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Abstract. We study farsighted coalitional stability in the context of TU-
games. Chwe (1994, p.318) notes that, in this context, it is difficult to prove
nonemptiness of the largest consistent set. We show that every TU-game has
a nonempty largest consistent set. Moreover, the proof of this result points
out that each TU-game has a farsighted stable set. We go further by provid-
ing a characterization of the collection of farsighted stable sets in TU-games.
We also show that the farsighted core of a TU-game is empty or is equal to
the set of imputations of the game. Next, the relationships between the core
and the largest consistent set are studied in superadditive TU-games and in
clan games. In the last section, we explore the stability of the Shapley value.
It is proved that the Shapley value of a superadditive TU-game is always
a stable imputation: it is a core imputation or it constitutes a farsighted
stable set. A necessary and sufficient condition for a superadditive TU-game
to have the Shapley value in the largest consistent set is given.
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1 Introduction

The aim of this paper is to study farsighted stability proposed by Chwe (1994)
in cooperative games with transferable utility. We consider the three solution
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concepts introduced by Chwe (1994) which capture foresight of the players:
the farsighted core, the farsighted stable set and the largest consistent set.
The core and the stable set were originally defined by Gillies (1953) and von
Neumann and Morgenstern (1944) respectively and have been criticized by
Harsanyi (1974) and Chwe (1994) for being too myopic. To discuss the core
and the stable set, Harsanyi and Chwe envisaged a bargaining process where
coalitions freely form, act publicly but cannot write binding contracts. This
bargaining process specifies what each coalition can do if and when it forms
without referring to the details of the procedure that determine the forma-
tion of such a coalition. The rules of this process are volontary amorphous
but capture the selfishness of the players. This way of defining decision sit-
uations in cooperative games is similar to Rosenthal’s “effectiveness form”
(Rosenthal, 1972, Chwe, 1994). At each step of the process, a coalition of
players forms and proposes a feasible imputation through that coalition, that
is, an alternative outcome that the coalition is able to enforce. This proposal
is accepted by that coalition if each of its members has individually a strict
interest in demanding this imputation rather than accepting the imputation
proposed for them at the previous step. If both conditions, feasibility and
strict better response property, are satisfied, we say that the proposal made
at that step directly dominates the imputation under consideration and will
replace it. Then again, another coalition may propose another imputation,
and so on. The core is precisely the set of imputations which are not directly
dominated by any other imputation. The core does not take into account the
credibility of a dominating imputation. The stable set amends the core by
insisting that a dominating alternative to be credible. An important assump-
tion underlying the direct dominance relation is that players’ expectations
are adaptive or myopic in the sense that at each step of the process players
expect the present proposal to prevail in the next step: a coalition of players
does not consider the possibility that, once it acts, another coalition might
make a counter proposal, a third coalition might in turn react, and so on
without limit.

To illustrate the problem of myopia, consider a bankruptcy problem
with four claimants. Assume that a firm goes bankrupt leaving an es-
tate with value 7 and four creditors or claimants with claims d1 = 13,
d2 = 9, d3 = 21 and d4 = 4, respectively. In order to study the problem
of how to divide the estate, O’Neill (1982) introduced a companion cooper-
ative game, called the bankruptcy game, with coalition function defined as
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v(S) = max{7−
∑

i6∈S di, 0} for each coalition S of claimants. Value v(S) is
the payoff coalition S is certain to get without going to the court, i.e., either
nothing or what is left after all creditors not in S are paid their claims. So,
v({1, 2, 3, 4}) = 7, v({1, 2, 3}) = 3 and v(S) = 0 for each other coalition of
claimants. Although the coalition {1, 2, 3} has a simple internal structure,
this bankruptcy game has several interesting properties. Firstly, players 1, 2,
3 are veto players. Secondly, the coalition function v is supermodular which
implies that the core is nonempty and coincides with the unique stable set.
Thirdly, the Shapley value belongs to the core. Fourthly, this bankruptcy
game is a clan game. By Theorem 2.1 in Potters, Poos, Tijs, Muto (1989),
the bargaining set of this game coincides with the core and the shape of
the core is defined as the set of imputations for which the “small” claimant
4 can expect at most 4 (see section 4 for details). Consequently, the core
contains imputations where each strict subset of veto players are forced to
null payoffs. This serves to underscore the idea that myopic decisions can
lead to aggressive behavior by some (veto) players that cannot be blocked by
any other coalition. Because of the myopic aspect of the decisions, a coali-
tion of players does not envisage the possibility that a proposal can be used
as a message to induce further deviations that can lead to increase its final
payoffs. In the strategic environments we analyze, foresight implies that a
coalition of players, in making a decision, exploits all the opportunities of
the game for the sake of an ultimate gain.

