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Abstract

We incorporate partially informed decision makers into games of communication

through cheap talk. We analyze three different extensive-form games in which the

expert and the decision maker (DM) privately observe signals about the state of the

world. In game 1, the DM reveals her private signal to the expert before the expert

reports to her. In game 2, the DM keeping her signal private while the expert reports to

her. In game 3, the DM strategically communicates to the expert first before the expert

reports to her. We find that the DM’s expected equilibrium payoff is not monotonically

increasing in the informativeness of her private signal because the expert may reveal

less of his information when facing a better-informed DM. Whether the DM extracts

more information from the expert in game 1 or in game 2 depends on the parameters.

Allowing the DM to communicate strategically to the expert first does not help her

extract more information from the expert.
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1 Introduction

Standard sender-receiver games1 usually assume that the information aymmetry between

the players is one-sided. That is, the sender has relevant information for making decisions

and the receiver, while having the decision making power, does not have private information

of his own and relies on the sender for useful information. While this assumption simplifies

analysis, it also fails to capture an important aspect in real life communication — that the

decision maker is usually partially informed as well. For example, the decision maker may

have expertise herself. Imagine a CEO trying to decide on the size of an investment project.

Although she needs the division manager to inform her how much the project will benefit

his division, she has knowledge about her corporation’s overall investments and the general

profitablility of the project that the division manager does not have. Alternatively, there

may exist other sources of information. When a consumer who is trying to decide how

much to spend on a product or service consults a salesperson for recommendations, she

may already have information about the candidate products or services from the experience

of her friends or from the consumers’ reports.

In these situations, the players’s interests are usually not perfectly aligned and the

“expert”2 has an incentive to report dishonestly. For example, the division manager partic-

ularly favors investment in projects that help to expand his division. The salesperson wants

to promote products that are expensive but not necessarily best matches for the consumer’s

needs. When the decision makers are partially informed as well, how does that affect the

expert’s communication incentives? Is the expert more likely to lie to someone who knows

little or someone who is well informed? Under what circumstances can the decision maker

elicit more information from the expert? And how is the welfare of the players affected? To

address these questions, we analyze three extensive-form games (which correspond to three

different communication environments) with partially-informed decision makers.

In all three games, the players — the expert and the decision maker (DM) — both privately

observe signals about the state of the world and communicate (through costless messages3)

before the DM chooses an action that affects both players’ payoffs. The games differ in

the way the communication is structured. In game 1, the DM reveals her information

truthfully to the expert before the expert reports to her. In game 2, the DM keeps her

information private while the expert communicates to her. In game 3, the DM cannot

commit to revealing her information truthfully to the expert, but before the expert reports

to her, she has an opportunity to communicate strategically to the expert.

Several interesting results arise. The decision maker’s expected equilibrium payoff is not

1For example, Crawford and Sobel’s (1982) classic model of strategic information transmission.
2We use the terminology “experts” and “decision makers” instead of “senders” and “receivers” in this

paper because in some games that we study, the decision maker also sends messages.
3The messages are “cheap talk” except in game 1 in which the DM tells the truth.
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monotonically increasing in the informativeness of her own signal. This happens because an

enhancement in the quality of the decision maker’s information may make it impossible for

the expert to reveal his information credibly in equilibrium. The intuition is most clear in

the case of quadratic utility functions. With quadratic utilities, whether or not the expert

truthfully reveals his information in equilibrium depends on the expected impact of his

messages on the DM’s choice of action, relative to the divergence of interest between the

players. When the impact is sufficiently large/small, the expert can/cannot credibly reveal

his information to the DM in equilibrium. For example, suppose the expert has an upward

bias so that his ideal point (i.e., the DM’s action that maximizes his payoff) is always higher

than the DM’s ideal point for every state. The expert with the high signal (high type) wants

to convince the DM that his signal is indeed high and the question is whether the low type

expert can credibly convey his information to the DM. If the DM’s responses to different

messages are far apart, then the low type would not want to mimic the high type because

the action induced would be too high. However, if the DM’s responses to different messages

are close, both type of the expert prefer the higher action and the low type cannot credibly

communicate his information to the DM. If the DM’s own signal is highly informative, then

the expert’s messages do not change her beliefs very much, and the influence on the DM’s

actions is small. As we explained above, the expert cannot credibly convey his information

in equilibrium. Therefore, the DM’s expected payoff may fall as a result of an increase in

the quality of her own information if the gain does not adequately compensate for the loss

of information transmitted by the expert.

Another somewhat surprising result is that allowing an extra round of communication

in which the DM strategically communicates her information to the expert does not help

her extract more information than if she keeps her signal private. It is obvious that any

equilibrium outcome in game 2 is also an equilibrium outcome in game 3 because there

always exists an equilibirum in game 3 in which the DM babbles in the first stage and in effect

keeps her information private. Why can’t the DM do strictly better in game 3? Observe

that since the DM is the only player who takes a payoff-relevant action, the sole funtion

of her communication is to extract information from the expert. If a particular message

induces more information revelation from the expert, then the DM would strictly prefer to

send this message, independent of the realization of her signal. But this undermines the

credibility of her communication. Therefore, the DM’s equilibrium messages must induce

the expert to reveal the same amount of information and the extra round of cheap talk does

not help the DM.

What would the DM do if she could choose between the different communication envi-

ronments, i.e., what game to play? For example, when facing a salesperson, do you want to

reveal to him what knowledge you have about the products before he makes his recommen-

dation? The paper shows that whether the DM prefers to reveal her information or to keep
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it private depends on the parameters of the model. Fixing the other parameters and varying

the expert’s bias, we find that the DM is indifferent between playing game 1 and game 2

when the expert’s bias is either sufficiently small or sufficiently large, but prefers one to the

other when the bias is in the intermediate range. When the bias is very small, the expert

reveals his information truthfully in both games and the DM is indifferent. As the bias

increases from a small value to a moderate value, the DM may extract more information

from the expert by keeping her signal private than by revealing her signal truthfully to the

expert. However, as the bias gets even larger, the DM’s preference switches — revealing her

information to the expert generates a higher expected payoff. When the bias is sufficiently

large, the expert babbles in both games and the DM is indifferent again. A similar result is

obtained by varying the informativeness of the DM’s signal while keeping other parameters

fixed.

Only a few papers in the literature have explicitly modeled informed receivers in com-

munication games. Olszewski (2004) analyzes a model in which the receiver, as well as the

sender, has private information on the state of the world and the sender wants to be per-

ceived as honest. The paper provides conditions on the information structure with which

the unique equilibrium is full information revelation if the sender’s reputational concerns

are strong enough. Harris and Raviv (2005) compares delegation and communication when

both a CEO and a division manager have private information on the profitability of invest-

ment projects. They find that if the division manager’s information is sufficiently important

relative to the CEO’s, then it is optimal for the CEO to delegate the investment decision to

the division manager instead of making the decision herself with a report from the manager.

Seidmann (1990) gives examples which illustrate that when the receiver’s type is private

information, the sender may communicate effectively in equilibrium even if the sender’s

types share a common preferece ordering over the receiver’s actions. The examples show

that the uncertainty created by the receiver’s private information helps separation in equi-

librium because the distributions of the receiver’s actions may not be stochastically ordered

in equilibrium.

