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Abstract

The "belief-based" approach studies an important class of strategies for repeated games
with private monitoring where at each point of the game, each player�s optimal continuation
strategy is determined by the player�s beliefs of the private state of the opponents. This paper
extends the "belief-based" approach to the repeated prisoners� dilemma with asymmetric
private monitoring technologies. We �rst �nd that the previous type of construction in
Sekiguchi (1997) and Bhaskar and Obara (2002) may not be su¢ cient to accommodate
all asymmetric private monitoring scenarios, especially when players� private monitoring
technologies are su¢ ciently di¤erent. We then modify the previous belief-based strategies
by letting the player with smaller observation errors always randomize between "cooperate"
and "defect" along the cooperative path of the play. It is shown that full e¢ ciency can be
approximated using a modi�ed belief-based strategy pro�le, provided that observation errors
are small and a public randomization device is available. We further construct a complete
example to show that the modi�ed "belief-based" strategies can be potentially generalized
to other two-player repeated games with almost-perfect private monitoring structures.

1 Introduction

Models of repeated games have been used in many economic applications to show that my-
opic behavior can be deterred through repetition. However, for players to construct e¤ective
deterrents of myopic defections, it is crucial that the players commonly observe the history of
play. Indeed, many previous works on repeated games have assumed perfect or imperfect public
monitoring and have mainly analyzed perfect (public) equilibria of repeated games.1

�I am grateful to Larry Samuelson for his invaluable advice and guidance in the process of writing this paper. I
would also like to thank Jo Hertel, Bill Sandholm, Satoru Takahashi and Yuichi Yamamoto for helpful discussions,
and Tanapong Potipiti, Jeremy Sandford for comments. Remaining errors are mine.

y1180 Observatory Drive, Madison, Wisconsin 53706 . Email: bochen@wisc.edu. Tel.: 608-263-3866; Fax:
608-262-2033. Webpage: http://www.ssc.wisc.edu/~bchen .

1With public monitoring, repeated games admit a recursive structure and equilibrium payo¤s can be charac-
terized using dynamic programming techniques (see Fudenberg and Maskin [15] for the perfect monitoring case;
Abreu, Pearce and Stachetti [2], and Fudenberg, Levine and Maskin [14] for the imperfect public monitoring case).
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Repeated games with imperfect private monitoring where players�actions are private and
each player only receives noisy private information on opponents�previous actions in each period
are, however, natural settings for many applications as well. A leading example is Stigler�s "secret
price-cut" model: a repeated price-setting oligopoly model where each �rm only observes its own
sales level in each period, which depends on both the prices of the �rms and unobservable demand
shocks. When a �rm�s sales level is low, the �rm does not know for sure whether it came from
other �rms�secret price-cutting, or from low market demand2.

Since there is no nontrivial public history on which players can coordinate their punishments,
repeated games with private monitoring are di¢ cult to analyze3. Nevertheless, interesting results
on repeated games with private monitoring have recently been discovered. Naturally, this line
of research started from scenarios where the problem caused by private monitoring is minimal.
These include, for instance, conditionally independent private monitoring where each player�s
signals convey no information on others� private signals (Matsushima (2004)); almost-public
monitoring where players� private signals are highly correlated for all action pro�les played
(Mailath and Morris (2002, 2006)); and, more commonly, almost perfect private monitoring
where each player�s signals are private, but reasonably accurate about opponents� previous
actions (Bhaskar and Obara (2002), Ely and Välimäki (2002), Ely, Hörner and Olszewski (2005),
Hörner and Olszewski (2006), Piccione (2002), Sekiguchi (1997), Yamamoto (2006)).

In general, the private monitoring literature has put forward two main approaches: the
"belief-based" approach and the "belief-free" approach. The belief-free approach was �rst in-
troduced in the context of a two-player repeated prisoners�dilemma with almost perfect private
monitoring by Piccione (2002) and Ely and Välimäki (2002). This approach involves �nding a
set of continuation strategies with the property that given any feasible belief of the opponent(s),
any continuation strategy in the set is optimal for a player. Hence, players�beliefs are irrele-
vant for checking optimality in this approach. The irrelevance of players�beliefs amounts to an
enormous simpli�cation of analyzing repeated games with private monitoring and as a result,
generalizations of belief-free equilibria to more abstract two-player repeated games have been
obtained in the literature.

The belief-based approach was �rst introduced by Sekiguchi (1997) and further generalized
by Bhaskar and Obara (2002)4 to repeated prisoners�dilemmas with almost-perfect and sym-
metric private monitoring. The main idea of the belief-based approach is to �nd a closed set
of continuation strategies for each player such that each player�s optimal continuation strategy
is always in the set and a player�s optimal continuation strategy does depend on the player�s
beliefs of her opponents� continuation strategies. This paper contributes to the belief-based
approach by extending the previous belief-based construction to repeated prisoners�dilemmas
with asymmetric private monitoring and to other repeated games with private monitoring.

There are several reasons why studying belief-based strategies for asymmetric private mon-
itoring settings is important. First, compared to belief-free strategies5, belief-based strategies
usually have a clear coordination interpretation6 and are more robust to perturbations of payo¤
shocks (Harsanyi (1973)). These properties make belief-based strategies an important class of

2Other prominent examples include subjective evaluations of employees�performance by employers, exchanges
of goods with uncertain quality etc.

3Kandori (2002) discusses the main di¢ culties in the analysis of repeated games with private monitoring.
4The equilibria for repeated games with almost-public private monitoring constructed in Mailath and Morris

(2002, 2006) are also belief-based.
5We compare belief-free strategies and belief-based strategies in more detail in Section 4.
6That is, a clear link between current incentives and future behavior.
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strategies to study for repeated games with private monitoring.
Secondly, previous belief-based approach has only focused on repeated prisoners�dilemmas

with symmetric imperfect private monitoring structures. However, in real applications, play-
ers/�rms often di¤er in their monitoring technologies (for example, consider Stigler�s "secret
price-cut" story again: as �rms�products are di¤erentiated, �rms typically face di¤erent unob-
servable demand shocks). It is therefore natural to consider the setting of asymmetric private
monitoring.

We start our investigation by �rst constructing belief-based strategies as in Bhaskar and
Obara (2002) (we call these conventional belief-based strategies) for repeated prisoners�dilem-
mas with asymmetric private monitoring. We �nd that conventional belief-based strategies are
not su¢ cient to accommodate private monitoring scenarios, in which players�monitoring tech-
nologies are su¢ ciently asymmetric. The problem is that when players�monitoring technologies
are di¤erent enough, after a long history of cooperation, the player with a larger observation
error does not want to punish a bad private signal which indicates the opponent has defected.

Motivated by the above �nding, we introduce new belief-based strategies (we call these "keep
them guessing" strategies) in which the player with smaller observation errors always randomizes
between "cooperate" and "defect" along the cooperative path. By introducing small amounts
of uncertainty, the player ensures that her opponent never becomes too sure about her being in
the cooperative state, and so maintains the opponent�s incentives to punish bad private signals
after a long cooperative private history (of the form "Cc; :::; Cc"). We show that the modi�ed
belief-based strategy pro�le constitutes a sequential equilibrium when observation errors are
small. In addition, players obtain approximately e¢ cient payo¤s in the sequential equilibrium
when observation errors become arbitrarily small.

We also show that unlike conventional belief-based strategies, which have (so far) mainly
been used to study the repeated prisoners�dilemma with almost-perfect private monitoring, our
"keep them guessing" strategies can be potentially extended to more general repeated games.
We construct non-trivial sequential equilibria for an explicit repeated game (with a 3� 3 stage
game) to outline the main idea of possible generalizations.

The remainder of the paper is organized as follows. In Section 2, we adopt the belief-based
approach to analyze a repeated prisoners�dilemma under asymmetric private monitoring. In
Section 3, we construct an example to show potential extensions of "keep them guessing" strate-
gies to general two-player repeated games. Finally, we conclude in Section 4. All mathematical
details and proofs can be found in Appendix.

2 The Repeated Prisoners�Dilemma with Asymmetric Private
Monitoring

In this section, we study belief-based strategies in an in�nitely repeated prisoners�dilemma with
an asymmetric private monitoring structure.

Consider a two-player (player h and player l) in�nitely repeated prisoners�dilemma where at
each stage, both players choose actions from A = fC;Dg. The stage gameG with ex ante payo¤s
is described in Figure 1. We assume that G;L > 0 and G�L < 1, so that the stage game is a
standard prisoners�dilemma where (C;C) is the (unique) e¢ cient action pro�le in each stage.
Players discount future payo¤s at a common rate � and maximize the average discounted sum
of payo¤s. We also assume that a public randomization device, which is uniformly distributed
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over [0; 1], is available for the players.

C D
C 1; 1 �L; 1 +G
D 1 +G;�L 0; 0

FIGURE 1. Stage Game G.

The private monitoring structure is de�ned as follows: while each player cannot perfectly
observe her opponent�s actions, she can observe an informative private signal Si 2 fc; dg 7
(i 2 fl; hg) at the end of each stage, where signal c is more likely when the opponent has played
C, and signal d is more likely when the opponent has played D. Di¤erent from Sekiguchi (1997)
and Bhaskar and Obara (2002), we assume the private monitoring structure to be asymmetric.
That is, given any action pro�le (al; ah), the probability that only player h (resp. l) receives a
wrong signal is ph (resp. pl), while the probability of both players seeing wrong signals is q (we
assume that 12 > ph + q > ph > pl > 0). Note that we have not imposed any restriction on the
relationship between q and (ph; pl), hence the private monitoring structure accommodates both
the case of conditionally independent private signals and the case of correlated private signals.
In addition, the strategic form of the stage game is assumed to be �xed and does not vary for
di¤erent values of ph, pl, and q.8

In the remainder of this section, we �rst follow Bhaskar and Obara (2002) to construct
a conventional belief-based strategy pro�le for the asymmetric private monitoring setting. We
show that the constructed strategy pro�le is not a Nash equilibrium when the private monitoring
is asymmetric enough. We then modify the conventional belief-based strategies and show that
the modi�ed belief-based strategy pro�le constitutes a sequential equilibrium and the e¢ cient
payo¤ pair (1; 1) can be approximated.

2.1 Conventional Belief-Based Strategies for Repeated Prisoners�Dilemma
with Asymmetric Private Monitoring

Before we construct conventional belief-based strategies for the asymmetric private monitoring
setting, it is useful to �rst give a brief description on how full cooperation can be approximated
in Bhaskar and Obara (2002). The basic idea of the conventional belief-based approach, which
builds on Bhaskar and van Damme (2002), is to use initial randomizations to construct nontrivial
sequential equilibria for the repeated prisoners�dilemma with almost-perfect private monitoring.

First, it is well known that with full-support conditionally independent private monitoring, a
pure grim trigger strategy9 pro�le cannot be an equilibrium in the repeated prisoners�dilemma,
no matter how small observation errors are. The reason is, if a player sees a bad signal "d" at the
end of the �rst period, the player attributes "d" to noise since she believes that her opponent has
cooperated with probability 1. As the observation errors are small and her signal "d" gives her

7This (Si only contains two private signals) is assumed W.L.O.G. If a player faces a �nite signal space and the
private monitoring is almost-perfect, it is possible to rearrange the player�s �nite private signals into two groups
with one group containing good signals and the other containing bad signals.

8This assumption is also maintained in Bhaskar and Obara (2002) where ex ante payo¤s in each stage are
�xed. This is di¤erent from that in Sekiguchi (1997) where the realized payo¤s in each stage are assumed to be
�xed. Note that if one does follow Sekiguchi (1997) to assume instead that the realized payo¤s are �xed, then the
payo¤s of the stage game will be asymmetric as well under asymmetric private signals.

9 In a pure grim trigger strategy, a player plays "C" in every period on the equilibrium path and a permanent
defection is triggered only by a single bad private signal "d".
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no information on the opponent�s �rst-period action, the player�s belief that her opponent has
received "c" and thus will continue to cooperate is almost 1. Hence, it is not optimal for her to
respond to the bad signal in the next period. Cooperation collapses because of this unwillingness
to punish.

Randomization in the �rst period ensures that players private signals at the end of the �rst
period convey information on the opponent�s previous action and thus can resolve the problem
mentioned above (as now, given a player�s private history "Cd", it could either be that "d"
is an observation error or the opponent has played "D" in the �rst period and hence "d" is
a correct signal). Both Bhaskar and Obara (2002) and Sekiguchi (1997) construct a mixed
strategy equilibrium where players randomize between "grim-trigger" strategy and "always-
defect" strategy only in the �rst period. There are then mainly two classes of histories to worry
about on the equilibrium path: "Cc;Cc; :::; Cc" and "Cc; :::; Cc; Cd". In the �rst class, players
will continue to cooperate as long as observation errors are small enough. In the second, a player
with a history "Cc; :::; Cc; Cd" will defect. The reason is that the two most likely events (each of
these two events involves only one observation error) in this case are (1) "d" is the player�s own
observation error and (2) the opponent has observed "d" in the last period and has switched to
the punishment phase. As the two events have approximately equal probabilities, the player is
willing to defect as long as she is not very patient.