Consider the small claimant and assume that the status quo is the Shap-
ley value, where he gets 1. We claim that it is in the interest of the small
claimant, being farsighted, to make a counter offer which consists in allocat-
ing 0 to each player except to the veto player 3 who will receive the maximum
payoff 7. In doing so, the small claimant takes the risk of losing gain, but
he anticipates that the veto players 1 and 2 will react but will be unable to
improve their final payoffs without the cooperation of player 3. To be precise,
given the feasibility constraints, the small claimant knows that the veto play-
ers 1 and 2 will make a proposal which in turn will induce the formation of
the clan {1, 2, 3}. Indeed, coalition {1, 2} does not have the power to enforce
an imputation which allocates a strictly positive payoff to their members.
Thus, coalition {1, 2} has an incentive to make a counter offer where player
3 will receive a null payoff. Then, the veto player 3 will be forced to react
but as players 1 and 2 are also veto players, he will need their cooperation to
expect a strictly positive payoff. Given the feasibility constraint, if coalition
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{1, 2, 3} forms, it cannot distribute to its members a total payoff superior
to 3. It follows that the small claimant will receive at least the complemen-
tary value, that is 4, and each veto player will accept to negociate a strictly
positive share of 3. Each player strictly prefers the last imputation of this
sequence of moves to the imputation he faces at the step where he or she
decides to join the deviating coalition. Following Chwe (1994), we say that
the Shapley value is indirectly dominated through a sequence of moves of
length three. In section 4, we show that in a large class of bankruptcy games
with farsighted players, each farsighted stable imputation distributes to each
veto player a strictly positive payoff. Moreover, if the bankruptcy game pos-
sesses only one small claimant, he or she will get on each farsighted stable
imputation at least the best payoff he can expect in the core. This contrasts
strongly with the payoffs that the core, the stable set, the bargaining set and
the Shapley value allocate to the players in this class of bankruptcy games.

In that example, there exists an infinite number of sequences of moves
which indirectly dominate the Shapley value. When it is common knowledge
that the players are farsighted, we also see that each coalition on such a
sequence has to specify the payoffs obtained by the players outside the coali-
tion in order to prevent or to prompt some subsequent proposals. Part of
the strategic aspect of this environment is captured by the full specification
of imputations at each step of the process. One could object that such se-
quences of coalitions will not actually form since at each step of the process
several coalitions might form and move toward some other directions. Also,
would the coalitions move from the Shapley value to another imputation if
the latter is not farsighted stable? But, indirect dominance is interpreted in
the following way: if an imputation z indirectly dominates an imputation x
and z is presumed stable, then it is possible, not certain, that the sequence
of coalitions will form and move from x to z. That is, players think that any
coalition capable of responding might be the one that responds.

Chwe’s (1994) farsighted stability notion is based on the indirect domi-
nance relation. It is applied to social environments more general than those
of cooperative games considered in this paper. The intention is to define weak
solution concepts which do not predict what will be played but which out-
comes are eliminated with confidence. Chwe incorpored sequences of moves
into the definition of the core and of a stable set. We call such sets farsighted
core and farsighted stable set respectively. He defined another solution con-
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cept as a consistent set. The consistent set is similar to the farsighted stable
set but differs from it in how deviating coalitions anticipate moves that might
follow. In the case of farsighted stable set, deviating coalitions are optimistic
and expect that later moves will terminate at their most favorable outcome.
On the contrary, the consistent set assumes that defectors have pessimistic
expectations. Although there can be many consistent sets, there uniquely
exists a largest consistent set, that is, a consistent set which contains all
others. Each farsighted stable set is contained in the largest consistent set.
Within the framework of cooperative games with transferable utility, Chwe
(1994, p.318) notes that the largest consistent set has two main drawbacks:
proving nonemptiness beyond the class of 3-player games is difficult and all
but simple examples are hard to compute. The two other solution concepts,
the farsighted core and the farsighted stable set, are not fully investigated
by Chwe. Diamantoudi and Xue (2005) point out that the existence of far-
sighted stable set in games with transferable utility remains an open question.
It seems relevant to cope with the difficulties mentioned above since myopic
and farsighted behaviors can lead to very different outcomes as emphasized
in the foregoing bankruptcy game.