Austen-Smith (1993) does not explicitly model informed receivers in communication

games. However, since his paper analyzes multiple referrals under open rule in which the

receiver gets information from two different and imperfectly-informed sources, some of his

results are similar to what our model generates.4

4Krishna and Morgan (2001) also look at communication with multiple experts. However, in their model,

both experts are perfectly informed. Even though the DM gets information from both sources, one expert

knows (in equilibrium) what information the DM gathers from the other expert. So information asymmetry

between the expert and the DM is still one-sided.
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2 The Model

Suppose there are two players in the game, the expert (player 1) and the decision maker

(player 2).5

The state of the world, ω, is a random variable which takes two values, 0 and 1. The

common prior on ω is prob{ω = 1} = p and prob{ω = 0} = 1−p where p ∈ (0, 1). The expert
privately observes a signal s1 about the state. We assume that prob{s1 = x|ω = x} = q1

and prob{s1 = 1 − x|ω = x} = 1 − q1 for x = 0, 1. The parameter q1, assumed to be

in the interval (12 , 1], indicates the informativeness of the expert’s signal: when q1 = 1,

the expert is perfectly informed; when q1 < 1, the expert observes the state with noise.

In the games that we will analyze, the expert communicates his private information to

the DM through a costless message m. After receiving m, the DM takes an action a

(a ∈ A = R) that affects both players’ payoffs. Our main departure from the standard

models of strategic communication is the assumption that the DM may also have private

information on ω. Specifically, we assume that she privately observes a signal s2 with

informativeness q2 ∈ [12 , 1), i.e., prob{s2 = x|ω = x} = q2 and prob{s2 = 1 − x|ω = x}
= 1− q2 for x = 0, 1. Obviously, when q2 =

1
2 , the DM is not informed, as in the standard

models.

Both players maximize their expected utilities. Let uDM (a, ω) be the DM’s von Neumann-

Morgenstern utility function and uE (a, ω, b) be the expert’s von Neumann-Morgenstern util-

ity function. The parameter b, sometimes referred to as the expert’s “bias,” measures the

divergence of interests between the two players. We assume that uE (a, ω, 0) = uDM (a, ω),

i.e., the two parties’ interests coincide if the expert’s bias equals 0.

To simplify notation, let v (a, ω, b) = uE (a, ω, b). So v (a, ω, 0) = uDM (a, ω). Denoting

partial derivatives by subscripts in the usual way, we make the following assumptions:

(1) v11 < 0. This implies that the players’ preferences are single peaked and for any belief

β on the distribution of ω, E (v (·) |β) has a unique maximizer in a. (2) v13 ≥ 0. Without
loss of generality, we assume b ≥ 0. This implies that for both ω = 0 and ω = 1, the

optimal action for the expert is at least as high as the optimal action for the decision

maker. (3) v1 (a, 1, b) > v1 (a, 0, b) for any a (∈ R) and b (≥ 0). This implies that each

player’s optimal action is higher when ω = 1 than when ω = 0.

The DM’s partial information changes the strategic incentives of the players. We will an-

alyze and compare three communication environments (which correspond to three extensive-

form games) in which the DM, as well as the expert, has private information.

1. The DM reveals her signal s2 truthfully to the expert before the expert reports to

her. Call this Γ1.

2. The DM keeps her signal s2 private and receives the expert’s report before she chooses

5We use the pronoun “he” for the expert and the pronoun “she” for the decision maker.
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an action. Call this Γ2.

3. The DM strategically sends a message to the expert about the signal s2 before the

expert reports to her. Call this Γ3.

Game Γ1 applies to situations in which the DM commits to revealing her signal truthfully

to the expert. This can happen, for example, if the DM’s information comes from reports of

a neutral third party and the DM allows the third party to reveal the same information to

the expert. Alternatively, it can happen if the DM’s information can be costlessly verified

once revealed.

So far we have referred to s2 as the DM’s private signal, but there is an alternative

and in some contexts more natural interpretation of s2 in Γ1 and Γ2. Thinks of s2 as a

public signal that both players observe. Then, game Γ1 describes the strategic situation

if the expert reports to the DM after the arrival of s2. On the other hand, if the expert

reports to the DM after observing s1, but before the arrival of s2, then Γ2 applies. In this

interpretation , it is the timing of communication that makes the difference.

Throughout the analysis of these three games, we will use m to denote the message

that the expert sends to the DM. In Γ3, we will use l to denote the message that the DM

sends to the expert. Since we have a binary state space, we assume, for simplicity, that the

message spaces are also binary, i.e., L =M = {0, 1}.
Let σi denote the expert’s mixed reporting strategy and si denote his pure reporting

strategy in game Γi. Due to the strict concavity of the DM’s payoff function, she never plays

a mixed strategy in equilibrium and we use ai to denote the DM’s pure action strategy in

game Γi.

Since the expert observes both s1 and s2 when sending his report in Γ1, we have σ1 :

S1×S2×M → [0, 1], where σ1 (s1, s2,m) is the probability that the expert with observation

s1 sendsm if the DM reveals her signal to be s2. The expert’s pure strategy ism1: S1×S2 →
M . In Γ1, the DM’s choice of action depends on the signal s2 as well as the message sent

by the expert. Her strategy is a1 :M × S2 → A.

In Γ2, the DM keeps s2 private and the expert does not observe s2 when sending a

message to the DM. Therefore, the expert’s mixed strategy is σ2 : S1 ×M → [0, 1] where

σ2 (s1,m) is the probability that the expert with observation s1 sends message m. His pure

strategy is m2 : S2 →M . The DM’s action strategy is a2 :M × S2 → A.

In Γ3, the DM sends a message to the expert in the first round of communication. Let

ρ : S2 ×L→ [0, 1] denote her mixed strategy where ρ (s2, l) is the probability that the DM

with observation s2 sends a message l to the expert. In the second round of communication,

the expert’s choice of message depends on s1 as well as the DM’s cheap-talk message l.

Therefore, the expert’s mixed strategy is σ3 : S1 × L ×M → [0, 1] where σ3 (s1, l,m) is

the probability that the expert with observation s1 sends message m if the message sent

by the DM is l. His pure strategy is m3 : S1 × L → M . The DM’s action strategy is
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a3 : L×M × S2 → A.

We use Perfect Bayesian Equilibrium (PBE) as our solution concept. As is typical in

cheap-talk models, the problem of multiple equilibria arises in all three games. We will

address this problem later. Define a truth-telling equilibrium in Γi as a PBE in which

mi (s1, ·) = s1 for s1 = 0, 1. For now, we will focus on finding the conditions under which a

truth-telling equilibrium exists.

3 Baseline case : q2 = 1
2

When q2 = 1
2 , the DM is not informed. Since the DM has no useful information to reveal or

communicate, we will analyze Γ2 in which there is only one round of communication from

the expert to the DM. The intuition we develop in analyzing this baseline case will help us

understand the results in more complicated settings. So we will discuss the derivation of

our results in detail.

Fix p and q1. Let a∗ (0) = argmax{a}E
¡
uDM (a, ω) |s1 = 0

¢
and a∗ (1) = argmax{a}

E
¡
uDM (a, ω) |s1 = 1

¢
. In a truth-telling equilibrium, the DM’s strategy a (m) satisfies

a (0) = a∗ (0) and a (1) = a∗ (1).

The following lemma implies that a∗ (1) > a∗ (0) .

Define â (β) = argmax{a}
¡
βuDM (a, 1) + (1− β)uDM (a, 0)

¢
, i.e., â (β) is the DM’s

optimal action if she believes that ω = 1 with probability β and ω = 0 with probability

(1− β).

Lemma 1 â (β) is increasing in β.

Proof. Since â (β) = argmax{a}
¡
βuDM (a, 1) + (1− β)uDM (a, 0)

¢
and uDM

11 < 0, we

have

βuDM
1 (â (β) , 1) + (1− β)uDM

1 (â (β) , 0) = 0⇒ uDM1 (â(β),1)

uDM1 (â(β),0)
= −1−ββ

Taking derivatives with respect to β on both sides of the equation, we have
uDM11 (â(β),1)uDM1 (â(β),0)−uDM11 (â(β),0)uDM1 (â(β),1)

(uDM1 (â(β),0))
2

d(â(β))
dβ = 1

β2
.

