ′
n−fµ(Z)‖L1 ≤ ‖X ′

n−X ′
n∧K‖L1+‖X ′

n∧K−fµ(Z)∧K‖L1+‖fµ(Z)∧K−fµ(Z)‖L1 .

Since X ′
n and fµ(Z) are µ-distributed, the first and the third terms are equal and

are just a function g(K). So, ∀K, lim supn→∞ ‖X ′
n − fµ(Z)‖L1 ≤ 2g(K). Next,
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since X ′
n ∈ L1, we get limK→∞ g(K) = 0, and we conclude therefore that X ′

n

converges to fµ(Z) in L1.
We thus have proved that any maximizing sequence {Xn}n∈N (i.e. such that

E[XnZ] → α(µ)) contains a sub sequence {X ′
n}n∈N that converges in L1 to fµ(Z).

This implies clearly that any maximizing sequence converges to fµ(Z), in L1: Claim
2) of the theorem is proved for µ.

The previous proof can be generalized to a two sided measures µ, working sepa-
rately on the positive and negative part of the random variables: Since E[(fµ(Z)−
X)Z] = E[(f+

µ (Z)−X+)Z]−E[(f−µ (Z)−X−)Z], the function h to be considered
here contains now two non negative terms corresponding respectively to the positive
and negative parts of X and Fµ(Z).

3.2. The main result for martingales of maximal variation. L2
0 will denote

hereafter the set of random variables X ∈ L2 such that E[X] = 0, and ∆2
0 be

the set of measure µ on R such that X ∼ µ implies X ∈ L2
0. For a function

M : ∆2
0 → R, and a random variable X in L2 with E[X] = 0, we will write M [X]

instead ofM([X]). Wn(µ) was defined in section 2.3 as the set of pairs (F , X) where
F := (Fq)q=0,...,n+1 is a filtration on a probability space, and X = (Xq)q=0,...,n+1

is an F-martingale X whose n + 1-th value Xn+1 is µ-distibuted. Observe that if
µ ∈ ∆2 and (F , X) ∈ Wn(µ) , then [Xq+1 − Xq|Fq] ∈ ∆2

0, and we may therefore
define the M -variation VMn (F , X) as

(6) VMn (F , X) := E[
n−1∑
q=0

M [Xq+1 −Xq|Fq]].

Since we only will deal in this paper with Lipschitz M in Lp-norm for p < 2, we
refer to footnote 1 on page 8 for a proof of the measurability of M [Xq+1 −Xq|Fq].
Let us next define VMn (µ) as

(7) VMn (µ) := sup{VMn (F , X) : (F , X) ∈ Wn(µ)}

The main result of this part is

Theorem 9. If M satisfies :
i) For all random variable X ∈ L2

0, ∀α ≥ 0 : M [αX] = αM [X].
ii) There exist p ∈ [1, 2[ and A ∈ R such that for all X,Y ∈ L2

0 :

|M [X]−M [Y ]| ≤ A‖X − Y ‖Lp

Then for all µ ∈ ∆2, with ρ := sup{M(µ) : µ ∈ ∆2
0, ‖µ‖L2 ≤ 1} and α(µ) defined

as in theorem 8, we have:

lim
n→∞

VMn (µ)√
n

= ρ · α(µ).

Furthermore, if ρ > 0 and if, for all n, (Fn, Xn) ∈ Wn(µ) satisfies VMn (Fn, Xn) =
VMn (µ), then the continuous time representation Πn of Xn defined as Πn

t := Xn
[[n·t]]

converges in finite dimensional distribution to the continuous martingale of maximal
variation Πµ defined in the introduction.

This theorem justifies our terminology when referring to Πµ as the continuous
martingale of maximal variation corresponding to µ.

With M [X] := ‖X‖L1 , VMn (F , X) is just the L1-variation of the martingale
X and we recover here Mertens and Zamir’s result on the maximal variation of
a bounded martingale [Mertens, Zamir (1976) ], taking µ such that µ({1}) = s
µ({0}) = 1 − s. With M [X] := ‖X‖Lp , with p ∈ [1, 2[ we also recover the results
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of [De Meyer B. (1998)]. The proof presented here is in fact inspired by this last
paper.

The last theorem implies also theorem 1.
Proof of theorem 1: Indeed, due to ii) in lemma 7, we have for all variable X:
V1[X] = V1[(X − E[X])], and thus also, if F is a σ-algebra: V1[X|F ] = V1[(X −
E[X|F ])|F ]. Therefore, if (F , X) ∈ Wn(µ), the function Vn(F , X) defined in (3) is
just equal to:

Vn(F , X) = VV1
n (F , X).

Since, iv) in lemma 7 indicates that V1 satisfies the first condition of theorem 9,
H5 indicates that V1 fullfils the second one and H4 indicates that ρ > 0, theorem
1 follows then from theorem 4. As a byproduct, we also get that limn→∞

Vn(µ)√
n

=
ρ · α(µ).

The six remaining sections of the paper are devoted to the proof of theorem
9. We first provide an upper bound for M in the next section that leads to an
upper bound for VMn in the next one. We will then conclude in section 3.6 that

ρ·α(µ) dominates the lim sup of V
M
n (µ)√
n

, using a central limit theorem for martingales
presented in section 3.5.

In section 3.7, we prove that ρ · α(µ) is the lim inf of VM
n (µ)√
n

, and in section 3.8,
we prove the convergence of the Πn to Πµ.

Notice that the case ρ = 0 is trivial in theorem 9, since then M [µ] ≤ 0 for all µ in
∆2

0, and thus the constant martingale Xq = E[Xn+1], for all q ≤ n and Xn+1 ∼ µ

will be optimal in the maximization problem (7), and so VMn (µ) = 0. In the sequel,
we therefore assume ρ > 0.

As a remark, observe that the hypothesis p < 2 in ii) of theorem 9 could not be
weakened in p ≤ 2. A counterexample of this is given at the end of section 3.6

3.3. An upper bound for M . On a probability space (Ω,A, P ), for q ≥ 1 and
r > 0, let Bqr (Ω,A, P ) be the set Bqr (Ω,A, P ) := {X ∈ L2(Ω,A, P )|‖X‖Lq ≤ r}.
Let next B∗(Ω,A, P ) be defined as:

B∗(Ω,A, P ) := B2
ρ(Ω,A, P ) ∩Bp

′

2A(Ω,A, P ),

with A, ρ and p as in theorem 9 and p′ such that 1
p + 1

p′ = 1. Let us finally define,
for X ∈ L2(Ω,A, P ):

(8) B(X) := sup{E[XY ] : Y ∈ B∗(Ω,A, P )}

Observing that if Y ∈ B∗(Ω,A, P ) then E[Y |X] ∈ B∗(Ω,A, P ), we infer that
B(X) = sup{E[Xf(X)] : f(X) ∈ B∗(Ω,A, P )}, and therefore B(X) just depends
on the distribution [X]. In other words, if [X] = [X ′], then B(X) = B(X ′), even if
X and X ′ are defined on different probability spaces. We will therefore abuse the
notations and write B[X] instead of B(X).