In this paper, we prove the following assertions:

1. Each cooperative game with transferable utility admits a nonempty
largest consistent set.

2. Each cooperative game with transferable utility admits a nonempty
farsighted stable set. There are two possibilities: the game admits a
unique farsighted stable set and, in this case, it coincides with the set
of imputations, or the game admits an infinite collection of singleton
farsighted stable sets.

3. The farsighted core of a cooperative game with transferable utility is
empty if and only if the game admits an infinite collection of singleton
farsighted stable sets. If the farsighted core is nonempty, then it consists
of the set of imputations of the game.

4. The Shapley value of a superadditive cooperative game with tranfer-
able utility is always a stable imputation: it is a core imputation or it
constitutes a farsighted stable set.
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The rest of the paper is organized as follows. Section 2 gives definitions
and presents the solution concepts of Chwe (1994). In section 3 the above
mentioned concepts are used to predict which imputations are farsighted sta-
ble in cooperative games with transferable utility. Points 1-3 are proved. We
identify the class of games which admit a collection of singleton farsighted
stable sets and provide a description of this collection. The properties of
farsighted stable imputations are also studied. In particular, we exhibit a
large class of superadditive games for which core imputations are not elimi-
nated by farsighted players. The discussion also reveals that for the foregoing
class of games, each strictly individually rational imputation belongs to the
largest consistent set. In section 4, the relationships between the core and
the farsighted stability solutions are investigated in clan games. We show
that farsighted players eliminate all imputations which are not strictly in-
dividually rational for each veto player. One implication is that the largest
consistent set cannot contain the core of a clan game. In section 5, we study
the stability of the Shapley value in superadditive games. Point 4 is proved.
In addition, a necessary and sufficient condition for a superadditive game
to have the Shapley value in the largest consistent set is given. Section 6
contains concluding remarks.

2 Preliminaries

Let ⊆ denote weak set inclusion and ⊂ denote proper set inclusion. We use
the notation |S| to denote the number of elements in a finite set S.

2.1 TU-games

A cooperative game with transferable utility, or simply a TU-game, consists
of a finite set of players N and a coalition function v : 2N −→ R, v(∅) = 0,
which describes for each coalition of players S ∈ 2N the maximal wealth of
transferable utility v(S) that they would have to divide among themselves
if they were to cooperate together and with no one outside S. Throughout,
we assume that |N | ≥ 3. For a coalition S ∈ 2N , v|S denotes the restriction
of the coalition function v to the player set S, that is, v|S(T ) = v(T ) for
each T ∈ 2S. For each coalition S ∈ 2N , the TU-game (S, v|S) is called a
subgame of the TU-game (N, v). A TU-game (N, v) is said to be essential
if v(N) >

∑
i∈N v({i}), and inessential otherwise. A TU-game (N, v) is
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superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all disjoint coalitions S, T ∈
2N . Note that a superadditive TU-game (N, v) is essential if and only if
there are disjoint coalitions S and T such that v(S ∪ T ) > v(S) + v(T ).
A superadditive inessential TU-game has necessarily an additive v, that is,
v(S) =

∑
i∈S v({i}) for all S ∈ 2N . A TU-game (N, v) is supermodular if

v(S ∪ {i}) − v(S) ≥ v(T ∪ {i}) − v(T ) for all S, T ∈ 2N\{i}, S ⊇ T , that
is, the marginal contribution of any player i ∈ N does not decrease when he
joins a larger coalition. Note that a supermodular game is superadditive.