Since uDM
1 (â (β) , 1) > 0, uDM

1 (â (β) , 0) < 0 and uDM
11 < 0, we have d(â(β))

dβ > 0.

Since prob (ω = 1|s1 = 1) > prob (ω = 1|s1 = 0), Lemma 1 implies that a∗ (1) > a∗ (0).

So if the DM believes that the expert is telling the truth, she responds to message 1 with

a higher action than to message 0. Since v13 ≥ 0 and we assume that the expert has an
upward bias, i.e., b ≥ 0, we have E(v (a∗ (1) , ω, b)|s1 = 1) ≥ E(v (a∗ (0) , ω, b) |s1 = 1). So
the expert with the observation s1 = 1 (call him the “type 1” expert) would like to convince

the DM that his signal is indeed 1 instead of 0. Hence the IC constraint for truth telling

is satisfied for the type-1 expert and we need only look at type 0’s IC constraint, which

requires that he prefers sending message 0 to message 1.
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Fix p and q1. Define b to be the value such that E(uE
¡
a∗ (0) , ω, b

¢
|s1 = 0) =

E(uE
¡
a∗ (1) , ω, b

¢
|s1 = 0).

Proposition 1 A truth-telling equilibrium exists if and only if b ∈ [0, b].

Proof. Since v13 ≥ 0, βv13 (a, 0, b) + (1− β) v13 (a, 1, b) ≥ 0 for any β ∈ [0, 1]. Since
a∗ (1) > a∗ (0) and E(v (a∗ (0) , ω, 0) |s1 = 0) > E(v (a∗ (1) , ω, 0) |s1 = 0),

E(uE
¡
a∗ (0) , ω, b

¢
|s1 = 0) = E(uE

¡
a∗ (1) , ω, b

¢
|s1 = 0) implies b > 0. Moreover, we have

E(uE (a∗ (0) , ω, b) |s1 = 0) ≥E(uE (a∗ (1) , ω, b) |s1 = 0) if b ≤ b andE(uE (a∗ (0) , ω, b) |s1 =
0) < E(uE (a∗ (1) , ω, b) |s1 = 0) if b > b. Therefore the IC constraint for type 0 expert is

satisfied if and only if b ≤ b.

Proposition 1 says that for a fixed prior and fixed informativeness of the expert’s signal,

a truth-telling equilibrium exists if the divergence of interest between the two players is

sufficiently small (b ≤ b). Below is some discussion on comparative statics.

Note that when the DM has low “confidence” in his prior, (i.e., when p is close to 12), the

expert’s information has a large impact on the DM’s posterior. Accordingly, the difference

between the DM’s responses to difference messages (when he believes that they are truthful)

decreases in the confidence of the prior, i.e., (a∗ (1)− a∗ (0)) decreases in
¯̄
p− 1

2

¯̄
.

As we vary q1, the informativeness of the expert’s signal, the DM’s optimal responses

a∗ (0) and a∗ (1) change. It is straightforward to show that da∗(0)
dq1

< 0 and da∗(1)
dq1

> 0.

Intuitively, the more informative the expert’s signal, the more sensitive the DM’s posterior

beliefs are to the messages she receives. By Lemma 1, her optimal actions in response to

the messages diverge as q1 increases.

How does q1 affect the expert’s truth-telling incentives? In particular, how does the

threshold value b vary with q1? Recall that type 0’s IC constraint is E(uE (a∗ (0) , ω, b) |s1 =
0) ≥ E(uE (a∗ (1) , ω, b) |s1 = 0). The change in q1 affects the expert’s incentives by changing
both his posterior on ω and the DM’s action choices. A more informative signal makes the

type-0 expert believe with higher probability that ω = 0 and this strengthens type-0 expert’s

incentive to tell the truth. An increase in q1 also drives down a∗ (0) and drives up a∗ (1).

Whether this strengthens or weakens the type-0 expert’s truth-telling incentive depends on

the curvatures of both the expert’s and the DM’s utility functions. Without making further

assumptions, it is not clear whether an increase in q1 raises or lowers b. But if we make the

common assumption that the players have quadratic utility functions, then we can provide

stronger comparative static results, with intuitive interpretations.6

6Green and Stokey (1982) also study how changing the information structure of the sender’ signal affects

equilibrium outcomes and the welfare of the players. They find that in the class of “partition equilibrium,”

the sender benefits from a Blackwell improvement of his signal and when the change in the information

structure is a “success enhancing” change — a particular kind of Blackwell improvement — the receiver also

benefits.
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Example 1 Quadratic Utilities.

Suppose uDM = − (a− ω)2 and uE = − (a− ω − b)2. Note that the quadratic utility

functions satisfy all the assumptions we made on the derivatives.

In a truth-telling equilibrium, the DM’s best responses a (0) and a (1) are conditional

expectations of ω. That is, a (0) = a∗ (0) = E (ω|s1 = 0) = p(1−q1)
p(1−q1)+(1−p)q1 and a (1) =

a∗ (1) = E (ω|s1 = 1) = pq1
pq1+(1−p)(1−q1) .

The expert’s expected utility is EuE = E(− (a− ω − b)2) = − (a−E (ω)− b)2−V ar (ω).
Since the variance terms do not depend on the messages the expert sends, they usually cancel

out in IC constraints.

The threshold value b satisfies E(uE
¡
a∗ (0) , ω, b

¢
|s1 = 0) = E(uE

¡
a∗ (1) , ω, b

¢
|s1 = 0),

which implies that −
¡
a∗ (0)−E (ω|s1 = 0)− b

¢2 − V ar(ω|s1 = 0) =

−
¡
a∗ (1)−E (ω|s1 = 0)− b

¢2 − V ar (ω|s1 = 0). Therefore b
2
=
¡
a∗ (1)− a∗ (0)− b

¢2
. The

solution b = a∗(1)−a∗(0)
2 = 1

2

³
p(1−p)(2q1−1)

pq1+(1−p)(1−q1)(p(1−q1)+(1−p)q1)

´
.

With quadratic utilities, whether a truth-telling equilibrium exists depends on the dif-

ference between a∗ (1) and a∗ (0), relative to the size of b. When a∗ (1) and a∗ (0) are far

apart, type 0 expert has no incentive to deviate from telling the truth: although a∗ (0) is

below his expected ideal point, a∗ (1) is too high to be beneficial. On the other hand, when

the distance between a∗ (1) and a∗ (0) is small relative to b, type 0 expert has an incentive

to lie and induce the DM to choose a∗ (1) which is higher than a∗ (0), but not too high for

the expert. In this case, type 0’s IC constraint is violated and truth telling cannot happen

in equilibrium.

The range of b for which a truth-telling equilibrium exists increases as the diffusion of

the prior increases because the DM’s optimal actions are more senstitive to the expert’s

messages when the prior is more diffuse.

Since da∗(0)
dq1

< 0 and da∗(1)
dq1

> 0, db
dq1

> 0. So an increase in the informativeness of the

expert’s signal increases the range of b for which truth telling can happen in equilibrium.

Intuitively, when s1 is highly noisy, even if the DM believes the expert’s messages, the

messages have a small impact on the DM’s choice of actions, i.e.,(a∗ (1)− a∗ (0)) is small.

Truth telling cannot happen in equilibrium because type 0’s IC constraint is violated. In

constrast, if s1 is highly informative, then the expert expects the DM’s choice of action to

be sensitive to the messages that he sends. In this case, type 0 would like to be separated

from type 1 because a∗ (1) is too high to be beneficial and truth telling is sustainable in

equilibrium.