Lemma 10.
1) For all X ∈ L2

0(Ω,A, P ) : M [X] ≤ ρ · ‖X‖L2 .
2) If B(Ω,A, P ) := {X ∈ L2(Ω,A, P ) : B[X] ≤ 1}, then

B(Ω,A, P ) ⊂ conv(B2
1
ρ
(Ω,A, P ) ∪Bp1

2A

(Ω,A, P )).

3) For all X ∈ L2
0(Ω,A, P ) : B[X] ≥M [X].

Proof: Claim 1) is an obvious consequence of the definition of ρ as sup{M [X] :
X ∈ L2

0, ‖X‖L2 ≤ 1} and of the 1-homogeneity of M .
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We next prove claim 2): Let C denote conv(B2
1
ρ

(Ω,A, P )∪Bp1
2A

(Ω,A, P )). Since

B2
1
ρ

(Ω,A, P ) and Bp1
2A

(Ω,A, P ) are closed sets in L2-norm (p < 2), so is C. There-

fore, if Z ∈ L2
0(Ω,A, P ) does not belong to C, we can separate {Z} and C in

L2(Ω,A, P ) by a separating vector Y : E[Y Z] > α := sup{E[Y X] : X ∈ C}. In
particular α ≥ sup{E[Y X] : X ∈ B2

1
ρ

} = 1
ρ · ‖Y ‖L2 , and α ≥ sup{E[Y X] : X ∈

Bp1
2A

} = 1
2A · ‖Y ‖Lp′ . This indicates that Y ′ := Y

α ∈ B∗(Ω,A, P ). Therefore
B[Z] ≥ E[Y ′Z] > 1 and so Z 6∈ B(Ω,A, P ). So the complementary of C is included
in the complementary of B(Ω,A, P ), or equivalently: B(Ω,A, P ) ⊂ C.

To prove claim 3) observe that bothM and B are 1-homogeneous on L2
0(Ω,A, P ).

Therefore, we just have to prove that, for all X ∈ L2
0(Ω,A, P ),M [X] ≤ 1 whenever

B[X] ≤ 1. But if B[X] ≤ 1, then X ∈ B(Ω,A, P ). So, by the previous claim
X ∈ C. Since C is the convex hull of two convex sets, we get that X = λY + λ′Y ′,
with λ, λ′ ≥ 0, λ + λ′ = 1, Y ∈ B2

1
ρ

and Y ′ ∈ Bp1
2A

. Since E[X] = 0, we also have

X = λ(Y − E[Y ]) + λ′(Y ′ − E[Y ′]). Due to property ii) in theorem 9, we get:

M [X] ≤M [λ(Y − E[Y ])] +A‖λ′(Y ′ − E[Y ′])‖Lp .

Since ‖(Y − E[Y ])‖L2 ≤ ‖Y ‖L2 ≤ 1
ρ , it follows from claim 1) that the first term is

bounded by λ. The second one is bounded by λ′ since ‖Y ′ −E[Y ′]‖Lp ≤ ‖Y ′‖Lp +
‖E[Y ′]‖Lp ≤ 2‖Y ′‖Lp ≤ 1

A . Thus M [X] ≤ 1 and the lemma is proved.

3.4. An upper bound for VMn (µ). For (F , X) ∈ Wn(µ), VMn (F , X) was defined
in (6). The term M [Xq+1 −Xq|Fq] involved there is then dominated by B[Xq+1 −
Xq|Fq], and we will therefore concentrate our attention on VBn (F , X).

Next lemma presents E[B[Xq+1−Xq|Fq]] as the result of an optimization prob-
lem.

Let F1 ⊂ F2 be two σ-algebras on a probability space (Ω,A, P ). Let L2
0(F2|F1)

be the set of X ∈ L2(F2) such that E[X|F1] = 0. Let B∗(F2|F1) denote the set of
Y ∈ L2(F2) such that E[Y 2|F1] ≤ ρ2 and E[|Y |p′ |F1] ≤ (2A)p

′
. Let B∗(ρ,C)(F2|F1)

denote the set of Y ∈ L2(F2) such that

1) E[Y |F1] = 0
2) E[Y 2|F1] = ρ2

3) E[|Y |p′ |F1] ≤ Cp
′
.

Lemma 11. 1) For all X ∈ L2
0(F2):

E[B[X|F1]] = sup{E[XY ]|Y ∈ B∗(F2|F1)}.
2) If there exists in L2(Ω,F2, P )) a random variable U that is independent of
σ(F1, X) and taking the values 1 and − 1 with probability 1/2 then

E[B[X|F1]] ≤ sup{E[XY ]|Y ∈ B∗(ρ,4A+ρ)(F2|F1)}.

Proof: If X ∈ L2(F2) and Y ∈ B∗(F2|F1) then E[XY ] = E[E[XY |F1]]. Since
conditionally to F1, Y belongs to B∗, we get E[XY |F1] ≤ B[X|F1], and thus
E[B[X|F1]] ≥ sup{E[XY ]|Y ∈ B∗(F2|F1)}.

To prove the reverse inequality, we just have to prove that, ∀ε > 0, there exists a
measurable map φ : ∆2×R → R such that, ∀µ ∈ ∆2, if X ∼ µ, then E[φ(µ,X)2] ≤
ρ2, E[|φ(µ,X)|p′ ] ≤ (2A)p

′
and B(µ) − ε ≤ E[Xφ(µ,X)]. Indeed, the random

variable Y := φ([X|F1], X) belongs then to B∗(F2|F1) and E[XY ] ≥ E[B[X|F1]]−
ε. The existence of such a measurable map follows from the fact that the set D of
measure µ with finite support in Q and rational weights is a countable dense subset
of ∆2 for the L2-topology: For all ε > 0, there exists thus a measurable partition
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{An}n∈N of ∆2 and a sequence {ξn}n∈N ⊂ D such that ∀µ ∈ ∆2, the measure
µ′ :=

∑
n 11µ∈An

ξn satisfies ∃X,X ′ such thatX ∼ µ andX ′ ∼ µ′ with ‖X−X ′‖L2 ≤
δ := ε/(1 + 2ρ). For all n there also exists θn : R → R such that, if Xn ∼ ξn
then E[|θn(Xn)|2] ≤ ρ2, E[|θn(Xn)|p

′
] ≤ (2A)p

′
and E[Xnθn(Xn)] ≥ B(ξn) − δ.