We now follow Bhaskar and Obara (2002) to construct conventional belief-based strategies
for the players under the asymmetric private monitoring setting. Consider the following partial
continuation strategies10 for the players (i 2 fl; hg):

�Di :
�
play D; if t = 0;
play �Di after "Dc" or "Dd" if t > 0:

�Ci :

�
play C; if t = 0
play �Ci after "Cc", while �

D
i after "Cd", if t > 0.

As in Bhaskar and Obara (2002), we use randomizations in the �rst period to allow players�
behavior to depend on private histories. Speci�cally, to construct initial randomizations, we
present the following "coordination game"11 at t = 0 if player i only play "�Ci " or "�

D
i " in the

game (note, for example, that V CCl is player l�s expected continuation value when players play�
�Cl ; �

C
h

�
):

�Ch �Dh
�Cl V CCl ; V CCh V CDl ; V DCh

�Dl V DCl ; V CDh 0; 0
FIGURE 2. The "coordination game" at t = 0.

De�ne b� to be the partial mixed strategy "equilibrium" of the above "coordination game"
(players only randomize at t = 0):b� = �b�l � �Cl + (1� b�l) � �Dl ; b�h � �Ch + (1� b�h) � �Dh 	, where8<: b�l = �V CDh

V CCh �V CDh �V DCh

;

b�h = �V CDl

V CCl �V CDl �V DCl

:
(1)

10A partial continuation strategy only speci�es what a player should play on the equilibrium path, but not o¤
the equilibrium path. Note that �Di and �Ci specify the same behavior as "always-defect" and "grim-trigger"
specify, respectively, on the equilibrium path.
11Note, however, that

�
�Cl ; �

C
h

�
is not a Nash equilibrium of the asymmetric private monitoring game, for

reasons described before.
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Now, as in Bhaskar and Obara (2002), the full belief-based strategy (where each player�s
continuation strategy is fully speci�ed at each information set) is de�ned as the following: player
i plays according to the pair (�i; b�j), where j 6= i and12
�i : [0; �

�
i ] �! fC;D; b�i � C + (1� b�i) �Dg ; s:t: �i (�i) =

8<:
C; if �i > b�j ;
D; if �i < b�j ;b�i � C + (1� b�i) �D; if �i = b�j :

(2)

2.2 The Conventional Belief-Based Construction is Not Su¢ cient to Accom-
modate All Asymmetric Private Monitoring Settings

We now show that the conventional belief-based construction (in Bhaskar and Obara (2002))
does not automatically carry over to all asymmetric private monitoring scenarios, especially
when the private monitoring structure is su¢ ciently asymmetric. Since this "negative" result13

is concerned with a certain class of (private) histories with positive probability on the equilibrium
path, it is thus relevant to both the construction of belief-based strategies in Bhaskar and Obara
(2002) and the path-dominance construction in Sekiguchi (1997).

Speci�cally, the result of this section is that in a repeated prisoners�dilemma with su¢ ciently
asymmetric private monitoring, the type of belief-based strategy pro�le, ((�l; b�h) ; (�h; b�l)) de-
�ned in (2) above, is not a Nash equilibrium: player h may not want to punish player l after
a private history of the form "Cc; :::; Cc; Cd", which happens with positive probability on the
equilibrium path. The intuition is the following: when players adopt the conventional belief-
based strategies, after a su¢ ciently long string of one-period histories "Cc", both players think
"the opponent is in the cooperative phase with very high probability". Now if, at this time,
player h sees a one-period private history "Cd", the two most likely events are, again, (1) signal
"d" is an erroneous signal, (2) player l saw an erroneous signal "d" in the last period and is
now in the defective phase. However, if we have ph � pl, player h now believes that most likely
the signal "d" is an observation error since the probability that player l observes an error is
very small compared to his. Alternatively, after a su¢ ciently long private history of the form
"Cc; :::; Cc", a single bad signal "d" does not decrease player h�s belief enough as player h is
much more likely to receive a wrong signal compared to player l. Hence, player h will have no
incentive to punish player l after a bad signal "d". Lemma 1 formalizes the above arguments:

Lemma 1 In the repeated prisoners� dilemma with asymmetric private monitoring, for any
ph > 0, we can always �nd a pl and a q (ph > pl > 0; q > 0) such that the full belief-based
strategy pro�le ((�l; b�h) ; (�h; b�l)), de�ned in (2), is not a Nash equilibrium.

To show the above result formally, we �rst de�ne certain belief operators, which are the
probabilities that the other player is in the cooperative state (in other words, the other player j
has received a good private history, "Cc; :::; Cc", and will continue with �Cj ), given last-period�s

belief �. Denote �Xyi (�) to be player i�s belief about the other player being in the cooperative

12 Initial beliefs of the opponent (j)�s strategy being �Cj are b�l and b�h. Also, ��i is the �xed point of the belief
operator �Cci (�) (de�ned in (3)).
13 It should be noted that Sekiguchi (1997) also mentioned (Remark 2 of the main theorem) that when a player�s

probability of receiving a wrong signal is greater than that of the opponent, the strategy pro�le he constructed
may fail to be an equilibrium.
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state, given that player i played X and saw signal y in this period and had belief � in the
previous period:

The evolution of player h�s beliefs on the equilibrium path is (partly) determined by the
following belief operators (where player h�s initial belief is �l):(

�Cch (�) = (1�ph�pl�q)�
(1�ph�q)�+(ph+q)(1��) ;

�Cdh (�) = h�
(ph+q)�+(1�ph�q)(1��) :

(3)

We further de�ne criterion function

�Vi (�i; �; ph; pl; q) = �i
�
V CCi � V DCi

�
� (1� �i)

�
V DDi � V CDi

�
(4)

to be the payo¤ di¤erence for player i between playing �Ci and playing �
D
i , believing the opponent

is in the cooperative state (having seen a good private history and continuing with �Cj ) with
probability �i. Note that �Vi (�i; �; ph; pl; q) is linear and increasing in �i if � >

G
1+G and ph; pl

and q are small. There is hence a unique vector (�l; �h) = (b�h; b�l) such that�Vl (�l; �; ph; pl; q) =
�Vh (�h; �; ph; pl; q) = 0, and "�Vi (�i; �; ph; pl; q) > 0 (< 0)" implies that "given i�s belief �i
and j�s strategy, player i�s best response is �Ci

�
�Di
�
". Therefore, the initial randomization

probability b�j can also be interpreted as the threshold where player i�s behavior changes.
With the belief operators and the criterion function de�ned above, we now analyze player

h�s beliefs and incentives after a private history of the form "Cc; :::; Cc| {z }
n

;Cd" where n is very

large.
Denote player h�s belief of player l being cooperative (or player l has seen "Cc; :::; Cc" and

will continue with �Cl ) after a private history "Cc; :::; Cc; Cd" to be �h (Cc; :::; Cc; Cd), which
can be calculated iteratively from the belief operators de�ned in (3). Fixing ph > 0, we can
derive14 that as pl; q ! 0, which can be interpreted as "the private monitoring structure becomes
more and more asymmetric",

�h

0@Cc; :::; Cc| {z }
n

; Cd

1A! 1, if n is arbitrarily large. (5)

On the other hand, we can also show that there is some number k > 0 such that:

lim
pl;q!0

b�l = k < 1: (6)

Intuitively, given any ph > 0, player h is subject to observation errors in each period. Thus, to
avoid the problem of not willing to punish a bad signal "d" at the end of the �rst period for
player h (when private signals are conditionally independent), player l has to randomize with
positive probability on �Dl at t = 0.

Results (5) and (6) indicate that when the "n" in player h�s private history "Cc; :::; Cc| {z }
n

;Cd" is

large enough and pl; q are su¢ ciently smaller than ph, we will have that �h (Cc; :::; Cc; Cd) > b�l,
or after a long period of cooperation, player h does not want to punish a bad signal "d", which is
an informative indicator of l having defected. As the private history of the form "Cc; :::; Cc; Cd"

14See Appendix for a more detailed argument.
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happens with positive probability on the equilibrium path, the conventional belief-based strategy
pro�le is not a Nash equilibrium when the private monitoring structure is asymmetric enough.

Although it seems that we need the condition "ph � pl; q" to derive the result in Lemma 1,
this condition is imposed for simplicity. We may obtain the above result under milder conditions,
especially when players signals are negatively correlated. In addition, Lemma 1 holds no matter
how small ph, pl and q are, provided that pl and q are su¢ ciently smaller than ph. Thus, the
result in Lemma 1 is always relevant for the analysis of almost-perfect private monitoring
structures.

2.3 Modi�ed Belief-Based ("Keep Them Guessing") Strategies for Asym-
metric Private Monitoring

Lemma 1 is not a particularly surprising result since after all, one should not expect a given set
of strategies to continue to work when the information structure changes. However, this result
does pose a natural and interesting question: are there other belief-based strategies that are
"immune" to such asymmetric private monitoring imperfections? That is, are there sequential
equilibria in some belief-based strategies (di¤erent from (2)) such that the e¢ cient payo¤ pro�le
(1; 1) can be approximated when the observation errors (ph; pl and q) are small enough? This
section provides a positive answer to the above question. Speci�cally, we construct certain
belief-based strategy (called "modi�ed belief-based strategy" or "keep them guessing strategy"
interchangeably hereafter) pro�les where player l is required to randomize more than once on
the equilibrium path so as to avoid the problem in Lemma 1.

It is helpful to �rst brie�y describe the main idea of the construction. First, note that the
pure "grim-trigger" pro�le is again not a Nash equilibrium under the asymmetric (conditionally
independent) private monitoring setting: when a player sees a signal "d" in the �rst period, she
believes that her opponent is still cooperating and thus does not want to initiate the punish-
ment phase. Again, randomization in the initial period introduces small uncertainty (that the
realization of the other�s initial randomization might be "D") for the players to resolve this
"unwilling-to-punish" problem. In addition, Lemma 1 shows that as the game proceeds, a
similar problem arises: after a history of the form "Cc; :::; Cc; Cd", player h does not want to
switch to the permanent defective phase. Motivated by the role of initial randomizations in
resolving the problem of not willing to punish the �rst-period bad signals, a possible way to
�x player h�s incentive problem is to let player l randomize between "C" and "D" when t = 0
and whenever player l has a history of the form "Cc; :::; Cc", so that player h can never be too
sure about "player l being in the cooperating state" (keeping player h guessing). Now when
player h sees a signal "d" after a long period of cooperation, he believes that the most likely
events are "he has received an erroneous signal", "player l played C in the last period and saw
a signal d" and "player l�s last-period randomization has a realization D". The randomization
probabilities and the discount factor can be properly chosen so that player l is indi¤erent after
a history "Cc; :::; Cc" and player h is willing to defect after a history "Cc; :::; Cc; Cd".

The above modi�cation is, however, nontrivial: �rst, to evaluate equilibrium payo¤s and
to study the evolution of players� beliefs, a certain stationarity in the strategy of player l is
important; second, player l�s incentive to randomize after a class of private histories should
always be maintained, which imposes a restriction on the evolution of player l�s beliefs as we
will see; third, the initial probabilities and the probability with which player l plays "C" in each
period after a private history "Cc; :::; Cc" must be carefully speci�ed so that for any player,
at any period, the incentives to punish bad signals are always sustained. In what follows, we
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construct modi�ed belief-based strategies that satisfy all these requirements, starting by de�ning
partial continuation strategy sets for the two players.

2.3.1 The Partial Continuation Strategies for the Players

As in Bhaskar and Obara (2002), we �rst de�ne and analyze the key components in construct-
ing our modi�ed belief-based strategies, partial continuation strategies. A partial continuation
strategy for a player only speci�es the player�s behavior on the equilibrium path, but not o¤ the
equilibrium path. Partial continuation strategies provide building blocks for the construction of
full belief-based strategies (to be de�ned) and they also play important roles in showing that
the full belief-based strategy pro�le constitutes a sequential equilibrium.

Player h�s partial continuation strategies are "�Ch " and "�
D
l ", while player l�s partial con-

tinuation strategies are de�ned as "�Dl " and some mixed partial continuation strategy : instead
of playing "C" for sure after a history of the form "Cc; :::; Cc", player l randomizes between
"C" and "D", with some �xed probability p on "C". Speci�cally, the set of partial continua-
tion strategies for player h is

�
�Ch ; �

D
h

	
. For player l, we modify the set of partial continuation

strategies to be:

�l =
�
�Dl ; �

M
l

	
, where (p to be determined)

�Ml :

�
play p � C + (1� p) �D; if t = 0;
play �Ml after "Cc", while play �Dl after "Cd;Dc or Dd", if t > 0.

