
A Theory of Risk Management with Applications to
Executive Compensation and Earnings Management∗

JEREMY BERTOMEU†

Abstract

This paper presents a theory of risk management in which the choices of managers over

effort and risk are imperfectly monitored by outsiders. In a principal-agent framework,

hedging can reduce extraneous noise in the variables outsiders observe or create opportuni-

ties for self-dealing behavior. The model reproduces several empirical features commonly

described as anomalous, in an optimal-contract setting. In equilibrium, the hedged dis-

tribution of output is hump-shaped and asymmetric: first, for outputs close to the mode

of the distribution, managers are more likely to do well and less likely to do poorly; sec-

ond, managers hedge against large gains and increase the likelihood of large losses. The

model accounts for the prevalence of linear compensation schemes and the relatively low

performance-pay coefficients observed in managerial jobs. A simple linear contract is op-

timal over states with large payoffs or when the manager has access to all, or nearly all,

fair hedges and gambles. In the latter case, the optimal contract may feature no observable

performance-pay, yet elicit some effort. Empirical implications for the detection of earn-

ings management, risk controls, robust contracting and observed compensation schemes

across industries are also examined.
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Most companies and institutions engage in off-balance sheet risk management; yet, the

amount of hedging practiced by firms, even in the same sector, varies considerably. For exam-

ple, Chesapeake hedged 80 percent of its gas production. On the other hand, Exxon Mobil did

not hedge: “Exxon Mobil (...) doesn’t use financial hedges. Many of Chesapeake’s peers take

a similar position, reasoning that their skills are in finding oil and gas” (WSJ Nov. 6 2006).

Similarly, Southwest Airlines hedged 85 percent of its fuel expenses in 2005 and 70 percent

in 2006. During the same period, less financially solid airlines reversed their hedging policies.

American Airlines terminated most of its contracts ending beyond March 2004 and hedged only

12 percent (resp. 4 percent) of oil risk for 2004 (resp. 2005). Continental Airlines had virtually

no hedging in 2004 and 2005.

In the wrong hands, hedging instruments can also be abused and expose the firm to large

potential losses.1 Such problems are often linked to the lack of transparency when disclos-

ing risk exposure and the profits from hedging instruments. The FASB and the IASB recently

produced comprehensive statements with respect to hedging instruments (FAS 133, IAS 39);

accounting regulations define conditions under which instruments can qualify for hedge ac-

counting, broadly defined as accounting recognition of gains and losses only on the balance

sheet (and not on the income statement). Yet, critiques observe that, since qualifying for hedge

accounting is based on each asset separately (and not on aggregate net positions), managers

often use risk management for reporting purposes and risk exposure is neither fully transparent

nor well-controlled by shareholders.

Following several proposals from the SEC (regarding the application of the Sarbanes-Oxley

Act), the FASB is designing a conceptual framework defining the role of risk management as

well as several objectives for better regulating inappropriate hedging choices. Quite strikingly,

the first of these objectives is to “Discourage transactions and transaction structures primarily

motivated by accounting and reporting concerns rather than economics.”2 A fairly widespread

1For example, the notorious Jedi and Raptor special purpose vehicles created by Enron provided some insurance
against a change in value of the company’s assets but, since the insurance was guaranteed using Enron stock, only
if the stock price remained high. In the Orange County scandal, fund manager Robert Citron used credit derivatives
to create the illusion of above-average returns, eventually losing $2.2 billion out of $7.7 billion in 1994. Other
more recent well-advertised cases include the hedge fund Amaranth and the scandals at Fannie Mae and Freddie
Mac.

2See SEC report:“Report and Recommendations Pursuant to Section 401(c) of the Sarbanes-Oxley Act of 2002
on Arrangements with Off-Balance Sheet Implications, Special Purpose Entities, and Transparency of Filings by
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idea is to formulate the basic trade-off in the following terms: hedging can improve economic

risk-sharing between the firm and outside investors but can be distorted by managers for pure

reporting reasons. Graduate textbooks generally mention the trade-off as one key to understand-

ing both the need for hedging and the problems it may create.

“Why do firms use derivatives? The answer is that derivatives are tools for changing the

firm’s risk exposure. Someone once said that derivatives are to finance what scalpels are to

surgery. By using derivatives, the firm can cut away unwanted portions of risk exposure and

even transform the exposures into quite different forms. [...] Derivatives can also be used

to merely change or increase the firm’s risk exposure. [...] Most of the sad experiences with

derivatives have occurred not from their use as instruments for hedging and offsetting risk, but,

rather, from speculation.”

from Corporate Finance - Ross, Westerfield and Jaffe (p.697)

Other references warn of the need to understand these instruments when monitoring the ac-

tions of managers:

“There are situations where off-balance sheet obligations make good economic sense. Un-

fortunately, those who have wanted to cover up their actions or who have not wanted to disclose

the full amount and nature of their debt leverage have abused them. Often, the complexity of

off-balance sheet vehicles makes it very difficult for an outsider to understand a company’s true

financial picture and sometimes for insiders as well, it appears. There should not be a blanket

condemnation of the practice of off-balance-sheet financing, but directors need to insure the

sound rationale of using such vehicles and that they are fully disclosed in company statements.”

from Corporate Governance - McGraw-Hill Executive MBA Series (p.160)

One common denominator in current debates is that they are extremely loose with respect to

the objective of risk management and do not explicitly say what is meant by “unwanted risk

exposure,” “good economic sense” or, as described by the FASB, “accounting and reporting

Issuers” (June 2005).
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concerns.” In fact, this question is also heavily debated in the corporate world as shown by the

different views reported in the press. Several key questions seem to be of interest in order to

better understand and regulate risk management.

I. In a model with perfect outside capital markets, what informational frictions (within the

firm) can explain risk management by firms held by well-diversified investors? Then,

under which conditions does risk management increase expected cash flows and/or is ben-

eficial to agents in the economy?

II. What outcomes are “unwanted” risk exposure and will be hedged, and which outcomes

will not be hedged? Should the firm always hedge against large losses or large gains?

III. How can one design executive compensation contracts that give incentives to hedge in

the best interest of shareholders? How does risk management affect performance-pay

coefficients? How does risk-taking by the agent respond to the concavity/convexity of the

contract? What type of contracts will perform well in situations where risk management

is important?

IV. What “anomalous” features of the cross-section and time series of earnings are consistent

with risk management? Why do firms and regulators seem to tolerate earnings manage-

ment to beat threshold or income smoothing?

Except for a few notable exceptions, most of the existing literature on risk management as-

sumes that risk is managed directly by the owners of the firm (e.g., the shareholder, the board,

etc.). Yet, current debates point out that, effectively, risk is under the control of the manage-

ment, whose interest may not be fully aligned with those of the owners. This paper presents a

framework in which the agent privately manages risk. The risk decision is imperfectly observed

by the owners of the firm which creates an informational asymmetry between owners and man-

agers. I discuss what problems may arise from this informational asymmetry and how incentives

to manage risk can conflict with incentives to work hard (I.). Giving managers the freedom to

hedge through financial derivatives can, potentially, either mitigate or exacerbate agency prob-

lems. On the one hand, hedging can reduce extraneous noise in the variables outsiders observe,
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and thereby allow them to more accurately evaluate the consequences of managerial actions

and choices. This will reduce agency costs. On the other hand, hedging can, in itself, provide

opportunities for self-dealing by managers at the expense of outsiders and of the total surplus

created.

Resolving this trade-off, I investigate conditions under which a firm will hedge certain states

of the world (II.). These conditions are derived from explicit informational frictions and not

from exogenously specified capital market frictions. Then, I show how hedging can be elicited

using well-designed managerial contracts (III.). These contracts can be interpreted to rational-

ize different executive contract shapes and hedging strategies chosen in different industries. I

analyze how the agent will respond to the contract and recover features that are consistent with

several anomalous properties of the cross-section and time series of corporate earnings. In com-

plement to the empirical evidence, the analysis provides ways to rationalize several empirical

tests of earnings management and link the cross-section of earnings to executive compensation

(IV.).

In broad terms, the benchmark model is based on Holmström (1979) in which the actions

of an agent are imperfectly monitored by the owners. In the standard model, the agent chooses

effort and then the distribution of the output signal is given. A unidimensional costly effort

choice is the only way that the agent can affect output. In my model, the agent can pick a

distribution from a set of available hedges and gambles. The main theoretical contribution of

the paper is to introduce a novel restriction on this set, called mean-distance-ordering (MDO),

which intuitively frames the risk management problem. Under MDO, the cost of managing risk

is (weakly) increasing in the distance between the original distribution and the hedged distri-

bution. Technically, this assumption allows me to analyze a broad class of risk management

actions from first-order conditions on the problem of the agent.

Initially, I take the contract as given and solve for the choices of the manager. Ross (2004)

explains that offering more convex contracts may not make a manager more risk-seeking. His

analysis suggests that much of the simple logic used to identify the causes of excess speculation

is misplaced and one cannot always map contract shape to risk-taking. By focusing on risk-
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aversion, however, his approach does not make the agency problem explicit.3 I show that, when

the compensation is convex, the agent chooses a hedged distribution that has more probability

mass in the tail of the distribution. In particular, a risk-averse manager paid with options will

concentrate the mass of the distribution strictly above the strike price and simultaneously in-

crease the probability of large losses. This property rationalizes a cross-section of earnings that

exhibits bunching to beat target performance thresholds as well as a decrease in the probability

of large gains, as documented by Degeorge, Patel and Zeckhauser (1999) (hereafter DPZ99). In

this respect, the model provides a simple framework that theoretically validates several cross-

sectional tests of earnings management.4

Next, I solve for the optimal contract when considering the two sources of moral hazard.

Murphy (1999) (hereafter M99) documents that there is considerable heterogeneity among con-

tracts offered to top executives and the forces causing this heterogeneity are not yet fully un-

derstood. He mentions one aspect of the problem, describing how contracts originally designed

to provide the right incentives to increase shareholder value can also be prone to manipulation.

The model accounts for both sides of the trade-off described by Murphy, since risk manipu-

lation can lead to output signals that are more informative on the actions of the agent.5 The

analysis indicates, as a function of economic primitives, which states of the world one would

expect to be hedged: I show that the compensation contract should induce the agent to reduce

the probability of states in which the value of the firm is high or the output signal is relatively

uninformative on the action of the agent. In the first case, offsetting incentives to hedge high

payoff states would require a wage that makes the agent risk-neutral to output shocks, which is

costly in terms of risk-sharing. In the second case, reducing the probability of a state increases

its associated likelihood ratio (the standard measure of informativeness for a state), thereby

3He makes the following observation: “since compensation schedules arise as equilibria in agency models, it
would be interesting to explore these results within such a setting. In particular, we should examine their implica-
tion when there is asymmetric information between agent and principal” (p. 224).

4In the existing literature, earnings management is often defined as misreporting current earnings to increase
reported earnings in future periods. I follow here a broader definition of earnings management, as any action taken
by the manager that may affect reported earnings. Further, in Section 5, I show that the model can be reinterpret
as the agent manipulating a report made to the principal (but not the true economic cash flow). The framework
predicts income smoothing effects that are consistent with the empirical evidence (because the agent may increase
the probability of states with low payoffs in the current period and increase the probability of states with high
payoffs in future periods).

5See Arya, Glover and Sunder (2003) for a survey of the existing literature showing when manipulation can be
beneficial in solving other informational frictions.
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providing a better solution to the incentive problem.

While the standard theory does not exclude non-linearities in the optimal contract, the em-

pirical evidence suggests that most of the contracts that we observe are close to linear or, at least,

are linear over certain output regions (e.g., equity compensation, piece-rate incentive schemes).6

As explained by Holmström and Milgrom (1987), linearity can be desirable in situations where

the agent can manipulate the contracting variables. I show that linearity is optimal when the

control of the agent over risk is important.7 When the agent has access to all fair gambles and

hedges, a contract that prescribes a compensation that is linear in the managed signal is opti-

mal. When risk management is costly, the optimal contract converges to a linear compensation

schedule in states such that the value of the firm is large or when the cost of hedging becomes

small.8 In intuitive terms, a linear compensation performs well at preventing speculation over

states that are relatively uninformative on the actions of the agent.

The theoretical literature incorporating risk management to agency theory is still relatively

scarce. Two notable exceptions are Diamond (1998) and Palomino and Prat (2003) which

present settings which are, while closely related in terms of the problem under investigation,

quite different in terms of modeling assumptions and actual results. The first paper proposes an

analysis of the optimal contract for a general risk management problem.9 His main finding is

that non-linearities in the compensation scheme distort project selection and thus, when the size

of the cash flows becomes large relative to the cost of effort, a linear contract becomes optimal.

In comparison to this paper, my assumptions on the problem are more demanding but they allow

me to analyze the problem outside of this limiting case and obtain a richer set of predictions

6Holmstrom comments his results as follows: “In view of risk-sharing benefits, the convexity of the second-best
solution may be surprising, but this is in no way exceptional (...). Examples for which sharing rules are concave or
linear or even two-peaked can be easily generated as well” (Holmström (1979), p.80).

7It should be emphasized that the conceptual argument at play in my model is very different from Holmström
and Milgrom (1987). In their model, the agent makes decisions over a sequence of periods but the principal
only observes aggregate variables. Because the agent can adjust choices dynamically, any non-linearity in the
compensation can be exploited. In my model, linearity holds in a static one-shot interaction and with only few
restrictions on preferences or the production technology.

8The theoretical literature incorporating agency theory and risk management is still relatively scarce. An excep-
tion is Palomino and Prat (2003) who solve an agency model where the agent can chooses from a set of distributions
verifying certain regularity conditions. See also Chang (1997), Biais and Casamatta (1999), Povel and Raith (2004)
and Parlour, Purnanandam and Rajan (2006) for other models in which the choices of the agent may affect the risk
of the output.

9Diamond’s model is stated with risk-neutrality by the agent and the principal and three possible outputs; but
this is done for expositional simplicity since most of the results extend to the general case considered here.

7



that match a large body of empirical evidence. While I also obtain linearity in limiting cases,

linearity in my model is obtained by leaving the original moral hazard problem unchanged and

making assumptions on the risk management problem.10. The second paper shares with my

paper its focus on the optimal contract, even outside of limiting cases. The authors show that

the optimal contract takes the form of a two-step bonus scheme under certain (single-crossing)

restrictions on the set of hedges available to the agent. This is, to my knowledge, the first model

to derive an interpretable optimal contract with risk management. The type of contract that they

find, however, seems to be only rarely used in practice.11. My modeling framework accommo-

dates risk-aversion and predicts a richer set of contracts. In my model, I can also characterize

more precisely how the agent manages risk when given an optimal contract.12

1. The Model

I state the risk management problem for a firm, owned by a principal and operated for a

single period by an agent (or manager). To keep the model simple, I assume that the firm is

liquidated after this period ends and yields a net cash flow y ∈ X . The infimum of X is denoted

θ ∈ [−∞,+∞) (it is the maximum loss that the manager may cause). The manager privately

chooses an action a ∈ [a, a] and then can manage risk by selecting a distribution F̂ (.) from a

non-empty set Γ(a). The set Γ(a) is defined as the choice set of the agent for a given effort and

corresponds to the set of all hedges and gambles that are available to the agent.

10For example, a natural concern is that the risk management problem may change as cash flows become large
(i.e., it may be harder to hedge for a very large firm) which could work against Diamond’s limiting argument.

11It should be emphasized that they present their findings in the context of money managers (for which
tournament-like payments have similarities with a two-step bonus scheme), yet their modeling assumption are
based on a generic agency model and thus may be valid for CEOs (or many other occupations); even the bonus
scheme component of executives is not a two-step bonus scheme. Murphy (1999) documents that about 70% of his
sample of CEOs use 80/120 or Modified Sum-of-Targets as their bonus scheme. In a 80/120, the compensation
is capped for performance equal to 80% or less of the target and 120% or more of the target, but it is linear and
increasing between 80% and 120%. Qualitatively, the Modified Sum-of-Targets is similar. The remaining firms in
their sample used more complex formulae with a non-trivial dependence of payments on performance targets.

12See also Chang (1997), Biais and Casamatta (1999), Povel and Raith (2004) and Parlour et al. (2006) for other
models in which the choices of the agent may affect the risk of the output.
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Risk Management I define F (.|a) ∈ Γ(a) as the distribution of y when the agent does not

manage risk and assume that it has mean a.13 In order to reflect the idea that effort increases

the value of the firm, I assume that F (.|a) first-order stochastically dominates F (.|a′) if a ≥ a′.