Therefore E[X
∑
n 11µ∈An

θn(Xn)] ≥ B[X ′]−(1+ρ)δ ≥ B[X]−(1+2ρ)δ = B[X]−ε.
We set then φ(µ,X) := Eµ[

∑
n 11µ∈An

θn(Xn)|X].
We next turn to claim 2): Just observe that if Y ∈ B∗(F2|F1), then Y ′ := E[Y |X]

also belongs to B∗(F2|F1) and has thus the property that E[XY ] = E[XY ′]. Now,
consider Y ′′ := Y ′ − E[Y ′|F1]. Since X ∈ L2

0(F2|F1), we have E[XE[Y ′|F1]] = 0
so E[XY ] = E[XY ′′]. Now, observe that

θ2 := E[(Y ′′)2|F1] = E[(Y ′)2|F1]− (E[Y ′|F1])2 ≤ E[Y 2|F1] ≤ ρ2.

Finally, let Y ′′′ be defined as Y ′′′ := Y ′′ +
√
ρ2 − θ2U , since U is independent of

σ(F1, X), and since Y ′′ is measurable on this σ-algebra, we get obviously

E[XY ] = E[XY ′′′], E[Y ′′′|F1] = 0 and E[(Y ′′′)2|F1] = ρ2.

Observing that (E[(Y ′′′)p
′ |F1])

1
p′ is just a conditional Lp

′
-norm, we get

(E[|Y ′′′|p′ |F1])
1
p′ ≤ (E[|Y ′′|p′ |F1])

1
p′ + ρ

≤ (E[|Y ′|p′ |F1])
1
p′ + (E[|E[Y ′|F1]|p

′ |F1])
1
p′ + ρ

≤ 2(E[|Y ′|p′ |F1])
1
p′ + ρ

≤ 2(E[|Y |p′ |F1])
1
p′ + ρ

≤ 4A+ ρ.

Therefore, for all Y ∈ B∗(F2|F1), there is a Y ′′′ ∈ B∗(ρ,4A+ρ)(F2|F1) such that
E[XY ] = E[XY ′′′], and claim 2) then follows from claim 1).

Let us now use this lemma to compute VMn (F , X) for a pair (F , X) ∈ Wn(µ)
defined on a probability space (Ω,A, P ). Let us first enlarge this space obtaining
a new one (Ω′,A′, P ′) where A may be seen as a sub σ-algebra of A′, P ′ and
P coincide on A and where there is a system of n independent random variables
(Uq)q=1,··· ,n, independent of A, with P ′(Uq = 1) = P ′(Uq = −1) = 1/2. Consider
next the filtration F ′ defined by F ′q := σ(Fq, Uk, k ≤ q). X is then also a martingale
on F ′ and [Xq+1 −Xq|Fq] = [Xq+1 −Xq|F ′q]. Therefore

VMn (F , X) ≤ VBn (F , X) = VBn (F ′, X)

We will denote B∗(ρ,4A+ρ)(F
′) the set of F ′- adapted processes Y such that for

all q = 1, . . . , n: Yq ∈ B∗(ρ,4A+ρ)(F
′
q|F ′q−1). Then, since Xq −Xq−1 ∈ L2

0(F ′q|F ′q−1),
we may apply claim 2) of last lemma to get

VBn (F ′, X) =
∑n
q=1E[B[Xq −Xq−1|F ′q−1]]

≤ supY ∈B∗(ρ,4A+ρ)(F ′)
∑n
q=1E[(Xq −Xq−1) · Yq]

Since X is an F ′-martingale and E[Yq|F ′q−1] = 0, we get

E[(Xq −Xq−1) · Yq] = E[Xq · Yq] = E[E[Xn+1|F ′q] · Yq] = E[Xn+1 · Yq],

and therefore

(9) VMn (F ′, X) ≤ sup
Y ∈B∗(ρ,4A+ρ)(F ′)

E[Xn+1 ·
n∑
q=1

Yq]

For a given Y ∈ B∗(ρ,4A+ρ)(F
′), let Sq be defined as S0 := 0, Sq := Sq−1 + Yq.

Observe then that S is an F ′-martingale. We will denote S(ρ,4A+ρ)(F ′) the set of
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F ′-martingale S whose increments Sq+1 − Sq belong to B∗(ρ,4A+ρ)(F
′
q|F ′q−1), for all

q, and such that S0 = 0. The last formula becomes then

(10) VMn (F ′, X) ≤ sup
S∈S∗(ρ,4A+ρ)(F ′)

E[Xn+1 · Sn].

Let us make two comments on the last formula: the quantity VMn (F ′, X) depends
on the laws [Xq+1 −Xq|Fq] which are intimately related to the filtration F . The
bound we found in the last formula just depends on the laws [Xq+1−Xq|X1, . . . , Xq].
Therefore, if we create a martingale X̃ on another filtration G with the same law
as X — we call this procedure the embedding of X in the filtration G—, the right
hand side of last inequality can equivalently be evaluated on X̃.

The second comment is that we will have to deal with VM
n (F ′,X)√

n
, and will then

have to evaluate E[Xn+1· Sn√
n
], for S ∈ S∗(ρ,4A+ρ)(F

′). Since the increments of S have

a conditional variance equal to ρ2, Sn√
n

will be approximatively normally distributed,
due to a central limit theorem for martingales. We need however precise bounds
for this approximation. These bounds are provided in the next section which is in
fact the crux point of the argument. We embed there both martingales S√

n
and X

in a Brownian filtration.

3.5. The embedding in the Brownian filtration. Let B be a Brownian mo-
tion on a probability space (Ω0,A0, P0) and let G be the natural filtration of B.
Skorokhod rose the following question: Given a probability distribution µ ∈ ∆p′ ,
is there a G-stopping time θ such that Bθ ∼ µ? To avoid trivial uninteresting solu-
tions to this problem, one further require that E[θ

p′
2 ] < ∞. It is well known that

Skorokhod’s problem has a solution for all µ ∈ ∆p′

0 (see for instance [Azéma, Yor
(1979)]) and we will denote θµ one of these solutions.

We also will need the following fact: For all p′ > 1, there exist two non neg-
ative constants cp′ and Cp′ , called the Burkholder Davis Gundy constants (see
[Burkholder (1973)]), such that, for all G-stopping times τ ≥ τ ′:

E[τ
p′
2 ] <∞ =⇒ cp′ ·E[(τ−τ ′)

p′
2 |Gτ ′ ] ≤ E[|Bτ−Bτ ′ |p

′
|Gτ ′ ] ≤ Cp′ ·E[(τ−τ ′)

p′
2 |Gτ ′ ].