(7)

We can see that when the probability p equals 1 in �Ml , the partial continuation strategy �
M
l is

identical to �Cl .
Now, as described before, to resolve the problem in Lemma 1, we can let player l randomize

all the time between C and D along a particular sequence of histories so as to keep introducing
some uncertainty to player h. To construct such a strategy for player l, it is convenient to let
player l always randomize between C and D in the same way over time in �Ml . That is, player l
plays C with the same probability p whenever l sees a private history of the form "Cc; :::; Cc",
or p is time-independent. If such a mixed strategy can be arranged for l, the dynamics of player
h�s beliefs in the equilibrium will be much more tractable. Moreover, such a construction will
simplify the calculations of players�ex ante equilibrium payo¤s. On the other hand, such an
arrangement also brings some tension, since �rst-period randomization is determined by � and
(ph; pl; q), while given h�s strategy, whenever player l sees a one-period private history "Cc", her
belief (that h�s continuation strategy is "�C") increases and it thus seems impossible for player
l to be always indi¤erent between C and D after such a history. One can, for each (ph; pl; q),
�x �15, so that player l�s belief about h�s continuation strategy after each "Cc" is always at
its �xed point, thus always invariant after each additional one-period history "Cc". This way,
player l can possibly randomize all the time with the same probability "p" on C. In addition,
the probability "p" has to be speci�ed properly so that player h�s incentives are correct in any
information set h may have.

In summary, the equilibrium path is designed as follows: player h randomizes between �Ch
and �Dh and player l randomizes between �Ml and �Dl in the initial period. After that, player
h plays �Ch whenever his private history is of the form "Cc;Cc; ::Cc", and plays �Dh otherwise.
Player l plays �Ml whenever she sees "Cc;Cc; :::; Cc". If her randomization realizes D or if she
ever sees a signal "d" on the equilibrium path, she will play �Dl for the rest of the game. Player

15We use the public randomization device to extend the result to cases where players are more patient.
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l�s randomization after the initial period always has the form "p � C + (1� p) �D" (in �Ml ) so
as to simplify the analysis on the belief dynamics and calculations of equilibrium payo¤s.

As we will see shortly, our modi�ed strategy is still a belief-based strategy since for each
player, at any stage of the game, the support of the player�s beliefs always contains the same
partial continuation strategies: "�Ch " and "�

D
h " (or "�

M
l " and "�

D
l "). And, as we will see,

given any belief of player i (i 2 fh; lg), player i�s best response is also either "�Ch /�Ml " or "�Di ".
Moreover, a player�s belief of the continuation strategy of the opponent is a su¢ cient statistic
for the player�s private histories and all inferences about the opponent�s future behavior can
thus be based on the player�s beliefs (hence we have to study the dynamics of the players�beliefs
to check for sequential rationality as in Sekiguchi (1997) and Bhaskar and Obara (2002)).

In what follows, we outline the main steps of constructing the modi�ed belief-based strategies,
leaving the details to Appendix. First, as argued above, initial randomizations are still necessary.
The initial randomization probabilities (�l; �h) can be calculated similarly using the following
"coordination game" form as in Figure 2:

�Ch �Dh
�Ml VMC

l ; V CMh VMD
l ; V DMh

�Dl V DCl ; V CDh 0; 0
FIGURE 3. The "coordination game" at t = 0.

Next, we derive certain conditions on � and (ph; pl; q) so that (1) player l is willing to random-
ize as required after a private history of the form "Cc; :::; Cc", and (2) the initial randomization
probabilities (�l; �h) and the probability p are well-de�ned (0 < �l; �h; p < 1). We start by
analyzing the situation for player l:

(A) Given player h�s strategy, player l�s belief after each private one-period history "Cc" is:

�Ccl (�) =
(1� ph � pl � q)�

(1� pl � q)�+ (pl + q) (1� �)
;

where � is player l�s belief of player h�s continuation strategy being "�Ch " at the end of
last period. The belief operator �Ccl (�) has an interior �xed point e�Ccl :

e�Ccl =
1� ph � 2pl � 2q
1� 2pl � 2q

: (8)

Now, for player l to be willing to randomize both in the initial period and after seeing
"Cc; :::; Cc", one possibility is that player l�s initial belief (that player h will play �Ch ), �h,
be the same as her belief after a private history of the form "Cc; :::; Cc". We thus impose
the restriction that the probability �h in player h�s initial randomization be identical to
the �xed point (e�Ccl ) of the belief operator �Ccl (�) of player l. In particular, this implies
that player l�s belief of h�s private state does not change over time whenever player l has
always played "C" and has always seen signal "c" previously. We thus have our �rst
restriction as:

�Ccl (�h) =
1� ph � 2pl � 2q
1� 2pl � 2q

;

which reduces to
�h = e�Ccl =

1� ph � 2pl � 2q
1� 2pl � 2q

: (9)
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(B) For the strategy pro�le to be well-de�ned, the probabilities �l and p have to lie between
0 and 1. It will be clear that certain conditions have to be imposed on (ph; pl; q) so that
�l; p 2 (0; 1) 16. In addition, since compared to the conventional belief-based strategies
(p = 1), constructing any p 2 (0; 1) in the strategy introduces certain e¢ ciency loss, the
probability p should converge to 1 as (ph; pl; q) goes to 0 so that e¢ ciency loss is minimal
and full e¢ ciency can be approximated when observation errors are arbitrarily small. With
these two requirements in mind, we impose the following restriction : "the probability in
player l�s initial randomization is equal to the probability p in �Ml ", or,

�l = p: (10)

Recall that �l is the initial probability that player l plays �Ml ; while p is the probability
of playing C in �Ml for player l. Although p and �l are related, condition (10) is not a
necessary condition for our results and there are other choices of p for our construction to
work. However, condition (10) will simplify our analysis later and as long as we can show
that p (hence �l) is between 0 and 1, we only need to keep track of a same probability �l
afterwards.

Lemma 2 shows that the set of restrictions (9) and (10) implicitly de�nes a unique p 2 (0; 1)
and a unique �� 2 (0; 1) as functions of (ph; pl; q), provided that ph, pl, and q are su¢ ciently
small. The purpose of Lemma 2 is to show that the two restrictions imposed above do not
yield con�icting results for p and � when observation errors are small enough.

Lemma 2 The set of equations (9) and (10) implies that:
1. There exists a neighborhood, U, of (ph; pl; q) near the origin such that �� is a unique C1

function17 of (ph; pl; q) in U. Moreover, �� 2 (0; 1) and @��

@ph
; @�

�

@pl
and @��

@q > 0 for all (ph; pl; q) > 0
in U with ph > pl.

2. There exists a neighborhood, V, of (ph; pl; q) near the origin such that p is a unique C1

function of (ph; pl; q) in V. Moreover, p 2 (0; 1) and @p
@ph
, @p@q < 0 for all (ph; pl; q) in V with

ph > pl.

Proof. See Appendix.

In addition, note that in the limit, we obtain

lim
(ph;pl;q)!0

�� =
G

1 +G
and lim

(ph;pl;q)!0
�l = lim

(ph;pl;q)!0
�h = 1: (11)

We have two remarks for conditions (9) and (10) :

1. By Lemma 2, it is now clear that as long as ph, pl and q are small enough, �� is well-
de�ned and there exists a p 2 (0; 1) for us to construct the strategy pro�le. On the other
hand, the restriction of ph; pl, and q being small does not pose a problem for us since
our main concern in this paper is again to investigate the repeated prisoners�dilemma in
asymmetric, but almost-perfect private monitoring settings.

16Note that the role of p in the strategy pro�le is to provide su¢ cient incentives for player h to defect when he
sees a bad signal. As we will see in Lemma 4, condition "p 2 (0; 1)" is the only requirement on p to construct
the sequential equilibrium. However, to demonstrate that full e¢ ciency (1; 1) can be approximated using the
modi�ed belief-based strategies for our second main result, we will also need condition " lim

(h;l;q)!0
p = 1".

17De�ne this function to be �� (h; l; q).
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2. Condition (9) ensures that after a good history "Cc; :::; Cc", player l�s belief of player
h being in the cooperative state is identical to her belief in the initial period. Given
this condition, player l does �nd it optimal to randomize, both in the initial period and
after a private history of the form "Cc; :::; Cc". However, one might think that condition
"�h = e�Ccl " makes player l�s strategy a bit unreasonable since player l is now required to
randomize di¤erently when she is in a same information set. That is, in the initial period,
where she believes that player h�s continuation strategy is "�h � �Ch + (1� �h) � �Dh ", she
plays "�l � �Ml + (1� �l) � �Dl ", while after the initial period and a private history of the
form "Cc; :::; Cc", player l plays "�Ml ", when again, her belief of player h�s continuation
strategy is "�h ��Ch +(1� �h) ��Dh " (by condition (9)). This is related to the puri�ability
issue of the modi�ed belief-based strategies, and will be discussed in more detail at the
end of Section 2.4.

2.3.2 Evolution of the Beliefs of the Players

Since players face di¤erent observation errors and adopt di¤erent partial continuation strategies,
players�beliefs now evolve in a more complicated way than that in Bhaskar and Obara (2002).

Speci�cally, adopting the notation from Bhaskar and Obara (2002), we de�ne certain belief
operators for the players, which are again the probabilities that the other player is in the co-
operative state18 given last-period�s belief �. As before, denote �Xyi (�) to be player i�s belief
given that i played X and saw signal y in this period and had belief � in the previous period.
Note that to calculate player h�s beliefs on player l being in the cooperative state (player l�s
continuation strategy is �Ml ), player l�s realization of last-period randomization must be "C".

Using Bayes�rule, we have:

� Player h :

�Cch (�) =
(1� ph � pl � q)��l

(1� ph � q)��l + (ph + q) (1� ��l)
;

�Cdh (�) =
ph��l

(ph + q)��l + (1� ph � q) (1� ��l)
;

�Dch (�) =
pl��l

(1� ph � q)��l + (ph + q) (1� ��l)
; (12)

�Ddh (�) =
q��l

(ph + q)��l + (1� ph � q) (1� ��l)
:

� Player l :

�Ccl (�) = �h =
1� ph � 2pl � 2q
1� 2pl � 2q

;

�Cdl (�) =
pl�

(pl + q)�+ (1� pl � q) (1� �)
;

�Dcl (�) =
pl�

(1� pl � q)�+ (pl + q) (1� �)
; (13)

�Ddl (�) =
q�

(pl + q)�+ (1� pl � q) (1� �)
:

18Note that "being in the cooperative state" now means di¤erently for di¤erent players. For player l, �Xyl (�)
denotes l�s subjective probability that player h will play �Ch after one-period private history Xy, while for player
h, �Xyh (�) denotes h�s subjective probability that player l will play �Ml after Xy.
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Note that the initial belief vector � is (�h; �l) (recall that the initial randomization prob-
ability vector is (�l; �h)). We now present Lemma 3, which summarizes certain properties of
the belief operators de�ned in (12) and (13).

Lemma 3 The following is true for the belief operators de�ned in (12) and (13) :

1. The belief operator �Cch (�) has a �xed point de�ned by

��h =
(1� ph � pl � q)�l � ph � q

(1� 2ph � 2q)�l
: (14)

In addition, in the open neighborhood U\V near (0; 0; 0), we can choose some p = �l < 1
by Lemma 2, and thus ��h < 1:

2. There exists some open setW � R3 near (0; 0; 0) such that �l < ��h for all (ph; pl; q) 2W.

3. d�Cch (�)
d� > 0;

d�Cdh (�)
d� > 0; and d�Dcl (�)

d� ;
d�Ddl (�)
d� > 0:

Proof. See Appendix.

Lemma 3 is prepared for our next important result (Lemma 4): "the modi�ed belief-based
strategies (to be de�ned shortly) are realization equivalent to the partial continuation strategies �
de�ned previously", which is, in turn, essential for proving our �rst main result that the modi�ed
belief-based strategy pro�le is a sequential equilibrium in the following section.

2.3.3 The Full Modi�ed Belief-Based Strategy Pro�le

Now we formally de�ne the players� full modi�ed belief-based strategies for the asymmetric
private monitoring setting.

Recall that �h =
�
�Ch ; �

D
h

	
and �l =

�
�Ml ; �

D
l

	
are the sets of partial continuation strategies

for player h and player l, respectively. On the equilibrium path, players play the following:

� Player h :
"Play �h ��Ch +(1� �h)��Dh in the initial period. Starting from the second period, player
h continues with the strategy �Ch =�

D
h that was realized at t = 0".

� Player l :
"Play �l ��Ml +(1� �l) ��Dl in the initial period. Starting from the second period, player
l continues with the strategy �Ml =�

D
l that was realized at t = 0".