I restrict the attention to cases in which managing risk cannot directly increase the value of the

firm and thus, Γ(a) must include distributions that have mean (weakly) below a. As a result,

conditional on a, F (.|a) maximizes the expected value of the firm.

More explicit restrictions on the sets Γ(a) are delayed until Sections 2 and 3; yet, it is

helpful at this point to think about a as value-increasing effort, F (.|a) as the distribution of

output without risk management and then Γ(a) as a set of distributions that can change the risk

of y but may not increase value.

Preferences For now, I assume that the principal is risk-neutral. This assumption is made

to focus the attention on the most distinctive aspects of the framework since the role of risk-

management in the presence of exogenous market frictions is already well-understood (Froot,

Scharfstein and Stein 1993). In contrast, if capital markets are perfect, risk management should

be a-priori irrelevant to the value of a firm owned by well-diversified investors; in this setting,

hedging may be required only as a result of an incentive problem. In Section 5, I extend the

framework to risk-aversion by the principal and show that most of the results are robust to other

(exogenous) capital market frictions.

The principal can provide incentives to take a desired action by offering a compensation

contract w(y) (defined over R). For outcome y and action a, the manager achieves a utility

u(w(y)) − ψ(a) satisfying standard regularity conditions (u′ > 0, u′′ < 0, ψ(a) = ψ′(a) = 0,

lima→a ψ(a) = +∞, ψ′′, ψ′′′ > 0 except possibly at a = a). Unless explicitly stated otherwise,

I assume that the agent has limited liability and must be paid w(y) ≥ w for all y. The model

incorporates two important aspects of an agency situation: (i) increasing the value of the firm is

privately costly, (ii) the agent may be risk-averse and dislike volatile compensation. Finally, the

contract must prescribe a minimum reserve utility equal to b which corresponds to the outside

option of the agent.

13The statement is without loss of generality when the mean of F (.|a) is continuous in a. For example, even if
the mean of F (.|a) is not a, one may always relabel effort A =

∫
ydF (y|a).
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Contracting Problem A contract (w(.), F̂ (.), a) is incentive-compatible if for a given w(.)

the agent chooses (F̂ , a). Taking into consideration the actions of the manager, the principal

will choose an optimal contract which solves the following problem.

(P ) maxa,w(.)≥w,F̂ (.)

∫
(y − w(y))dF̂ (y)

s.t.
∫
u(w(y))dF̂ (y)− ψ(a) ≥ b (1)

(a, F̂ (.)) ∈ arg maxã,F (.)∈Γ(ã)

∫
u(w(y))dF (y)− ψ(ã) (2)

While I focus in most of the analysis on incentive-compatibility as stated in Equation (2),

it will also be important to interpret certain situations in which a solution to the problem of the

agent does not exist but the contract is “unreasonable” and should not be offered. First, I say

that a contract is incentive-free if any sequence of policies converging to the supremum in the

problem of the agent prescribes an action converging to a. From the perspective of the principal,

an incentive-free contract does not provide any incentives to work hard and thus can be replaced

by a constant wage. Second, I say that a contract is agent-unbounded if the supremum of the

problem of the agent is infinite. Because the value of the firm is bounded, an agent-unbounded

contract cannot be optimal.

Definitions The first-best is an optimum to this Problem when the incentive-compatibility

condition is omitted. I introduce some additional terminology to simplify the exposition. I say

that a compensation scheme is linear when w(y) = h0 + h1y. For a given a, I say that the agent

fully hedges when y is deterministic (i.e., F̂ (.) is degenerate) and the agent hedges (against) an

outcome y when its probability according to F̂ (.) is lower than under F (.|a). In contrast, an

agent speculates when there is in Γ(a) a distribution that (strictly) second-order monotonically

stochastically dominates F̂ (.).14

14See Huang and Litzenberger (1988), p.49-50 for a discussion of second-order monotonic stochastic domi-
nance. Formally, a random variable A (with distribution FA) second-order monotonically stochastically dom-
inates a random variable B (with distribution FB) if and only if

∫ y
−∞(FA(z) − FB(z))dz ≤ 0 for all y and
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2. Perfect Risk Management

Before moving to the general problem, it is useful to gain some preliminary intuition in a

simplified setting. I assume here that the manager has access to all fair gambles and hedges

and thus Γ(a) = {F̂ (.)/
∫
ydF̂ (y) ≤ a}. Under perfect risk management, the choice of the

manager over gambles or hedges is unrestricted provided it does not increase firm value. To

avoid uninteresting issues caused by a discrete support, I assume here that X is an interval

including [a, a].15 I present next two simple examples showing which situations perfect hedging

can capture.

Example 1: A fund manager has access to a risk-free trading strategy (or perfect arbitrage)

that, for each dollar invested, yields a return 10%. The manager can invest $10a but then

incurs management fees equal to ψ(a) (see Berk and Green (2004) for an interpretation of these

management fees). In addition, the manager can speculate and purchase zero net-present-value

gambles. The principal cannot monitor these gambles because the manager may always claim

that these gambles are part of the trading strategy. In this first example, the output conditional

on a is risk-free (i.e. F (y|a) prescribes y = a with probability one) but the principal cannot

prevent the agent from taking gambles.

Example 2: Suppose a manager chooses effort a and conditional on a, the output is distributed

according to a distribution F (.|a) with full support on X . Then, assume that the manager may

provide verifiable information on a to a financial intermediary (e.g., an expert on the industry).

If the intermediary is competitive, it will offer any gamble or hedge substituting the original

output y drawn from F (y|a) with an output drawn from a distribution F̂ (.) ∈ Γ(a). In this

second example, the effort choice and the risk management decisions are observable but not

contractible (see ?) for a discussion of variables that are observable but not contractible).∫ +∞
−∞ zdFA(z) ≥

∫ +∞
−∞ zdFB(z). Monotonic second-order dominance extends second-order dominance to cases

in which the random variables do not have the same mean. Any risk-averse and non-satiated individual would
prefer A to B.

15In other terms, X = (−∞, θ′′], X = [θ′,+∞) or X = (θ′, θ′′) where θ′ and θ′′ are two real numbers. All
results carry over provided the elicited effort is in X .
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Even in settings where perfect risk management may seem too extreme (e.g., the information

of financial intermediaries on a is imperfect), the assumption can help better understand how

the risk management problem is affecting the contractual relationship. It should be emphasized

that I take perfect risk management as a thought experiment in a limiting case, not as a model

to be matched to the empirical evidence; to this effect, frictions to perfect risk management are

developed in the Sections 3 and 4. To ease the exposition, I assume for now that b ≥ u(w)

(the other case b < u(w) will be studied separately since, then, the limited liability replaces the

participation of the agent).

2.1. First-Best

For reference, I state the first-best solution to the problem. Since the principal is risk-neutral

but the agent may be risk-averse, there is an optimal policy such that the agent is given a constant

wage W . In first-best, this wage binds the participation of the agent, i.e. u(W ∗) = b + ψ(a∗).

The principal solves the following Problem:

(Pfb) max
a
a− u−1(b+ ψ(a))

The first-best effort is given by the following first-order condition.

ψ′(a∗) = u′(u−1(ψ(a∗) + b)) (3)

Let (a∗,W ∗) be the first-best outcome; it equates the marginal disutility of effort with the

marginal cost of compensating the agent to work more.16 Note that, in first-best, the irrelevance

of the capital structure holds: risk management does not increase the utility achieved by the

principal or the agent.

In first-best, the principal controls both effort and risk management. I claim that the first-best

surplus can also be attained provided the principal controls only risk management. Suppose for

example the principal chooses risk management but not effort: ex-ante, the principal chooses

16First-best effort would still be given by Equation (3) even if the principal were risk-averse since the principal
would then fully hedge and set y = a∗ with probability one. More generally, it can be verified that risk-aversion
by the principal would not affect any of the results presented in this Section.
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a hedged distribution F̂ a(.) ∈ Γ(a) for all possible a (although the effort a remains chosen by

the agent). Then, the principal could set y = a with probability one for all a and offer W ∗

only if y = a∗. The agent will respond to the contract by choosing a = a∗, leading to first-best

payoffs.17 In contrast, I will show next that first-best can fail when the agent controls both effort

and risk management.

2.2. Optimal Risk-Sharing

I develop next the optimal risk management strategy in second-best, when the decision to

provide effort or hedge is under the control of the agent. With perfect risk management, any

manager who does not fully hedge must be speculating (as defined earlier in Equation (3)). This

is because fully hedging, i.e. setting y = a with probability one, second-order monotonically

stochastically dominates any other distribution with mean less than a. Taking for now the action

as given, the next lemma describes what risk management strategies should be elicited by the

principal.

Lemma 2.1. An optimal contract must prescribe fully hedging.

The first result is intuitive: it states that the agent should hedge away all the risk because

he/she can do so; yet, in the context of a moral hazard problem, it may seem surprising. In the

standard model, a contract should impose (unwanted) risk on the agent to preserve incentives.

With perfect risk management, however, it is optimal to set a compensation that is deterministic.

At first sight, a deterministic compensation may seem incompatible with incentives to work

hard. To see why a deterministic compensation provides incentives here, note that while the

compensation is constant ex-post, it is not necessarily constant in the ex-ante problem if the

agent deviates to work less or speculate. For example, let W and y be two scalars and suppose

that the principal offers a compensation w(y) = W if y ≥ y and w(y) = w < W if y < y.

By fully hedging and choosing effort a = y, the agent will receive a constant compensation

W . By deviating to less effort, the agent would have to set positive weight on outcomes y < y

17For obvious reasons, first-best can also be achieved if the principal chooses effort but the agent controls risk
management (i.e., the principal will then pay a flat compensation).
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and thus would receive an expected compensation strictly below W . To summarize, perfect risk

management implies a constant wage on-equilibrium but not necessarily off-equilibrium.

2.3. Incentive-Compatibility

Since the agent fully hedges (by Lemma 2.1), the distribution F̂ (.) will be degenerate and

thus the output signal will be in equilibrium perfectly informative and equal to the chosen effort

y = a. The presence of a perfectly informative output signal y = a may suggest that the

principal should be able to reach first-best. This is not (always) the case here. In Figure 1, I

show by way of an example why first-best may fail. Assume that the principal offers a wage

W ∗ = b+ψ(a∗) conditional on y = a∗ and w for any other realization of y. This compensation

scheme binds the participation of the agent and seems to be geared to elicit a∗ by minimizing

payoffs over states that should not occur when the agent fully hedges.

Figure 1. Optimal Effort Choices

It turns out that that the agent does not choose first-best in this example. In Figure 1, the

rightmost square corresponds to the first-best choice; it implies no rents for the agent. By man-

aging risk, the agent may also speculate and choose any distribution over y = θ (the worst-case

outcome) and y = a∗, which leads to a set of feasible utilities (gross of effort cost) delineated
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by the straight line (M). Note first that the agent would not speculate while still choosing a∗

since this would lead to an expected utility below b. On the other hand, the agent may also

deviate in effort and choose a < a∗. In the plot, I find the effort a that maximizes the utility of

the agent (i.e. the distance between (M) and ψ(a) + b). The analysis shows how in response

to the contract, the agent deviates jointly in effort and risk management and will speculate over

the worst possible state of the world.

Proposition 2.1. If the maximum downside is unbounded (θ = −∞), a contract that is not

agent-unbounded must be incentive-free. That is, the principal cannot elicit any effort above a

for a finite expected wage.

To begin with, I discuss the incentive problem when the worst state of the world generates

an unbounded loss. In this case, I show that the principal can only elicit the minimum possible

effort. This is because the agent can design a risk management strategy that exposes the firm

to very large losses with a small probability and use such gambles to almost always achieve the

maximum possible compensation. Here, these gambles act as substitutes for effort and make

the managed signal useless for contracting purposes. The model provides a simple condition

under which an indicator of performance is not robust to manipulation by the manager (and

thus is not usable in the contract).18 Note that while the agent will choose a, this may be hard

to detect because y > θ will occur with a probability that is almost one. To give content to the

contract design problem, therefore, I assume in the rest of the paper that θ is finite and meets

the condition in Lemma 2.2.

Lemma 2.2. There exists a contract eliciting effort a > a for an expected wage below w if and

only if:
u(w)− u(w)

a− θ
≥ ψ′(a) (4)

Even when the maximum loss is bounded, the principal must be mindful of a joint deviation

in effort and risk management and, to deter unwanted risks, must offer a compensation that

18See also Liang and Nan (2006) for a LEN model in which an informative signal is not used in the presence of
risk management. A related idea of robustness of signals is developed in Glover, Ijiri, Levine and Liang (2007) in
which the agent can alter the output signal and may have private information about his ability to do so. They show
that in certain cases it is optimal to ignore the measure that can be manipulated.
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mitigates incentives to speculate. Equation (4) shows that the relevant statistic in the contract is

the utility of the agent received per unit of output. If the agent is risk-neutral, this ratio captures

the performance-pay coefficient, i.e. the share of the output that should be given to the manager.

An incentive-compatible contract must ensure that the agent receives a sufficient proportion of

the total output produced.

It follows that the principal has two ways to make a contract incentive-compatible. One, the

principal can elicit less effort, reducing ψ′(a). This will reduce the attractiveness of working less

but will also reduce the firm’s value. Two, the principal may pay above the reserve, increasing

(u(w) − u(w))/(a − θ). This will make speculation more costly to the agent but will also

increase total compensation cost.

2.4. Second-Best Effort and Rents

Under perfect risk management, it is (weakly) optimal to maximize punishments over out-

comes that should not be observed in equilibrium. Therefore, one may restrict the attention

without loss of optimality to contracts (W, a) such that the principal recommends effort a, pays

W when y = a and w for any other realization of y. This contract clearly minimizes incentives

to speculate (uniqueness is delayed until Section (2.6)).19

I define two other contracts which may solve the moral-hazard problem when first-best

cannot be attained. First, let (W ∗∗, a∗∗), as defined in the previous paragraph, correspond to

the contract such that the participation of the agent binds, i.e. W ∗∗ = b + ψ(a∗∗), and the

incentive-compatibility binds:

ψ′(a∗∗) =
b+ ψ(a∗∗)− u(w)

a∗∗ − θ
(5)

To guarantee a unique solution to Equation (5), I assume that, for all a, ψ′(a)/ψ(a) ≤

1/(a − θ) + (b − u(w))/ψ(a). This condition implies that the elasticity of the cost of effort is

not too large. In the model, it guarantees that the performance coefficient obtained in Equation

19This type of contract is similar to the contract proposed by Palomino and Prat (2003) for similar conceptual
reasons. The authors show that for a given set Γ(a) (different from the set studied here), risk-neutrality by the agent
and a monotonic compensation, a two-step bonus scheme is optimal. In their model, the bonus contract maximizes
punishments for outcomes that indicate low actions.
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(4) is non-increasing when more effort is elicited.

Second, let (W ∗∗∗, a∗∗∗) be the optimal contract such that only the incentive-compatibility

binds. This contract will always dominate (W ∗∗, a∗∗) provided it makes the agent participate.

By incentive-compatibility, the wage can be written W ∗∗∗ = u−1(ψ′(a∗∗∗)(a∗∗∗ − θ) + u(w)).

Substituting in the problem of the principal, a∗∗∗ must maximize a−u−1(ψ′(a)(a−θ)+u(w)).20

The (unique) solution to the first-order condition in this problem characterizes a∗∗∗:

ψ′(a∗∗∗) = u′(W ∗∗∗)− ψ′′(a∗∗∗)(a∗∗∗ − θ) (6)

In the next Proposition, I collect these three contracts and solve for the optimal contract.

Proposition 2.2. Suppose b ≥ u(w). The optimal contract is given as follows:

(i) If a∗ ≤ a∗∗, the first-best contract (W ∗, a∗) is optimal.

(ii) If a∗ > a∗∗ and u(W ∗∗∗) < b+ ψ(a∗∗∗), the contract (W ∗∗, a∗∗) is optimal.

(iii) In all other cases, the contract (W ∗∗∗, a∗∗∗) is optimal.

The elicited effort is always smaller than a∗ (strictly in (ii)-(iii)) and greater than a (strictly

when b > u(w)).

In contrast to unbounded downside risk, the principal always elicits an effort strictly greater

than a (using a contract that is not flat). I also show that in second-best the expected value

of the firm is strictly lower than in first-best. The result shows that hedging by the agent will

reduce expected cash flows, except in cases where first-best is attained. Intuitively, incentives

to speculate are greater when the agent contributes more to the firm. Internalizing the cost of

giving incentives, the principal responds to informational frictions by eliciting less effort. When

first-best cannot be attained, I find two possible second-best contracts.