In the particular case p′ = 2, we have c2 = C2 = 1.

Lemma 12. Let R = (Rq)q:=0,...,n be a martingale with Rn ∈ Lp
′

0 , then there is an

increasing sequence of stopping times {τq}q:=0,...,n such that E[τ
p′
2
n ] <∞ and such

that both processes R and R̂ have the same distribution where R̂q := Bτq
.

Proof: Just take τ0 := θ[R0] so that [R̂0] = [Bτ0 ] = [R0]. Once τq is defined, define
τq+1 as follows: B′t := Bτq+t−Bτq

is another Brownian motion on its natural filtra-
tion G′. For all (r0, . . . , rq) ∈ Rq+1 define θ̃(r0, . . . , rq) := θ′[Rq+1−Rq|R0=r0;...;Rq=rq ],
where θ′µ is a solution of µ-Skorokhod’s problem for the Brownian motion B′. This
mapping can be chosen measurable from Rq+1 to (Ω0,A0), and define τq+1 :=
τq + θ̃(R̂0, . . . , R̂q). Then R̂q+1 − R̂q = Bτq+1 − Bτq

= B′
θ̃(R̂0,...,R̂q)

. Therefore

[R̂q+1− R̂q|R̂0, . . . , R̂q] = [Rq+1−Rq|R0, . . . , Rq]. We then conclude that R and R̂

have the same laws. Next since cp ·E[θ̃(R̂0, . . . , R̂q)
p′
2 |Gτq ] ≤ E[(R̂q+1− R̂q)p

′ |Gτq ],

we conclude by induction that E[τ
p′
2
n ] <∞.

We are now ready to start the embedding procedure. Let us consider (F ′, X) ∈
Wn(µ) and S ∈ S∗(ρ,4A+ρ)(F

′), as in the last section.
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Let R denote R := S
ρ
√
n
. To embed both R and X, we will have to slightly

perturb the above procedure: For ε > 0 we define τ0 = τ 1
2

:= ε and R̂0 := 0. For

q = 0, . . . n−1, we then define τq+1, τq+ 3
2

and R̂q+1 recursively as follows: Let G′ be
the natural σ-algebra of B′t := Bt+τ

q+ 1
2
− Bτ

q+ 1
2
. Define as above θ̃(r0, . . . , rq) :=

θ′[Rq+1−Rq|R0=r0;...;Rq=rq ] and then set

τq+1 := τq+ 1
2

+ θ̃(R̂0, . . . , R̂q), τq+ 3
2

:= τq+1 + ε, R̂q+1 := R̂q +Bτq+1 −Bτ
q+ 1

2
.

It is convenient to define also τn+1 as τn+1 = τn+ 1
2

:= τn + ε.

The process R̂ has the same distribution as R, is a Gτq
-martingale and the

distribution of R̂n −Bτn
is clearly N (0, nε), in particular

(11) ‖R̂n −Bτn
‖L2 =

√
ε · n.

For ε = 0, we have just the embedding of the lemma. The advantage of introduc-
ing ε > 0 is that this will allow to embed X also: Let Z ∼ N (0, ε). There exists a
measurable function fq : R2q+2 → R such that ∀(r0, . . . , rq, x0, . . . , xq−1) ∈ R2q+1 :

[fq(r0, . . . , rq, x0, . . . , xq−1, Z)] = [Xq|R0 = r0, . . . , Rq = rq, X0 = x0, . . . , Xq−1 = xq−1]

Define then X̂q := fq(R̂0, . . . , R̂q, X̂0, . . . , X̂q−1, Bτq−1+ε − Bτq−1). Clearly (R,S)
and (R̂, X̂) have the same distribution and (R̂, X̂) is a Gτq

-martingale.
In order to obtain our central limit result for R̂n, we will prove hereafter that τn is

close to be a constant stopping time, which indicates that Bτn follows approximately
a normal distribution.

Lemma 13.
1) For all t ∈ [0, 1]: E[τ[[nt]]] = ([[nt]] + 1)ε + [[nt]] · 1

n , where [[a]] is the greatest
integer less or equal to a.

2) E[|τ[[nt]] − E[τ[[nt]]]|] ≤ κ2 · n
2

p′∧4−1, where κ := 2
2

p′∧4 4A+ρ

(cp′ )
1
p′ ρ

3) ‖Bt −Bτ[[nt]]‖L2 ≤ κ · n
1

p′∧4−
1
2 +

√
t− [[nt]]

n + ε([[nt]] + 1).

Proof: To prove claim 1), observe that τ[[nt]] = τ0 +
∑[[nt]]
q=1(τq − τq−1). Then, since

S ∈ S∗(ρ,4A+ρ)(F
′), we get τ0 = ε, and

E[τq − τq−1|Gτq−1 ] = ε+ E[τq − τq− 1
2
|Gτq−1 ]

= ε+ E[(Bτq
−Bτ

q− 1
2
)2|Gτq−1 ]

= ε+ E[(R̂q − R̂q−1)2|R̂k, X̂k, k ≤ q − 1]
= ε+ 1

ρ2nE[(Sq − Sq−1)2|Sk, Xk, k ≤ q − 1]
= ε+ 1

n

Therefore, E[τ[[nt]]] = ([[nt]] + 1)ε+ [[nt]] · 1
n , as announced.

We next prove claim 2). Since E[τq − τq−1|Gτq−1 ] = E[τq − τq−1], we get

τ[[nt]] − E[τ[[nt]]] =
[[nt]]∑
q=1

((τq − τq−1)− E[τq − τq−1]) = Q[[nt]],

where

Qs :=
s∑
q=1

((τq − τq−1)− E[τq − τq−1|Gτq−1 ]) =
s∑
q=1

(τq − τq− 1
2
− 1
n

).
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The process Q = (Qs)s=0,...n is clearly a Gτs
-martingale starting at 0. Since p ∈

[1, 2[ and 1
p + 1

p′ = 1, we get p′ > 2, and so, p̃ := min(p′,4)
2 ∈]1, 2]. Therefore

(12) ‖τ[[nt]] − E[τ[[nt]]]‖L1 = ‖Q[[nt]]‖L1 ≤ ‖Qn‖L1 ≤ ‖Qn‖Lp̃ .

We claim next that

(13) E[|Qn|p̃] ≤ 22−p̃
n−1∑
k=0

E[|Qk+1 −Qk|p̃].

This follows at once from a recursive use of the relation:

E[|x+ Y |p̃] ≤ |x|p̃ + 22−p̃E[|Y |p̃],

that holds for all x in R, whenever Y is a centered random variable: Indeed,

|x+ Y |p̃ − |x|p̃ = Y

∫ 1

0

p̃|x+ sY |p̃−1sgn(x+ sY )ds

Thus, since E[Y ] = 0, we get

E[|x+ Y |p̃]− |x|p̃ = E

[
Y

∫ 1

0

p̃
(
|x+ sY |p̃−1sgn(x+ sY )− |x|p̃−1sgn(x)

)
ds

]
.