So far we have focused on truth-telling equilibria. We see that when the expert’s bias

is higher than b, truth-telling fails to exist. But does there exist an equilibrium in which

some information is transmitted, that is, an equilibrium other than babbling, when b > b?

The discussion below shows that the answer is no.
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Fix the parameters p, q1 and b > b. Suppose there exists a non-babbling equilibrium Ê

(we also refer to it as a semi-separating equilibrium). Then the DM responds to the messages

0 and 1 with different actions in Ê, i.e., a (m = 1) 6= a (m = 0). This immediately implies

that the type 1 expert does not play a mixed strategy in Ê since he strictly prefers the

higher action. Without loss of generality, assume that the type 1 expert sends m = 1 with

probability 1, i.e., σ (1, 1) = 1. Since Ê is neither a truth-telling equilibrium nor a babbling

equilibrium, the type 0 expert sends both messages 0 and 1 with positive probability, i.e.,

σ (0, 0), σ (0, 1) ∈ (0, 1). Given these reporting strategies, if the DM receives m = 0, she

infers that it was sent by type 0 with probability 1 and responds with a (0) = a∗ (0); if the

DM receives m = 1, she infers that it could be sent by either types with positive probability

and responds with a (1) ∈ (a∗ (0) , a∗ (1)). In Ê, type 0 is indifferent between inducing

a (0) (= a∗ (0)) and inducing a (1) (< a∗ (1)). Since uE is single peaked and uE11 < 0, type 0

strictly prefers a∗ (0) to a∗ (1). It follows that his IC constraint for truth telling is satisfied,

which contradicts the assumption that b > b. Therefore a semi-separating equilibrium exists

only when a truth-telling equilibrium exists.

Both players prefer the truth-telling equilibrium to the semi-separating equilibrium. It

is clear for the DM since more information makes her better off. Moreover, both types of

the expert have (weakly) higher payoffs in the truth-telling equilibrium than in the semi-

separating equilibrium. To see why, recall that in a semi-separating equilibrium, the type-0

expert is indifferent between sending 0 (and being identified as type 0) and sending 1 (and

pooling with type 1). Since he is identified as type 0 in both equilibria, type 0’s expected

payoff is the same in the truth-telling equilibrium and the semi-separating equilibrium. As

to type 1, he induces a lower action in the semi-separating equilibrium than in the truth-

telling equilibrium and therefore he has a strictly higher expected payoff in the truth-telling

equilibrium.

Proposition 2 A semi-separating equilibrium exists only when a truth-telling equilibrium

exists. In this semi-separating equilibrium, the type 0 expert is indifferent between send-

ing message 0 and message 1 and sends both with positive probability. The truth-telling

equilibrium Pareto dominates the semi-separating equilibrium, even in the interim.

4 Partially Informed DM: 12 < q2 < 1

Suppose the decision maker also observes an informative signal s2, with informativeness

parameterized by q2 ∈
¡
1
2 , 1
¢
. Assume that s1 and s2 are conditionally (on ω) independent.

7

7Alternatively, we can assume that s1 and s2 are conditionally correlated. But this will complicate

analysis without generating much more insight.
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Below we analyze the three games Γ1,Γ2 and Γ3 described before.

4.1 Game Γ1: The DM truthfully reveals s2

Since s2 is revealed before the expert communicates to the DM, the expert’s incentives for

telling the truth depends on the realization of s2 as well as his own signal s1. To find the

conditions for truth telling, we again look at the expert’s IC constraints.

Define a∗j (i) = argmax(prob (ω = 0|s1 = i, s2 = j)uDM (0, a)+prob (ω = 1|s1 = i, s2 = j)

uDM (1, a)) for i = 0, 1 and j = 0, 1. So a∗j (i) is the DM’s optimal action if the realization

of the expert’s signal is i and the realization of his own signal is j. In a truth-telling equi-

librium in Γ1, the DM’s strategy a1 : S1 × S2 → A satisfies a1 (i, j) = a∗j (i) for i = 0, 1 and

j = 0, 1. The following lemma implies that similar to the baseline case in section 3, type

1’s IC constraint is always satisfied and we only need to look at type 0’s IC constraint.

Lemma 2 prob (ω = 1|s1 = 0, s2 = 0) ≤ prob (ω = 1|s1 = 1, s2 = 0) and prob(ω = 1|s1 =
0,

s2 = 1) ≤ prob (ω = 1|s1 = 1, s2 = 1)

Proof. prob (ω = 1|s1 = 0, s2 = 0) = p(1−q1)(1−q2)
p(1−q1)(1−q2)+(1−p)q1q2

prob (ω = 1|s1 = 1, s2 = 0) = pq1(1−q2)
pq1(1−q2)+(1−p)(1−q1)q2

prob (ω = 1|s1 = 0, s2 = 1) = p(1−q1)q2
p(1−q1)q2+(1−p)q1(1−q2)

prob (ω = 1|s1 = 1, s2 = 1) = pq1q2
pq1q2+(1−p)(1−q1)(1−q2)

To prove the lemma, we only need to show that q21q2 (1− q2) ≥ (1− q1)
2 q2 (1− q2) .

Since q2 > 1
2 , the lemma holds.

Suppose the DM reveals that s2 = 0. Since prob (ω = 1|s1 = 0, s2 = 0) ≤ prob

(ω = 1|s1 = 1, s2 = 0), by Lemma 1, a∗0 (0) ≤ a∗0 (1). That is, in a truth-telling equilib-

rium, in the subgame after s2 is revealed to be 0, the DM responds to message 1 with a

higher action than to message 0. Since the expert has an upward bias, type 1’s IC con-

straint is satisfied. Similarly, in the subgame after s2 is revealed to be 1, the DM responds

to message 1 with a higher action than to message 0 (a∗1 (0) ≤ a∗1 (1)) and type 1’s IC

constraint is again satisfied. Type 0’s IC constraint in the subgame following s2 = 0 re-

quires that EuE (a∗0 (0) , ω, b|s1 = 0, s2 = 0) ≥ EuE (a∗0 (1) , ω, b|s1 = 0, s2 = 0). Call it IC0.
The IC constraint for the type 0 expert in the subgame following s2 = 1 requires that

EuE (a∗1 (0) , ω, b|s1 = 0, s2 = 1) ≥ EuE (a∗1 (1) , ω, b|s1 = 0, s2 = 1). Call it IC1. Define b0
to be the value such thatEuE (a∗0 (0) , ω, b0|s1 = 0, s2 = 0) = EuE (a∗0 (1) , ω, b0|s1 = 0, s2 = 0)
and b1 to be the value such thatEuE (a∗1 (0) , ω, b1|s1 = 0, s2 = 1) = EuE (a∗1 (1) , ω, b1|s1 = 0, s2 = 1).

Proposition 3 A truth-telling equilibrium exists in the subgame following s2 = 0 if and

only b ∈ [0, b0] and a truth-telling equilibrium exists in the subgame following s2 = 1 if and

only if b ∈ [0, b1].
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Proof. Same arguments as in Proposition 1.

Analogous to the baseline case, Proposition 3 says that if the interests of the players

are close enough, then truth telling can happen in equilibrium in the subgames. Note that

a subgame following the revelation of s2 is equivalent to a baseline game in which the DM

is uninformed, with an appropriately chosen prior. The subgame after s2 = 0 is equivalent

to the baseline game with the common prior on ω being prob (ω = 0) = (1−p)q1
(1−p)q1+p(1−q1)

and prob (ω = 1) = p(1−q1)
(1−p)q1+p(1−q1) ; the subgame after s2 = 1 is equivalent to the baseline

game with the common prior on ω being prob (ω = 0) = (1−p)(1−q1)
(1−p)(1−q1)+pq1 and prob (ω = 1) =

pq1
(1−p)(1−q1)+pq1 . So the results we derived in section 3 apply to the subgames in Γ1 after s2
is revealed.