The contract (W ∗∗, a∗∗) selects the effort level such that an agent paid his/her outside option

is indifferent between speculating and hedging. As is intuitive, more downside risk (θ) or a

greater limited liability (w) leads to less effort in this contract. On the other hand, a greater

20Uniqueness is obtained because ψ′′′ is positive and thus this program is concave.

17



outside option (b) for the agent works to increase how much the agent may lose if he/she does

not select the appropriate action and thus increases the elicited effort. An interesting feature

of this situation is that the resulting allocation is Pareto-dominated by first-best, i.e. the agent

receives no rent and the principal is worse-off. This aspect provides some evidence that hedging

can be undesirable to all contracting parties.

The contract (W ∗∗∗, a∗∗∗), on the other hand, leads to a utility for the agent that is strictly

greater than in first-best. It should be noted that agent rents occur even though the limited

liability never binds ex-post, i.e. the agent is paid w with probability zero. This feature of the

model contrasts with standard models with a limited liability (such as Innes (1990)). Further, in

practice, one rarely managers being driven to levels of poverty (e.g., personal bankruptcy) that

seem fully consistent with a binding ex-post limited liability, even after very low performance.

Equation (6) can be compared to first-best. The optimal effort equates the marginal cost of

effort to the marginal utility from consumption (as in first-best) and, in addition, incorporates

the required compensation to avoid speculation, which increases the marginal cost of increasing

effort by ψ′′(a∗∗∗)(a∗∗∗ − θ) > 0. The comparative statics with respect to θ and w are similar

to those with contract (W ∗∗, a∗∗). Note that in this framework, these comparative statics are

simple and intuitive while they would be ambiguous in a model without risk management.

I extend next the analysis to the case in which the limited liability is greater than the outside

option of the agent, i.e. u(w) > b (versus u(w) ≤ b previously). In this case, the participation

of the agent cannot bind and thus the contracts (W ∗, a∗) and (W ∗∗, a∗∗) are no longer feasible.

On the other hand, the principal may now choose to bind the limited liability everywhere, which

leads to a contract (w, a). In the next Proposition, I compare this contract to (W ∗∗∗, a∗∗∗).

Proposition 2.3. Suppose b < u(w). The optimal contract is given as follows:

(i) If u′(w) > ψ′′(a)(a− θ), (W ∗∗∗, a∗∗∗) is optimal.

(ii) Else, the principal chooses to pay always w and elicits a.

The elicited effort is always strictly smaller than a∗.

Corollary 2.1. The elicited effort is strictly greater than a (and the contract is not flat) if and
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only if either ψ′′(a) = 0 or:

θ > a− u′(w)

ψ′′(a)
(7)

In contrast to Proposition 2.2, it may be optimal to elicit the minimum effort when the

maximum downside risk is sufficiently important. The statement shows that the conclusions of

Proposition 2.1 may be robust to a bounded downside risk, but only when the limited liability

lies above the outside option of the agent. Intuitively, when the limited liability becomes larger

than the outside option of the agent, the principal may no longer use the threat of paying w an

agent contributing a very low effort.

2.5. Discussion

The analysis at this stage yields several practical implications for the analysis of managerial

contracts. I interpret here several comparative statics in the context of existing debates on risk

management.

Remark 1: Imperfectly-monitored Risk Management can cause Low Output

In the model, first-best could be attained if the risk management process was monitored by

the principal, even if effort were still chosen by the agent (as argued in Section 2.1). However,

when the agent controls the risk management process, the principal may choose a lower effort

than first-best. An implication of the framework is that the lack of transparency on risk choices

can, jointly with a standard moral-hazard problem, cause low output and large absolute pay.

This concern alone has attracted considerable attention from regulators. While previously risk

management was viewed as being the sole responsibility of management, the Sarbanes-Oxley

Act and various implementation notes from the FASB and SEC require better disclosure on

the risk taken by managers, in particular regarding hedging instruments. In line with these

recommendations, the Committee of Sponsoring Organizations of the Treadway Commission

(COSO) requires internal auditors to identify and manage all risks faced by the organization.21

21See 2004 COSO published Enterprise Risk Management - Integrated Framework. Risk Assessment is one
of the eight components of the COSO framework. COSO is a US private-sector initiative created in 1985 and
sponsored by the main accounting institutes.
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In the financial industry, the Third Pillar of the Basel II accord increases the disclosure of

financial institutions over their portfolio of investments. These regulatory changes suggest that,

unlike other operational decisions, risk management should be under the direct supervision of

boards and voting shareholders, and not only decided by managers.

Remark 2: More liability by managers increases efficiency

Increasing the liability of managers can be helpful to better solve the risk management prob-

lem. For example, many professions in which risk takes an important role are structured in

partnerships with, among other things, varying degrees of personal liability. The choice of the

right liability level may account for this organization form for managerial occupations in the

law, accounting, architecture industry and explain the dependence of insurance premia on per-

formance in medical professions. A distinctive feature of these industries is a certain control

over risk: certain pleas may have greater chances of success but higher losses if they fail, audit

reports may be qualified or unqualified, architectural designs must balance creativity and cost

uncertainty, and an experimental medical treatment may worsen a condition.22 As evidence

that the limited liability may be complementary to better disclosure, the Sarbanes-Oxley Act

increased legal liability for executives taking risks that are not well monitored; this should in-

crease productive efficiency toward first-best, but may also reduce the rents achieved by current

insiders.23

Remark 3: More downside risk aggravates agency cost

The resolution of the moral hazard problem presupposes some control over maximum down-

side risk. In the fund management and trading professions, firms generally restrict the asset

classes taken by managers and bound maximum losses. Such controls may, of course, be more

difficult for large financial institutions. Yet, at least in principle, the First Pillar of the Basel
22Since 1996 (Uniform Partnership Act), limited liability partnerships or LLPs are legal in many US states. This

organization form is fairly new and still rare in non-US countries. In addition, many US states restrict the domain
of application of the limited liability clause to negligence claims.

23I interpret here an increase in liability as w, not as a wasteful punishment. The latter, however, produces the
same comparative statics and is omitted to save space and notations. Further, the exact ranking of a∗∗ and a∗∗∗ and
their response to a change in θ or w is ambiguous as well as the effect of w on the rent of the agent conditional on
a∗∗∗; yet, the statement is justified if one compares a∗∗∗ (with rents) to a∗ (no rents).
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II accord explicitly requires financial institutions to maintain a regulatory capital in proportion

to the risk of each investment. Many financial failures, such as the Barings bank, the Orange

County pension fund or, more recently, the Amaranth hedge fund are stereotype examples of

a large imperfectly-monitored downside risk. A less clear-cut but interesting case is the hedge

fund Long-Term Capital Management whose positions were often described as nearly-perfect

arbitrage. Over its existence the fund was given increasingly large leverage ratios and, in 1997,

returned nearly half of its capital to shareholders. The conjunction of these two effects increased

maximum downside risk without increasing the maximum liability. In addition, as arbitrage op-

portunities decreased, the compensation of the management team decreased in levels. Thus, if

management contracts were not adjusted to reflect such changes to the environment, the fund

may have fallen into the region where it was ex-ante desirable to move away from pure arbitrage

positions. In line with this idea, Lowenstein (2002) describes changes to LTCM’s portfolio over

the latter years of its existence (such as equity arbitrage) with different correlation structures

and greater levels of risk.

2.6. Robustness of the Linear Contract

It should be noted that the model with perfect risk management predicts the equilibrium com-

pensation and effort, but the off-equilibrium payments (if the agent deviates) are not uniquely

predicted. For example, if the principal is willing to elicit a, offering a targeted bonus that pays

above w only if y is equal to the recommended action is always optimal but many other con-

tracts such that pay is sufficiently low for y 6= a are also optimal. Since analyzing the optimal

contract is the focus of this paper, refining the multiplicity of optimal contracts is important. I

give next a simple argument showing why a simple linear contract is the unique contract that is

robust to other frictions that one may reasonably expect.

Assume that the cost of effort is decomposed as: ψ(a) = cψ̃(a), where c ∈ R\{0}. I will

suppose that ψ̃(a) is common-knowledge and the parameter c is known to the agent but not the

principal. It is drawn ex-ante from a distribution H(.) which has full support on R+ (and no

mass point at c = 0). Uncertainty about the cost of the effort reflects the idea that some aspects

of the agency problem may be better known by the agent. To avoid self-selection, I assume here
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that u(w) > b and therefore agents always participate. In addition, I assume that ψ′′(a) = 0 so

that, if c was common knowledge, an effort strictly above a would be elicited.24

The contracting environment is similar to the previous problem:

1. The principal proposes a contract w(.).

2. The agent observes c. Then, he/she decides on an effort a(c) and a distribution F̂c(.), which

depends on c, with the constraint that the expected output under F̂c(.) is less than a(c).

3. The output is drawn from F̂c(.). The principal receives y − w(y) and the agent achieves

u(w(y))− cψ(a(c)).

Let uj(.) (j > 1) be a strictly concave utility function. I state next the extended contract

design problem:

(P ′) max
w(.)≥w,F̂c(.),a(c)

∫ ∫
(y − w(y))dF̂c(y)dH(c) (8)

s.t., for all c,

(a(c), F̂c(.)) ∈ arg max
ã,F (.)∈Γ(ã)

∫
uj(w(y))dF (y)− cψ̃(ã) (9)

The model is equivalent to the previous problem when the distribution H(.) has mass on

only one value of c. A small amount of risk-aversion is important in order to remove solutions

optimal only when agents are perfectly risk-neutral; to remove risk-aversion in the limit, I as-

sume that the sequence of functions uj(.) converges to a linear function when j increases. This

technique is used to obtain a notion of near risk-neutrality and I use it to select a particular opti-

mal contract.25 In the next Proposition, I assume that 1/(a− θ)+ψ′′(a)/ψ′(a) is concave. This

restriction implies that the maximum downside risk is sufficiently important and the elasticity of

the cost of effort does not grow too fast. For reference, I say (P ′) is solved in partial-information

if the principal observed c (and w(.) may depend on c). The partial-information problem was

solved in Section (2.4).
24These assumptions ensure that the principal does not shut down any cost type; if this were the case, the contract

would not be unique or linear over regions that are never attained. This is because certain realizations of y would
never be observed on the equilibrium path.

25The same argument would have been true if the principal had a small amount of risk-aversion but the agents
are risk-neutral. If both parties are perfectly risk-neutral, however, speculation becomes costless which no longer
makes convex contracts costly.
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Proposition 2.4. As the utility of the agents becomes linear (i.e., j increases), any solution to

(P ′) converges to a linear contract.

Corollary 2.2. When j becomes large, there exists a threshold c such that if c < c (resp. c > c)

a manager with cost of effort ψ(a) = cψ̃(a) is strictly better-off (resp. worse-off) when c is

unobservable by the principal than in the partial-information problem.

Corollary 2.3. If, in addition, H(.) converges to a mass point at c0 (i.e. c = c0 deterministic),

any solution to (P ′) must converge to a linear contract: w(y) = w + ψ′(a∗∗∗)(a∗∗∗ − θ), where

a∗∗∗ is the elicited solution in Proposition 2.2 with a cost ψ(a) = c0ψ̃(a).

A linear contract is obtained as the unique solution in (P ) with a small uncertainty about

the cost of effort and almost risk-neutral agents.26 When c is unobservable, the high-cost types

(i.e., the “bad” types) are better-off than if cost was observable whether those with low cost of

effort are better-off. This is because the low-cost types must be compensated above their value

to avoid speculation; some of this additional compensation cost is transferred to the low-cost

types.27

I shall try to explain why linearity is optimal here. Uncertainty about the cost of effort im-

plies that the output (y) will no longer be deterministic. Agents with higher cost will produce

less firm value while those with lower cost will produce more firm value. Faced with a com-

pensation such that u(w(y)) is not concave, a positive mass of agents will always take gambles

to reach up to the concavification of u(w(y)). As argued in Lemma 2.1, this will cause greater

compensation cost than if the principal offers a compensation that does not elicit speculation.

This argument should convince the reader that, given risk management and uncertainty about

cost, the principal is constrained to a compensation scheme that is weakly concave over the

whole domain X .

Concavity works against what a principal would have chosen if the cost of effort was ob-

servable. Because the cost of effort is convex, the wage should have been convex in the elicited

26Note that by a minor notational change in the proof of Proposition 2.4, this contract yields the same surplus
for the principal as a revelation mechanism in which agents declare their type and then are given a surplus.

27Note that this property of the model implies that, if managers could truthfully reveal their cost types ex-ante,
all low-cost types would reveal their types. This would trigger, in equilibrium, all types truthfully revealing their
cost types.
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effort if c was publicly known. The principal chooses the compensation that is closest to this

scheme but constrained to a weakly concave scheme. Solving for the best concave compen-

sation scheme that comes close to this convex schedule yields an optimal compensation that

is linear. In intuitive terms, a convex compensation scheme is required to compensate the

high-skilled workers while a concave compensation is required to avoid speculation by the

low-skilled workers.

3. Imperfect Risk Management

3.1. Mean-Distance-Ordering

I develop now the general framework by modeling more explicitly economic frictions that

may prevent the agent from fully hedging. Let X = {xk}N
k=1 be an increasing set of possible

outcomes where N ≥ 3 is possibly infinite and which includes a∗ as defined earlier.28 I move

away from Γ(a) being the set of all distributions with mean below a and assume now that any

distribution F̂ (.) ∈ Γ(a) different from F (.|a) must have mean strictly less than a. I define next

a simple separability restriction on the cost required to hedge.

Definition 3.1. (Γ(a))a∈[a,a] is mean-distance-ordered (MDO) if for all a, there exists a distri-

bution (pk(a))
N
k=1 with pk(a) > 0 such that: F̂ (.) given by (p̂k)

N
k=1 is an element of Γ(a) if and

only if
∑N

k=1 p̂kxk ≤
∑N

k=1 pk(a)xk −
∑N

k=1C(a, xk, p̂k − pk(a)) where C is a positive twice

continuously-differentiable function verifying for any a, xk, δ,

(i) C(a, xk, δ) is twice differentiable in all its arguments, and strictly convex in δ withC(a, xk, 0) =

Cδ(a, xk, 0) = 0, Cδ(a, xk, δ) < 0 (resp. Cδ(a, xk, δ) > 0) for δ < 0 (resp. δ > 0),

(ii) limδ→pk(a) C(a, xk,−δ) ≥ limxn − x1 (possibly +∞).

Under MDO, distributions are ordered in terms of their distance from a reference (pk(a))
N
k=1

with distribution denoted F (.|a). Here, I interpret hedging as moving the distribution from

F (.|a) to F̂ (.). As the agent hedges more, in that the distribution becomes more distinct from

28Discreteness in the outcome space is useful to avoid measure-theoretic considerations, but otherwise not re-
quired for most of the results.

24



the original distribution, the cost of hedging increases.29 In the model that follows, outsiders

will observe an output generated from F̂ (.). The specification implies that there is a deadweight

cost associated to hedging. Intuitively, this cost can be interpreted as the search cost of finding

hedging partners or the managerial attention required to change the risk of the cash flow. As-

sumptions (i)-(ii) are imposed to avoid boundary solutions but are otherwise not essential. Note

that when C is (nearly) zero, MDO will correspond to the case of perfect risk management

considered earlier.

An important aspect of the definition should be emphasized. The concept of MDO does

not impose that mean-preserving spreads should be cheaper to induce than distributions with

greater precision. I do not attempt to model here how the agent may increase the risk of the

project by investing in risky publicly-traded securities at very little cost. Such cases would

likely be observable and controllable by the principal and thus do not fit in a theory in which

the decision to hedge is private. In my setting, engaging in mean-preserving spreads would

require the agent to use derivative arrangements that are not easily observable and could involve

substantial cost.30

The concept of MDO is consistent with the idea of sophisticated financial markets with a

large set of available hedges priced by intermediaries. To illustrate this point, let y′ denote the

original unhedged signal (drawn from F (.|a)) and assume that an agent wants to purchase a

security which pays y− y′ where y is some arbitrary random variable. If markets are complete,

there should always exist a price P ≥ 0 for this security, so that the net value of the firm

should be y′ − P . Under MDO, this price can be computed for any possible random variable

y′: the model places almost no restrictions on which securities the agent can purchase. This

is in contrast with nearly all other agency models in which the agent is restricted to a class of

distributions.