Now the full modi�ed belief-based strategies are de�ned as follows: player i plays according
to the pair (�i; �j), where (�

�
h is de�ned in (14))8>><>>:

�h: [0; �
�
h]!fC;D; �h�C + (1� �h)�Dg

s:t: �h (�)=

8<:
C; if � > �l;
D; if � < �l;
�h�C + (1� �h)�D; if � = �l:

(15)

8>>><>>>:
�l: [0; �h]!

n
C;D; �l�C + (1� �l)�D;�

2
l �C + (1� �

2
l )�D

o
s:t: �l (�)=

8<:
D; if � < �h;

�2l �C + (1� �
2
l )�D; if � = �h and t = 0;

�l�C + (1� �l)�D; if � = �h and t � 1:

(16)
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It is worth noting that for player h, given any �h 2 [0; ��h], the belief operators "�Cch (�),
�Cdh (�), �Dch (�), �Ddh (�)" have ranges as some subsets of [0; ��h]. For the belief operator �

Cc
h (�),

this is true if �l < 1. For the other belief operators, note that all of the curves "�Cdh (�), �Dch (�),
�Ddh (�)" lie below the 45-degree line and hence lie below �Cch (�). It is therefore su¢ cient for us
to only consider beliefs in [0; ��h] for player h at any time. Similarly, for player l, we only need
to consider l�s beliefs in [0; �h].

Our next step is to show that the belief-based strategy (�i; �j) ; i 2 fh; lg ; is realization
equivalent19 to the partial continuation strategies de�ned in (7). This is presented in Lemma
4.

Lemma 4 Suppose that (ph; pl; q) 2 W20. The modi�ed belief-based strategies (�l; �h) and
(�h; �l) are realization equivalent to �l and �h, respectively.

Proof. See Appendix.

Now we are ready to apply Lemma 4 to show our �rst main result: the modi�ed belief-based
strategy pro�le de�ned in (15) and (16) is a sequential equilibrium of the in�nitely repeated
prisoners�dilemma with asymmetric private monitoring, given that (ph; pl; q) are chosen from
a small open neighborhood near the origin. As in Bhaskar and Obara (2002), the proof of the
result mainly employs some criterion functions (de�ned in Appendix) to show that there is no
pro�table one-shot deviation for player i at any information set if player i uses the speci�ed
partial continuation strategy �i, which is realization equivalent to (�i; �j) by Lemma 4.

Proposition 1 There exists some open set Z � R3 near (0; 0; 0) such that for any given
(ph; pl; q) 2 Z, the modi�ed belief-based strategy pro�le ((�l; �h) ; (�h; �l)) is a sequential equilib-
rium of the repeated prisoners�dilemma with asymmetric private monitoring.

Proof. See Appendix.

We have four remarks for Proposition 1:
First, the modi�ed belief-based (keep them guessing) equilibrium strategies in Proposi-

tion 1 have certain interpretations on players�equilibrium behavior under asymmetric private
monitoring. Speci�cally, the equilibrium strategies indicate that to sustain cooperation in an
asymmetric private monitoring setting, the better-informed player (player l) has to act more
erratically by defecting sometimes so that the less-informed player�s (player h) private signals
are always su¢ ciently informative about the better-informed player�s actions and thus the less-
informed player would have enough incentives to punish the opponent whenever he sees a bad
signal. A comparison of this equilibrium behavior with observed behavior in real applications
would be interesting to investigate in future work.

Second, the entire modi�ed belief-based strategy pro�le was constructed on the condition
of (ph; pl; q) being close enough to the origin so that �� and �l (thus p) are well-de�ned and
the beliefs of player h evolve appropriately (player l�s beliefs evolve in a similar way as that in
Bhaskar and Obara (2002)). This condition is, however, not a strong one and has been imposed
in most of the literature on repeated games with private monitoring, the primary concern of

19Two strategies of a player i, �i and �0i are realization equivalent, if (�i; ��i) and (�
0
i; ��i) induce the same

probability distribution over the outcomes, other players�strategies being �xed and given by ��i.
20Recall thatW is de�ned in Lemma 3.
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which (so far) being whether it is possible to construct sequential equilibria to support non-
myopic behavior when the history of play is almost common knowledge21.

Third, in Proposition 1, the belief-based strategy pro�le ((�l; �h) ; (�h; �l)) is a sequential
equilibrium only when players have a �xed discount factor �� de�ned in Lemma 2, which is
derived from the restriction �h = e�Ccl . As discussed before, this restriction is imposed so that
player l�s belief is �xed after any history of the form "Cc; :::; Cc", and player l is therefore willing
to randomize both in the �rst period and after a private history of the form "Cc; :::; Cc". To
extend Proposition 1 to the situation where the players are more patient (� > ��), we can22

follow Bhaskar and Obara (2002) to use a public randomization device to reduce the common
discount factor � exactly to �� for any � > �� (see Lemma 5 in the next section).

Four, the modi�ed belief-based strategy pro�le in Proposition 1 requires player l to play
di¤erently at the same information set, which might be considered somewhat unreasonable.
That is, player l has the same belief of h�s continuation strategy "�h � �Ch + (1� �h) � �Dh " at
t = 0 and after l�s private history of the form "Cc; :::; Cc". But player l is required to play "�l �
�Ml +(1� �l)��Dl " at t = 0 and to play "�Ml " after "Cc; :::; Cc". There is no incentive problem
for l, since in both cases, player l is indi¤erent between �Ml and �Dl . But the randomizations
constructed above may raise some suspicion that the equilibrium may not be puri�able, or
the equilibrium may not be robust to payo¤ perturbations (Harsanyi (1973)). Mixed-strategy
equilibria for generic normal-form games can be justi�ed by Harsanyi�s puri�cation theorem
where Harsanyi (1973) shows that every mixed-strategy equilibrium is the limit of pure-strategy
equilibria in incomplete-information games with payo¤ perturbations. However, little work in
the literature has studied puri�cation for extensive-form games. Bhaskar (1998) shows in an
overlapping generation game that a mixed strategy equilibrium cannot be puri�ed when payo¤
shocks are in a time separable form. Bhaskar (1998) argues that the non-puri�ability comes
from the fact that players randomize di¤erently in the same information set, or the randomizing
probabilities depend on payo¤-irrelevant histories. This is also a potential criticism of the belief-
free strategies in which a lot of randomizations are involved in the construction and players are
required to randomize di¤erently at the same information set. Bhaskar, Mailath and Morris
(2006) study the puri�ability of the class of one-period memory mixed strategy equilibria used
by Ely and Välimäki (2002), where they show that none of such mixed-strategy equilibria are the
limit of one-period memory equilibria of the perturbed games, for almost all noise distributions.
However, for mixed-strategy equilibria of repeated games where the strategies have in�nite
memory (in other words, have in�nite history dependence), there is so far no evidence in the
literature to show such mixed-strategy equilibria are not puri�able when players randomize
di¤erently in the same information set. Our modi�ed belief-based strategies are mixed strategies
that have in�nite history dependence as players�beliefs are crucial components of the strategies
and the beliefs are calculated recursively from all previous private histories. Hence, according to
the literature, it is not clear whether our modi�ed strategies are puri�able or not. We come back
to this issue in Section 4 where we make a detailed comparison between belief-free equilibria
21A recent paper by Matsushima (2004) is, however, an exception. Matsushima (2004) uses a "review phase"

(introduced by Radner (1985)) and extends the two-state strategies of Ely and Välimäki (2002) to establish a
Folk theorem for the prisoners�dilemma with conditionally independent private monitoring, but without vanishing
observation errors.
22Another possibility is to use "Ellison�s trick" to divide the original repeated game into n (n 2 N) distinct

repeated games to obtain a lower e¤ective discount factor for the players. However, it is almost always not
possible to obtain the discount factor �� from � > �� because of the "integer" problem (it is rarely the case that
�n = �� for � > ��).
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and belief-based equilibria.

2.4 Approximating the E¢ cient Payo¤ Pair (1; 1) when Observation Errors
are Arbitrarily Small

As stated in the second remark at the end of the previous section, a public randomization device
is necessary for us to extend the results in Proposition 1 to the situation of � > ��. Lemma
5, borrowed from Bhaskar and Obara (2002), shows that we can always construct a belief-based
sequential equilibrium, as in Proposition 1, for the repeated game with asymmetric private
monitoring when players have a common discount factor � > ��, if a public randomization device
uniformly distributed on [0; 1] is available for the players.

Lemma 5 (Lemma 3 in Bhaskar and Obara (2002)) Suppose that there is a strategy pro�le
which is a sequential equilibrium, yielding payo¤s (v1; v2) for some �� 2 (0; 1). If a public
randomization device uniformly distributed on the unit interval is available for the players, then
(v1; v2) is a sequential equilibrium payo¤ pro�le for any � > ��.

The equilibrium payo¤s for the players when ph; pl and q are arbitrarily small can be calcu-
lated from expressions V CMh and VMC

l (calculated in Section 5.2 in Appendix):

lim
(ph;pl;q)!0

V CMh = 1 and lim
(ph;pl;q)!0

VMC
l = 1: (17)

These are true by the fact that lim
(ph;pl;q)!0

�� = G
1+G and lim

(ph;pl;q)!0
�l = lim

(ph;pl;q)!0
�h = 1 (expres-

sion (11)).
We now show that the symmetric payo¤pair (1; 1) can be approximated when the observation

errors are arbitrarily small. This is presented in Proposition 2:

Proposition 2 For the repeated prisoners�dilemma with asymmetric private monitoring, given
any v < 1, there is a sequential equilibrium in belief-based strategies with payo¤s (vl; vh) where
vl; vh 2 (v; 1), provided that (1) (ph; pl; q) is close enough to (0; 0; 0) and (2) there is a public
randomization device and players have a common discount factor � � ��.

Proof. See Appendix.

3 Extensions of the "Keep Them Guessing" Strategies to Gen-
eral Games - An Example

The "keep them guessing" strategies constructed in the previous sections can be used to construct
non-trivial equilibria for other games. In this section, we extend the method developed in the
previous part to show that our construction has the potential to be generalized to other two-
player repeated games, with certain restrictions on payo¤s of the stage game. We do this by
constructing a cooperative sequential equilibrium (not repetitions of stage game Nash equilibria)
of a speci�c symmetric two-player repeated game example.

C D E
C 1; 1 �1; 0 �2; 3
D 0;�1 0; 0 �1;�1
E 3;�2 �1;�1 �2;�2
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FIGURE 4. Original example in Sekiguchi (1997).

The main idea of the example (to be constructed) is motivated by the following observation
in Sekiguchi (1997): consider now the repeated game, whose stage game is de�ned in Figure 4,
under symmetric private monitoring. Sekiguchi used the example in Figure 4 to show that it is
di¢ cult to generalize the mixed strategy pro�le (mixture of "�C" and "�D") he constructed to
other games. The argument is that if a player sees a private history "Cc; :::; Cc; Ce", the player
will regard the bad signal "e" as an observation error (if the private monitoring structure is, for
example, conditionally independent) and will therefore not want to switch to "�D" forever. This
destroys the incentive to cooperate for the other player. This problem of unwilling to punish
bad signals can be similarly solved if we again construct some ongoing randomizations for the
players along the cooperative path so as to keep introducing small amounts of uncertainty for the
players. The ongoing randomization probability can be chosen properly so that (1) players can
be induced to punish the opponent after a bad signal (here "d" or "e") and (2) e¢ ciency loss from
the ongoing randomizations is small. In other words, we can similarly construct a "mixture"
trigger (partial continuation) strategy, �M , instead of �C , in the �rst-period randomization. Now
a bad signal "e" can either mean an observation error or the realization of the other player�s
last-period randomization being "E". That way, players would have incentives to punish bad
signals if they are not very patient (same for the bad signal "d").

Speci�cally, the main idea of the potential extension is the following: for general two-player
repeated games with full-support (almost-perfect) private monitoring, we can employ a set
of partial continuation strategies � =

�
�M ; �D

	
to construct nontrivial equilibria, where the

mixture in �M would involve (possibly) all actions in the stage game, while �D is de�ned as
"always play a stage Nash equilibrium". Speci�cally, players play "���M+(1� �)��D" initially.
After t = 0, each player plays �M only after good private histories (here "Cc; :::; Cc"), and plays
�D otherwise. The advantage of this construction is its simplicity: there are only two states
(for any player) to analyze at any time of the game: the cooperative (�M ) state and the defective
state (�D). This will, in particular, simplify the analysis of players�belief dynamics. But as we
shall see shortly, this construction also imposes certain restrictions on stage game payo¤s and
the private monitoring structure of the repeated game.

Consider a two-player repeated game whose stage game is de�ned in Figure 5.

C D E
C 1; 1 �1; 114 �2; 3
D 11

4 ;�1 0; 0 �1;�1
E 3;�2 �1;�1 �2;�2

FIGURE 5. Stage Game of the Example

One can see that this game is a modi�ed version of the example in Sekiguchi (1997). Since
the construction of using "�M" also imposes certain restrictions on the payo¤s of the stage game,
the payo¤s from action pro�le "DC" have been changed from (0;�1) in Figure 4 to

�
11
4 ;�1

�
in

this example. Note that (D;D) is the unique stage game Nash equilibrium where players obtain
(0; 0).