Since p̃ ≤ 2, straightforward computation indicates that, for fixed a, the function
g(x) := ||x + a|p̃−1sgn(x + a) − |x|p̃−1sgn(x)| reaches its maximum at x = −a/2,
implying g(x) ≤ 22−p̃|a|p̃−1.

So, E[|x+Y |p̃]−|x|p̃ ≤ E
[
|Y |
∫ 1

0
22−p̃p|sY |p̃−1ds

]
= 22−p̃E[|Y |p̃], as announced

and inequality (13) follows.
Next ‖Qk+1 − Qk‖Lp̃ = ‖τk+1 − τk+ 1

2
− 1

n‖Lp̃ ≤ ‖τk+1 − τk+ 1
2
‖Lp̃ + 1

n . Since
1
n = E[τk+1 − τk+ 1

2
], we also have 1

n ≤ ‖τk+1 − τk+ 1
2
‖Lp̃ , and thus

‖Qk+1 −Qk‖Lp̃ ≤ 2‖τk+1 − τk+ 1
2
‖Lp̃ ≤ 2‖τk+1 − τk+ 1

2
‖
L

p′
2
.

Finally, R̂k+1 − R̂k = Bτk+1 −Bτ
k+ 1

2
. Therefore, we get with Burkholder Davis

Gundy inequality, and since S ∈ S∗(ρ,4A+ρ)(F
′):

E[(τk+1−τk+ 1
2
)

p′
2 ] ≤ 1

cp′
E[|R̂k+1−R̂k|p

′
] =

1

cp′ρp
′n

p′
2

E[|Sk+1−Sk|p
′
] ≤ (4A+ ρ)p

′

cp′ρp
′n

p′
2

So: E[|Qk+1 − Qk|p̃] ≤ 2p̃(4A+ ρ)2p̃(cp′)
− 2p̃

p′ ρ−2p̃n−p̃, and, with (13), we con-
clude

E[|Qn|p̃] ≤ 22(4A+ ρ)2p̃(cp′)
− 2p̃

p′ ρ−2p̃n1−p̃.

Therefore, with (12), we get:

‖τ[[nt]] − E[τ[[nt]]]‖L1 ≤ 2
2
p̃

(
4A+ ρ

(cp′)
1
p′ ρ

)2

n
1
p̃−1

and claim 2) is proved.
We next prove claim 3): let τ denote E[τ[[nt]]]. Then

‖Bτ[[nt]] −Bt‖L2 ≤ ‖Bτ[[nt]] −Bτ‖L2 + ‖Bτ −Bt‖L2 =
√
‖τ[[nt]] − τ‖L1 +

√
|τ − t|.

The first term is bounded by claim 2), and the second one by claim 1) .
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3.6. An upper bound for lim supVMn (µ)/
√
n. Let us consider (F ′, X) ∈ Wn(µ).

According to (10), we have:

VMn (F ′, X)√
n

≤ sup
S∈S∗(ρ,4A+ρ)(F ′)

E[Xn+1 ·
Sn√
n

].

For S ∈ S∗(ρ,4A+ρ)(F
′), let us define Rn := Sn

ρ
√
n

and let us embed (X,R) in the
Brownian filtration, as done in the last section, for ε > 0.

Then E[Xn+1 · Sn√
n
] = ρ · E[Xn+1 ·Rn] = ρ · E[X̂n+1 · R̂n].

Claim 3) for t = 1 in lemma 13 yields ‖B1 −Bτn‖L2 ≤ κ · n
1

p′∧4−
1
2 +

√
ε(n+ 1).

With (11), we get then ‖R̂n −B1‖L2 ≤ κ · n
1

p′∧4−
1
2 +

√
ε(n+ 1) +

√
ε · n.

Therefore, since X̂n+1 ∼ µ and B1 ∼ N (0, 1),

E[X̂n+1 · R̂n] ≤ E[X̂n+1 ·B1] + E[X̂n+1 · (R̂n −B1)]
≤ E[X̂n+1 ·B1] + ‖X̂n+1‖L2 · ‖R̂n −B1‖L2

≤ α(µ) + ‖µ‖L2 · (κ · n
1

p′∧4−
1
2 +

√
ε(n+ 1) +

√
ε · n),

where α(µ) was defined in theorem 8. Since this holds for all ε > 0 and all S ∈
S∗(ρ,4A+ρ)(F

′), we conclude that for all (F ′, X) ∈ Wn(µ):

VMn (F ′, X)√
n

≤ ρ · α(µ) + ρ · ‖µ‖L2 · κ · n
1

p′∧4−
1
2 .

Since p′ > 2, and since the constant κ in lemma 13 is independent of n, we thus
have proved:

Theorem 14. Under the hypotheses of theorem 9,

lim sup
n→∞

VMn (µ)√
n

≤ ρ · α(µ).

We will prove in the next section that ρ ·α(µ) is the limit of V
M
n (µ)√
n

as n increases
to ∞. To conclude this section, we give here an example to illustrate that p must
be strictly less than 2 in hypothesis ii) of theorem 9 in order to get the result:
Clearly, the function M [µ] := ‖µ‖L2 satisfies hypothesis i) of theorem 9, and would
also satisfy hypothesis ii) with A = 1 if p = 2 was allowed. For this M , ρ = 1. Let
then µ be the probability that assigns a weight 1/2 to +1 and − 1. Let Xn be the
unique martingale of length n+1 such that ∀q = 0, . . . , n, |Xn

q | =
√

q
n and such that

Xn
n+1 := Xn

n . In other words, if, for q < n, Xn
q =

√
q
n , then Xn

q+1 jumps to
√

q+1
n

with probability π or −
√

q+1
n with probability 1 − π, where π := 1

2 (1 +
√

q
q+1 ),

and symmetric jumps are made if Xn
q = −

√
q
n . An easy computation shows that

E[(Xn
q+1 − Xn

q )2|Xn
1 , . . . , X

n
q ] = 1

n , and thus, if Fn denotes the natural filtration
of Xn, we get VMn (Fn, Xn) =

√
n. Since for all pair (F ′, X) ∈ Mn(µ), we can

write as in (10): VMn (F ′, X) = E[Xn+1Sn], where Sn =
∑n
k=1 Yk, with E[Y 2

k ] = 1
we get E[S2

n] = n, and due to Cauchy Swartz inequality, it comes VMn (F ′, X) ≤
‖Xn+1‖L2

√
n = ‖µ‖L2

√
n =

√
n. Therefore:

√
n ≥ VMn (µ) ≥ VMn (Fn, Xn) =

√
n,

and thus

lim
n→∞

VMn (µ)√
n

= 1 > ρ · α(µ) =

√
2
π
.
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3.7. A lower bound for lim inf VMn (µ)/
√
n. Let Y be a random variable in L4

with E[Y ] = 0, E[Y 2] = 1. We will provide in this section a sequence (Fn, Xn) ∈
Mn(µ) such that

lim inf
n→∞

VMn (Fn, Xn)√
n

≥M [Y ] · α(µ).