For tractability, assume that p′k(a) is well-defined and differentiable. The choice of the man-

ager is denoted p̂k = δk + pk(a). One may also reinterpret the current model as a pure reporting

29This specification is similar to the Integrated Squared Error used in non-parametric estimation to measure the
fit of a density estimation (see for example Pagan and Ullah (1999), p. 24).

30See for example Morellec and Smith (2007) for a model in which the principal decides to hedge by buying
securities. In their model, the decision to hedge is public and the moral hazard problem occurs after the hedging
decision. One may tie their analysis to the portfolio of hedges held by a firm and fully disclosed in financial filings
but not the unobserved risk exposure due to project selection and certain off-balance sheet instruments.
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manipulation such that the true output is drawn from F (.|a) instead of y (although wages re-

main based on y) without any consequence on the results. In this alternative interpretation of

the results, the manager may be compensated using a short-term indicator of performance y

although the firm, in the long-run, will achieve the true performance minus the cost of hedging.

3.2. Agent’s Problem

It is helpful to rewrite the problem of the agent as a choice of δk rather than p̂k. The agent

must choose a probability distribution whose mean is given by the effort provided minus the

cost of risk management.

N∑
k=1

p̂k(a) = 1 (10)

N∑
k=1

p̂kxk ≤
N∑

k=1

pk(a)xk −
N∑

k=1

C(a, xk, p̂k − pk(a)) (11)

Replacing p̂k in this expression, the agent’s problem is stated as follows:

(A) max
(δk)N

k=1,a

N∑
k=1

(pk(a) + δk)u(w(xk))− ψ(a)

s.t.

N∑
k=1

δk = 0 (λ) (12)

N∑
k=1

δkxk = −
N∑

k=1

C(a, xk, δk) (µ) (13)

Denote Cxk(a, .) the inverse of Cδ(a, xk, δ) in δ. The next Proposition characterizes the

optimal choice of the agent.

Proposition 3.1. Suppose that
∑N

k=1 |u(w(xk))/(xk−θ)| < +∞. Then, there exists a solution
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to (A). If, in addition, a > a is elicited, µ > 0 and:

0 =
N∑

k=1

Cxk(a,
u(w(xk))− λ

µ
− xk) (14)

N∑
k=1

xkCxk(a,
u(w(xk))− λ

µ
− xk) = −

N∑
k=1

C(a, xk, Cxk(a,
u(w(xk))− λ

µ
− xk)) (15)

ψ′(a) =
N∑

k=1

p′k(a)u(w(xk))− µ

N∑
k=1

Ca(a, xk, δk) (16)

δk = Cxk(a,
u(w(xk))− λ

µ
− xk) (17)

Corollary 3.1. The agent does not hedge if and only if u(w(y)) = h0 + h1y. In particular, a

risk-neutral agent does not hedge if and only if the contract is linear.

Proof: First, p̂k = pk(a) for all xk implies that u(w(xk)) = λ + µxk (necessity). Second,

let u(w(xk)) = h0 + h1xk. Then, the agent must achieve h0 + h1a, which can be achieved with

no hedging (sufficiency).2

In the model, non-linearities in the contract induce the agent to strategically hedge to align

the contract payments with his/her self interest. The manager separates all outcomes in X into

outcomes that yield a relatively favorable compensation versus less favorable ones. The optimal

hedging choice can be characterized as a simple linear utility threshold: the manager increases

(resp. decreases) the likelihood of outcomes above (resp. below) this threshold. Intuitively,

in this framework, the manager is given considerable control over the complete probability

distribution and thus can exploit any deviation from linearity. As shown in Equations (14)-(17),

the hedging choices δk depend only on the compensation of the manager and are invariant to

the original distribution F (.|a) available to the agent. All other things being equal, the agent

reduces the likelihood of high-payoff states versus low-payoff states and increases the likelihood

of states with more compensation.

Corollary 3.2. Assume that N is finite, C(a, y, δ) = c(a)δ2/2 with c(a) > 0 sufficiently large
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and31 u(x) = x. Then:

λ = E(w(y)/p(y)|a)− E(y/p(y)|a)σ(w(y)/p(y)|a)
σ(y/p(y)|a)

(18)

µ =
σ(w(y)/p(y)|a)
σ(y/p(y)|a)

(19)

δk =
w(xk)− λ− µxk

µc(a)
(20)

where p(y) is the probability of outcome y and σ(.) is the standard deviation of the random

variable.

To interpret the model further, I recover the hedging choices explicitly when C is quadratic.

The slope of the hedging threshold is captured by the ratio of the volatility of the wage to the

volatility of the output (scaled by p(y)). When this ratio is high, that is the utility of the agent is

very volatile, the agent requires a higher compensation in order not to hedge away high-payoff

states (Equation (19)). This aspect is intuitive because an agent with greater wage variability is

more sensitive to output shocks. There is a second force which may go against this intuition. In

Equation (20), for a given thresholdw(xk)−λ−µxk, δk is decreasing in µ, that is the magnitude

of the hedging choice can be decreasing in wage variability. This is because a variable wage

makes the agent more sensitive to the cost of hedging and thus incentivizes the agent to hedge

less. This second part of the trade-off gives some preliminary intuition why giving incentives

to work hard (with high performance-pay coefficients) may not be well-aligned with giving

incentives to manage risk (with high values of δk).

3.3. Common Compensation Schemes

I analyze next how concavity or convexity in the contract can affect risk choices. For example,

concavity of u(w(y)) will occur whenever a linear or concave compensation is offered to a

risk-averse manager. I show in Corollary 3.3 that the manager concentrates the mass of the

distribution on intermediate outcomes, away from the tails of the distribution. Intuitively, the

manager seeks insurance against extreme events but, in doing so, may unravel some of the

31The results presented here do not require strict risk-aversion by the agent. Further, one may also take u(x) = x
as a limiting case when risk-aversion becomes small.

28



performance-pay sensitivity required in the standard moral hazard problem.

Corollary 3.3. Suppose that u(w(y)) is increasing, continuous and strictly concave (resp. strictly

convex) then there exists (yl, yh) such that infX < yl < yh < supX and:

1. If xk ∈ [θ, yl) ∪ (yh, supX), p̂k < pk(a) (resp. p̂k > pk(a)).

2. If xk ∈ (yl, yh), p̂k > pk(a) (resp. p̂k < pk(a)).

Figure 2. Examples with Concave (left) or Convex (right) wage

The statement can be proved using simple graphical arguments. In the left-hand side of

Figure 2, the utility u(w(y)) is plotted.32 One needs to place the hedging threshold λ + µy

which is identified as a straight line (D). It must intercept u(w(y)) at least once (by Equation

(14)) and no more than twice by concavity. If the two curves intersect once, then among F̂ (.)

and F (.|a), one distribution must first-order stochastically dominate the other, which is either a

contradiction to costly hedging (with (D′)) or F̂ being preferred to F (y|a) (with (D′′)). Then,

the hedging strategy must be of the form represented in Figure 2 (in bold) such that u(w(y)) is

above the hedging threshold only for intermediate outcomes.

Corollary 3.4. Suppose the agent is risk-neutral and given a Call option, i.e. w(y) = max(y−

K, 0) with x1 < K < xN . Then, for xk sufficiently close to K (resp. far from K), p̂k < pk(a)

(resp. pk(a) > p̂k). That is, the agent hedges states such that the option matures nearly at-the-

money.

32The grid of values for X is set arbitrarily tight in order not to burden the plot.
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I analyze next the predictions of the model in the presence of option compensation. In the

right-hand side of Figure 2, a Call is given to a manager who is almost risk-neutral (the risk-

averse case is plotted in Figure 3). The Call features a kink located at the strike price which must

be located in the intermediate region. The manager hedges the kink away so that it becomes

unlikely that the option ends at-the-money. A bonus contract will have similar properties. With

a standard two-step bonus contract, the agent is paid W if y lies below a performance threshold

andW if the agent beats the threshold. In response to this contract, the manager will concentrate

the mass of the distribution strictly above the bonus threshold at the expense of outcomes strictly

below it. As observed empirically in DPZ99, the distribution of the output in the model will

exhibit bunching to beat certain performance thresholds. A novelty of the approach developed

here is that bunching occurs as a result of risk management rather than earnings manipulation

between periods and may not be interpreted as actually misreporting current performance.

In addition, in the tails, the manager will shift some of the mass of the distribution from

states with high outputs to states with low outputs. In this respect, bonus/option payments

may induce the agent to increase the probability of large losses as observed in recent hedg-

ing scandals. In M99, Murphy comments: “When expected performance is moderately below

the incentive zone, the discontinuity in bonus payments at threshold yields strong incentives to

achieve the performance threshold (through counterproductive earnings manipulation as well as

through hard work), because the pay-performance slope at the threshold is effectively infinite”

(p. 15). He does not explain why corporations tolerate these seemingly adverse incentives. The

model presented here presents both sides of the trade-off: the manager modifies risk exposure

but in doing so may choose a distribution that is more informative on effort. The hedged distri-

bution may have more probability mass concentrated around the effort level (for example, when

the threshold is set slightly below the elicited effort).

Murphy also reports evidence that the shape of the contract offered to CEOs of large cor-

porations varies across industries. He documents that in the industrial sector, 27% of contracts

are convex-shaped whereas only 14% in the insurance and finance sector.33 He does not explain

what features of the contracting problem could cause these differences. I provide here a simple

33Recall that a contract with pay linear in output will imply that u(w(y)) is concave.
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Figure 3. Call with Risk-Aversion

plausible explanation for this evidence. Reasonably, output in the finance industry may be af-

fected by many factors that make inference on the actions of the manager difficult. For example,

returns in the financial industry are more driven by systematic risk factors (as evidenced by the

low Price to Earnings ratios for banks) which are unrelated to the manager’s contribution. By

offering a compensation that is linear in output, the firm will induce management to hedge away

some of these risk factors.34 In the industrial sector, on the other hand, the output signal may

already be sufficiently informative. To remove excess incentives to hedge, it may be optimal

to offer a pay convex in output which induces a compensation offsetting the concavity of the

agent’s utility function.

3.4. An Example

I develop this argument further with an example which shows if qualitatively the resulting

distribution of y may feature the extreme bunching or asymmetry found empirically. I assume

that the agent has a CRRA utility function u(x) = 2
√
x. Since I take the contract as given here

(this will be relaxed in the next Section), I assume that the agent receives a single Call option

with strike normalized at zero and, conditional on this option, chooses an effort a = 0.5. The

distribution of output is assumed to be Normally distributed with mean a and standard deviation

34One may ask why the principal does not directly hedge these risk factors in the compensation, for example
by writing a contract based only on idiosyncratic risk. Such an approach would require the principal to have prior
knowledge of the systematic risk of the firm (e.g., the stock’s beta) whereas, more realistically, this will be private
information to the manager or, even, a choice variable.
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one. Finally, I assume that the cost of hedging is C(.5, y, δ) = er|y−1|δ2 for any y.35

The resulting distribution of y is plotted against that of x, on the right-hand side of Figure

3. Without risk aversion, the model can predict the fact that very few firms announce below

the strike price.36 Note that, unhedged, the distribution of the output should be a smooth bell-

shaped distribution. On the contrary, when the manager hedges, the distribution features a kink

at zero output and then a large number of firms reporting earnings to beat zero output. This

feature is consistent with empirically-observed patterns for corporate earnings (as documented

in DPZ99).37

4. Problem of the Principal

4.1. Optimal Contract

I consider now the full contract design problem taking into consideration the choice of effort

as well as the hedging strategy. To simplify the exposition, I assume in this section that there

is no limited liability but the agent is strictly risk-averse. The results are essentially unchanged

with a limited liability but a binding limited liability burdens the exposition of the first-order

conditions. I use here the first-order approach. It should be noted, however, that it is not

necessary for many of the results (including convergence to linearity) and, further, it is valid for

a class of problems (see Appendix A).38

Proposition 4.1. The agent is given a contract eliciting a > a.

The intuition for Proposition 4.1 is the same as in the standard model. Note that by incentive-

compatibility, the compensation of the agent w(y) may not be constant and thus there must be
35Since the model is stated discretely, I use here a version of the model with an arbitrarily fine grid to approx-

imate the Normal distribution. The theoretical details are stated formally in Section 5. I use here θ = −∞ and
an exponential penalty. In general, when θ = −∞, an optimum in the problem of the agent may not exist but
given that the exponential penalty effectively prevents the agent from speculating, the solution to the problem of
the agent exists (and is actually in closed-form for a given effort).

36I use here θ = −∞ and an exponential penalty. In general, when θ = −∞, an optimum in the problem of
the agent may not exist but given that the exponential penalty effectively prevents the agent from speculating, the
solution to the problem of the agent exists (and is actually in closed-form for a given effort).

37The model itself cannot predict a discontinuity at zero; however, the empirical evidence does not strongly
indicate a discontinuity at the threshold.

38The first-order approach is also required in other settings with general risk management problems (Palomino
and Prat 2003). By continuity, it will be valid under the standard regularity conditions in Rogerson (1985) as long
as the cost of hedging is sufficiently large.
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imperfect risk-sharing between the agent and the (risk-neutral) principal. This is in contrast to

perfect risk management in which risk-sharing is perfect (i.e., the risk-averse agent does not

bear risk). In Section 5, I extend this result to risk-aversion by the principal, showing that

imperfect risk-sharing is robust to risk-aversion by both contracting parties.

Using Equation (17), one may rewrite the wage received by the agent w(xk) as a function

of the hedging choice δk:

u(w(xk)) = µC(a, xk, δk) + λ+ µxk (21)

I use this Equation to substitute the wage in the contract design problem (P). The following

Lemma recovers the participation of the agent as a function of the hedging choice.

Lemma 4.1. In an optimal contract, the participation of the agent is binding and can be written:

λ+ µa− ψ(a) +
N∑

k=1

(p̂kCδ(a, xk, δk)− C(a, xk, δk)) = b (22)

The contract design problem can be simplified into the choice of a, (λ, µ) (i.e., which out-

comes should be hedged) and δk (i.e., how much hedging should be elicited).

(Pa) max
(δk)N

k=1,a,λ,µ

N∑
k=1

(δk + pk(a))(xk − u−1[Cδ(a, xk, δk)µ+ λ+ µxk])

s.t.

N∑
k=1

δk = 0 (α) (23)

N∑
k=1

δkxk = −
∑N

k=1C(a, xk, δk) (β) (24)

µ = ψ′(a)− µ
∑N

k=1 p
′
k(a)Cδ(a, xk, δk) (γ) (25)

b− λ− µa =

−ψ(a) + µ

N∑
k=1

[(δk + pk(a))Cδ(a, xk, δk)− C(a, xk, δk)] (τ) (26)
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In the next Proposition, I state the first-order conditions associated to this Problem.

Proposition 4.2. Let a be the elicited effort. The optimal contract satisfies:

τ =
N∑

k=1

(δk + pk(a))
1

u′(w(xk))
(27)

γψ′(a) =
N∑

k=1

(pk(a) + δk)
1

u′(w(xk))

(λ+ µxk − µCδ(a, xk, δk)− b− ψ(a)) (28)

w(xk) = u−1(λ+ µxk + µCδ(a, xk, δk)) (29)

w(xk) = −α+ (1− β)xk − βCδ(a, xk, δk)− µγCδ,a(a, xk, δk)− µCδ,δ(a, xk, δk)

(δk + pk(a))(
1

u′(w(xk))
− τ − γ

p′k(a)

δk + pk(a)
) (30)

One aspect of the framework is that earnings management can be examined given that the

wage offered to the manager is endogenously recovered from within the model.39 I discuss next

several local characteristics of the contract. In Equation (30) one may recognize the incentive

Equation of the standard model, i.e. S = 1/u′(w(xk))− τ −γp′k(a)/(pk(a)+ δk) (see Equation

(7) in Holmström (1979)). Without hedging, this term should be set at zero. Here, it may not

be zero but the model predicts that qualitatively, when the condition is not met and strictly

negative (i.e., without risk management it would have been optimal to increase the wage), this

also leads to a greater wage all other things being equal. Note also that if for a set of outcomes,

C is quadratic and does not depend on a, the standard Equation S will be zero only if the

compensation is linear. This is because a linear compensation offsets incentives to hedge more

by the principal (and thus the Equation of the standard model may apply).

I give next a sufficient condition that guarantees that it is optimal to elicit some risk man-

agement.

Corollary 4.1. Suppose that Cδ,δ(a, xk, 0) = Cδ,a(a, xk, 0) = 0 for all a, xk, then for all k,

δk = 0 cannot be optimal.