2.2 Set-valued solution concepts

The players in a TU-game (N, v) are eventually interested in what they
individually will get out of cooperating with other players. An allocation is a
function x from N to R that specifies for each player i ∈ N the payoff x(i) ∈
R that this player can expect when he cooperates with the other players. For
each allocation x ∈ RN , each coalition S ∈ 2N , we write x(S) =

∑
i∈S x(i).

Clearly, x(∅) = 0. An allocation x ∈ RN is efficient if x(N) = v(N) and is
individually rational if x(i) ≥ v({i}) for each player i ∈ N . An allocation
x ∈ RN is an imputation if it is efficient and individually rational. The set
of all imputations of a TU-game (N, v) is denoted by

I(N, v) = {x ∈ RN |x(N) = v(N) and x(i) ≥ v({i}) for each i ∈ N}.

A given imputation x is called interior if it assigns a payoff x(i) > v({i})
to each player i ∈ N . A set-valued solution concept is a rule Φ that as-
signs to each TU-game (N, v) a collection Φ(N, v) of subsets in I(N, v). If a
TU-game is inessential, then the only conceivable imputation x is given by
x(i) = v({i}) for each i ∈ N . In such case, v(N) =

∑
i∈N v({i}). So, there

is no need to study solution concepts in the latter case, and one typically
restricts the analysis to the class of essential games.

The set of all imputations I(N, v) of a TU-game (N, v) is the set of all
alternatives of the game. Each coalition has preferences among the various
imputations. However, only certain of these preferences are effective in the
sense that the coalition S, if acting together, can enforce this preference on
the whole group. For any two distinct imputations x and z, x is called fea-
sible from z via the nonempty coalition S if v(S) ≥ x(S). This condition
means that S has the power to guarantee a wealth at least as good as x(S)
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and so has the power to replace z by x. By z −→S x we denote that the
nonempty coalition S has the power to replace the imputation z by the im-
putation x. Note that z −→S x if and only if y −→S x for each imputation
y ∈ I(N, v). We say that a nonempty coalition S effectively prefers imputa-
tion x to imputation z if (a) z −→S x and (b) z(i) < x(i) for each i ∈ S.
Condition (a) says that S has the power to replace z by x, and condition
(b) says that S strictly prefers x to z. We say that imputation x directly
dominates imputation z, which we write z < x, if there exists a nonempty
coalition S which effectively prefers x to z.

The core. The core of a TU-game is the subset of all imputations x ∈ I(N, v)
that no other imputation directly dominates. We denote by C the rule that
assigns to each TU-game (N, v) its core, that is,

C(N, v) = {x ∈ I(N, v) | 6 ∃z ∈ I(N, v) such that x < z}.

When the TU-game (N, v) is superadditive, the core is characterized by the
subset of all imputations that are acceptable for each coalition, that is,

C(N, v) = {x ∈ I(N, v) |x(S) ≥ v(S) for each S ∈ 2N}.

This characterization has the following interesting interpretation. It says
that an imputation is in the core if and only if no coalition has an incentive
to split off from the grand coalition N to form a smaller coalition because
they collectively receive at least as much as what they can obtain for them-
selves as a coalition.

Chwe (1994), among others, criticizes the core for being too myopic. My-
opia is reflected by the fact that a coalition does not take into account the
possibly that the rest of the players may regroup. That is, after a coalition
forms to induce a feasible imputation from an initial one, another coalition
and then a third coalition would form to induce new feasible imputations, and
so on. Players are farsighted when they take into account such a sequence of
moves and evaluate their payoffs in the end. For this reason, Chwe (1994), in
the spirit of Harsanyi (1974, section Postscript, p.1494), suggests to replace
the direct dominance relation by some “indirect dominance” relation, which
captures the fact that farsighted players consider the final alternatives that
their moves may lead to. So, a coalition may choose to replace an imputation
by another one, which does not necessarily make its members strictly better

8



off, as long as its move leads to final imputations that its members strictly
prefer; similarly, a coalition may refuse to replace an imputation by another
it effectively prefers if its move eventually leads to imputations that make at
least one of its members not strictly better off. For x, z ∈ I(N, v), we say
that x indirectly dominates z, which we write z � x, if there exist a finite
sequence of imputations z = x1, x2, . . . , xp−1, xp = x and a finite sequence of
nonempty coalitions S1, S2, . . . , Sp−1 such that for each j = 1, 2, . . . , p − 1,
(a) xj −→Sj xj+1 and (b) xj(i) < x(i) for each i ∈ Sj. Condition (a) says
that each coalition Sj has the power to replace imputation xj by imputation
xj+1, and condition (b) says that each player in Sj strictly prefers imputation
x to imputation xj. An infinite sequence of imputations (xt)t∈N is called an
infinite �-chain if t < l implies xt � xl.