Consider the following symmetric, conditionally independent private signal distribution where
each player�s set of private signals is Y = fc; d; eg:(

Pr (yj = cjai = C) = 1� 2"
Pr (yj = djai = C) = "
Pr (yj = ejai = C) = "

(
Pr (yj = djai = D) = 1� 2"
Pr (yj = cjai = D) = "
Pr (yj = ejai = D) = "

(
Pr (yj = ejai = E) = 1� 2"
Pr (yj = cjai = E) = "
Pr (yj = djai = E) = "
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FIGURE 6. Symmetric Private Monitoring Distribution of the Players.

We now follow the main idea of the extension to construct a sequential equilibrium where
players obtain approximately

�
16
47 ;

16
47

�
under the private monitoring structure de�ned in Figure

6.
As before, we �rst de�ne the set of partial continuation strategies for the players: �i =�

�Mi ; �
D
i

	
, where (p and q to be determined)

�M :

8<:
play p � C + q �D + (1� p� q) � E; if t = 0;
play �M after "Cc",
while �D after "Cd;Ce;Dc;Dd;De;Ec;Ed or Ee", if t > 0.

(18)

Now we analyze the �rst-period randomizations for the players. At t = 0, players face the
following "coordination" game:

�M2 �D2
�M1 VMM ; VMM VMD; V DM

�D1 V DM ; VMD V DD; V DD

The "coordination game" at t = 0.
FIGURE 7.

As before, each player plays "� � �M + (1� �) � �D" at t = 0 (where � = �VMD

VMM�VMD�V DM ).
After the initial randomization, each player plays "�M" only after the "good" private history
"Cc; :::; Cc", while plays "�D" otherwise.

Next, we check the incentives of the players. The main di¢ culty here is how to sustain play-
ers�incentives to randomize among C, D and E in every period after a good history "Cc; :::; Cc".
Checking players�incentives in other private histories is analogous to the case of the repeated
prisoners�dilemma. For the repeated game (in Figure 5) with the private monitoring structure
de�ned in Figure 6, there are several non-trivial restrictions we have to impose so that the
players will �nd it optimal to randomize as is required.

First, a player�s belief of the other being in the cooperative state should be invariant when-
ever the player sees a good history "Cc; :::; Cc". This is again resolved by setting the probability
on �M of the initial randomization equal to the �xed point of the belief operator �Cc (�).

� = ��Cc; (R� 1)

where ��Cc =
(1�2")2p�"
(1�3")p is the �xed point of the belief operator23

�Cc (�) =
Pr (ccjCC) p��

[Pr (ccjCC) + Pr (cd; ejCC)] p�+ [Pr (ccjCD) + Pr (cd; ejCD)] (1� �)
+ [Pr (ccjCD) + Pr (cd; ejCD)] q�+ [Pr (ccjCE) + Pr (cd; ejCE)] (1� p� q)�

�
=

(1� 2")2 p�
(1� 2")�p+ " (1� �p) :

Second, given that a player has seen a good history "Cc; :::; Cc" (or equivalently, given that
a player�s belief of the opponent being cooperative is �), there should be no pro�table one-shot

23To save on notation, I denote, for example, "Pr (cdjCC) + Pr (cejCC)" simply as "Pr (cd; ejCC)".
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deviation for the player. We �rst calculate the continuation values of playing C, D and E after
a good history. Denote these values to be VC ; VD and VE , respectively24. For example, VD is
de�ned as the value to a player after seeing a good private history "Cc;Cc; :::; Cc", if she plays
D in this period and then conform to the equilibrium strategy afterwards.

There is no pro�table one-shot deviation after a good private history if

VC = VD = VE : (R� 2)

Note that in the repeated prisoners�dilemma with asymmetric private monitoring in Section
2, each player only has two actions in each stage and only player l is required to do the ongoing
randomizations, a similar restriction as (R� 2) does not prevent us from approximating full
e¢ ciency when observation errors are arbitrarily small (lim(ph;pl;q)!0 p = 1). In the above
example, each player has three possible actions in each stage and both players are playing the
"keep them guessing" strategy, the "no pro�table one-shot deviation" condition will restrict us
from choosing probability p freely. As a result, full e¢ ciency is not feasible even when " is
arbitrarily small (see Proposition 3).

After imposing these two constraints, it is then possible to apply the implicit function the-
orem to show that when " is small, we can �nd a "p" near 45 , a "q" near

1
5 and a "�" near

10
11 ,

all continuously di¤erentiable functions of " in a neighborhood (0; "). Now the full belief-based
strategy for each player is de�ned as:8>>>><>>>>:

� : [0; �]!
�
C;D; �p � C + (�q + 1� �) �D + � (1� p� q) � E;
p � C + q �D + (1� p� q) � E:

�
s:t: � (�) =

8<:
D; if � < �;
p � C + (�q + 1� �) �D + � (1� p� q) � E; if � = � and t = 0;
p � C + q �D + (1� p� q) � E; if � = � and t � 1:

(19)

The belief-based strategy (�; �) is realization equivalent to the partial continuation strategy
de�ned in (18) We can in addition show that the full belief-based strategy pro�le ((�; �) ; (�; �))
constitutes a sequential equilibrium. In this sequential equilibrium, players obtain approximate
equilibrium payo¤s

�
16
47 ;

16
47

�
. This is presented in Proposition 3. We leave all other detailed

arguments to Appendix.

Proposition 3 Consider the repeated game with private monitoring as de�ned in Figure 5 and
Figure 6. There is an " s.t. for any " 2 (0; "), the belief-based strategy pro�le ((�; �) ; (�; �)) is
a sequential equilibrium of the repeated game. In addition, as " ! 0, players�payo¤s approach�
16
47 ;

16
47

�
.

We conjecture that our construction in the above example can be generalized to some class
of two-player repeated games with almost-perfect private monitoring. The advantage of the
above construction is its simplicity: in any period of the game, each player can only be in one

24Sepci�cally, the continuation values VC , VD and VE can be calculated as:

VC = �p
�
(1� �) + � (1� 2")2 VMM + �2" (1� 2")

�
V DM + VMD

��
+

(�q + 1� �)
�
� (1� �) + �"VMD

�
+ � (1� p� q)

�
�2 (1� �) + �"VMD

�
;

VD = �p
�
15
4
(1� �) + �"V DM

�
+ (�q + 1� �) (0) + � (1� p� q) [� (1� �)] ;

VE = �p
�
3 (1� �) + �"V DM

�
+ (�q + 1� �) [� (1� �)] + � (1� p� q) [�2 (1� �)] :
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of two states, the cooperative state (where players always randomize among C, D and E),
and the defective state (where players play the stage game Nash equilibrium (D;D)). This is
especially important for the belief-based approach since the main di¢ culty of extending belief-
based strategies to general games comes from the fact that it becomes increasingly cumbersome
to keep track of the evolution of players�beliefs when the stage game and the private monitoring
structure become more complicated.

This construction, however, also imposes non-trivial restrictions on the speci�cations of the
repeated game as for players to be willing to always randomize after good private histories, there
should be no pro�table one-shot deviation for each player. This incentive constraint (at each
period after the good private histories, the continuation values of playing each action in the
support of the randomization and then conforming to (�; �) should be identical) will be imposed
jointly on stage game payo¤s and the private monitoring structure. In the above, (R� 1) is
typically imposed on the discount factor and, as we have shown before, as long as a public
randomization device is available, (R� 1) usually poses no problem in applying modi�ed belief-
based strategies to general games. Restriction (R� 2), on the other hand, usually imposes a
non-trivial constraint on what type of games we can apply the modi�ed belief-based construction.
For example, for the original form of the game de�ned in Figure 4 (Figure 2 in Sekiguchi (1997)),
it is not clear how to apply the above method to construct a sequential equilibrium that is not
the repetition of the stage Nash equilibrium. The reason is that if we use the above construction
to support any payo¤ bigger than zero in a sequential equilibrium, the value of playing "D" and
then conforming to (�; �) after good private histories should be positive. However, as long as
the private monitoring structure has full support, the expected value of playing "D" is always
negative in this game. So restriction (R� 2) is violated. Thus for such games, we will have to
design more complicated (possibly time variant) belief-based strategies to sustain cooperation.

4 Concluding Remarks

This paper introduces some form of ongoing randomizations, "keep them guessing" strategies,
to extend the belief-based approach in Sekiguchi (1997) and Bhaskar and Obara (2002). We
show that, using our modi�ed belief-based strategies, e¢ ciency can be approximated in repeated
prisoners�dilemmas with asymmetric private monitoring, provided that observation errors are
su¢ ciently small and a public randomization device is available for the players. The paper also
provides an explicit example to show that the "keep them guessing" strategies can be potentially
generalizable, under certain restrictions on the stage game payo¤s and the private monitoring
structure of the repeated game.

As mentioned in the introduction, our approach in this paper is a belief-based one where each
player�s beliefs of the other player�s private histories are central to the analysis (hence the di¢ cult
statistical inferences in repeated games with private monitoring are explicitly addressed). This
is in contrast to the belief-free approach where after each private history, a player�s optimal
continuation strategy is independent of the other player�s private histories25. This irrelevance of
beliefs provides a drastic simpli�cation of the analysis of repeated games with private monitoring.
As a result, more general results have been obtained in the literature using this approach: �rst,

25Note that our modi�ed belief-based strategies are di¤erent from belief-free strategies: player l is indi¤erent
between �Ml and �Dl only after a particular class of private histories of the form "Cc; :::; Cc". Player l�s beliefs
are only �xed after such private histories and are still relevant for the optimality. If she sees a bad signal or her
randomization realizes "D", player l would then strictly prefer to player �Dl
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the folk theorem for the repeated prisoners�dilemma with symmetric and asymmetric almost-
perfect private monitoring has been obtained using the belief-free approach (Piccione (2002), Ely
and Välimäki (2002)); second, Ely, Hörner and Olszewski (2005) characterize the entire set of
equilibrium payo¤s using "belief-free" sequential equilibria for two-player repeated games with
private monitoring. In many games, the set of belief-free equilibrium payo¤s is strictly larger
than the convex hull of the stage game Nash equilibrium payo¤s, but using only belief-free
equilibria to obtain a folk theorem is almost always impossible for two-player repeated games
even under almost-perfect private monitoring settings, as certain restrictions have to be imposed
on the action pro�les in constructing the belief-free strategies26. The most general results (so
far) on repeated games with almost-perfect private monitoring are probably provided by Hörner
and Olszewski (2006) where the authors consider block strategies, which treat T th-repeated
stage game as a single stage game. Hörner and Olszewski (2006) show that, by considering
block equilibria, it is possible to circumvent the restrictions of the belief-free approach on the
action pro�les and a folk theorem can be obtained for general N -player repeated games with
almost perfect private monitoring. Although the strategies considered in Hörner and Olszewski
(2006) are not belief-free, they contain the essential feature of the belief-free property: at the
initial period of each T -block, each player is indi¤erent between the "reward" strategy and the
"punishment" strategy and thus beliefs are irrelevant at the beginning of each block27.

There are two potential criticisms of belief-free equilibria in the literature: �rst and most
importantly, as belief-free strategies typically require a lot of randomizations for each player, the
coordination interpretation common in equilibria of repeated games is not clear in the belief-
free approach. The modi�ed belief-based strategies constructed in this paper, on the other
hand, have a clear coordination interpretation: the modi�ed belief-based strategies are again
generalizations of trigger strategies to the setting of private monitoring. These strategies are
similar to trigger strategies in repeated games with perfect or imperfect public monitoring, which
are constructed to provide enough incentives for the players to follow the equilibrium actions.
The role of the randomizations along certain private histories is exactly the same as the role
of �rst-period randomization (in symmetric private monitoring): to introduce small amounts of
uncertainty so that players have proper incentives to punish bad signals, which is essential to
deter defections.

The second criticism of belief-free equilibria is that it is not clear whether the belief-free
equilibria are puri�able (Harsanyi (1973)). Bhaskar, Mailath and Morris (2006) investigate the
puri�ability of the mixed strategies used in constructing the belief-free equilibria in Ely and
Välimäki (2002) in the perfect monitoring setting. They perturb the stage game (prisoners�
dilemma) payo¤s to allow i.i.d. private payo¤ shocks and �nd that almost always, all of the
mixed strategy pro�les are not the limit of one-period memory equilibrium strategy pro�les of the
perturbed game28. As we have mentioned in the fourth remark after Proposition 1, the mod-
i�ed belief-based strategies we constructed seem to involve some unreasonable randomizations
at only one information set (at t = 0 and after a private history of the form (Cc; :::; Cc), player
l�s belief of h�s continuation strategy is identical, but player l is required to play di¤erently).
However, the modi�ed belief-based strategies have in�nite history dependence as each player�s

26A recent paper (Yamamoto (2006)) extends Ely, Hörner and Olszewski (2005) and fully characterizes the
belief-free equilibrium payo¤s in N -player repeated games with private monitoring.
27Within each block, each player plays a complicated strategy where, almost always, positive probabilities are

assigned to all actions of that player.
28However, their non-puri�ability arguments do no extend to the private monitoring case where a di¤erent

method is necessary to show the non-puri�ability results in the private monitoring settings.
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beliefs of the opponent being cooperative are the essential part of the strategies and players
beliefs are derived recursively from the entire previous private histories. For mixed strategies of
in�nitely repeated games that have in�nite memories, no evidence on whether such strategies
are puri�able or not has been provided in the literature. Indeed, future work should be directed
towards investigating the puri�ability of such mixed strategies.