39For example, Crocker and Huddart (2006) is one of the only papers in which the contract offered to the
executive is endogenous and solves an earnings management problem. However, some aspects of the intertemporal
preferences of the manager are caused by a moral-hazard problem which is not explicitly modeled.
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Proof: If not hedging is optimal, u(wk) = λ + µxk. But then, by Equation (30), w(xk) =

α+ βxk, but since u is strictly concave, this is a contradiction.2

Hedging will generally be desirable if the second-derivative of the cost of hedging is zero and

the principal is risk-neutral. The intuition for this result is that some hedging can always raise

the usefulness of the output signal at very little cost. An important interpretation of this result

is that, while the principal would not hedge in first-best, the informational friction creates an

incentive to use some risk management.

4.2. Convergence to Linearity

As with perfect risk management, I will argue that a simple linear contract can be optimal in

certain situations. To begin with, I analyze the shape of the contract over only those realizations

of y that are sufficiently large.

Proposition 4.3. Suppose that for all a and δ, (i) |Cδ(a, xk, δ)|, |Cδ,δ(a, xk, δ)| and |p′k(a)| are

bounded by a number that does not depend on k, (ii) either Cδ,δ(a, xk, 0) or p′k(a) converges to

zero, (iii) Cδ,a(a, xk, 0) = 0. Then, w(xk) converges to −α+ (1− β)xk as xk grows large.

In the model, the linear part in the compensation performs well at providing an efficient risk

allocation from the perspective of the principal. For states in the tail of the distribution, this

concern dominates any improvements in the likelihood ratio. Consistently with this result, M99

documents many non-linearities in the compensation of executives but explains that for events

that are “outside of the incentive zone” (i.e., in the tail) compensation is essentially linear. Note

that if the principal is risk-neutral, pay will tend to become linear in output for large values of

xk. Interestingly, this result presents an apparent similarity with Diamond (1998). Diamond

explains that, as the size of (all of) the firm’s cash flow becomes large relative to the cost of

effort, the optimal compensation scheme converges to a linear function. In Proposition 4.3, I

show that the same is true here considering only those states of the world in which cash flows are

sufficiently large. Conceptually, however, this similarity is misleading because the cause of the

result in Diamond is different from mine. In his setting, a non-linear wage causes distortions in
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the choices of the agent which grow large. Here, on the other hand, the cost of these distortions

remain small because these events are unlikely. Further, when applied jointly with risk-aversion

by the agent, Diamond’s approach yields a contract such that the u(w(y)) (and not w(.)) is

linear.

An additional implication of this result is thatCδ,δ(a, xk, δ) = 0 is not needed for no hedging

to be suboptimal (under the conditions of Proposition 4.3). That is, one should observe hedging

in the tails. In addition, one may easily verify that a risk-averse agent indeed reduces the

likelihood of these large positive gains in order to shift probability mass toward intermediate

outcomes. This rationalizes one aspect of the empirical evidence on earnings management:

managers tend to reduce the likelihood of very large gains.

A different limiting contract can be obtained when the cost of hedging becomes small.

To consider this case, I state a sequence of problems with a cost function Cj(a, xk, δ) =

C(a, xk, δ)/j (j > 1) and C verifies the conditions of MDO. As j becomes large, the cost

function becomes small. In addition, I make the assumption that C(a, xk, δk) becomes large

(resp. Cδ(a,xk,δk)
C(a,xk,δk)

is bounded away from zero) when δk converges to −pk(a) or 1− pk(a) for all

(xk, a). In intuitive terms, this assumption means that the elasticity of the cost of hedging to an

increase in hedging does not become too small.

Proposition 4.4. As k becomes large, the contract converges to a unique contract:

u(w(xk)) = ψ′(a∗)(xk − a∗) + b (31)

The effort a∗ is the first-best effort when the agent can hedge at no cost. I argue here that the

contract should become linear as the cost of hedging becomes small, but provided that the cost

of hedging increases sufficiently fast for hedging policies close to infeasibility. Intuitively, when

the cost of hedging becomes small, only small non-linearities are required to give incentives to

hedge; important non-linearities, on the other hand, may lead to hedging cost that are large.

To recover linearity, assume that u(.) becomes arbitrarily close to linear. It will then be true

that, without risk management, the contracting problem can be solved in first-best (transferring

all the risk to the agent). This will also occur in ?), up to the utility normalization. It should be
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noted that the problem with a risk-neutral agent does not pin down a unique optimal contract,

while the current framework delivers a unique linear contract as a (limiting) solution to the

moral-hazard problem: w(xk) = ψ′(a∗)(xk − a∗) + b. This result gives further support to the

use of linear contracts when the agent is nearly risk-neutral and risk management is nearly free.

4.3. Numerical Analysis and Earnings Management

I develop a simple numerical example to quantitatively assess the shape of the contract as well

as the predicted hedged distribution. The model is discretized in two effort choices a ∈ {0, a}.

Conditional on a ∈ {0, a}, the distribution of outputs is normally distributed with mean a and

variance σ2. The set of outputs is discretized over N = 200 points (xk)
N
k=1 and such that each

point has equal probability conditional on F (x|a). The manager has a CARA utility function

u(x) = −e−rx. Finally, the cost function is set equal to C(a, x, δ) = e−|x−a|chδ
2/2. The model

is solved using the multi-start non-linear solver MSNLP.

The benchmark parameters are set as follows: σ = 1, a = .5, r = 1, ψ(a) = .1, ch = 1 and

b = −1. The results are shown in Figure 4.3 under four treatments: 1. First-Best Contract, 2.

Second-Best without Hedging (i.e., standard agency problem), 3. Second-Best with Hedging, 4.

Second-Best with Hedging but constrained to a Linear contract. The optimal contract without

hedging (2.) is concave because risk-aversion by the agent becomes the most important factor

(versus the increasing likelihood ratio). The optimal contract such that the agent does not hedge

(4.), on the other hand, is convex as the agent must be compensated to offset risk-aversion. In

this example, the optimal contract with hedging lies in-between these two extremes but turns

out to be close to linear (suggesting that convergence to linearity occurs fast). On the right-

hand side, the distribution of output is reported with and without hedging. I show that the

optimal contract induces the agent to hedge away extreme risks which makes the distribution

more precise on the actions of the agent.40

40I also calculated the expected profit of the principal. In this example, the principal is worse-off under 3. than
2. (although the difference is fairly small).
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Next, I set a limited liability constraint at −1 to test its impact on the optimal contract and

on the hedging choices of the agent. Case 4. was no longer possible and therefore is omitted.

In the bottom right-hand side of Figure 3, I represent the wage in the three other cases. The

optimal contract without hedging takes the form of a binding limited liability for low outcomes

and a concave part for higher outcomes. On the other hand, with hedging, the limited liability

binds over a smaller region and the contract is close to linear over most of the outcomes. Here,

the agent has excess incentives to increase the likelihood of bad outcomes which forces the

principal to pay above the limited liability more frequently. In response to the contract, the agent

hedges away events close to the point where the limited liability is not binding and increases

the likelihood of low outcomes.

The model with limited liability produces a shape that is similar to Figure 3 and has the

same interpretation. Two features are distinctive of the framework. First, the model produces a

divot, i.e. a hump shape close to the median. This feature is representative of what we observe

in the cross-section of earnings: few firms report earnings slightly below the mean (or previous

earnings) while many firms seem to bunch and slightly beat the mean. Since there are no par-

ticular reasons for the production technology to produce these features, this is often deemed to

be puzzling. This paper is among the first to recover it as a solution of a fully optimal contract.

Second, the manager reduces the likelihood of very good outcomes which have been empiri-

cally observed to be relatively rare in corporate earnings disclosure and increase the likelihood

of large losses. It should be noted that the model can have different implications from the ex-

isting literature in terms of how one should respond to earnings management. As in the current

literature, the efficiency of contracts can be improved with better disclosures; however, earnings

management is not necessarily undesirable, in the sense that the principal may prefer (if he/she

could) not to constrain the agent to F (.|a). In these simulations, the hedged distribution F̂ (.)

appears to be more concentrated around a than under F (.|a) which leads to greater incentive

gains: the divot may be interpreted as one way the principal creates distributions that are more

informative on the actions of the agent.
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4.4. Further Comparative Statics

I attempt next to discuss what the first-order conditions of the problem imply in terms of how

hedging should respond to the payoff of the state x, the likelihood ratio LR = p′k(a)/pk(a) and

the probability pk(a) of a state of the world. For a particular state of the world, it is helpful first

to rewrite Equations (29)-(30) in terms of their continuous analogue (omitting the indices):

w = u−1(λ+ µx+ µCδ(a, x, δ)) (32)

w = −α+ (1− β)x− βCδ(a, x, δ)− µγCδ,a(a, x, δ)

−µCδ,δ(a, x, δ)((δ + p)(
1

u′(w)
− τ)− γpLR) (33)

In the model, there are only two endogenous variables that depend on the state of the world,

w and δ. Provided the number of states is large and the distribution of F (.|a) is sufficiently

spread-out across states, the multipliers of the problem should not vary much for a comparative

static applied to only one state (there would be, for example, no effect on the multipliers if the

model was specified with F (.|a) being a continuous distribution). As an approximation to a

continuous problem, I take here the multipliers as constants. Then, I view Equations (32) and

(33) as two Equations in two unknowns (w, δ) where all the other terms are taken as exogenous

constants.

To obtain unambiguous comparative statics, I shut down some of the cross-effects in the cost

of hedging. I make the following assumptions: For all a, x, δ, Cδ,δ,a(a, x, δ) = Cδ,x(a, x, δ) =

Cδ,a,x(a, x, δ) = Cδ,a,x(a, x, δ) = 0, Cδ,δ,δ(a, x, δ) < 0 and bounded away from zero. This

condition restricts the cross-effects in the model and are not all necessary for each comparative

static taken separately (and may be verified only on the state considered in the comparative

static). The following comparative statics are obtained from the Implicit Function theorem

applied on Equations (32) and (33).

Corollary 4.2. The following comparative statics hold for a given state of the world:

(i) For states such that the wage is sufficiently large, ∂δ/∂x < 0, i.e. the manager hedges

against states with large payoffs.
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(ii) If γLR ≥ 0 is sufficiently large, ∂δ/∂LR > 0, i.e. the manager hedges against states with

lower likelihood ratio.

(iii) If γ > 0 and |LR| is sufficiently large with Sign(LR) > 0 (resp. Sign(LR) < 0),

∂δ/∂p > 0 (resp. ∂δ/∂p < 0), i.e. if p′k(a)/pk(a) is monotonic, the manager will produce

a hump-like shape on the distribution F̂ (.).

Many of these comparative statics are intuitive.41 First, in the problem of the agent (studied

in Section 3), the agent always has greater incentives to hedge against states with large payoffs. I

show here that it would be too expensive to offset these incentives in the contract design problem

since this would require a compensation that makes the agent risk-neutral to output shocks.

Second, the manager is induced to increase the likelihood of states with a high likelihood ratio.

These states are informative on the actions of the manager and thus the principal gains from

eliciting a hedging strategy that increases their likelihood. Third, the model predicts a hump-

shape in the distribution of F̂ (.). In other terms, suppose that the distribution F (.|a) has a

unique mode (e.g., a bell-shaped distribution) and the likelihood ratio is zero close to the mode

of the distribution and changes fast close to the mode. Then, as p increases as one moves

toward the mode, the model will be in a region where ∂δ/∂p < 0. This will work to flatten the

distribution. As the likelihood ratio increases close to the mode, the model will be in a region

where ∂δ/∂p > 0, producing a peak in the distribution. To summarize the model can alter

a bell-shaped histogram for F (.|a) into an histogram for F̂ (.) that is first flat and then peaks

higher than the original distribution.42

5. Extensions

I propose next several applications of the framework, exploring the implications of the model

for exogenous capital market frictions and income smoothing. To focus the attention on these

practical issues, I use here on a simplified version of MDO. I assume now that the support of y

41One may guarantee that γ > 0 if the principal sets the maximum effort that the manager can choose. Further,
by continuity, γ should be positive provided the cost of hedging is sufficiently large (since the property is true in
Holmström (1979) and the current model becomes equivalent to his when the cost of hedging is large).

42In the continuous limit, the histogram will correspond to the density.
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is X = R+ and F (.|a), the unhedged distribution has a density f(.|a). The concept of MDO

is adapted to reflect a continuous set of outcomes. I assume that there exists a positive convex

cost function C(x) such that C(0) = C ′(0) = 0, C is positive, C ′(x) < 0 (resp. C ′(x) > 0) for

x < 0 (resp. x > 0) and limx→−maxa f(x|a)C(x) = +∞. The set of distributions available to the

agent for an effort a, Γ(a), is assumed to be the set of distributions F̂ (.) with a density f̂(.) and

such that
∫
f̂(y)ydy = a−

∫
f̂(y)C(f̂(y)− f(y|a))dy. The hedging choice over outcome y is

denoted δ(y) = f̂(y) − f(y|a). As in most of the literature, I assume that an optimal contract

exists and the contract w(y) is a smooth function of output y.

5.1. Additional Capital Market Frictions

I showed earlier that risk management is desirable when the principal is risk-neutral. I ex-

tend now the analysis to situations such that the firm is owned by investors that are not well-

diversified or are facing additional exogenous capital market frictions. To model these frictions,

I assume now that the principal is risk-averse.

Let v(.) denote the utility function of the principal. It is assumed to be twice-differentiable,

strictly increasing and strictly concave. I state first the first-best problem (effort and hedging

are chosen by the principal).

(Pfb) max
(δk)N

k=1,a,λ,µ

∫
(f(y|a) + δ(y))v(y − w(y))dy

s.t.

∫
δ(y)dy = 0 (α̃) (34)∫
δ(y)ydy = −

∫
C(δ(y))dy (β̃) (35)

ψ(a) + b ≤
∫
u(w(y))(δ(y) + f(y|a))dy (τ̃) (36)

Proposition 5.1. In first-best, no hedging cannot be optimal.

In comparison to the previous Section, some hedging is always desirable as part of the first-

best solution to the model when the principal is risk-averse. This is because some risk can be
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hedged at very little cost and it is very intuitive in the context of MDO. I focus now on the

second-best problem. In contrast to Proposition 4.1 (when the principal is risk-neutral), it may

now be optimal to offer a flat contract and elicit a. First, the distribution f(y|a) may be easier

to hedge than other distributions. Second, by setting w(y) constant, the principal can elicit any

risk management strategy (the agent being indifferent) and attain a first-best solution to the risk

management problem (although the chosen effort will be a).

Suppose first that a flat contract is optimal. Then, one needs to substitute in Problem (Pfb),

w(y) by u−1(ψ(a) + b) (so that the participation binds) and set a = a. The risk management

strategy chosen by the principal solves the resulting problem. Clearly, this problem will be

similar to the problem faced by a risk-averse manager compensated with a linear wage studied

in Corollary 3.3. Note that, in this situation, a risk-averse principal may be counter-intuitively

fully insuring the agent whereas a risk-neutral principal would always transfer some risk to the

manager. This is because solving the risk-management problem (which is easier when wage is

flat) is more important for a risk-averse principal.

In the rest of this Section, I assume that eliciting a = a is not optimal and characterize the

optimal hedging choices in this case.43 As in the previous Section, I state the contract design

problem, by substituting w(y) in the problem of the principal from the incentive-compatibility

condition. Problem (Pa) is the same as before, except that is it now states with continuous

outcomes and a risk-averse principal. The contract design is restated by introducing the utility

v(.).

max
(δ(.),a,λ,µ

∫
v(y − u−1[C ′(δ(y))µ+ λ+ µy])dy

43I omit the case in which a is optimal but not with a flat contract since this case is not particularly interesting.
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s.t.

∫
δ(y)dy = 0 (α) (37)∫
δ(y)ydy = −

∫
C(δ(y))dy (β) (38)

µ = ψ′(a)− µ
∫
fa(y|a)Cδ(δ(y))dy (γ) (39)

b− λ− µa =

−ψ(a) + µ

∫
[(δ(y) + f(y|a))C ′(δ(y))− C(δ(y))]dy (τ) (40)

This problem is the same as Problem (Pa) except that the principal is now risk-averse and

the model is stated over a continuum of outcomes. The first-order condition are similar to those

derived earlier and have the same interpretation. I provide here an additional result.

Proposition 5.2. The ratio of marginal utility v′(y − w(y))/u′(w(y)) cannot be constant, i.e.

risk-sharing is imperfect.