It is clear from the definition of indirect dominance that z < x if p = 1.
It is worth noting that in the definition of indirect dominance we assume
that moves are not binding in the sense that some players belonging to a
coalition at one step of the sequence may later initiate another move with
players within or even outside the coalition. Players take a forward-looking
attitude and compare the current imputation with the anticipated final im-
putation. Thus, we assume that coalitions freely form, act publicly, and that
the negociation is repeated with moves and counter moves.

We can now examine three other different set-valued solution concepts
which capture foresight of the players.

The farsighted core. The farsighted core of a TU-game (N, v) is the subset
of imputations that are not dominated with respect to �. We denote by FC
the rule that assigns to each TU-game (N, v) its farsighted core, that is,

FC(N, v) = {x ∈ I(N, v) | 6 ∃z ∈ I(N, v) such that x � z}.

Obviously, FC(N, v) ⊆ C(N, v). The farsighted core, like the core, does
not consider the credibility of the dominating alternative; hence it is too
exclusive and even more likely to be empty. The following farsighted von
Neumann-Morgenstern stable sets amend the farsighted core by insisting
that a dominating alternative to be credible.

The farsighted stable sets. Let (N, v) be a TU-game. A subset K of
I(N, v) is farsighted stable if (a) for all x, z ∈ K neither z � x nor x � z,
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and (b) for all z ∈ I(N, v)\K there exists x ∈ K such that z � x. Conditions
(a) and (b) are called internal stability and external stability, respectively.
We denote by FS the rule that assigns to each TU-game (N, v) its collection
of farsighted stable sets, that is,

FS(N, v) = {K ⊆ I(N, v) |K is farsighted stable}.

By external stability of the farsighted stable set and internal stability of the
farsighted core, we have FC(N, v) ⊆ K for each K ∈ FS(N, v). It may
be the case that FS(N, v) = ∅. The von Neumann-Morgenstern (1944) set-
valued solution concept assigns to each TU-game the collection of stable sets
of (I(N, v), <) instead of (I(N, v),�).

As noted by Chwe (1994), however, a farsighted stable set is too “exclu-
sive”, in that its exclusion of some alternatives may not be consistent with
rationality and foresight (see examples p.310). To rectify this, Chwe suggests
a new set-valued solution concept for social environments: the largest con-
sistent set. We apply this concept to TU-games.

The largest consistent set. Let (N, v) be a TU-game. A set K ⊆ I(N, v)
is consistent if it satisfies the following two conditions: (a) for each x ∈ K,
each z ∈ I(N, v), each S ∈ 2N\{∅} such that x −→S z, there exists y ∈ K,
where y = z or z � y, such that y(i) ≤ x(i) for at least one i ∈ S; (b) for
each x ∈ I(N, v)\K, there exist z ∈ I(N, v), S ∈ 2N\{∅} with x −→S z such
that for each y ∈ K, where y = z or z � y, it holds that x(i) < y(i) for each
i ∈ S. Conditions (a) and (b) are called internal consistency and external
consistency, respectively. The largest consistent set is the unique maximal
consistent set with respect to ⊆. We denote by LCS the rule that assigns to
each TU-game (N, v) its largest consistent set.