Using lemma 12, we can construct, for each n, an increasing sequence (τnq )q=0,...,n

of stopping times on the Brownian filtration G such that Y nq :=
√
n · (Bτn

q
−Bτn

q−1
)

is an i.i.d. sequence with [Y nq ] = [Y ]. Observe in particular that τnq − τnq−1 is also
an i.i.d. sequence. We also set τnn+1 := τnn ∨ 1.

The argument of lemma 13 can be applied to this sequence of stopping times,
replacing ρ by 1, p′ by 4, ε by 0 and 4A+ ρ by ‖Y ‖L4 . We obtain in this way:

Lemma 15.
1) For all t ∈ [0, 1]: E[τn[[nt]]] = [[nt]]

n .

2) E[|τn[[nt]] − E[τn[[nt]]]|] ≤ γ2 · n− 1
2 , where γ := ‖Y ‖L4

(c4)
1
4

3) τn[[nt]] converges a.s. to t an n goes to ∞.

4) ‖B1 −Bτn
n
‖L2 ≤ γ · n− 1

4 .

Proof: By construction of the sequence τnq , θnq := τnq − τnq−1 is an i.i.d. sequence of
random variables and 1 = E[(Y nq )2] = n ·E[(Bτn

q
−Bτn

q−1
)2] = n ·E[θnq ]. Burkholder

Davis Gundy inequality indicates that

c4 · var[θnq ] ≤ c4 · E[(θnq )2] ≤ E[(Bτn
q
−Bτn

q−1
)4] = E[Y 4]/n2.

Therefore, since τn[[nt]] =
∑[[nt]]
q=1 θ

n
q , we get E[τn[[nt]]] = [[nt]]/n and

‖τn[[nt]] − E[τn[[nt]]]‖
2
L2 = var(τn[[nt]]) ≤

E[Y 4] · [[nt]]
c4 · n2

. ≤ E[Y 4]
c4 · n

.

The strong law of large numbers indicates that
∑[[nt]]
q=1(θ

n
q − E[θnq ]) converges a.s.

to 0, and point 3) follows then from point 1).

We finally conclude ‖Bτn
n
− B1‖2L2 = E[|τnn − 1|] ≤ ‖Y ‖2

L4√
c4·n , and the lemma is

proved.

We define next Fnq := Gτn
q

and Xn
q := E[fµ(B1)|Fnq ], for q = 0, . . . , n+1. Due to

the definition of fµ, we have Xn
n+1 = fµ(B1) ∼ µ and therefore (Fn, Xn) ∈Mn(µ).

We will have to compute VMn (Fn, Xn). To do so, it is convenient to intro-
duce an approximation X̃n of Xn. Due to the Markov property of the Brownian
motion, Πµ

t := E[fµ(B1)|Gt] = f(Bt, t) where f(x, t) := E[fµ(x +
√

1− t · Z)]
with Z ∼ N (0, 1). As a convolution with a normal density, f is twice continu-
ously differentiable on R× [0, 1[, and it further satisfies the heat equation, so that
Πµ
t = f(0, 0) +

∫ t
0
rsdBs, with rs = 0 for s ≥ 1 and rs = ∂

∂xf(Bs, s) for s < 1.
Let us observe here that f(x, t) is increasing in x at fixed t since so is fµ(x),

and thus rs ≥ 0 for all s. Observe also that rs is continuous on [0, 1[ and that
Xn
q = f(0, 0) +

∫ τn
q

0
rsdBs. We will then define X̃n by:

(14) X̃n
q = f(0, 0) +

∫ τn
q

0

rns dBs,
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where rn := Tn(r) is the image of the process r by the map Tn we now define. Let
H2 be the linear space of G-progressively measurable processes a such that

‖a‖2H2 := E[
∫ ∞

0

a2
sds] <∞.

Let also H2
[0,1] denote the set of a ∈ H2 such that as = 0, for all s ≥ 1. For

a ∈ H2
[0,1], we define Tn(a) as the simple process

Tn(a)t :=
n−1∑
q=0

n · E[
∫ q+1

n

q
n

asds|Gτn
q
] · 11[τn

q ,τ
n
q+1[

(t)

Lemma 16. Tn is a linear mapping from H2
[0,1] to H2 and,

∀a ∈ H2
[0,1] : ‖Tn(a)‖H2 ≤ ‖a‖H2 .

Proof: As a simple process, Tn(a) is progressively measurable and

‖Tn(a)‖2H2 = E[
n−1∑
q=0

(n · E[
∫ q+1

n

q
n

asds|Gτn
q
])2 · (τnq+1 − τnq )].

Since Y nq+1 :=
√
n · (Bτn

q+1
−Bτn

q
) satisfies [Y nq+1|Gτn

q
] = [Y ], we get

E[τnq+1 − τnq |Gτn
q
] = E[(Bτn

q+1
−Bτn

q
)2|Gτn

q
] =

E[Y 2]
n

=
1
n
.

Furthermore, with Jensens inequality:

(E[
∫ q+1

n

q
n

asds|Gτn
q
])2 ≤ E[(

∫ q+1
n

q
n

asds)2|Gτn
q
],

and by Cauchy Schwartz inequality: (
∫ q+1

n
q
n

asds)2 ≤
∫ q+1

n
q
n

a2
sds · 1

n . Therefore

‖Tn(a)‖2H2 ≤ E[
n−1∑
q=0

E[
∫ q+1

n

q
n

a2
sds|Gτn

q
]] = ‖a‖2H2 ,

and the lemma is proved.

Lemma 17. ∀a ∈ H2
[0,1] : limn→∞ ‖Tn(a)− a‖H2 = 0.