If we keep the informativeness of the DM’s signal (q2) constant and vary only the

informativeness of the expert’s signal (q1), we have

Remark 1 ∂a∗0(0)
∂q1

< 0,
∂a∗0(1)
∂q1

> 0,
∂a∗1(0)
∂q1

< 0,
∂a∗1(1)
∂q1

> 0.

Proof. Appendix.

For fixed q2, the DM’s optimal responses to the expert’s messages diverge as the infor-

mativeness of the expert’s signal increases.

Similarly, if we keep q1 constant and vary only q2, we have

Remark 2 ∂a∗0(0)
∂q2

< 0 ,
∂a∗0(1)
∂q2

< 0,
∂a∗1(0)
∂q2

> 0,
∂a∗1(1)
∂q2

> 0.

Proof. Appendix.

An increase in the informativeness of the DM’s signal drives down the DM’s optimal

responses to either one of the expert’s messages if s2 = 0 and drives up the DM’s optimal

responses if s2 = 1.

Does increasing the informativeness of the expert’s signal strengthen his incentives for

telling the truth? Does the expert have a stronger incentive to tell the truth when facing

a well-informed DM or when facing a DM who has little information? Again, the changes

in q1 and q2 change the expert’s posterior as well as the DM’s responses to the messages.

The comparative statics results depend on the curvatures of the players’ payoff functions.

Below, we look at the quadratic case to gain some intuition.

Example 2 Quadratic Utilities.

Suppose uDM = − (a− ω)2 and uE = − (a− ω − b)2.

Similar arguments as those in the baseline case show that whether truth telling can hap-

pen in equilibrium depends on the differences in beliefs and therefore actions that the expert’s
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messages induce. That is, it depends on the distance between a∗i (1) and a
∗
i (0) (i = 0, 1), rel-

ative to the size of b. In fact, b0 = 1
2 (a

∗
0 (1)− a∗0 (0)) =

1
2 (E (ω|s1 = 1, s2 = 0)−E (ω|s1 = 0, s2 = 1))

and b1 =
1
2 (a

∗
1 (1)− a∗1 (0)) =

1
2 (E (ω|s1 = 1, s2 = 1)−E (ω|s1 = 0, s2 = 1)).

The threshold b0 ≥ b1 if and only if p ≥ 1
2 . (See appendix for proof.) Intuitively, if

the prior is such that prob (ω = 1) ≥ prob (ω = 0), then the difference in posterior that the

expert’s (truthful) messages induce is larger when the DM’s signal is against the prior, i.e.,

when s2 = 0. Therefore, the range of b for which truth telling exists is larger when s2 = 0

than when s2 = 1 if p ≥ 1
2 .

Remark 1 implies that ∂b0
∂q1

> 0 and ∂b1
∂q1

> 0. Independent of the realization of s2, an

expert with a highly informative private signal expects his messages to have a large impact

on the DM’s action if the DM believes that the messages are truthful. So the range of b for

which truth telling exists increases with the informativeness of the expert’s signal.

For comparative statics results with respect to q2, we can show that ∂b0
∂q2

has the same sign

as (p− q2) and ∂b1
∂q2

has the same sign as (1− p− q2). (See appendix for proof.) Therefore,

when the prior is symmetric (p = 1
2), both b0 and b1 are decreasing in q2; when the prior

is asymmetric (p 6= 1
2), at least one of b0 and b1 is decreasing in q2. So an increase in the

informativeness of the DM’s signal may prevent truth telling from happening in equilibrium.

This happens when an increase in q2 lowers the impact of the expert’s messages on the DM’s

choice of action.

We have shown in section 3 that when q2 = 1
2 , a mixed strategy non-babbling equilibrium

exists only when there exists a truth-telling equilibrium. The same arguments apply in Γ1.

In the two subgames after s2 is revealed to the expert, an equilibrium in which the expert’s

private information is partially revealed to the DM exists only when there exists another

equilibrium in which the expert truthfully reveals s1. The most informative equilibrium is

either truth telling or babbling, depending on the paramters.

4.2 Game Γ2: The DM keeps s2 private

If the DM keeps her information private, the expert does not know for certain what action

the DM will choose in response to his messages in equilibrium, even though the DM always

plays a pure strategy. From the expert’s point of view, his messages induce probability

distributions of actions by the DM.

For the type 0 expert, the IC constraint for truth telling requires that prob (s1 = 0, s2 = 0)

EuE (a∗0 (0) , ω, b|s1 = 0, s2 = 0) + prob (s1 = 0, s2 = 1)Eu
E (a∗1 (0) , ω, b|s1 = 0, s2 = 1) ≥

prob (s1 = 0, s2 = 0)Eu
E (a∗0 (1) , ω, b|s1 = 0, s2 = 0)+prob (s1 = 0, s2 = 1)EuE (a∗1 (1) , ω, b|s1 = 0, s2 = 1).

Call this IC constraint ICprivate. Note that ICprivate in Γ2 is a convex combination of IC0
and IC1 in Γ1. Similarly, type 1’s IC constraint in Γ2 is a convex combination of type 1’s

IC constraints in Γ1. Since type 1’s IC constraints in Γ1 are always satisfied, their convex
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combination is always satisfied as well. Again, only type 0’s IC constraint may be binding

in Γ2.

Let bprivate be the value of b such that ICprivate is binding.

Proposition 4 The game Γ2 has a truth-telling equilibrium if and only if b ≤ bprivate.

Proof. Same arguments as in Proposition 1.

Example 3 Quadratic utilities. Suppose uDM = − (a− ω)2, uE = − (a− ω − b)2. We

can show that ∂bprivate(p,q1,q2)
∂q2

< 0. (See appendix for proof.) This means that the more

informative the DM’s signal is, the smaller the range of bias for which a truth-telling equi-

librium exists, when the DM keeps s2 private. As we explained before, when the utilities

are quadratic, whether or not a truth-telling equilibrium exists depends on the difference

in the actions that the DM chooses in response to messages 0 and 1. When it is common

knowledge that the DM has a relatively informative private signal, the expert expects that

his messages do not weigh much in the DM’s choice of action. This means that the DM’s

(expected) responses to different messages are not far apart. Hence type 0 has an incentive

to deviate from reporting honestly and truth telling fails to be an equilibrium.

One interesting implication is that having a more informative signal does not necessarily

benefit the DM. It is possible that the loss of information from the expert due to the change

in strategic incentives more than offsets the gain from the increase in the quality of the

DM’s own signal. This will be illustrated in the example we provide in section 4.3.

Using a similar argument as in section 3, we can show that in Γ2, if there exists a mixed

strategy equilibrium in which the expert’s information is partially transmitted to the DM,

then it must be the case that b < bprivate and a truth-telling equilibrium exists as well.

Therefore, depending on the parameters, the most informative equilibrium is either truth

telling or babbling.

4.3 Comparision of equilibria in Γ1 and Γ2

Sometimes the DM may choose the communication environment. For example, if s2 comes

from the report of a neutral third party, the DM may decide whether or not to make the

third party’s report public. Alternatively, if s2 is a public signal, then it may be possible

for the DM to choose the timing of the communication: she could decide whether to ask

the expert to report his private observation of s1 before or after the arrival of the public

signal s2. In yet another interpretation, s2 could be the DM’s private information that can

be verified by the expert at no cost once revealed. Then, the choice between playing Γ1 and

Γ2 is the same as the decision of whether or not to reveal s2 to the expert.8

8 In this interpretation, we assume that the DM’s decision of whether or not to reveal s2 is made before

she observes s2 so that the choice of “not revealing” has no signaling effect.
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If the DM could choose between Γ1 and Γ2, what would she choose? With the analysis

of Γ1 and Γ2 in previous sections, we can compare their effectiveness as mechanisms to

facilitate information transmission. Since the DM’s expected utility is increasing in the

amount of the information she extracts from the expert, she favors the environment that is

most conducive to information transmission.