The largest consistent set and the farsighted stable sets are interrelated.
In the definition of the consistent set, if we replace “there exists” in (a) by
“for each”, and “for each y ∈ K” by “there exists y ∈ K” in (b), then we
obtain the definition of the farsighted stable set. For a farsighted stable set
K, any coalition of players making a counter offer from any imputation in
K is not better off in all ensuing imputations coming back to K, and some
coalition making a counter offer from any imputation outside K is better off
in some ensuing imputations going to K. On the other hand, for the largest
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consistent set LCS(N, v), any coalition of players making a counter offer from
any imputation in K is not better off in some ensuing imputations coming
back to LCS(N, v), and some coalition making a counter offer from any
imputation outside LSC(N, v) is better off in all ensuing imputations going
to LSC(N, v). These solution concepts are different in the prospect of each
player for the others’ behavior following her deviation. Thus for a farsighted
stable set, each coalition of players has an optimistic prospect and for the
largest consistent set, it has a pessimistic prospect. This remark suggests
that the largest consistent set contains each farsighted stable set (see Chwe,
1994, Proposition 3), that is, for each TU-game (N, v), each K ∈ FS(N, v),
it holds that K ⊆ LCS(N, v). Since each farsighted stable set contains
the farsighted core, it also holds that FC(N, v) ⊆ LCS(N, v). Hence, to
prove nonemptiness of the largest consistent set in essential TU-games, it is
sufficient to show that FC(N, v) 6= ∅. Unfortunately, we cannot proceed this
way because it is well known that the core, and thus the farsighted core, of
an essential TU-game may be empty. In order to prove that each essential
TU-game has a nonempty largest consistent set, we will show that it admits
a farsighted stable set.

3 Farsighted stability

The first Theorem of this section states that each essential TU-game possesses
a nonempty largest consistent set:

Theorem 1 The set-valued solution concept LCS satisfies nonemptiness on
the class of essential TU-games: LCS(N, v) 6= ∅ for each essential TU-game
(N, v).

Chwe (1994, Proposition 2) gives a sufficient condition under which the
largest consistent set is nonempty in social environments. But his result
applies only to social environments where the set of alternatives from which
players’ preference relations are defined is denumerable. Since in essential
TU-games the set of imputations is not denumerable, Chwe’s nonemptiness
result cannot be used to prove Theorem 1. Xue (1997) extends Chwe’s
nonemptiness result of the largest consistent set by relaxing the condition
of denumerability of the set of alternatives. Part of Xue’s result will be use-
ful to construct our proof. In the context of TU-games, Xue’s nonemptiness
result can be stated as follows:
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Theorem 2 (Xue, 1997)
Let (N, v) be a TU-game. Assume that if there exists an infinite �-chain,
there exists x ∈ I(N, v) such that z � x for each z ∈ I(N, v)\{x}. Then,
LCS(N, v) 6= ∅.

Xue’s Theorem provides a sufficient condition for nonemptiness of the largest
consistent set when an infinite �-chain exists. In other cases, the largest
consistent set is nonempty. Below, we show that the class of essential TU-
games admits elements that contain infinite �-chains. In fact, it turns out
that essential TU-games satisfy the sufficient condition of Xue’s Theorem.
Before proceeding to the proofs of these claims, we need the following def-
initions. For each TU-game (N, v) define E(N, v) as the set of coalitions
S, |S| ≥ 2, such that v(S) >

∑
i∈S v({i}). So, a TU-game (N, v) is essen-

tial if N ∈ E(N, v). In what follows, for each essential TU-game (N, v),
denote by P (N, v) the set of ordered pairs (x, S), where x ∈ I(N, v) and
S ∈ E(N, v)\{N}, such that x(S) ≤ v(S) and x(i) > v({i}) for each i ∈ S.
The following two Facts will be useful throughout the paper.

Fact 1 Let (N, v) be a TU-game such that E(N, v) ⊃ {N}. Then, P (N, v) 6=
∅.

proof. Suppose that (N, v) is such that E(N, v) ⊃ {N}. Pick any coalition
S ∈ E(N, v)\{N} and ε in ]0, m], where m is the minimum between v(S)−∑

i∈S v({i}) and v(N) −
∑

i∈N v({i}). Define allocation x ∈ RN as follows:
x(i) = v({i})+ε/|S| for each i ∈ S, and x(i) = v({i})+[v(N)−

∑
i∈N v({i})−

ε]/(|N | − |S|) for each i ∈ N\S. We see that (x, S) ∈ P (N, v).