Further extensions of belief-based strategies to more general repeated games are a di¢ cult
task. The main di¢ culty comes from the fact that it becomes increasingly cumbersome to
keep track of the evolution of players�beliefs when the stage game and the private monitoring
structure become more complicated. This paper presents one construction where keeping track
of players�beliefs can be somewhat simpli�ed by only considering two states for each player.
And this construction can be potentially generalized to some class of repeated games with
private monitoring. As belief-based strategies have a clear behavior interpretation, they are an
important class of strategies to study for repeated games with private monitoring. We think
that in the future, more work should be done in this line of research.

5 Appendix

5.1 Omitted Details in Section 2.1 � Section 2.2

The "coordination" game at t = 0 for the conventional belief-based strategies is again displayed
as follows (note that, for example, V CDi denotes player i�s continuation value when i plays �Ci
and the opponent plays �Dj ) :

�Ch �Dh
�Cl V CCl ; V CCh V CDl ; V DCh

�Dl V DCl ; V CDh 0; 0
FIGURE 2. The "coordination game" at t = 0.

As only partial continuation strategies are relevant to calculate equilibrium payo¤s, we ob-
tain: 8>>>><>>>>:

V DDl = V DDh = 0;

V DCl = (1+G)(1��)
1�ph� ; V DCh = (1+G)(1��)

1�pl� ;

V CDl = �L(1��)
1�pl� ; V

CD
h = �L(1��)

1�ph� ;

V CCl =
(1��)+pl�V DCl +ph�V

CD
l

1�(1�ph�pl�q)� ; V CCh =
(1��)+ph�V DCh +pl�V

CD
h

1�(1�ph�pl�q)� :

And it is easy to verify that V CCi ; V DCi > V DDi = 0 > V CDi if � > G
1+G and (ph; pl; q) is close

to the origin.
The initial randomization probabilities can now be calculated as:8<: b�l = �V CDh

V CCh �V CDh �V DCh

= (1��+ph�+pl�+q�)(1�pl�)L
(1�pl�)(1�ph�)+(1��+�ph+�q)(1�pl�)L�(1��+�pl+�q)(1�ph�)(1+G) ;b�h = �V CDl

V CCl �V CDl �V DCl

= (1��+ph�+pl�+q�)(1�ph�)L
(1�pl�)(1�ph�)+(1��+�pl+�q)(1�ph�)L�(1��+�ph+�q)(1�pl�)(1+G) :

And we have lim
(ph;pl;q)!0; �! G

1+G

b�i = 1, and lim
(ph;pl;q)!0; �!1

b�i = 0; 8 i 2 fl; hg :
Now, to show the result of Lemma 1 ((5) and (6)) in more detail, note �rst that the belief

operator �Cch (�) has a �xed point ��h =
1�2ph�pl�2q
1�2ph�2q 2 (0; 1), when ph; pl and q are small. To

see what happens to player h�s belief of l being in the cooperative state after a private history
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of the form "Cc; :::; Cc; Cd", we can calculate �Cdh (��h), which can be made arbitrarily close to
player h�s belief after "Cc; :::; Cc; Cd" with an arbitrarily long sequence of "Cc"�s:

�h (Cc; :::; Cc; Cd) � �Cdh (�) � �Cdh (��h) =
ph

(ph + q) +
(1�ph�q)pl
1�2ph�pl�2q

:

Now, �xing h > 0 and letting l (and thus q) go to zero, we have lim
l!0

�Cdh (��h) = 1, which means

that if private signals are such that ph is signi�cantly larger than pl, player h�s belief of l being
in the "cooperative" state can be very large after a private history "Cc; :::; Cc| {z }

n

;Cd" when n is

very large. This completes the description of result (5). On the other hand, player l�s initial
randomization probability (note that b�l, de�ned in (1), is also the threshold where player h�s
behavior changes, by the criterion function de�ned in (4)) when pl and q become arbitrarily
small can be calculated as (result (6)):

lim
pl;q!0

b�l = (1� � + �ph) (1� �ph)L
1 + (1� �)L� (1+G)

(1��ph) (1� � + �ph)
< 1;

if � > G
1+G and ph is small. Hence, as long as the "n" in history "Cc; :::; Cc| {z }

n

;Cd" is large enough

and pl; q are su¢ ciently smaller than ph, we will have �Cdh (�) > b�l (Note that as the belief
operator �Cdh (�) is strictly increasing in �. Hence, �Cdh (��h (Cc)) is de�ned as the supremum of
the belief operator �Cdh (�), since after a long sequence of "Cc"�s, h�s belief can be arbitrarily
close to ��h (Cc), and the speci�c condition under which the result in Lemma 1 appears is
"�Cdh (��h) � b�l".).Thus the conventional belief-based strategy pro�les in Sekiguchi (1997) and
Bhaskar and Obara (2002) are not Nash equilibria when ph >> pl; q as player h now has no
incentive to switch to defection after a bad signal on the equilibrium path.

5.2 Omitted Details in Section 2.3

First, the initial randomization probabilities for the modi�ed belief-based strategies are derived
as follows:

�Ch �Dh
�Ml VMC

l ; V CMh VMD
l ; V DMh

�Dl V DCl ; V CDh 0; 0
The "coordination game" at t = 0.

As only the partial continuation strategies are relevant in evaluating the expected values of
the equilibrium, we can thus calculate these values as:

� Player h: 8>>>><>>>>:
V CMh =

(1��)(p+pL�L)+�phpV DMh +�[ppl+(1�p)(ph+q)]V CDh
1��p(1�ph�pl�q) ;

V DMh = (1� �) (1 +G) p+ � (pl + q) pV DMh = (1��)p(1+G)
1�p�(pl+q) ;

V CDh = �L (1� �) + � (ph + q)V CDh = �(1��)L
1��(ph+q) ;

V DDh = 0:
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� Player l: 8>>>><>>>>:
VMC
l =

(1��)(1+G�pG)+�phpVMD
l +�[ppl+(1�p)(ph+q)]V DCl

1��p(1�ph�pl�q) ;

VMD
l = �pL (1� �) + � (pl + q) pVMD

l = �(1��)pL
1�p�(pl+q) ;

V DCl = (1� �) (1 +G) + � (ph + q)V DCl = (1��)(1+G)
1��(ph+q) ;

V DDl = 0:

The probabilities of the initial randomizations can thus be determined as:8<: �l =
�V CDh

V CMh �V CDh �V DMh

;

�h =
�VMD

l

VMC
l �VMD

l �V DCl

:

Proof of Lemma 2

Firstly, simplifying (9) gives the following condition:

F (�; ph; pl; q) � (1� ph � 2pl � 2q)
�

(1� 2ph � 2q) �
� (1� � + �ph + �q)G

�
� phL (1� �ph � �q)

= 0:

Note that this restriction is imposed on � and that there is a �� 2 (0; 1) satisfying F (�; ph; pl; q) =
0 when ph, pl and q are small enough (Lemma 2). In addition, �� only depends on (ph; pl; q),
but does not depend on the probability p (to be de�ned). The underlying reason is that player
h only randomizes in the initial period, and given player h�s strategy and �h = e�Ccl , player
l is always indi¤erent between choosing C and D in each period after a good private history
"Cc; :::; Cc". This gives us some freedom in choosing p (see the next restriction) and it will also
simplify the analysis on p. However, when both players adopt partial continuation strategies
� =

�
�M ; �D

	
, �� would also depend on p from restriction �h = e�Ccl . We will see this more

clearly in Section 3, where we extend the modi�ed belief-based strategies to some other game
(there, both players have to randomize more than once on the equilibrium path).

Secondly, simplifying (11) yields:

H (p; �; ph; pl; q) �
�
p+ �p+ 2�p2ph + 2�p

2q � 2�pph � 2�pq � �ppl � �p2 � 1
�
X

�
�
p� �p2 + �p2pl + �p2q

�
Y +

�
p2 + p2L� pL

�
= 0;

where X = L
1��(ph+q) , Y =

p(1+G)
1�p�(pl+q) .

Proof.

� �� :
From equation F (�; ph; pl; q) = 0, we have that

@F

@�
= (1� ph � 2pl � 2q) [1� 2ph � 2q + (1� ph � q)G] + p2hL+ phqL:

Since @F
@� j(ph;pl;q)=0 = (1 +G) > 0; by the implicit function theorem, there is an open set

U 0 of (ph; pl; q) around the origin (0; 0; 0) such that F (�; ph; pl; q) = 0 implicitly de�nes
� as a unique C1 function of (ph; pl; q), �� (ph; pl; q). From F (�; ph; pl; q) = 0, we also
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have �� (0; 0; 0) = G
1+G . Apply the result from the implicit function theorem again and we

have that in the open set U 0 of (ph; pl; q), the partial di¤erentiations of �� (ph; pl; q) can be
calculated as follows:

@�

@ph
= �

@F
@ph
@F
@�

;
@�

@pl
= �

@F
@pl
@F
@�

;
@�

@q
= �

@F
@q

@F
@�

:

Simple calculations yield:8><>:
@F
@ph
j(ph;pl;q)=0 = �L�

G2+2G
1+G < 0;

@F
@pl
j(ph;pl;q)=0 = 0;

@F
@q j(ph;pl;q)=0 = �

2G+G2

1+G < 0:

The above result implies that there is an open set U 00 near the origin where ph; pl; q > 0

in U 00 and (1) @F
@ph
; @F
@pl
; @F
@q < 029 in U 00 (with ph > pl); (2) �� (ph; pl; q) 2

�
G
1+G ; 1

�
in

U 00(with ph > pl). Taking U as U = U 0 \ U 00, we have then proved part 1.

� p :
Now suppose that (ph; pl; q) 2 U, and equation H (p; ��; ph; pl; q) = 0, where �� only
depends on (ph; pl; q) in U, can be written as bH (p; ph; pl; q) = 0. This implies, using
��j(ph;pl;q)=0 =

G
1+G ,

bH (p; 0; 0; 0) = �1 +G+ L

1 +G

�
p2 �

�
1 +G� GL

1 +G

�
p� L = 0;

from which we can solve that pj(ph;pl;q)=0 = 1
�
or pj(ph;pl;q)=0 < 0

�
: Discarding the negative

solution, we have bH (1; 0; 0; 0) = 0; which in turn implies that
@ bH
@p
j(ph;pl;q)=0 = (1 +G) +

�
1 +

1

1 +G

�
L > 0.

Hence, again, by the implicit function theorem, there exists some open set V 0 near (0; 0; 0)
such that H (p; �; ph; pl; q) = 0 implicitly de�nes p as a unique C1 function of (ph; pl; q).

To determine the partial di¤erentiations, we can easily verify that @ bH
@ph
j(ph;pl;q)=0 > 0

and @ bH
@q j(ph;pl;q)=0 > 0, which by the implicit function theorem we have @p

@ph
and @p

@q are
negative in the open set V 0. Sets U and V 0 determine that there another open set V such
that result 2 holds for (ph; pl; q) 2 V. Note that @

bH
@pl
j(ph;pl;q)=0 < 0. However, by comparing

@ bH
@pl
j(ph;pl;q)=0 and

@ bH
@ph
j(ph;pl;q)=0, we have that�����@ bH@ph j(ph;pl;q)=0
����� = L+ G2 + 2G1 +G

>

�����@ bH@pl j(ph;pl;q)=0
����� = GL

1 +G
+
2G+G2

1 +G
;

and this condition ensures that in the open set V, the probability p can be restricted to
be in (0; 1).

29The result " @F
@l
j(ph;pl;q)=0 = 0" does not pose any problem for us. Note U 00 does not include the origin

and we are concerned with the case where ph > pl. It�s easy to see that by (1) @�
@ph

> 0 and @�
@q
> 0 in U 0,

and (2) From @F
@pl

= �2 [� (1� 2ph)� (1� � + �ph)G], we have that @2F
@pl@ph

< 0 at the origin. This implies that
@F
@pl

< 0 whenever ph is small and positive.
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Proof of Lemma 3

Proof. Part 1 and part 3 are straightforward to verify.
To show part 2, note that �l < ��h is equivalent to "(1� ph � q)

�
�l � �2l

�
> (ph + q + pl�l)�

(ph + q)�
2
l ". Now it is easy to see that as (1� ph � q)�l > (ph + q) (1 + �l) when ph and q are

small enough, the following inequality holds strictly:

(1� ph � q)
�
�l � �2l

�
> (ph + q)� (ph + q)�2l :

Accordingly, the original inequality "(1� ph � q)
�
�l � �2l

�
> (ph + q + pl�l) � (ph + q)�2l "

is true if we choose pl to be su¢ ciently small. Thus there is an open setW � U \V such that
�l < �

�
h for all (ph; pl; q) 2W.