A well-known result in the standard agency model is the violation of perfect risk-sharing

(Holmström 1979). As stated in most textbooks, should risk management fully resolve risk-

sharing frictions? I show here that this is not the case. The risk taken by the agent is still

required for incentive purposes and risk-sharing must remain imperfect.

I discuss next whether hedging is desirable when the principal is risk-averse. As suggested

in first-best, since hedging is now used without informational frictions, a preliminary intuition

would suggest that risk management should remain optimal here. It turns out that this is not

the case here, i.e. no hedging is not necessarily suboptimal when the principal is risk-averse. I

analyze next the shape of the optimal compensation scheme when no hedging is optimal.

Proposition 5.3. Suppose that for any parameter values h0, h1 and w(y) is given by w(y) =

u−1(h0+h1y), v′(y−w(y)) cannot be linear in v′(y−w(y))/u′(w(y)). Then, no hedging cannot

be optimal. Else, if no hedging is optimal and limz→+∞ u′(z) = 0, v′(y − w(y))/u′(w(y)) is

strictly increasing for y sufficiently large.

I give a simple condition on utility functions such that no hedging is suboptimal. Unlike

with a risk-neutral principal, no hedging may occur here when this condition is not satisfied.
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This aspect goes against the intuition that more financially constrained firms should always be

observed to hedge more. This intuition would be valid if the principal had control over hedging.

Here, given that hedging must be elicited through an appropriate compensation contract, risk

management to increase precision may require the principal to hold some residual risk. This

can be costly if the principal is in financial distress.

The model rationalizes why firms such as American Airlines stopped hedging during pe-

riods of financial distress while a more financially solid company such as JetBlue still hedges

most of its oil expenses. While one may not conclude that, even in this model, risk-averse prin-

cipals should always elicit less hedging, the ambiguous interaction between risk-sharing and

incentives to hedge is worth pointing out. More generally, this finding is consistent with the

ambiguous empirical relationship between financial distress and hedging choices (Mian 1996),

which goes against some existing models of risk management (Froot et al. (1993), Smith and

Stulz (1985)) in which there is no agency friction. Remarkably, when hedging is not desirable,

the ratio of marginal utilities will be increasing for outcomes sufficiently large. This monotonic-

ity property is similar to the standard agency problem (Holmström 1979) but occurs without the

monotone likelihood ratio property.

5.2. Income Smoothing

Recently, the analysis of the time series of earnings has provided several novel tests of earn-

ings management, focusing on the predictability of future accounting variables using current

information (such as, among others, Dechow, Sloan and Sweeney (1995)). To address this issue

theoretically, I recast the model as a multi-period problem and analyze its predictions in terms

of the dynamics of reported earnings. I follow the standard methodology developped in Debreu

(1972) to map the static model into a multi-period one with a simple change of notations. This

Section will show that the framework accommodates many features linked to the time series of

earnings and stock returns and does not presuppose (quite on the contrary) that managers cannot

shift output across period.

Let y = (y1, ..., yT ) ∈ X where yi > 0 for all i, be a sequence of realizations of returns

from period t = 1, ..., T ; F (.|a) denotes the (multivariate) distribution of y when the agent
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does not hedge. I define next Y =
∏T

t=1 yt as the total return (with mean a) over the period and

assume that the agent may choose any distribution f̂(y1, ..., yT ). Intuitively, the manager will

now choose a multivariate distribution but the aggregate profit remains a scalar given by Y . I

redefine next MDO over the multivariate distribution (where C satisfies earlier assumptions):

∫
X

f̂(y)
T∏

t=1

ytdy ≤ a−
∫
C(f(y|a)− f̂(y))dy (41)

The feasibility condition for f̂(.) to be a density is written:

∫
X

f̂(y) = 1 (42)

It should be clear that, by expressing the model as multiple period in this manner, the previ-

ous framework is essentially unchanged. In this Section, I suppose that a is chosen ex-ante (the

previous assumptions remain valid) and the manager is compensated at the end of the period

w(1′y) as a function only of the aggregate performance. As before, let δ(y) = f(y|a)− f̂(y).

The optimal hedging threshold is given by the first-order stated in the multivariate case:

u(w(
T∏

t=1

yt))− λ− µy − µ
T∏

t=1

ytC(δ(y)) = 0 (43)

The graphical analysis of the dynamic case is the same as in the static case. More generally,

the properties of the optimal contract developed previously are preserved in the multi-period

model (because this is only a reformulation of the previous model). More interestingly, the

model yields several predictions on the dynamics of returns. Let 1 < t′ < T be a time period,

and let yt′ =
∏t′

t=1 yt (resp. xt′ =
∏t′

t=1 xt) be the hedged (resp. unhedged) return prior to date

t′ and yt′ =
∏t′

t=1 yt (resp. xt′ =
∏t′

t=1 xt) the hedged (resp. unhedged) return after date t′.

Proposition 5.4. The following holds:

cov(yt′ , yt′) ≤ cov(xt′ , xt′)− (E(xt′)E(xt′)− E(yt′)E(yt′)) (44)

The inequality is strict when the manager hedges.

Comparing the covariance between periods under hedging to the original covariance, one
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of the following facts must be true when hedging occurs: the manager reduces the covariance

of returns across periods (i.e. cov(yt′ , yt′) < cov(xt′ , xt′)) or changes expected returns per

period (the term E(xt′)E(xt′) − E(yt′)E(yt′)). Both forms of hedging correspond to income

smoothing, although their nature is different. In the first case, the manager collects positive

shocks from high periods to raise returns in the next periods, and vice-versa. Whenever the

covariance between returns is positive and hedging is not too intense (e.g., the cost of hedging

is sufficiently large), this will lead to a sequence of hedged cash flows that is smoother than

the unhedged cash flows would have been. In the second case, the manager alters the mean

return per period. It is easy to verify for example that this case will generally occur when the

compensation of the manager only depends on the initial periods.44

The divot in the cross-section of earnings described earlier is one aspect of the empirical

evidence. However, the time series of periodic income also exhibits an S-Shaped response of

the market price to current earnings (captured here as “current” return). An S-Shaped response

means that stock prices react much to small differences in reported earnings but not much to

large differences. Most observers take the divot in earnings and S-Shaped response of the

market price as two aspects originating from the same underlying factors (see also Crocker and

Huddart (2006) for a summary of the empirical evidence as well as recent work). In this model,

the market value of the firm at t′, after yt′ has been announced, is captured by MV (yt′):

MV (yt′) =

∫
yt′ f̂(yt′ , yt+1, . . . , yT )dyt+1 . . . dyT∫
f̂(yt′ , yt+1, . . . , yT )dyt+1 . . . dyT

(45)

This conditional expectation is however difficult to analyze very generally. It may be con-

cave or convex and even decreasing. However, my main purpose here is to test whether a

simple parametrization model can generate a pattern that is consistent with the S-Shaped curve

observed empirically. Assume that T = 2 and the support of x1 and x2 are i.i.d. and distributed

uniformly on [0, 2] (the location of the support does not affect the results). Finally, the cost

of hedging is set as in Section 3.4. Suppose that the manager is risk-neutral and compensated

44The argument invoked for this result is fairly weak as it is purely driven by the constraints and the fact that
no hedging cannot be optimal. Note that, as a result, if an additional constraint dictates that hedging cannot affect
expected unconditional return in each period (e.g., due to regulatory supervision), the manager will always choose
to reduce the covariance of returns across periods (and vice-versa).
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Figure 5. Earnings Response

with a simple Call option with maturity date 2 and strike 1. In Figure 5, the hedged density

δ(y) is plotted. Given the convexity of the option contract, the manager raises the likelihood

of extreme events. When y1 is low, for example, there are almost no gains to having y2 high

(since the option will be out-of-the money) and similarly when y1 is high, there are great gains

to having y2 high. Plotting the corresponding MV calculated in Equation (45) as a function of

y1, the following response to y1 which exhibits the familiar S-Shaped profile where the response

is steeper near the median return.45

6. Conclusion

This paper presents a simple framework in which hedging decisions are part of a traditional

agency-theoretic model. A basic trade-off is explored: on the one hand, hedging will induce the

agent to exploit the compensation schedule to his/her advantage; on the other hand, the principal

may be able to design contracts eliciting a more informative output signal. Conventional wis-

dom suggests that hedging should resolve some exogenous capital market imperfections (such

as differences between internal and external cost of capital). Here, I endogenize the imperfec-

45I do however recognize that, with risk-neutrality and a uniform distribution, the response that is predicted is
less steep than in the data, and does not generate anything near a discontinuity in the response (although the data
is ambiguous on whether or not there is a discontinuity).
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tions as a result of a moral-hazard problem between owners and managers and show that often

criticized financial reporting concerns can be the essence of a sound hedging policy. That is, the

executive contracts that we observe empirically may be geared to improve the informativeness

of the output signal.

Appendix A: Complements

Additional Signal under Perfect Risk Management

I discuss next how the presence of an additional output signal x that cannot be manipulated may affect the

contractual arrangement under perfect risk management (as described in Section 2). There are two main reasons

for including this second signal. First, a model with a second signal extends the classic moral hazard problem

since the principal may choose to ignore the managed signal y and use only x. Further, the theory allows me to

compare how the managed signal is used in the contract versus another signal whose risk is not controlled by the

agent. Second, in most realistic settings, there is some information available to the principal which is not fully

controlled by the manager. On theoretical grounds, the presence of only managed information may be giving too

much importance to the managed signal in two respects: (i) the principal cannot ignore it and elicit effort, (ii) any

risk in the contract will be removed by risk management.

I maintain here the assumption that the agent is strictly risk-averse. I assume that the additional signal x has a

density g(.|a) with mean a and cannot be hedged; the wage offered by the principal is denoted w(x, y). Further,

I assume that risk management occurs after x is revealed (or can be conditional on the realization of x). This

seems fairly reasonable as a model of how executives shift operational risk to financial intermediaries. It follows

from Lemma 2.1 that, for a given x, an optimal contract must elicit y = ρ(x) constant. Let w(x, y) = φ(x) be the

compensation given to the manager conditional on x and y = ρ(x) (and, if y 6= ρ(x), w(x, y) = w). I make several

additional assumptions. First, I assume that the monotone likelihood ratio property holds and x−w(x, y) is the net

transfers received by the principal. Second, I assume that the agent must choose an action a ∈ [a, a′] where a′ is

chosen by the principal. This assumption corresponds to the idea that the principal can monitor the tasks done by

the agent when these tasks are done diligently but cannot observe shirking; in my problem, it excludes situations

in which the agent deviates to more effort.46

Proposition A. 1. There exists x0 ∈ [θ,+∞] such that:

(i) If x ≤ x0, ρ(x) = θ and v′(x−φ(x))
u′(φ(x)) = s2

fa(x|a)
f(x|a) + s3 where s2 and s3 are two positive constants.

46In the standard model, Holmström (1979) shows that this situation does not occur, i.e. the Lagrange multiplier
on the incentive-compatibility condition is strictly positive; unfortunately, the same argument, to the best of my
knowledge, does not apply in my setting. Clearly, if θ is sufficiently small, since the managed signal becomes
nearly useless, the solution of the model will be close to that of Holmstrom and thus this assumption will no longer
be necessary.
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(ii) If x > x0, u(φ(x))− u(w) = λ̃(ρ(x)− θ) where λ̃ is a positive constant.

Further, if x0 = θ, λ̃ = ψ′(a)

Proof: Suppose that the principal offers a contract that pays φ(x) when y = ρ(x) is realized and w for all other

outcomes. Note that this contract minimizes payment for off-equilibrium outcomes and thus is an optimal way to

provide incentives. In response to this contract, the agent may deviate to a lottery with support θ and ρ(x). Let

p(x) (resp. 1− p(x)) denote the probability that y = θ (resp. y = ρ(x)). The program of the agent is then written

as follows:

max
a,p(x)

∫
g(x|a) (p(x)u(w) + (1− p(x))u(φ(x))) dx− ψ(a)

s.t. ∫
g(x|a) (p(x)θ + (1− p(x))ρ(x)) dx ≤ a (λ̃ (A-1)

In the above program, the agent maximizes utility subject to the distribution of the signal y having a mean below

a. Let L1 denote the Lagrangian associated to this problem; taking the first-order condition with respect to p(x)

yields:
∂L1

∂p(x)
= g(x|a)

(
u(w)− u(φ(x))− λ̃(θ − ρ(x))

)
(A-2)

From Lemma 2.1, it is optimal to elicit p(x) = 0. Therefore, the Kuhn-Tucker conditions for the problem yield

that: λ̃ ≤ (u(φ(x)) − u(w))/(ρ(x) − θ) for all x. Next, differentiating L1 with respect to a yields the following

condition:

−ψ′(a) +
∫
ga(x|a)u(φ(x))dx+ λ̃

(
1−

∫
ga(x|a)ρ(x)dx

)
= 0 (A-3)

I analyze now the problem of the principal. First, the principal can offer a contract such that Equation (A-1) does

not bind. In this case the optimal contracting problem will be similar to the standard moral hazard problem in

Holmström (1979). Second, the principal can offer a contract such that Equation (A-1) binds. The problem of the

principal can be written as follows:

max
ρ(.),φ(.)≥w,a,λ̃

∫
g(x|a)(x− φ(x))dx

s.t.

a =
∫
ρ(x)g(x|a)dx (s1) (A-4)

ψ′(a) =
∫
ga(x|a)u(φ(x))dx+ λ̃

(
1−

∫
ga(x|a)ρ(x)dx

)
(s2) (A-5)

b ≥
∫
g(x|a)u(φ(x))dx− ψ(a) (s3) (A-6)

λ̃ ≤ inf(u(φ(x))− u(w))/(ρ(x)− θ)
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In this problem, the principal maximizes total revenue subject to the participation of the agent, feasibility of the

hedging choices and incentive-compatibility. In addition, the multiplier λ̃ may depend on ρ(x) and φ(x). The

associated Lagrangian is denoted L2.

Differentiating L2 with respect to ρ(x) when x ∈ X ′,

∂L2

∂ρ(x)
= g(x|a)(−s1 + s2λ̃

ga(x|a)
g(x|a)

) (A-7)

This term is increasing in x and therefore ρ(x) can be set equal to θ for x ≤ x0 and Equation (A-7) binds for

x > x0 (when either s2 or λ̃ are zero x0 ∈ {θ,+∞}). The statement follows readily.

Let me show that when x0 = θ, λ̃ = ψ′(a). Rewriting the incentive-compatibility:

ψ′(a) =
∫
ga(x|a)u(φ(x))dx+ λ̃

(
1−

∫
ga(x|a)ρ(x)dx

)
= λ̃+

∫
ga(x|a)u(φ(x))dx− λ̃

∫
ga(x|a)ρ(x)dx

= λ̃+
∫
ga(x|a)u(φ(x))dx− λ̃

∫
ga(x|a)

(
minX +

u(φ(x))− u(w)
λ̃

)
dx

= λ̃

2

The optimal contract takes two forms. For low realizations of the unhedgeable signal, the contract does not

use the hedgeable signal, i.e. the compensation does not depend on y. Then, the contract is given by the standard

Equations which link the ratio of marginal utilities to the likelihood ratio (as in Holmström (1979)). For higher

realizations of the unhedgeable signal, the principal uses the managed signal by setting a performance target ρ(x)

for y. That is, the agent is paid w(x, y) = φ(x) above the limited liability only when y is equal to ρ(x).

In the model, using the managed signal may require to give a rent to the agent and thus is valuable only if

the likelihood ratio is sufficiently large. Surprisingly, the agent is paid (utility-wise) a fixed proportion of the

realized hedged performance y − θ.47 If the hedgeable is used for all possible realizations of x, I show that the

performance-pay coefficient is equal to the marginal cost of effort.

Proposition A. 2. If the utility of the agent becomes linear, conditional on y > θ, w(x, y) = u(w) + λ̃(y − θ)

with probability one.