We find that whether the DM extracts more information from the expert (in the most

informative equilibrium) in Γ1 or in Γ2 depends on the parameters.

First, let’s fix p, q1, q2, σ and vary the expert’s bias b. Without loss of generality, suppose

b1 ≤ b0.

If b ≤ b1, then both IC0 and IC1 are satisfied. As a convex combination of IC0 and

IC1, ICprivate is also satisfied. This means that a truth-telling equilibrium exists in both

Γ1 and Γ2 and the DM extracts the maximal amount of information in both games.

If b1 < b ≤ bprivate, then IC0 and ICprivate are satisfied while IC1 is violated. This

implies that if the DM reveals s2 to the expert before he reports, then in the most informative

equilibrium in Γ1, the expert truthfully reveals his signal in the subgame after s2 is revealed

to be 0 but babbles in the subgame after s2 is revealed to be 1. In constrast, if the DM

does not reveal s2 to the expert, then there exists a truth-telling equilibrium. Therefore,

the DM can extract more information from the expert by keeping her signal private when

b lies in this range.

If bprivate < b ≤ b0, then only IC0 is satisfied. In the most informative equilibrium in Γ1,

the expert truthfully reveals his signal in the subgame after s2 is revealed to be 0. However,

only babbling can happen in equilibrium in Γ2 since ICprivate is violated. Therefore, when b

lies in this range, by revealing s2 to the expert, the DM can extract useful information from

him in the event that s2 = 0 while she can extract no information if she keeps s2 private.

Finally, if b0 < b, then all three incentive constraints are violated and the expert babbles

in both Γ1 and Γ2.

Suppose the DM can choose between Γ1 and Γ2, then we have the following result,

given the above comparison. The DM is indifferent between the two games if the bias of

the expert is extreme (either very small or very large) but she strictly prefers one over the

other if the bias is in the intermediate range. Specifically, as the bias increases from a small

value to a moderate value, the DM prefers keeping her signal private to revealing it to the

expert. However, as the bias gets even larger, she prefers revealing the signal to keeping it

private.

It is also interesting to compare Γ1 and Γ2 as we vary the informativeness of the DM’s

signal, q2, while fixing p, q1 and b. Assuming that the players have quadratic utilities, we

have the following numerical example.

Example 4 Suppose uDM = − (a− ω)2 and uE = − (a− ω − b)2.
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Let p = 0.7, q1 = 0.8, σ = 0 and b = 0.2.

Note that b1 = 0.2 if q2 = 0.67839, b0 = 0.2 if q2 = 0.91990, and bprivate = 0.2 if

q2 = 0.89711.

The following figure shows the DM’s expected payoff as a function in q2 in the most

informative equilibirum in Γ1 and Γ2. The thick plot is for Γ1 and the thin one is for Γ2.

The two plots coincide for extreme values of q2, but they are different for intermediate values

of q2.
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Figure 1

The DM’s payoff depends on how much information she has when making a decision.

The increase in q2 has two effects on her payoff. On the one hand, it benefits the DM

since the signal she directly observes is more informative. On the other hand, it could

be disadvantageous because the increase in q2 may prevent the expert from revealing his

information credibly, as shown earlier. Combining these two effects, we see that the DM’s

expected payoff is NOT monotonically increasing in q2 in both Γ1 and Γ2. The thick curve

has two discontinuities at q2 = 0.67839 and q2 = 0.91990. These are the two points at

which the information content of the expert’s communication changes in Γ1. They divide

the interval [0.5, 1] into three ranges. Within each of the three ranges, the DM’s payoff

is increasing in q2. The thin curve has only one discontinuity at q2 = 0.89711. If q2 ∈
[0.5, 0.89711], a truth-telling equilibrium exists in Γ2; if q2 ∈ (0.89711, 1], only babbling
equilibrium exists in Γ2.

As we can see from the figure, when q2 ∈ (0.67839, 0.89711], the DM extracts more infor-

mation in Γ2 by keeping s2 private and therefore enjoys a higher expected utility. However,

when q2 ∈ (0.89711, 0.91990], she could extract more information in Γ1 by revealing s2 to

the expert.
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4.4 Game 3 Γ3: No commitment — The DM strategically communicates
to the expert

Now suppose we add an extra round of communication in which the DM strategically and

costlessly communicates her observation of s2 to the expert before the expert reports to her.9

How does this extra round of communication affect the DM’s ability to extract information

from the expert?

Define equilibrium outcomes in all three games on the payoff relevant space S1×S2×A.

Denote by EO (Γi) the set of equilibrium outcomes for game Γi, i = 1, 2, 3. The set depends

on the parameter values p, q1, q2 and b.

Lemma 3 Fix p, q1, q2 and b. EO (Γ2) ⊆ EO (Γ3).

The intuition behind this lemma is simple. Suppose E (Γ2) is a PBE in Γ2. Since

the messages used by the DM in the first round of communication in Γ3 are “cheap talk,”

there always exists an equilibrium in Γ3 in which the DM babbles in the first round of

communication and in effect keeps her signal s2 private and the players follow the strategies

prescribed in E (Γ2) in the continuation of Γ3. Therefore, when given an opportunity to

costlessly communicate to the expert first, the DM can do at least as well as when she keeps

her information private.

The following result says that the converse is true.

Proposition 5 Fix p, q1, q2 and b. The DM cannot extract more information from the

expert in Γ3 than in Γ2.

See appendix for proof.

This proposition says that the decision maker’s expected payoffs in the most informative

equilibria in Γ2 and Γ3 are the same. So the extra round of cheap talk does not help the

DM.

What is the intuition behind this result? In Γ3, the sole purpose of the DM’s cheap talk

in the first round is to elicit information from the expert in the second round. Previous

analysis shows that the informativeness of the expert’s equilibrium strategies can be ranked

9This is different from Aumann and Hart’s (2003) “long cheap talk.” They consider two-person games in

which one player is better informed but both players take payoff-relevant actions and they allow the players

to talk as long as they wish. In their model, different rounds of cheap talk can help the players agree on

compromises as well as reveal substantive information.

It is also different from Krishna and Morgan’s (2005) study on multiple rounds of communication. In

their setting, the uninformed DM and the perfectly-informed expert exchange cheap-talk messages in the

first round of communication. The two-sided simultaneous communication induces a joint lottery on the

DM’s equilibrium actions. Because the players are risk-averse, this allows more information to be transmitted

in equilibrium.
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in the sense of Blackwell (1953). If one particular message from the DM induces the expert

to play a strategy that is strictly more informative, the other message cannot be sent by

the DM in equilibrium and pooling happens in the first round. In this case, the DM’s

information is effectively kept private in Γ3 and the set of equilibrium outcomes in Γ3 is the

same as that in Γ2. If both messages 0 and 1 are sent in equilibrium in the first round of

communication in Γ3, then it must be the case that the expert reveals the same amount of

information in the most informative equilibrium in the continuation of Γ3, no matter what

message he receives from the DM. Since the expert’s strategy is constant in the DM’s signal,

it follows that he will reveal the same information even if the DM keeps her signal private.

Again, in this case, the DM does no better in Γ3 than in Γ2. Since the DM’s preference

for information is monotone, she cannot effectively communicate her private information to

the expert without the commitment to revealing s2 truthfully.

5 Equilibrium Selection

So far we have focused on finding the conditions for the existence of truth-telling equilibria.