Proof: As it follows from the last lemma, the linear maps Wn defined by Wn(a) :=
Tn(a)− a form an equi-continuous sequence of linear mappings. Therefore, we just
have to prove the result for elementary processes a of the form: as := ψu · 11[u,v[,
where u < v < 1 and ψu ∈ L∞(Gu). Indeed, these elementary processes engender
a dense subspace of H2

[0,1]. If ψt := E[ψu|Gt], the process ψ is a martingale on the
Brownian filtration and, as such, has continuous sample paths. It is further uni-
formly integrable since ψu ∈ L∞(Gu), and with the stopping theorem, we conclude
that E[ψu|Gτn

q
] = ψτn

q
. Therefore, when n is high enough for :

Tn(a) =ψτn
[[nu]]

· ([[nu]]− nu) · 11[τn
[[nu]],τ

n
[[nu]]+1[

+ ψτn
[[nv]]

· (nv − [[nv]]) · 11[τn
[[nv]],τ

n
[[nv]]+1[

+
∑[[nv]]−1
q=[[nu]] ψτn

q
· 11[τn

q ,τ
n
q+1[

The H2 norm of the two first terms goes to 0 with n since ‖ψ‖L∞ < ∞ and
E[τnq+1 − τnq ] = 1/n. We also have

a =ψu · 11[u,v[

=ψu · 11[τn
[[nu]],τ

n
[[nv]][

+ ψu · 11[u,u∨τn
[[nu]][

− ψu · 11[u∧τn
[[nu]],u[ + ψu · 11[v∧τn

[[nv]],v[
− ψu · 11[v,v∨τn

[[nv]][
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The terms in the last line go to 0 in H2 norm, since ‖ψu‖L∞ <∞ and ‖v−τn[[nv]]‖L1

goes to 0 according to lemma 15. It just remains to prove that ηn converges to 0,
where

ηn := ‖ψu · 11[τn
[[nu]],τ

n
[[nv]][

−
[[nv]]−1∑
q=[[nu]]

ψτn
q
· 11[τn

q ,τ
n
q+1[

‖2H2 .

Now

ηn = ‖
[[nv]]−1∑
q=[[nu]]

(ψu − ψτn
q
) · 11[τn

q ,τ
n
q+1[

‖2H2 =
[[nv]]−1∑
q=[[nu]]

E[(ψu − ψτn
q
)2 · (τnq+1 − τnq )]

It results from the definition of ψt that ψt = ψu if t ≥ u. Therefore, we infer that:
(ψu − ψτn

q
)2 ≤ 4‖ψu‖2∞11τn

q <u and thus

ηn ≤ 4‖ψu‖2∞E[
[[nv]]−1∑
q=[[nu]]

11τn
q <u · (τ

n
q+1 − τnq )] ≤ 4‖ψu‖2∞E[τnq∗n − τn[[nu]]],

where q∗n := inf{q ≥ [[nu]] : τnq ≥ u}. Due to claim 3) in lemma 15 we have that
τnq∗n and τn[[nu]] converge a.s. to u. Since τnq∗n − τn[[nu]] ≤ 2τnn wich is a convergent
sequence in L1, we conclude with Lebesgue’s dominated convergence theorem that
E[τnq∗n − τn[[nu]]] → 0, and the lemma is proved.

We defined X̃n in equation (14) with rn := Tn(r). We next take benefit of last
lemma to prove that X̃n is a good approximation of Xn.

Lemma 18.
1) limn→∞ ‖X̃n

n −Xn
n‖L2 = 0.

2) limn→∞
|VM

n (Fn,Xn)−VM
n (Fn,X̃n)|√

n
= 0

Proof: Since Itô’s integral is isometric from H2 to L2, we get:

‖X̃n
n −Xn

n‖L2 ≤ ‖X̃n
n+1 −Xn

n+1‖L2 = ‖r − rn‖H2 ,

and claim 1) then follows from last lemma.
We prove now claim 2). With ∆Xn

q+1 := Xn
q+1−Xn

q and ∆X̃n
q+1 := X̃n

q+1− X̃n
q ,

we have, with assumption ii) in theorem 9:

|VMn (Fn, Xn)− VMn (Fn, X̃n)| = |E[
∑n−1
q=0 M [∆Xn

q+1|Fnq ]−M [∆X̃n
q+1|Fnq ]]|

≤ E[
∑n−1
q=0 |M [∆Xn

q+1|Fnq ]−M [∆X̃n
q+1|Fnq ]|]

≤ A · E[
∑n−1
q=0 E[|∆Xn

q+1 −∆X̃n
q+1|p|Fnq ]

1
p ]

≤ A · E[
∑n−1
q=0 E[|∆Xn

q+1 −∆X̃n
q+1|2|Fnq ]

1
2 ]

Due to Cauchy Shwartz inequality, we have for all real numbers x0, . . . , xn−1:

n−1∑
q=0

xq ≤
√
n ·

√√√√n−1∑
q=0

x2
q.

Therefore and since
√
x is concave in x, we get with Jensens inequality:

|VMn (Fn, Xn)− VMn (Fn, X̃n)| ≤
√
n ·A · E[

√∑n−1
q=0 E[|∆Xn

q+1 −∆X̃n
q+1|2|Fnq ]]

≤
√
n ·A ·

√∑n−1
q=0 E[|∆Xn

q+1 −∆X̃n
q+1|2]

=
√
n ·A ·

√
E[|Xn

n − X̃n
n |2]

Claim 2) follows then from claim 1).
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We will next compute VMn (Fn, X̃n). Defining λnq as: λnq := n ·E[
∫ q+1

n
q
n

rsds|Gτn
q
],

we have rnt :=
∑n−1
q=0 λ

n
q · 11[τn

q ,τ
n
q+1[

(t). Since r is a positive process, we clearly have

λnq ≥ 0. Next, X̃n
q+1 − X̃n

q = λnq · (Bτn
q+1

− Bτn
q
) = anq · Y nq+1, where anq := λn

q√
n
.

Since r is a positive process, anq is positve and Fnq -measurable, as it results from
the definition of λnq . Therefore, since M [X] is 1-homogeneous in X according to
assumption i) in theorem 9, since [Y nq+1|Fq] = [Y ], and since E[Y 2] = 1, E[Y ] = 0,
we get:

VMn (Fn, X̃n) = E[
∑n−1
q=0 M [X̃n

q+1 − X̃n
q |Fnq ]]

= E[
∑n−1
q=0 M [anq · Y nq+1|Fnq ]]

= E[
∑n−1
q=0 a

n
q ·M [Y ]]

= M [Y ] · E[
∑n−1
q=0 a

n
q · (Y nq+1)

2]
= M [Y ] · E[(

∑n−1
q=0 a

n
q · Y nq+1) · (

∑n−1
q=0 Y

n
q+1)]

=
√
n ·M [Y ] · E[X̃n

n ·Bτn
n
]

.