Proof: Note that u(φ(x))− u(w) = λ̃(ρ(x)− θ) can be rewritten: u(w(x, y))− u(w) = λ̃(y − θ) because

by construction y is always equal to ρ(x) and φ(x) = w(x, y). As u(.) becomes linear, this expression can be

written: w(x, y) = u(w) + λ̃(y − θ), which is linear in y.2

47Note that if the principal receives y instead of x and the principal is risk-averse, ρ(x) may be greater than θ
for x ≤ x0. Second, if the principal cannot bound the maximum effort done by the agent, the two regions may be
inverted (i.e., u(φ(x))− u(w) = λ̃(ρ(x)− θ) occurs for x ≤ x0).
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I present another linear contract as a (partial) solution to the problem. I give first an economic rationale for

linearity as obtained here. By hedging, the agent can reduce the project’s net-present value for a personal gain. In

the model, the ratio (u(φ(x))−u(θ))/(ρ(x)−θ) captures the ratio at which project value is converted into personal

utility. If it falls too low for some x, the agent will prefer to reduce effort and produce outcome y = θ. If it is too

high for any x, this will cause a compensation that is too high or a threshold that is too low to provide incentives

efficiently. The solution to these two forces is to make this ratio constant which leads to a compensation that is

essentially linear in y. In intuitive terms, linearity minimizes the cost of providing incentives not to speculate when

speculation is “cheap.”

This form of linearity is conceptually different from the linearity obtained using robustness arguments. The

contract presented in the Corollary is only linear ex-post. That is, an outside observer running the regression of

wages on the hedged signal (omitting the mass point at y = θ) would observe a perfectly linear relationship. On

the other hand, an observer investigating the shape of contracts offered by firms or the contract as a function of

true performance x, would not necessarily obtain a linear contract.

Agent’s Problem under Quadratic Cost

In this Appendix, I relax two aspects of the problem. First, under MDO, the cost of hedging is by assumption

additively separable. Second, I show that under stronger assumptions on the cost function, the solution to the

first-order condition in the problem of the agent is unique. Abusing on the previous notation, assume that X =

(x1, . . . , xN )′. I restrict the attention to only two possible efforts, a ∈ {0, a}, and assume that a is sufficiently

small so that eliciting a is optimal for the principal.

Conditional on a the probability of each outcome is P (a) = (p1(a), . . . , pN (a))′, where pk(a) > 0 is the

probability associated to outcome xk and a is mean of the distribution. Denote P̂ = (p̂1, . . . , p̂N ) the probability

of each outcome after hedging has occurred. The compensation of the manager is written W = (w1, . . . , wN )′. In

vector notation, denote U = (u(w1), . . . , u(wN ))′. Let θ be the total cost of hedging, defined as a function of a,

P (a) and P̂ . Assume that hedging is small so that θ can be approximated using the following Taylor expansion for

P̂ close to P (a).

θ(P (a), P̂ ) ≈ θ(P (a), P (a)) +Dθ(P̂ − P (a))

+(P̂ − P (a))′D2θ(P̂ − P (a))/2 (A-8)

I make the following assumptions. First, there is no cost for not hedging, i.e. θ(P (a), P (a)) = 0. Second,

there is zero marginal cost for a small hedge, i.e. Dθ = 0. Third, I assume that the hessian matrix H = D2θ is

definite positive.
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θ ≈ (P̂ − P (a))′H(P̂ − P (a))/2 (A-9)

Through this Section, I assume that the positivity constraint on P̂ does not bind (i.e., the eigenvalues of H are

large enough). Let P ′(a) denote entry-wise derivatives.

Denote ∆ = (δi)ni=1 where ∆ = P̂ − P (a). The Problem of the Manager can be stated as follows:

(A) max
∆≥−P (a),a∈A

∆′U + P (a)′U − ψ(a)

s.t.

1′∆ = 0 (λ) (A-10)

∆′X ≤ −∆′H∆/2 (µ) (A-11)

Differentiating with respect to ∆ and rearranging: µH∆ = U − λ − µX . Pre-multiplying by ∆′ and using

Equation (A-11), −2µ∆′X = ∆′(U −λ−µX). Simplifying and substituting ∆ yields: (U −λ+µX)′H−1(U −

λ− µX) = 0. If instead, one pre-multiplies by 1′H−1 and use Equation (A-10), 1′H−1(U − λ− µX) = 0. One

obtains a system of two Equations in two unknowns which yields the following second-order polynomial for µ,

µ2((1′H−1X)2 +X ′H−1X1′H−11) + (U ′H−1U1′H−11− (1′H−1U)2) = 0

This system has two real roots. One is negative and thus cannot be optimal and the other yields the following

characterization:

λ =
1′H−1U
1′H−11

− 1′H−1X

1′H−11

√
(U ′H−1U1′H−11− (1′H−1U)2

X ′H−1X1′H−11− (1′H−1X)2
(A-12)

µ =

√
U ′H−1U1′H−11− (1′H−1U)2

X ′H−1X1′H−11− (1′H−1X)2
(A-13)

µ∆ = H−1(U − λ− µX) (A-14)

A simple application of the Cauchy-Schwarz inequality yields that µ is strictly positive if and only if U is not

colinear to one, as in the previous case. The parameter µ has a simple geometric interpretation as the (scaled) angle

between U (compensation) and 1 (constant contract). Intuitively the magnitude of the hedging choice is related to

how much the compensation offered to the agent is congruent to the marginal payoff of the firm (i.e., $1 in each

state). Recall that the parameter µ represents how much the agent is willing to reduce the likelihood of high-output

versus low-output outcomes for an equal wage.

Note that the following holds: 1′∂λ/∂U = 1, 1′∂µ/∂U = 0 and U ′∂µ/∂U > 0. That is, shifting the
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compensation by adding a constant does not change the slope of the hedging threshold (as in the separable case).

However, changing the utility received by the agent proportionately increases the slope of the threshold. The choice

of hedging ∆ and the multipliers are unique (and thus the first-order approach is valid).

Suppose H = h11′ +D with D diagonal. Then, hedging is linear in utility. For all i,

δi = (u(wi)/µ− λ/µ− xi)/Di,i (A-15)

Then, p̂k ≥ pk(a) if and only if u(wk) ≥ λ+ µxk.

One can also verify that ∆ is zero if and only if compensation is linear. The linear threshold featured earlier

is recovered given a weaker restriction on cross-effects, that is, all off-diagonal terms must be the same. This

assumption is a symmetry restriction on the effect of changing the likelihood of one event on the marginal cost of

other outcomes.

Appendix B: Omitted Proofs

Proof of Lemma 2.1: The method for this proof is to construct a new contract that yields weakly more utility

to both contracting parties and elicits perfect hedging. To do so, I verify that this new contract is desirable to the

agent and does not generate deviations from the previous effort.

Let F̂ (resp. a) be the distribution (resp. effort) chosen by the manager in response to a contract w(.). I

construct the compensation ŵ(a) =
∫
w(y)dF̂ (y) and ŵ(y) = w for y 6= a. Let F̃ (resp. a) denote the hedging

choice (resp. effort choice) of the agent in response to ŵ(.).

Claim 1: the agent achieves weakly more utility under ŵ(.). With ŵ, the agent may choose effort ã = a and

set y = a. This generates an expected utility u(ŵ(a))− ψ(a). Then:

∫
u(w(y))dF̂ (y) ≤ u(

∫
w(y)dF̂ (y))

≤ u(
∫
w(y)dF̂ (y))

≤ u(ŵ(a))

Claim 2: Under ŵ, the distribution F̃ must have its support included in {θ, a}. Suppose not. Define an

alternative hedging strategy G as follows:
∫
y=a

dG(y) =
∫

(y − θ)/(a − θ)dF̂ (y) and
∫
y=θ

dG(y) =
∫

(a −

y)/(a− θ)dF̂ (y). It follows that:

∫
ydG(y) = a

∫
y − θ

a− θ
dF̃ (y) + θ

∫
a− y

a− θ
dF̃ (y)

=
∫
ydF̃ (y)
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It follows that G is feasible for the agent if F̃ is.

∫
u(ŵ(y))dF̃ (y) = u(ŵ(a))

∫
y=a

dF̃ (y) + u(w)(1−
∫
y=a

dF̃ (y))

< u(ŵ(a))
∫
y=a

dG(y) + u(w)(1−
∫
y=a

dG(y)) (A-16)

Thus, the agent would be strictly better under G, a contradiction.

Claim 3: amust be incentive-compatible under ŵ. Suppose not. The agent must be choosing ã < a and F̃ with

support {θ, a}. Define the distribution G′ as follows: for any X ′ ⊂ X\{θ},
∫
X′ dG

′(y) =
∫
y=a

dF̃ (y)
∫
X′ dF̂ (y)

and
∫
y=θ

dG′(y) =
∫
y=θ

dF̃ (y) +
∫
y=a

dF̃ (y)
∫
y=θ

dF̂ (y). Suppose that the agent follows G′ and ã instead of F̂

and a with w(.).

∫
ydG′(y) = θ(

∫
y=θ

dF̃ (y) +
∫
y=a

dF̃ (y)
∫
y=θ

dF̂ (y)) +
∫
y=a

dF̃ (y)
∫
y 6=θ

ydF̂ (y)

= θ

∫
y=θ

dF̃ (y) +
∫
y=a

dF̃ (y)
∫
ydF̂ (y)

= θ

∫
y=θ

dF̃ (y) + a

∫
y=a

dF̃ (y)

= ã

Therefore G′ is feasible with effort ã.

∫
u(w(y))dG′(y)− ψ(ã) = (

∫
y=θ

dF̃ (y) +
∫
y=a

dF̃ (y)
∫
y=θ

dF̂ (y))u(w(θ))

+
∫
y=a

dF̃ (y)
∫
y 6=θ

u(w(y))dF̂ (y)

= u(w(θ))
∫
y=θ

dF̃ (y) +
∫
u(w(y))dF̂ (y)

∫
y=a

dF̃ (y)− ψ(ã)

≥
∫
u(w(y))dF̂ (y)− ψ(a) +

∫
u(w(y))dF̂ (y)

∫
y=a

dF̃ (y)− u(w(a))
∫
y=a

dF̃ (y)

≥
∫
u(w(y))dF̂ (y)− ψ(a) +

∫
y=a

dF̃ (y)
∫

(u(w(y))− u(w(a)))dF̂ (y)

≥
∫
u(w(y))dF̂ (y)− ψ(a)

This is a contradiction to (a, F̂ ) incentive-compatible under w(.).

It follows that the principal achieves weakly more under ŵ(.) than under w(.). Note finally that the in-

equality obtained in claim 1 is strict when the agent is risk-averse. The previous claims remain true using

ŵ(y) =
∫
w(y)dF̂ (y) − ε for ε small enough. However, this contract will strictly increase the utility of the

principal.2

Proof of Proposition 2.1: Suppose the contract is not agent-unbounded and let (F̂n, an)∞n=1 be a sequence of ac-

tions for the agent such that
∫
ydF̂n(y) ≤ an and

∫
u(w(y))dF̂n(y)−ψ(an) converges to supa,F̂ (.)∈Γ(a)

∫
u(w(y))dF̂ (y)−
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ψ(a) < +∞. I need to show that necessarily an must converge to a.

For n > 1, let Gn be a sequence of distributions constructed as follows:

∫
y=−n+a

dGn(y) =
an − a

n+ an − a
+ (1− an − a

n+ an − a
)
∫
y=−n+a

dFn(y)

and for any X ′ ⊂ X\{−n},

∫
X′
dGn(y) = (1− an − a

n+ an − a
)
∫
y=−n

dFn(y)

In intuitive terms, when hedging according to Gn, the manager samples between −n− a and Fn(.).

First, I argue that (a,Gn) is feasible by the agent. To see this,

∫
ydGn(y) =

an − a

n+ an − a
(−n+ a) + (1− an − a

n+ an − a
)
∫
ydFn(y)

≤ an − a

n+ an − a
(−n+ a) + (1− an − a

n+ an − a
)an

≤ a

Second, calculating the utility obtained by the agent on this sequence:

∫
u(w(y))dGn(y) =

an − a

n+ an − a
u(w(−n− y)) + (1− an − a

n+ an − a
)
∫
u(w(y))dF̂n(y)

≥ an − a

n+ an − a
u(w) + (1− an − a

n+ an − a
)
∫
u(w(y))dF̂n(y) (A-17)

Taking the limit on n,

lim
∫
u(w(y))dGn(y) = lim

∫
u(w(y))dF̂n(y)

And therefore, since Fn converges to an supremum of the problem, it must that ψ(an) converges to zero, i.e. an

converges to a. Therefore, the contract is incentive-free.2

Proof of Lemma 2.2: Under the prescribed actions, the manager obtains u(w) − ψ(a). Assume a deviation to

a − ε ≤ a and F̂ . The best possible distribution maximizes the probability that y = a is attained which can only

be achieved if F̂ has support over a and θ. Let p denote the probability that y = θ and 1 − p, the probability that

y = a. Since hedging must have zero NPV, pθ + (1− p)a = a− ε. Therefore: p = ε/(a− θ). Reinjecting in the

problem of the manager: ε
a−θu(w) + (1− ε

a−θ )u(w)−ψ(a− ε). This problem is concave. For ε = 0 optimal, the

first-order condition in Equation (4) must prescribe ε ≤ 0.2
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Proof of Proposition 2.2: I show first that a∗ ≤ a∗∗ if and only if first-best is incentive-compatible. Note that

a∗ ≤ a∗∗ implies that ψ′(a∗) ≤ ψ′(a∗∗), i.e.:

ψ′(a∗) ≤ b+ ψ(a∗∗)− u(w)
a∗∗ − θ

Define the function φ(a) as follows:

φ(a) =
b+ ψ(a)− u(w)

a− θ

Differentiating with respect to a,

φ′(a) =
u(w)− b− ψ(a) + (a− θ)ψ(a)

a− θ

This expression is negative under the regularity condition assumed earlier and thus:

ψ′(a∗) ≤ b+ ψ(a∗)− u(w)
a∗ − θ

And thus (W ∗, a∗) is incentive-compatible. The case with a∗ > a∗∗ is analogous.

For the final part of the statement, I show that the elicited effort is above a. Note that the contract (u−1(b), a)

implies that the incentive-compatibility and the reservation binds, so it is sufficient to check that a∗∗ > a. Plugging

a∗∗ = a into Equation (5) ensures that this is indeed the case.2

Proof of Proposition 2.3: Note first that W ∗∗∗ ≥ w, so that it is only necessary to verify that a∗∗∗ ≥ a. To do

so, it is sufficient to plug a = a into the first-order condition corresponding to the program a − u−1(ψ′(a)(a −

θ) + u(w)). This yields the following expression: 1 − ψ′′(a)(a−θ)
u′(w) which, simplified, yields Equation (7). When

Equation (7) is true (resp. false), this term is positive (resp. negative), and thus a∗∗∗ > a (resp. a = a).2

Proof of Proposition 2.4: The first part of the argument is similar to the proof of Lemma 2.1 (and not repeated

here). The contract u(w(y)) must be (weakly) concave, or else an agent could achieve the same utility as the

concavification of u(w(y)) by taking gambles but, because the agent is risk-averse, this would be more costly to

the principal than offering the concavification directly. In formal terms, for any non-concave function, there exists

a concave function (its concavification) that does strictly better for the principal.

To simplify notations, let u(w) be normalized to zero and omit the j exponent on the utility of the agent. To

show that the optimal compensation is linear, I rewrite first Equation (6) as a function of W and a but not c. First,

incentive-compatibility implies that:

u(W ) = cψ′(a)(a− θ)
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Second, one may substitute this expression in Equation (6):

u′(W )
u(W )

=
1

a− θ
+
ψ′′(a)
ψ′(a)

Denoting η(W ) = u′(W )/u(W ),

W = η−1(
1

a− θ
+
ψ′′(a)
ψ′(a)

)

By simple differentiation, it is easily verified that, for two smooth functions f and g, f(g(z)) is convex if f(.)

is decreasing and convex, and g(.) is concave. It follows that when u(.) becomes linear (so that ρ(.) becomes

decreasing and convex), W becomes convex in a. Note finally that as c varies on R\{0}, a must vary on [a, a) so

that the plot W (a) is convex in a.

Figure 6. Linear Contract - Cases

As j becomes large the optimal contract associated to uj must converge on [a, a]. Suppose the limit is not linear

almost everywhere and denote w∞(.) the limiting contract. I consider next several cases which are represented

in Figure 6. In each of these cases, it should be noted that any compensation schedule w(.) that is still weakly

concave but is everywhere closer to W (a) than w∞(.) is (in the sense that W (a)−w∞(a) and W (a)−w(a) have

the same sign but |W (a)−w∞(a)| > |W (a)−w(a)| for all a) will be preferred by the principal. This is because

a∗∗∗ is the solution to a concave program for any c.
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Case 1: Suppose w∞(.) intersects W (.) twice, at (W1, a1) and (W2, a2). Then, the linear compensation

w(y) = W2−W1
a2−a1

(y− a2) +W2 (plotted in the upper-left-hand side) will do strictly better than w∞(.), a contradic-

tion. The next cases will be similar to this case although with different definitions of ai and Wi (i = 1, 2).