In our comparative statics analysis and the comparison of different games, we have implicitly

focused on the “most informative” equilibrium. But is there any reason why we should select

it among the multiple equilibria that may exist? When a truth-telling equilibrium exists as

well as a babbling equilibrium, why should the former be considered more “reasonable”?

Below we use two approaches to see whether we can rule out any equilibria.

The first is Farrell’s (1993) “neologism-proofness.” Fix an equilibrium of a cheap talk

game. Consider an announcement by the sender “my type is in the set X.” This announce-

ment is a neologism if it is not sent in the candidate equilibrium. A neologism is deemed

credible if it is precisely those types in the set X that receive strictly higher payoffs than

their equilibrium payoffs if the neologism is believed by the receiver. An equilibrium is

neologism-proof if there does not exist any credible neologism relative to it.

If we apply the neologism-proofness criterion to games Γ1 − Γ3, we have the following
proposition.

Proposition 6 In game Γ2 and the subgames of Γ1 and Γ3 after the DM sends the ex-

pert a message, a truth-telling equilibrium is neologism-proof for any parameter values; a

mixed strategy non-babbling equilibrium is never neologism-proof ; a babbling equilibrium is

neologism-proof if the following two conditions hold: (1) type 0 expert strictly prefers being

perceived as type 1 than pooling with type 1 and (2) type 0 expert weakly prefers pooling with

type 1 than being identified as type 0.

The only neologism relative to a truth-telling equilibrium is “my type is in {0, 1}.” Since
type 1 expert would never want to make this announcement, it is not credible and therefore
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a truth-telling equilibrium is neologism-proof.

In a mixed strategy non-babbling equilibrium, type-0 expert randomizes between send-

ing 0 and 1 and type-1 expert sends only one message. Therefore, “my type is 1” is a

neologism. It is also credible because only type 1 gets a strictly higher payoff than the equi-

librium payoff if the neologism is believed.10 Hence the equilibrium is not neologism-proof.

Relative to a babbling equilibrium, there are two neologisms: “my type is 1” and “my

type is 0.” Type 1 strictly benefits from announcing “my type is 1” if it is believed. So if

type 0 weakly prefers playing the babbling equilibrium than being perceived as type 1, then

“my type is 1” is a credible neologism. As to the other neologism “my type is 0,” type 1

would not want to make the announcement and type 0 would if and only being identified

as type 0 gives him a (strictly) higher payoff than babbling. In that case, “my type is 0” is

a credible neologism and babbling equilibrium is not neologism-proof.

One well-recognized problem with neologism-proofness is that “neologism-proof” equi-

libria do not always exist. In fact, take any of the three games Γ1−Γ3, there are parameters
with which “neologism-proof” equilibria fail to exist. To see this, consider a game in which

only babbling on the expert’s part can happen in equilibrium. The two neologisms relative

to the equilibrium are: “my type is 0” and “my type is 1.” As we have shown before, when

babbling is the unique equilibrium outcome, type 0’s IC constraint fails and he prefers

being perceived as type 1 to being identified as type 0. So he prefers babbling to being

identified as type 0 as well and “my type is 0” is not a credible neologism. However, “my

type is 1” is credible if type 0 prefers babbling to being perceived as type 1. Hence, when

the expert’s bias is sufficiently large (so that babbling is the unique equilibrium outcome)

but not too large (so that “my type is 1” is a credible neologism), no equilibrium passes the

“neologism-proofness” test.

The second approach we take is to use the equilibrium robustness condition “no incentive

to separate” (NITS), discussed in details in Chen, Kartik and Sobel (2007). The condition,

originally applied to the Crawford-Sobel (1982) model of cheap talk, requires that a certain

type of sender’s equilibrium payoff is at least as high as the payoff if he could fully reveal

his type (hence no incentive to separate). The justifications for NITS is similar in the

Crawford-Sobel model and the games in this paper. So we direct the readers to Chen,

Kartik and Sobel (2007).

In our games, we apply the condition to the type-0 expert since he is the “lowest” type:

the type that no other type would want to mimic but may itself have an incentive to mimic

other types. Accordingly, an equilibrium in Γi satisfies NITS if and only if type-0 expert’s

equilibrium payoff is weakly higher than the payoff he gets if the DM believes that s1 = 0.

10 In the candidate equilibrium, type 0 is indifferent between being identified as type 0 and (partially)

pooling with type 1. So the action that the DM takes when believing that he is type 1 is too high to be

beneficial. And obviously, with an upward bias, type 1 expert would be better off if identified as type 1.
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As we have shown earlier, in a truth-telling equilibrium and a mixed-strategy non-

babbling equilibrium, type-0 expert’s payoff is equal to his payoff if the DM believes that

s1 = 0. So NITS holds. A babbling equilibrium may or may not satisfy NITS. In particular,

if the DM’s equilibrium actions are so high that type 0 prefers to be identified as such than

pooling with type 1, then NITS fails.

Proposition 7 The equilibrium Ê in game Γi (i = 1, 2, 3) satisfies NITS if and only if one

of the following conditions holds:

1. Ê is a truth-telling equilibrium.

2. Ê is a mixed strategy non-babbling equilibrium.

3. Ê is a babbling equilibrium in which the type-0 expert prefers babbling to being iden-

tified as type 0.

As we see, the above two approches of equilibrium selection generate different predic-

tions.

The concept of “neologism-proofness” yields stronger predictions in our games. How-

ever, sometimes it is too strong that no equilibrium is neologism-proof. In contrast, the

NITS condition does not have the non-existence problem. To see this, fix a game in which

a truth-telling equilibrium fails to exist (which implies that a mixed strategy non-babbling

equilibrium does not exist either), so the unique equilibrium outcome involves babbling.

Since type-0 expert’s IC constraint for truth telling is violated, type-0 expert prefers being

(incorrectly) perceived as type 1 to being identified as type 0 by the DM. This implies that

he strictly prefers pooling with type 1 to being identified as type 0.11 According to Propo-

sition 7, the babbling equilibrium where both type of the expert send the high message

satisfies NITS.

Although the problem of non-existence does not arise, the NITS condition is not fully

satisfactory for equilibrium selection either because for certain parameter values, it still

admits multiple equilibria.12 Interestingly, if there are multiple equilibria that pass NITS,

then among them, only the truth-telling equilibrium is neologism-proof. Recall that the

11The action that type 0 expert induces the DM to take when pooling with type 1 is between the actions

he induces when identified as type 0 and when perceived as type 1. Since type 0’s IC constraint for truth

telling doesn’t hold, the action that he induces when perceived as type 1 is NOT too high to be profitable.

Accordingly, type 0 expert must prefer the higher action that he induces when pooling with type 1 to the

action he induces when identified as type 0.
12When applied to the Crawford and Sobel (1982) model with a continuous state space, the perturbation

approach generates strong results. However, when the state space is binary, the results are weaker. In both

cases, we find that in a monotonic equilibrium of a perturbed game, the expected equilibrium payoff for the

lowest type of expert (type 0) must be at least as high as the payoff he gets if identified by the DM as the

lowest type. This condition implies uniqueness in the case of a continuous state space, but not necessarily

so when the state space is binary.
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mixed strategy non-babbling equilibrium is not neologism-proof. Consider the babbling

equilibrium in which both types of expert send message 1 and type 0 prefers pooling with

type 1 to being identifed as type 0. Since a truth-telling equilibrium exists, type 0 must

prefer being identifed as type 0 to being perceived as type 1. It follows that type 0 prefers

pooling with type 1 to being perceived as type 1. This implies that relative to the babbling

equilibrium, “my type is 1” is a credible neologism and therefore the babbling equilibrium

is not neologism-proof.