Proof of Lemma 4

Proof.

� For player h, we need to show that:

1. "�l � � < ��h implies (A) �Cch (�) > �l and (B) �Cdh (�) < �l".
For (1), to verify "�Cch (�) > �l", it su¢ ces to show "�Cch (�l) > �l" as by part 3 in

Lemma 3, d�
Cc
h (�)
d� > 0. But "�Cch (�l) > �l" is equivalent to the following,

(1� ph � pl � q)�l > (1� 2ph � 2q)�2l + (ph + q)
,

(1� ph � q)
�
�l � �2l

�
> pl�l + (ph + q)� (ph + q)�2l :

Now by the proof of part 2 in Lemma 3, �l < ��h is equivalent to "(1� ph � q)
�
�l � �2l

�
>

(ph + q + pl)�(ph + q)�2l ". Hence, the last inequality above is reduced to "pl > pl�l",
which is true since "(ph; pl; q) 2W � U \V" implies that "�l < 1".
For (2), note that d�

Cd
h (�)
d� > 0 by Lemma 3. Hence it su¢ ces to show "�Cdh (��h) <

�l", which is equivalent to "(1� 2ph � 2q)��h�l + ph��h < 1� ph � q". But we have

(1� 2ph � 2q)��h�l + ph��h < (1� 2ph � 2q)��h + ph��h
< (1� ph � q) ;

where the �rst inequality comes from the fact that "(ph; pl; q) 2W" implies "�l < 1"
and the second inequality comes from "��h < 1" (Lemma 3).

2. "0 < � < �l implies (C) �Dch (�) < �l and (D) �Ddh (�) < �l".
(C) is equivalent to "(1� 2ph � 2q)��l + ph + q > pl�" for 0 < � < �l. This is
obviously true since "ph + q > pl > pl�" and "ph + q < 1

2". And (D) can be proved
similarly.

� For player l, her partial continuation strategy speci�es that she play "�l��Ml +(1� �l)��Dl "
at t = 0 and she play �Ml whenever she sees "Cc; :::; Cc":
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1. At t = 0, given that player h is playing "�h � �Ch + (1� �h) � �Dh ", player l�s belief
is �l = �h =

1�ph�2pl�2q
1�2pl�2q , and player l plays "�l � �Ml + (1� �l) � �Dl ". So at t = 0,

player l plays "�2l � C + (1 � �2l ) � D", as we imposed the condition p = �l. For
t � 1, given that player l�s private history is "Cc; :::; Cc", her belief that player
h being in the cooperative state is always �h, and player l�s continuation strategy
will thus be "�l � �Cl + (1� �l) � �Dl ". Player l�s partial continuation strategy is
assumed to be �Ml , or at each period with a private history "Cc; :::; Cc", player l
plays "�l � C + (1� �l) �D".

2. When player l sees "Cd" after a history "Cc; :::; Cc", she is required to play �Dl . Or
we need to show "� = �h = ��l implies �

Cd
l (�) < �h". But this is equivalent to

"pl + (1� 2pl � 2p)�h < 1� pl � p", which is true since �h = 1�ph�2pl�2q
1�2pl�2q < 1.

3. Finally, we need to show that "0 < � � �h implies (E) �Dcl (�) < �h and (F)

�Ddl (�) < �h". Since by part 3 in Lemma 3,
d�Dcl (�)
d� ;

d�Ddl (�)
d� > 0, it su¢ ces to show

that �Dcl (�h) < �h and �Dcl (�h) < �h. These two inequalities reduce to�
ph < �h (1� 2pl � 2q) + pl + q;
q + (1� 2pl � 2q)�h < (1� pl � q) :

It is easy to see that there exists an open set cW � R3 near the origin such that
above inequalities are true for all (ph; pl; q) 2 cW. For the rest of the paper, denote
Z = cW \W.

By the arguments shown above, the modi�ed belief-based strategies de�ned in (15) and (16)
are realization equivalent to �l and �h, respectively.

Proof of Proposition 1

To accommodate the strategy pro�le in this paper, we �rst de�ne players�criterion functions as
follows: �

�Vh (�; �
�; (ph; pl; q)) = �

�
V CMh � V DMh

�
� (1� �)

�
V DDh � V DMh

�
;

�Vl (�; �
�; (ph; pl; q)) = �

�
VMC
l � V DCl

�
� (1� �)

�
V DDl � V DCl

�
:

Note again that there is a unique vector �, such that�Vh (�; ��; (ph; pl; q)) = �Vl (�; ��; (ph; pl; q)) =
0 by the linearity of these two functions in �.

Proof. The objective is to show that there is no pro�table one-shot deviation for any player at
any private information set.

� Player h :

Case 1. � = �l, by the de�nition of �l, player h is indi¤erent between �Ch and �Dh . By
construction, one-shot deviations are not pro�table.

Case 2. If in the middle of the game, � > �l, player h is required to play �Ch . A one-shot
deviation is to play D in this period and then continue with (�h; �l). The deviation
gain depends on the belief operators �Dch (�) and �Ddh (�). First, note that for all
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� 2 [0; ��h], we have �Dch (�) ; �Ddh (�) < �l. The reason is the following: by part 3 in
Lemma 3, it su¢ ces to show �Dch (��h) ; �

Dd
h (��h) < �l, which are equivalent to�

��hpl < �
�
h�l (1� 2ph � 2q) + ph + q;

q��h + (1� 2ph � 2q)��h�l < 1� ph � q:

These are true since ph + q > pl > ��hl and (ph; pl; q) 2 Z (thus ��h; �l < 1). Hence,
we only30 need to consider the situation of �Dch (�) ; �Ddh (�) < �l.
Now, if �Dch (�) ; �Ddh (�) < �l, the one-shot deviation is equivalent to �Dh . As the
criterion function �Vh (�; ��; (ph; pl; q)) > 0 for � > �l, or �Ch is better than �

D
h , this

one-shot deviation is not pro�table.

Case 3. Now suppose � < �l. The one-shot deviation for h is to play C in this period and
continue with (�h; �l). Once h has played C, (�h; �l) speci�es that h play �

C
h if

�Cch (�) � �l and that h play �Dh if �Cch (�) < �l (player h should also play �Dh
if signal "d" is observed for h). If the private state �Cch (�) � �l is reached, the
payo¤ di¤erence between the equilibrium continuation strategy (�Dh ) and the one-
shot deviation is the payo¤ di¤erence between �Ch and �

D
h when � < �l. Again, as

"� < �l implying �Vh (�; ��; (ph; pl; q)) < 0", �Dh is hence strictly better and this
one-shot deviation is strictly worse for h. On the other hand, if we are in the other
situation (�Cch (�) < �l or "d" is observed), the payo¤ di¤erence between the one-shot
deviation (which resembles �Ch , with the exception that h plays �

D
h after "C" and a

good signal "c") and �Dh is the following
31:

�eVh (�) = �Vh (�; �
�; (ph; pl; q))

��� [��l (1� ph�q) + (1� ��l) (ph+q)]�V h
�
�Cch (�) ; ��; (ph; pl; q)

�
:

First, it is easy to show that �Cch (�) > � (Lemma 4). Now, if �l > �Cch (�) > �,
then we have 0 > �V h

�
�Cch (�) ; ��; (ph; pl; q)

�
> �Vh (�; �

�; (ph; pl; q)), which implies
that �eVh (�) < 0, since �� [��l (1� ph�q) + (1� ��l) (ph + q)] 2 (0; 1). Therefore,
the one-shot deviation of player h is not pro�table.

� Player l :
First, note that by the construction of the strategy, player l�s belief is restricted to the
interval [0; �h]. Therefore, we only consider two cases: � = �h and � < �h:

Case 1. � = �h:
At t = 0, or whenever player l sees a history like "Cc; :::; Cc", player l�s belief is
� = �h, or l�s belief of h�s continuation strategy is always �h � �Ch + (1� �h) � �Dh .

30Note the di¤erence between the proof in Case 2 and the corresponding part of proof in Bhaskar and Obara
(2002): there is only one situation to consider in this paper (while there are two cases in B&O (2002)). The
underlying reason comes from the de�nitions of the belief operators �Dch (�) and �Ddh (�) in this paper.
31Note that

Pr (sh = cjAh = C; �) = ��l Pr (sh = cjCc) + (1� ��l) Pr (sh = cjCd)
= ��l (1� ph�q) + (1� �1�2) (ph + q) :
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The value of playing "C" and the value of playing "D" to player l are (given player
h�s continuation strategy is �Ch ):

V Cl = (1� �) + �
�
(1� ph � pl � q)VMC

l + phV
MD
l + plV

DC
l

�
;

V Dl = (1� �) (1 +G) + � (ph + q)V DCl ;

while the corresponding values to player l when player h�s continuation strategy is
�Dh are: bV Cl = �L (1� �) + � (pl + q)VMD

l ;bV Dl = 0:

Given that l believes "player h�s continuation strategy is �h � �Ch + (1� �h) � �Dh ",
it is easy to show that (recall that condition (9) is the restriction that � is �xed to a
certain value):

(9) =) �hV
C
l + (1� �h) bV Cl = �hV

D
l ;

or no one-shot deviation from �Ml is pro�table for player l if (9) is true.

Case 2. � < �h. The one-shot deviation for l is to play C in this period and continue with
(�l; �h). Once l has played C, (�l; �h) speci�es that l play �

M
l if �Cch (�) = �l and l

play �Dl if �
Cc
l (�) < �h, or if signal "d" is observed for l. Now, if it is the case that

�Cch (�) = �l, then the one-shot deviation corresponds to "�Ml ", but by the criterion
function we know that "�Dl " is always strictly preferred to "�

M
l ".

Now consider the second case where �Ccl (�) < �h. The one-shot deviation resembles
the (partial) continuation strategy "�Ml ", except at the information set "Cc", where
l plays "�Dl " instead of "�

M
l ". Denote the di¤erence in values between playing "�

D
l "

and playing this one-shot deviation to be �eV (�) and we have (let �0 = �Ccl (�)):

�eV (�) = �V (�)� � [(1� ph � q)��l + (ph + q) (1� ��l)]�V ��0� :
Now, since �V (�h) = 0 and � < �0 = �Ccl (�) < �, it is immediately evident that
�eV (�) > 0, or the one-shot deviation is not pro�table.

By the above arguments for player l and player h and Lemma 4, the belief-based strategy
pro�le ((�l; �h) ; (�h; �l)) is a sequential equilibrium for the repeated games with asymmetric
private monitoring.

Proof of Proposition 2

Proof. By Proposition 1, the modi�ed belief-based strategy pro�le ((�l; �h) ; (�h; �l)) is a
sequential equilibrium provided that (ph; pl; q) is close enough to the origin. The result in
Proposition 1 continues to hold for the situation where players face an even more accurate
monitoring structure (that is, for vectors of (ph; pl; q) that are even closer to the origin). Applying
Lemma 5, together with the fact that lim

(ph;pl;q)!0
V CMh = 1 and lim

(ph;pl;q)!0
VMC
l = 1, we know

that for any � � �� (�� is de�ned in Lemma 2), there exists a sequential equilibrium where
players obtain payo¤s arbitrarily close to (1; 1), provided that ph; pl and q are arbitrarily close
to 0.
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5.3 Omitted Details in Section 3

First, the values of the equilibrium to the players in Figure 7 can be calculated as8>><>>:
VMM =

(1��)(5p+2q� 5
4
pq�2p2�2)+�"p(1+p�2p")VMD+�"p(1+p�4p")V DM

1��p2(1�2")2 ;

VMD = (1��)(q�1)
1��p" ; V DM =

(1��)( 154 p+q�1)
1��p" ;

V DD = 0:

We now present the belief dynamics of the players when they employ the modi�ed belief-
based strategies. Using Bayes�rule, we have32:

�Cc (�) =
(1� 2")2 p�

(1� 2")�p+ " (1� �p) ;

�Cd (�) =
" (1� 2") p�

(1� 2")� (1� 3") (1� q)� ;

�Ce (�) =
" (1� 2") p�

"+ (1� 3") (1� p� q)� ;

�Dd (�) =
" (1� 2") p�

"+ (1� 3") (1� �+ q�) ;

�De (�) =
"2p�

"+ (1� 3") (1� p� q)� ;

�Ec (�) =
" (1� 2") p�
"+ (1� 3") p� ;

�Ed (�) =
"2p�

"+ (1� 3") (1� �+ q�) ;

�Ee (�) =
"2p�

"+ (1� 3") (1� p� q)�:

Now it is easy to verify that the full belief-based strategy de�ned in (30) is realization
equivalent to �i de�ned in (29), as shown by the following facts:

� Restriction (R� 1), � = ��Cc, ensures that a player�s belief of the other being cooperative
is always ��Cc after the good histories of the form "Cc; :::; Cc";

� By the fact that d�
Cd(�)
d� ; d�

Ce(�)
d� > 0, it is su¢ cient to verify �Cd (�) ; �Ce (�) < �, which

hold for " positive and small (The argument uses "�; p; q 2 (0; 1) when " is small enough",
which will be veri�ed shortly);

32For example:

�Cd (�) =
Pr (dcjCC) p�

p� [Pr (dcjCC) + Pr (dd; ejCC)] + (1� �+ �q) [Pr (dcjCD) + Pr (dd; ejCD)]
+ (1� p� q)� [Pr (dcjCE) + Pr (dd; ejCE)]

;

�Dc (�) =
Pr (ccjDC) p�

p� [Pr (ccjDC) + Pr (cd; ejDC)] + (1� �+ �q) [Pr (ccjDD) + Pr (cd; ejDD)]
+ (1� p� q)� [Pr (ccjDE) + Pr (cd; ejDE)]

;

�Ee (�) =
Pr (ecjEC) p�

p� [Pr (ecjEC) + Pr (ed; ejEC)] + (1� �+ �q) [Pr (ecjED) + Pr (ed; ejED)]
+ (1� p� q)� [Pr (ecjEE) + Pr (ed; ejEE)]

:
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� It is immediate to verify that

d�Dc (�)

d�
;
d�Dd (�)

d�
;
d�De (�)

d�
> 0;

and

d�Ec (�)

d�
;
d�Ed (�)

d�
;
d�Ee (�)

d�
> 0:

Thus, it su¢ ces to show that �Dc (�) ; �Dd (�) ; �De (�) ; �Ec (�) ; �Ed (�) ; �Ee (�) are all
less than �, which is obviously true as long as "�; p; q 2 (0; 1)".

Now we verify the claim that "there exists " > 0, such that for all " 2 (0; "), p; q; � and �
are C1 functions of " and in the neighborhood (0; "), d�d" ;

dp
d" ;

d�
d" > 0 and

dq
d" < 0: In addition, we

have
lim
"!0

� =
10

11
, lim
"!0

p =
4

5
, lim
"!0

q =
1

5
, lim
"!0

� = 1."

The basic argument is again the implicit function theorem.
First, by restriction (R� 1) and "VD = VE", we have

4

5
�p = 1 and p =

4� 7"
5 (1� 2")2

,

from which we know p is a di¤erentiable function of " and p 2 (0; 1), dpd" > 0 if " is small. Also,
lim"!0 p =

4
5 .

We then de�ne a function F : R3 ! R2 from the two restrictions (R� 1) and "VD = VE" in
(R� 2).

F (�; q; ") =

�
f1 (�; q; ")
f2 (�; q; ")

�
= 0;

where

f1 (�; q; ") =
4

5
� (1� 2")2 VMM + �

�
17

5
"� 16

5
"2 � 4"

5p

�
VMD

+
4�

5

�
"� 4"2

�
V DM � 8

5
(1� �)

f2 (�; q; ") =
h
(1� 2")2 p� "

i
VMM �

h
"� (1� 2")2 p

i �
VMD + V DM

�
+ (1� 3") p

We can calculate33 that"
@f1
@�

@f1
@q

@f2
@�

@f2
@q

#
(�= 10

11
;q= 1

5
;"=0)

=

�
4:476 2:365
�0:507 576

6325

�
:

33We used Maple to calculate the numerical results. Also, note that evaluating q at 1
5
is not exactly rigorous as

we also have to make sure that (1� p� q) 2 (0; 1) when " 2 (0; "). But we can always choose q to be arbitrarily
close to 1

5
.
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This matrix is invertible and our claim above is thus true by the implicit function theorem. In
addition, we can further calculate that 

de�
d"
deq
d"

!
(�= 10

11
;q= 1

5
;"=0)

= �
"

@f1
@�

@f1
@q

@f2
@�

@f2
@q

#�1� @f1
@"
@f2
@"

�
(�= 10

11
;q= 1

5
;"=0)

=

�
0:767
�0:4

�
:

This completes the veri�cation of the claim above.
The last step is to prove Proposition 3. Before we formally prove the proposition, we point

out the non-trivial fact that for any � 2 [0; �], we have that all the belief operators "�Cc (�),
�Cd (�), �Ce (�), �Dc (�), �Dd (�), �De (�), �Ec (�), �Ed (�), �Ee (�)" have ranges as some
subsets of [0; �]. For the belief operator �Cc (�), this is obvious. For all the other belief operators,

note that all of them lie below the 45-degree line (for example, d�
Dc(�)
d� > 0; d

2�Dc(�)
d�2

< 0). It is
thus su¢ cient for us to only consider beliefs in [0; �] for any player at any time.
Proof. We show that there is no pro�table one-shot deviation for any player at any private
information set if each player plays the full belief-based strategy (�; �).

First, note that by construction, each player�s belief is restricted in the interval [0; �]. We
thus only consider two cases: � = � and � < �:

Case 1 � = �:
Restriction (R� 1) ensures that a player�s belief is �xed to be � in the class of histories

(Cc; :::; Cc), and restriction (R� 2) ensures that any one-shot deviation is not pro�table.

Case 2 � < �:
There are two possible one-shot deviations for this case: one is to play "C" in this period

and continue with (�; �), the other is to play "E" in this period and continue with (�; �).

� The option of playing "C" now and then continuing with (�; �):
Once the player has played "C", strategy (�; �) indicates that (1) the player play "�M" if
the player sees signal "c" and �Cc (�) = �, while play "�D" for all other cases; (2) the
player play "�D" if the player sees signal "c" and �Cc (�) < �, while play "�D" for all
other cases. Now as (1) is equivalent to "�M", and thus is not pro�table since "�D" is
always preferred to "�M" when � < �. For (2), the one-shot deviation thus only di¤ers
from "�M" at the information set "Cc". Denote the value di¤erence of playing "�D" and
playing this one-shot deviation to be �V (�) and we have (�0 = �Cc (�)):

�V (�) = [V�D (�)� V�M (�)]� � [(1� 2")�p+ " (1� �p)]
�
V�D

�
�0
�
� V�M

�
�0
��
:

Now since �V (�) = 0 and � < �Cc (�) < �, it is immediate that �V (�) > 0, or that the
one-shot deviation is not pro�table.

� The option of playing "E" now and then continuing with (�; �):
Once the player has played "E", strategy (�; �) indicates that the player always play "�D",
no matter what signal she sees at the end of the current period. The value of playing "D"
in this period and then continuing with (�; �) is:

VD = �p

�
15

4
(1� �) + �"V DM

�
+ (�q + 1� �) (0)� � (1� p� q) (1� �) :

32



And the value of playing "E" now and continuing with (�; �) is:

VE = �p
�
3 (1� �) + �"V DM

�
� (�q + 1� �) (1� �) + � (1� p� q) [�2 (1� �)] :

Now given � < �, since

VD � VE = (1� �)
�
1� 5

4
�p

�
> 0 as � < � and �p =

4

5
,

this one-shot deviation is not pro�table either.

Hence, there is no pro�table one-shot deviation for any player at any private information set.
Together with the fact that the full belief-based strategy is realization equivalent to �, we conclude
that the full belief-based strategy pro�le ((�; �) ; (�; �)) constitutes a sequential equilibrium.

33



References

[1] D. ABREU, D. PEARCE, and E. STACCHETTI, "Optimal Cartel Equilibria with Imper-
fect Monitoring", J. Econ. Theory 39 (1986), 251-269.

[2] D. ABREU, D. PEARCE, and E. STACCHETTI, "Toward a Theory of Discounted Re-
peated Games with Imperfect Monitoring", Econometrica 58 (1990), 1041-1063.

[3] I. AHN, "Imperfect information repeated games with a single perfect observer", Mimeo,
1996.

[4] V. BHASKAR, �Informational Constraints and the Overlapping Generations Model: Folk
and Anti-Folk Theorems", Rev. of Econ. Stud. 65 (1998), 135-149.

[5] V. BHASKAR, �The Robustness of Repeated Game Equilibria to Incomplete Payo¤ Infor-
mation�, Mimeo, University of Essex (2000).

[6] E. BEN-PORATH and M. KAHNEMAN, "Communication in Repeated Games with Pri-
vate Monitoring", J. Econ. Theory 70 (1996), 281-297.

[7] V. BHASKAR, G. MAILATH and S. MORRIS, "Puri�cation in the In�nitely Repeated
Prisoners�Dilemma ", Mimeo, (2006).

[8] V. BHASKAR and I. OBARA, "Belief-based Equilibria in the Repeated Prisoners�Dilemma
with Private Monitoring", J. Econ. Theory 102 (2002), 40-69.

[9] V. BHASKAR and E. VAN DAMME, "Moral Hazard and Private Monitoring", J. Econ.
Theory 102 (2002), 16-39.

[10] O. COMPTE, "On sustaining cooperation without Public Observations", J. Econ. Theory
102 (2002), 106-150.

[11] O. COMPTE, "On Failing to Cooperate when Monitoring is Private", J. Econ. Theory 102
(2002), 151-188.

[12] G. ELLISON, "Cooperation in the Prisoners�Dilemma with Anonymous Random Match-
ing", Rev. Econ. Stud. 61 (1994), 567-588.

[13] J. ELY, J. HÖRNER and W. OLSZEWSKI, "Belief-Free Equilibria in Repeated Games",
Econometrica 73 (2) (2005), 377-415.

[14] J. ELY and J. VÄLIMÄKI, "A Robust Folk Theorem for the Prisoners�Dilemma", J. Econ.
Theory 102 (2002), 84-105.

[15] D. FUDENBERG, D. LEVINE and E. MASKIN, "The Folk Theorem with Imperfect Public
Information", Econometrica 62 (1994), 997-1039.

[16] D. FUDENBERG, and E. MASKIN, "The Folk Theorem in Repeated Games with Dis-
counting or with Incomplete Information", Econometrica 54 (1986), 533-556.

[17] E. GREEN, and R. PORTER, "Noncooperative Collusion under Imperfect Price Informa-
tion", Econometrica, 52 (1984), 87-100.

34



[18] J. HARSANYI, "Games with Randomly Disturbed Payo¤s: A New Rationale for Mixed-
Strategy Equilibrium Points", Int. J. Game Theory, 2 (1973), 1-23.

[19] J. HÖRNER and W. OLSZEWSKI, "The Folk Theorem for Games with Private Almost-
Perfect Monitoring", Econometrica, forthcoming.

[20] M. KANDORI, "Social Norms and Community Enforcement", Rev. Econ. Stud. 59 (1991),
63-80.

[21] M. KANDORI, "Introduction to Repeated Games with Private Monitoring", J. Econ. The-
ory 102 (2002), 1-15.

[22] M. PICCIONE, "The Repeated Prisoners�Dilemma with Imperfect Private Monitoring",
J. Econ. Theory 102 (2002), 70-83.

[23] G. MAILATH and S. MORRIS, "Repeated Games with Almost Public Monitoring", J.
Econ. Theory 102 (2002), 189-228.

[24] G. MAILATH and S. MORRIS, "Coordination Failure in Repeated Games with Almost
Public Monitoring", Theoretical Economics 1 (2006), 311-340.

[25] G. MAILATH AND L. SAMUELSON, "Repeated Games and Reputations: Long-Run
Relationships". Oxford University Press, Oxford (2006).

[26] H. MATSUSHIMA, "Repeated Games with Private Monitoring: Two Players", Economet-
rica 72 (3) (2004), 823-852.

[27] M. KANDORI and I. OBARA, "E¢ ciency in Repeated Games Revisited: The Role of
Private Strategies", Econometrica 74 (2) (2006), 499-519.

[28] T. SEKIGUCHI, "E¢ ciency in Repeated Prisoners�Dilemma with Private Monitoring", J.
Econ. Theory 76 (1997), 345-361.

[29] T. SEKIGUCHI, "Robustness of E¢ cient Equilibria in Repeated Games with Imperfect
Private Monitoring", Mimeo, (1998).

[30] T. SEKIGUCHI, "Existence of Nontrivial Equilibria in Repeated Games with Imperfect
Private Monitoring", Games and Economic Behavior (2002), 299-321.

[31] G. STIGLER, "A Theory of Oligopoly", J. of Political Econ. 72 (1964), 44-61.

[32] Y.YAMAMOTO, "E¢ ciency Results in N�Players Games with Imperfect Private Moni-
toring", J. Econ. Theory Forthcoming.

[33] Y.YAMAMOTO, "A Characterization of Belief-Free Payo¤s in Repeated Games with Al-
most Perfect Monitoring", Mimeo (2006).

35