Case 2: Suppose w∞(.) intersects W (.) once, at (W1, a1) and then w∞(y) ≥ W (y) for y ≥ a1. Then, the

previous argument holds but defining a2 = a and W2 = w∞(a).

Case 3: Suppose w∞(.) intersects W (.) once, at (W1, a1) and then w∞(y) ≤ W (y) for y ≥ a1. Then, the

previous argument holds but defining a2 = a and W2 = w∞(a).

Case 4: Suppose w∞(.) is always greater than W (.). Then, one may apply the same argument by defining

a1 = a and W1 = w∞(a), and a2 = a and W2 = w∞(a).

Case 5: Suppose w∞(.) is always smaller than W (.). Define V1 = {(y, w̃)/w̃ ≥ w∞(y)} and V2 =

{(y, w̃)/w̃ ≤ W (y)}. V1 and V2 are convex sets which may intersect only on their boundary, therefore by the

separating hyperplane theorem, there exists a separating hyperplane (in this case a compensation) w(.) such that

w∞(y) ≤ w(y) ≤W (y). This compensation is strictly preferred to w∞.

Corollary 2.2 follows by the same argument (the proof is the same as the five cases considered earlier), so that

the linear function must be of the form exhibited in the lower-right hand side of Figure 6 (in bold is plotted the

linear function that is most preferred versus in dotted ones that are not as preferred by the principal). To obtain

Corollary 2.3, let H(.) converge to a mass point. By continuity, the solution of the model must converge to the

optimum of the previous problem. However, since the solution implies w(y) = h0 + h1y linear.2

Proof of Proposition 3.1: Claim 1: Problem (A) has a solution. The result is obvious when N is finite.

Suppose N is not finite. Let ((δnk )∞k=1, a
n) be a sequence of feasible actions converging to an optimum. Define

a∞ = lim inf an and, for all k, δ∞k = lim inf δnk . I shall show that S is feasible for the agent.

∞∑
n=1

(δ∞k xk + C(a∞, xk, δ∞k )) =
∞∑
n=1

(lim inf δnkxk + C(lim inf ak, xk, lim inf δnk ))

=
∞∑
n=1

(lim inf(δnkxk + C(ak, xk, δnk )))

≤ lim inf
∞∑
n=1

(δnkxk + C(ak, xk, δnk )) (Fatou’s Lemma)

≤ 0

Then, (δ∞k )∞k=1 satisfies Equation (13). For any k, one may define Ik ⊂ [1,∞], the set of indices such that

(δnk′)n∈Ik
converges to δ∞k′ for all k′ ≤ k.

∞∑
n=1

δ∞k =
n0∑
n=1

δ∞k +
∞∑

n=n0+1

δ∞k
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For any ε > 0 there exists n0 such that:
∞∑
n=1

δ∞k ≤
n0∑
n=1

δ∞k + ε/2

Then, there exists k such that for all k′ ∈ [k,∞) ∩ In0 , |δ∞k − δnk | < ε/(2n0). It follows then that:

∞∑
n=1

δ∞k ≤ ε/2 + ε/2 = ε

Then, (δ∞k )∞k=1 satisfies Equation (12). Thus the action S is feasible.

Finally, one needs to show that S is utility-maximizing for the agent. To see this, note that δ∞k xk+(1−δ∞k )θ ≤

a, and therefore: δnku(w(xk)) ≤ (a−θ)/(xk−θ)u(w(xk)). Note that the the function g(xk) = |u(w(xk))/(xk−

θ)| dominates δnku(w(xk)). And thus one may apply the dominated convergence theorem to obtain:

lim inf
∞∑
k=1

δnku(w(xk)) =
∞∑
k=1

δ∞k u(w(xk))

Claim 2: µ > 0 Suppose not. The first-order condition in δk yields that u(w(xk)) = λwhich is a contradiction

to
∑N
k=1 u(w(xk))p′k(0) > 0. Equations (14), (15) and (16) are the first-order conditions of the problem.2

Proof of Corollary 3.2: By Equation (14),

n∑
k=1

u(w(xk))− λ− µ
n∑
k=1

xk = 0

By Equation (15),

1
c(a)

n∑
k=1

(
u(w(xk))− λ

µ
− xk)xk = −

n∑
k=1

c(a)
2

1
c(a)2

(
u(w(xk))− λ

µ
− xk)2

0 =
n∑
k=1

(
u(w(xk))− λ

µ
− xk)(

u(w(xk))− λ

µ
+ xk)

=
n∑
k=1

((
u(w(xk))− λ

µ
)2 − x2

k)

=
n∑
k=1

u(w(xk))2 + λ2N − 2λµ
n∑
k=1

u(w(xk))−
n∑
k=1

x2
k

Solving for µ yields the following polynomial:

µ2((
N∑
k=1

xk/N)2 +
N∑
k=1

x2
k/N) + (

N∑
k=1

u(w(xk))2/N − (
N∑
k=1

u(w(xk))/N)2 = 0
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This Equation has a unique positive real root.

µ =

√√√√∑N
k=1 u(w(xk))2/N − (

∑N
k=1 u(w(xk))/N)2∑N

k=1 x
2
k/N − (

∑N
k=1 xk/N)2

=
σ(u(w(y))/p(y))

σ(y/p(y))

Reinjecting yields the expression for λ.2

Proof of Proposition 4.1: (i) If a is elicited and the principal is risk-neutral, a constant contract is optimal

among the unrestricted class of contracts. Therefore, it is also optimal among the following subclass of linear

contracts, i.e. w(y) = u−1(λ + µy) with µ ≥ 0. Note first that since the contract is linear, the agent does not

hedge. The agent maximizes:

N∑
k=1

pk(a)u(w(xk))− ψ(a) = µa− λ− ψ(a)

Thus, ψ′(a) = µ. Note also that if (λ, µ) is optimal, it must be optimal to bind the participation of the agent, that

is λ = b− ψ′(a)a. The principal maximizes the following objective:

max
a

N∑
k=1

pk(a)(xk − u−1(ψ′(a)(xk − a) + b))

The first-order condition for this problem is:

N∑
k=1

p′k(a)(xk − w(xk))− ψ′′(a)
N∑
k=1

pk(a)
1

u′(w(xk))
(xk − a)

If a = a is optimal, it is optimal to set µ = 0. The first term in the above Equation is strictly positive by first-order

stochastic dominance. Now note that:

N∑
k=1

pk(a)(xk − a) =
∑
xk<a

pk(a)(xk − a) +
∑
xk≥a

pk(a)(xk − a)

≤
∑
xk<a

pk(a)(xk − a) +
∑
xk≥a

pk(a)(xk − a)

≤ 0

It follows that Ma(a) > 0.2

Proof of Lemma 4.1: By Equation (17), u(xk) = λ + µxk + µCδ(a, xk, δk). Therefore the agent achieves:

U =
∑N
k=1(pk(a) + δk)(λ+ µxk + µCδ(a, xk, δk))− ψ(a). Simplifying this Equation yields the left-hand side

of Equation (22). I argue then that the participation is binding. First, one can replace u(xk) in Equation (16) and

eliminate λ since
∑N
k=1 p

′
k(a) = 0. Just like in the standard model any fixed change in the level of compensation

61



does not affect incentives to work diligently or hedge. Second, it follows that by reducing λ the principal can

reduce expected payments without affecting incentives. Thus, the participation of the manager must bind.2

Proof of Proposition 4.3: Note that δk must converge to zero, and therefore since pk(a) also converges to

zero, (pk(a) + δk)v′(xk − w(xk))/u′(w(xk)) must go to zero unless v′(xk − w(xk))/u′(w(xk)) is unbounded.

Case 1: u′(w(xk)) is not bounded away from zero. This implies that there is a subsequence with indices I such

that limu(w(xk′)) = +∞ with k′ ∈ I . Therefore v′ must be bounded away from zero as k′ becomes large. But,

by Equation (30), v must then be large, which is a contradiction. Case 2: v′(xk − wk) becoming large presents a

similar contradiction. Taking the limit over Equation (30) using (i)-(ii) yields the desired result.2

Proof of Proposition 4.4: Under costless hedging, the principal can achieve first-best: F̂ assigns probability

one to a∗. As j becomes large, the contract under costly hedging can generate a surplus that is arbitrarily close

to first-best. But, it must then hold that limk→+∞
∫
C(a, xk, δk)/j = 0. This implies that C(a, xk, δk)/j goes

to zero for all xk. But then Cδ(a, xk, δk)/j also converges to zero. And by Equation (17), it must then be that

u(w(xk)) converges to λ+µxk. The optimal contract follows as the (unique) linear contract solution to first-best.2

Proof of Corollary 4.2: Each part of the statement is proved separately. To ease notations, the function

C(a, x, δ) (and its derivatives) are denoted C, omitting the variables. Since the derivations can be long, alge-

braic steps are executed in the companion Mathematica notebook.

(i) For ∂δ/∂x, differentiating Equations (32) and (33) in x,

∂w

∂x
= (µ + µCδ,δ

∂δ

∂x
+ µCδ,x)/u

′
(w)

∂w

∂x
= (1 − β) − β

∂δ

∂x
Cdelta,δ − βCδ,x − µγCδ,a,x − µγCδ,δ,a

∂δ

∂x
− µ(Cδ,δ,x + Cδ,δ,δ

∂δ

∂x
)((d + p)(1/u

′
(w) − τ) − γpLR)

−µCδ,δ(
∂δ

∂x
(1/u

′
(w) − τ) + (δ + p)(−

∂w

∂x
u

′′
(w)/u

′
(w)

2
)) (A-18)

Solving these Equations in ∂δ/∂x:

∂δ

∂x
=

(−1 + β + βCδ,x)u′(w)3 + µu′(w)2(1 + Cδ,x + Cδ,a,xγu′(w) + Cδ,δ,x(δ + p − (γpLR + (δ + p)τ)u′(w))) − Cδ,δ(1 + Cδ,x)µ2(δ + p)u′′(w)

u′(w)2(µ(−Cδ,δ,δ(δ + p) − Cδ,δ,aγu′(w) + Cδ,δ,δ(γpLR + (δ + p)τ)u′(w)) + Cδ,δ,(−βu′(w) + µ(−2 + τu′(w)))) + C2
δ,δ

µ2(δ + p)u′′(w)
(A-19)

Setting u′(w) = 0,

∂δ

∂x
= −

1 + Cδ,x

Cδ,δ

(A-20)

This term is negative under the conditions of Corollary 4.2.
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(ii) For ∂δ/∂LR, differentiating Equations (32) and (33) in p,

∂w

∂LR
= (µCδ,δ

∂δ

∂p
)/u

′
(w) (A-21)

∂w

∂LR
= −b

∂δ

∂LR
Cδ,δ − µγCδ,δ,a

∂δ

∂LR
− µ(Cδ,δ,δ

∂δ

∂LR
)((δ + p)(1/u

′
(w) − τ) − γpLR)

−µCδ,δ(
∂δ

∂LR
(1/u

′
(w) − τ) − γp + (δ + p)(−

∂w

∂LR
u

′′
(w)/u

′
(w)

2
)) (A-22)

Solving these Equations in ∂δ/∂LR:

∂w

∂p
=

Cδ,δγµpu′(w)3

(µ(−Cδ,δd(δ + p) − Cδ,δaγu′(w) + Cδ,δ,δ(γpLR + (δ + p)τ)u′(w)) + Cδ,δ(−βu′(w) + m(−2 + τu′(w))))u′(w)2 + C2
δ,δ

µ2(δ + p)u′′(w)

(A-23)

This term is positive under the conditions of Corollary 4.2.

(iii) For ∂δ/∂p, differentiating Equations (32) and (33) in LR,

∂w

∂p
= (µCδ,δ

∂δ

∂p
)/u

′
(w) (A-24)

∂w

∂p
= −β

∂w

∂p
Cδ,δ − µγCδ, δ, a

∂δ

∂p
− µ(Cδ,δ,δ

∂δ

∂p
)((δ + p)(1/u

′
(w) − τ) − γpLR)

−µCδ,δ(
∂δ

∂p
(1/u

′
(w) − τ) − γp + (δ + p)(−

∂w

∂p
u

′′
(w)/u

′
(w)

2
)) (A-25)

Solving these Equations in ∂δ/∂p:

∂w

∂p
=

Cδ,δµ(−1 + γLRu′(w) + τu′(w))u′(w)2

(µ(−Cδ,δd(δ + p) − Cδ,δaγu′(w) + Cδ,δ,δ(γpLR + (δ + p)τ)u′(w)) + Cδ,δ(−βu′(w) + m(−2 + τu′(w))))u′(w)2 + C2
δ,δ

µ2(δ + p)u′′(w)

(A-26)

This term is positive or negative under the conditions of Corollary 4.2.2

Proof of Proposition 5.1: The first-order condition with respect to w(y) yields that:

v′(y − w(y))
u′(w(y))

= τ̃ (A-27)

This is the standard Arrow-Borch condition for efficient risk-sharing and implies that v and u must be increasing.

The first-order condition with respect to δ(y) yields that:

v(y − w(y))− α̃− β̃(y + C ′(δ(y))) + τ̃u(w(y)) = 0 (A-28)
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Evaluating at δ(y) = 0 for all y,

v(y − w(y))− α̃− β̃y + τ̃u(w(y)) = 0

Differentiating this expression with respect to y,

(1− w′(y))v′(y − w(y))− β̃ + τ̃w′(y)u′(w(y)) = 0

Rearranging this expression:

0 =
1

w′(y)
u′(w(y))

v′(y − w(y))
− u′(w(y))
v′(y − w(y))

+ τ̃ − β̃

w′(y)u′(w(y))

=
τ̃

w′(y)
− τ̃ − β̃

w′(y)u′(w(y))
+ τ̃

= τ̃ − β̃

u′(w(y))

This implies that β̃ = τ̃ = 0, a contradiction to v′(y − w(y)) > 0.2

Proof of Proposition 5.2: The first-order condition with respect to µ,

∫
(δ(y) + f(y|a))v

′(y − w(y))
u′(w(y))

(−y − C ′(δ(y)))dy + γ + γ

∫
fa(y|a)C ′(δ(y))dy

τa+ τ

∫
((f(y|a) + δ(y))C ′(δ(y))− C(a, y, δ(y)))dy = 0

Under perfect risk-sharing, τ is equal to v′(y − w(y))/u′(w(y)) for all y. Observe first that the agent will always

select a > a with perfect risk-sharing. Then one may simplify the above expression as follows:

γψ′(a) = τ(λ− b− ψ(a)) + µτ = 0

Therefore γ = 0. Suppose that
∫
C ′(δ(y))fa(y|a)dy = −1. Then, the first-order with respect to δ(y) in the

problem of the agent would yield:

u(w(y)) = λ+ µy + µC ′(δ(y))∫
fa(y|a)u(w(y))dy = µ− µ = 0

This would imply that the first-order with respect to effort in the problem of the agent select a = a, a contradiction

to a > a. If
∫
C ′(δ(y))fa(y|a)dy 6= −1, it must be that β = 0. But γ = β = 0 implies in Equation (30) that

v(y − w(y)) is constant, a contradiction to perfect risk-sharing.2
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Proof of Proposition 5.3: If no hedging is optimal, v(y − w(y)) = α+ βy. Differentiating:

v′(y − w(y))− h1
v′(y − w(y))
u′(w(y))

= β

This ytields the first part of the result. Differentiating again,

v′′(y − w(y))(1− h1/u
′(w(y)))− µ

∂v′(y − w(y))/u′(w(y))
∂y

= 0

This yields the first part of the result. As y is large, u′(w(y)) converges to zero and thus: ∂v′(y−w(y))/u′(w(y))
∂y ≥

0.2

Proof of Proposition 5.4: Develop the covariance as follows:

cov(yt
′
, yt

′
) = E(yt

′
yt

′
)− E(yt

′
)E(yt

′
)

=
∫
yf̂(y)dy − E(yt

′
)E(yt

′
)

= cov(xt
′
, xt

′
)− (E(xt

′
)E(xt

′
)− E(yt

′
)E(yt

′
)) +R

But the analogue of Constraint 15 in the multivariate case implies that:

R = −
∫
Ck(Ck[u(w(y))− λ− µy

µ
])dy

As proved earlier, no hedging cannot be optimal and thus R 6= 0. This concludes the argument.2
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