6 Conclusion

In order to make good decisions, people often seek advice and information from others

(usually referred to as experts in the literature), who do not necessarily share the same

interests. In a communication game between an expert and a DM, the expert’s incentives

for information transmission are determined by the actions that the DM takes in response to

his messages, which are in turn affected by the private information that the DM possesses,

as we assume that the DM is partially informed in this paper.

When taking the strategic interaction into consideration, we find that the decision maker

does not necessarily benefit from having more accurate information of her own since it may

have the adverse effect of preventing the expert from revealing his private information

credibly in equilibrium.

Even in the simple setting that we study, the decision maker’s choice between making

her information public before the expert reports to her or keeping it private is not trivial.

Which alternative yields a higher expected payoff to the decision maker depends on how

aligned the players’ interests are. Furthermore, given that the decision maker always wants

to extract as much information as possible from the expert, allowing her to communicate

(without committing to telling the truth) to the expert before the expert reports to her does

not help the decision maker because the first round of communication cannot be effective.

Appendix
Proof of Remark 1 - Remark 2 .

prob (ω = 1|s1 = 0, s2 = 0) = p(1−q1)(1−q2)
p(1−q1)(1−q2)+(1−p)q1q2

prob (ω = 1|s1 = 1, s2 = 0) = pq1(1−q2)
pq1(1−q2)+(1−p)(1−q1)q2

prob (ω = 1|s1 = 0, s2 = 1) = p(1−q1)q2
p(1−q1)q2+(1−p)q1(1−q2)

prob (ω = 1|s1 = 1, s2 = 1) = pq1q2
pq1q2+(1−p)(1−q1)(1−q2)

We can compute that
∂

p(1−q1)(1−q2)
p(1−q1)(1−q2)+(1−p)q1q2

∂q1
= − (1−p)pq2(1−q2)

(p(1−q1)(1−q2)+(1−p)q1q2)2
< 0 and

∂
p(1−q1)(1−q2)

p(1−q1)(1−q2)+(1−p)q1q2
∂q2

= − (1−p)pq1(1−q1)
(p(1−q1)(1−q2)+(1−p)q1q2)2

< 0.
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∂
pq1(1−q2)

pq1(1−q2)+(1−p)(1−q1)q2
∂q1

= (1−p)pq2(1−q2)
(pq1(1−q2)+(1−p)(1−q1)q2)2

> 0 and

∂
pq1(1−q2)

pq1(1−q2)+(1−p)(1−q1)q2
∂q2

= − (1−p)pq1(1−q1)
(pq1(1−q2)+(1−p)(1−q1)q2)2

< 0.

∂
p(1−q1)q2

p(1−q1)q2+(1−p)q1(1−q2)
∂q1

= − (1−p)pq2(1−q2)
(p(1−q1)q2+(1−p)q1(1−q2))2

< 0 and

∂
p(1−q1)q2

p(1−q1)q2+(1−p)q1(1−q2)
∂q2

= (1−p)pq1(1−q1)
(p(1−q1)q2+(1−p)q1(1−q2))2

> 0.

∂
pq1q2

pq1q2+(1−p)(1−q1)(1−q2)
∂q1

= (1−p)pq2(1−q2)
(pq1q2+(1−p)(1−q1)(1−q2))2

> 0 and

∂
pq1q2

pq1q2+(1−p)(1−q1)(1−q2)
∂q2

= (1−p)pq1(1−q1)
(pq1q2+(1−p)(1−q1)(1−q2))2

> 0.

So, by Lemma 1, ∂a∗0(0)
∂q1

< 0 and ∂a∗0(0)
∂q2

< 0; ∂a∗0(1)
∂q1

> 0 and ∂a∗0(1)
∂q2

< 0; ∂a∗1(0)
∂q1

< 0 and
∂a∗1(0)
∂q2

> 0; ∂a∗1(1)
∂q1

> 0 and ∂a∗1(1)
∂q2

> 0.

Proof that with quadratic utilities, b0 ≥ b1 if and only if p ≥ 1
2 .

b0 =
1
2

p(1−p)q2(1−q2)(2q1−1)
(pq1(1−q2)+(1−p)(1−q1)q2)(p(1−q1)(1−q2)+(1−p)q1q2)

and

b1 =
1
2

p(1−p)q2(1−q2)(2q1−1)
(pq1q2+(1−p)(1−q1)(1−q2))(p(1−q1)q2+(1−p)q1(1−q2)) .

The numerators are the same. If we compare the denominators, we see that

(pq1 (1− q2) + (1− p) (1− q1) q2) (p (1− q1) (1− q2) + (1− p) q1q2)−

(pq1q2 + (1− p) (1− q1) (1− q2)) (p (1− q1) q2 + (1− p) q1 (1− q2))

= q1 (1− q1) (2q2 − 1) (1− 2p)

Given that q1, q2 ∈
¡
1
2 , 1
¢
, we have b0 ≥ b1 if and only if p ≥ 1

2 .

Proof that with quadratic utilities, ∂b0
∂q2

has the same sign as (p− q2) and ∂b1
∂q2

has the same sign as (1− p− q2).

db0
dq2

= q1(1−q1)(p(1−q2)+(1−p)q2)(p−q2)
(pq1(1−q2)+(1−p)(1−q1)q2)2(p(1−q1)(1−q2)+(1−p)q1q2)2

. Since all the other terms are

positive, the sign of db0(p,q1,q2)
dq2

is the same as the sign of (p− q2).
db1
dq2

= q1(1−q1)(pq2+(1−p)(1−q2))(1−p−q2)
(pq1q2+(1−p)(1−q1)(1−q2))2(p(1−q1)q2+(1−p)q1(1−q2))2

. Similarly, since all the other

terms are positive, the sign of db0(p,q1,q2)
dq2

is the same as the sign of (1− p− q2).

Proof of Proposition 5.

Fix p, q1, q2. WLOG, assume that b0 ≥ bprivate ≥ b1.

If b ≤ bprivate (p, q1, q2), then a truth-telling equilibrium exists in Γ2. Since the DM

extracts the maximal amount of information fromt the expert in Γ2, he cannot do better in

Γ3.

Now suppose b > bprivate (p, q1, q2). So there is no information transmitted in Γ2.

Suppose b > b0 ≥ b1. Then clearly the DM cannot extract any information from the

expert in Γ3 either. If b > b0, for any belief that the expert may have over the distribution
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of s2, the bias b is too high for the IC constraint to hold. As shown before, when truth

telling fails to be an equilibrium, babbling is the unique equilibrium outcome.

Suppose b0 ≥ b > bprivate ≥ b1. We can show by contradiction that no information

can be transmitted from the expert to the DM in Γ3. First, observe that in a PBE in

Γ3, the expert has to reveal the same amount of information in response to any of the

messages sent with positive probability by the DM (and the information revealed by the

expert on the equilibrium path has to be at least as much the information revealed off the

equilibrium path). Also, recall that an equilibrium where partial information is transmitted

from the expert to the DM exists only if a truth-telling equilibrium exists. Suppose in

Γ3, an equilibrium exists in which the expert truthfully reveals s1 upon receiving either

message 1 or message 0 from the DM. Then, for the IC constraints to hold, type 0 expert’s

posterior belief on the distribution of s2 upon hearing any one of the DM’s messages, i.e.,

prob (s2 = 0|l) (l = 0, 1), must be strictly higher than prob (s2 = 0|s1 = 0). Obviously, this
can never be satisfied with any admissible (mixed) strategy of the DM. Therefore, the

expert babbles in equilibrium in Γ3 if b0 ≥ b > bprivate ≥ b1. The DM cannot extract more

information by strategically sending a message about her signal than by keeping it private.
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