Since E[B2
τn

n
] = 1, we also have

VM
n (Fn,X̃n)

M [Y ]·
√
n

≥ E[Xn
n ·Bτn

n
]− ‖X̃n

n −Xn
n‖L2

= E[Xn
n+1 ·Bτn

n
]− ‖X̃n

n −Xn
n‖L2

≥ E[Xn
n+1 ·B1]− ‖Xn

n+1‖L2 · ‖Bτn
n
−B1‖L2 − ‖X̃n

n −Xn
n‖L2

= E[fµ(B1) ·B1]− ‖µ‖L2 · ‖Bτn
n
−B1‖L2 − ‖X̃n

n −Xn
n‖L2

= α(µ)− ‖µ‖L2 · ‖Bτn
n
−B1‖L2 − ‖X̃n

n −Xn
n‖L2

With claim 4) in lemma 15 and claim 1) in lemma 18, we conclude then that:

lim inf
n→∞

VMn (Fn, Xn)√
n

= lim inf
n→∞

VMn (Fn, X̃n)√
n

≥M [Y ] · α(µ).

Since VMn (µ) ≥ VMn (Fn, Xn), we thus have proved that for all Y ∈ L4 with E[Y ] =
0 and E[Y 2] = 1:

lim inf
n→∞

VMn (µ)√
n

≥M [Y ] · α(µ).

Since D̃ := {Ỹ ∈ L4 : E[Ỹ ] = 0 and E[Ỹ 2] ≤ 1} is dense for the L2-norm in
D := {Ỹ ∈ L2 : E[Ỹ ] = 0 and E[Ỹ 2] ≤ 1}, and since M is continuous for the Lp-
norm and thus for the L2-norm, we infer that there exists a sequence {Ỹn}n∈N ⊂ D̃
such that

lim
n→∞

M [Ỹn] = ρ := sup{M [Ỹ ] : Ỹ ∈ D} > 0.

We may further assume that M [Ỹn] > 0, so that, since M is 1-homogeneous, we
have that M [Yn] ≥ M [Ỹn], where Yn = Ỹn

‖Ỹn‖L2
. Since Yn ∈ L4 satisfies E[Yn] = 0

and E[Y 2
n ] = 1, we thus have proved that

lim inf
n→∞

VMn (µ)√
n

≥ lim
n→∞

M [Y ] · α(µ) = ρ · α(µ).

With theorem 14, we get then

Theorem 19. Under the hypotheses of theorem 9,

lim
n→∞

VMn (µ)√
n

= ρ · α(µ).
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The first part of theorem 9 is thus proved. The second part will be proved in
the next section.

3.8. Convergence to the continuous martingale of maximal variation. Let
B be a standard one dimensional Brownian motion on a filtered probability space
(Ω,A, P, (Gt)t≥0). If µ ∈ ∆1+

, the martingale Πµ
t := E[fµ(B1)|Gt] will is referred to

in this paper as the continuous martingales of maximal variation of final distribution
µ. This terminology is justified by the next result that clearly implies the second
part of theorem 9.

If (F , X) ∈Mn(µ), we define the continuous time representation X̃ of X as the
process (X̃t)t∈[0,1] with X̃t := X[[nt]], where [[a]] is the greatest integer less or equal
to a.

Theorem 20. Assume that M satisfies the hypotheses i) and ii) of theorem 9, that
ρ > 0, that µ ∈ ∆2 and that {(Fn, Xn)}n∈N is a sequence of martingales with for
all n (Fn, Xn) ∈Mn(µ), that asymptotically maximizes the M -variation, i.e.:

lim
n→∞

VMn (Fn, Xn)√
n

= ρ · α(µ)

Then X̃n converges in finite dimensional distribution to Πµ: For all finite set J ⊂
[0, 1], (X̃n

t )t∈J converges in law to (Πµ
t )t∈J

Proof: Let {(Fn, Xn)}n∈N be an asymptotically maximizing sequence. Without
loss of generality, we may assume that Fn contains an adapted system (Uq),q=0,...,n

of independent uniform random variables, independent of Xn, (otherwise Fn could
be widened). Therefore, with (10), there exists Sn ∈ S∗(ρ,4A+ρ)(F

n) such that
VMn (Fn, Xn)− 1 ≤ E[Xn

n+1 · Snn ], and thus

lim
n→∞

E[Xn
n+1 · Snn ]
ρ ·
√
n

= α(µ).

As in section 3.5, for εn > 0 to be determined later, we may embed (Xn, Rn) in the
Brownian filtration G, where Rn := Sn

ρ·
√
n
, obtaining thus an increasing sequence

(τnq )q=0,...,n+1 and a pair (X̂n, R̂n) of F̂n martingales, where F̂nq := Gτn
q

such that
(Xn, Rn) and (X̂n, R̂n) are equally distributed. We then have

E[X̂n
n+1B1] ≥ E[X̂n

n+1R̂
n
n]− ‖µ‖L2 · ‖B1 − R̂nn‖L2

Since E[X̂n
n+1R̂

n
n] = E[Xn

n+1R
n
n], the first term in the right hand side of the last

inequality converges to α(µ). Next, according to (11) and claim 3) in lemma 13
with t = 1:

‖B1 − R̂nn‖L2 ≤ ‖B1 −Bτn
n
‖L2 + ‖Bτn

n
− R̂nn‖L2

≤ κ · n
1

p′∧4−
1
2 +

√
εn(n+ 1) +

√
εnn

So if εn is chosen so as to ensure nεn → 0 as n→∞, we get

lim
n→∞

E[X̂n
n+1 ·B1]
ρ ·
√
n

= α(µ).

Since B1 ∼ N (0, 1) and X̂n
n+1 ∼ µ, we may then apply claim 2) in theorem 8 to

infer that X̂n
n+1 converges in L1-norm to fµ(B1) = Πµ

1 .
Next observe that ‖X̂n

[[nt]] −Πµ
t ‖L1 ≤ ‖X̂n

[[nt]] −Πµ
τn
[[nt]]
‖L1 + ‖Πµ

τn
[[nt]]

−Πµ
t ‖L1 . But

‖X̂n
[[nt]] −Πµ

τn
[[nt]]
‖L1 = ‖E[X̂n

n+1 −Πµ
1 |Gτn

[[nt]]
]‖L1 ≤ ‖X̂n

n+1 −Πµ
1‖L1 .
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On the other hand, with claim 1) and 2) in lemma 13 and our choice of εn we
infer that τn[[nt]] → t in L1. Since Πµ is uniformly integrable and, as a martingale
on the Brownian filtration, it has continuous sample paths, we then conclude that
‖Πµ

τn
[[nt]]

−Πµ
t ‖L1 → 0 as n increases. Therefore X̂n

[[nt]] converges to Πµ
t in L1.

This implies in particular the convergence in finite distribution of the process
(X̂n

[[nt]])t≥0 to Πµ, and this process has same distribution as X̃n.
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[1] Azéma J. and Yor M. (1979): Une solution simple au problème de Skorokhod. Séminaire de
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