Fact 2 Assume that x and z are two distinct imputations for an essential
TU-game (N, v). If z � x, then there exists a coalition S ∈ 2N\{∅, N} such
that (x, S) ∈ P (N, v).

proof. Let (N, v) be any essential TU-game. Pick any two distinct im-
putations x and z and assume that z � x. By definition of indirect domi-
nance, there exist a finite sequence of imputations z = x1, x2, . . . , xp−1, xp = x
and a finite sequence of nonempty coalitions S1, S2, . . . , Sp−1 such that (a)
xj −→Sj xj+1, for each j = 1, 2, . . . , p − 1, and (b) xj(i) < x(i), for each
i ∈ Sj for each j = 1, 2, . . . , p − 1. Consider the last move xp−1 −→Sp−1 x.
We have, x(Sp−1) ≤ v(Sp−1) and xp−1(i) < x(i) for each i ∈ Sp−1. Be-
cause xp−1 ∈ I(N, v), we also have v({i}) ≤ xp−1(i) for each i ∈ N so that
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v({i}) < x(i) for each player i ∈ Sp−1. It follows that Sp−1 ∈ E(N, v) and
(x, Sp−1) ∈ P (N, v).

Lemma 1 Let (N, v) be a TU-game such that E(N, v) ⊃ {N}. Then, (N, v)
admits an infinite �-chain.

proof. Pick any essential TU-game (N, v) as hypothesized and choose any
pair (x, S) ∈ P (N, v), which is possible by Fact 1. Pick any player j ∈ S.
Let e(x, {j}) = x(j)−v({j}) and let (εt)t∈N be a strictly increasing sequence
in ]0, e(x, {j})[. Construct an infinite sequence of imputations (xt)t∈N as
follows: for each t ∈ N, xt(j) = x(j) − εt, xt(i) = x(i) + εt/(|S| − 1) for
each i ∈ S\{j}, and xt(i) = x(i) for each i ∈ N\S. Define also imputation
z as follows: z(i) = v({i}) for each i ∈ S and z(i) = v({i}) + (v(N) −∑

i∈N v{i})/(|N | − |S|) for each i ∈ N\S. Pick any k ∈ S\{j}. Because,
z(k) = v({k}) and xl(S) ≤ v(S) for every l ∈ N, z is feasible from xt via
{k} and xl is feasible from z via S, respectively. Thus, consider the moves
xt −→{k} z and z −→S xl for each t, l ∈ N such that t < l. To show:
xt � xl. By construction, xt(k) < xl(k) whenever t < l. By definition of x
and construction of the sequence (xt)t∈N and of z, v({i}) = z(i) < x(i) for
each i ∈ S implies z(i) < xt(i) for each i ∈ S and each t ∈ N. Therefore,
t < l implies xt � xl as desired.

Lemma 2 Let (N, v) be a TU-game such that E(N, v) ⊃ {N}. Then, for
each pair (x, S) ∈ P (N, v), it holds that z � x for each z ∈ I(N, v)\{x}.

proof. Pick any TU-game (N, v) as hypothesized. Pick any z ∈ I(N, v)\{x}.
Since x(N) = v(N) = z(N), there is j ∈ N such that z(j) < x(j). Be-
cause S contains at least two elements, we can choose i1 ∈ S such that
i1 6= j. Consider such a player i1 and define imputation y1 as follows:
y1(i1) = v(N) −

∑
i∈N\{i1} v({i}) and y1(i) = v({i}) for each i ∈ N\{i1}.

Consider any player i2 ∈ N\S and define imputation y2 as follows: y2(i2) =
v(N) −

∑
i∈N\{i2} v({i}) and y2(i) = v({i}) for each i ∈ N\{i2}. Choose

any i3 ∈ S\{i1}, where i3 is equal to j in case S = {i1, j}. Because
y1(j) = v({j}), y2(i3) = v({i3}), and x(S) ≤ v(S), y1 is feasible from z
via {j}, y2 is feasible from y1 via {i3}, and x is feasible from y2 via S, re-
spectively. Thus, consider the successive moves z −→{j} y1, y1 −→{i3} y2,
and y2 −→S x. By construction, z(j) < x(j), y1(i3) < x(i3) and y2(i) < x(i)
for each i ∈ S. Therefore, z � x.
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proof of Theorem 1. Pick any essential TU-game (N, v). We distinguish
two cases.
(a) The TU-game (N, v) is such that E(N, v) = {N}. Pick any two distinct
elements x and z in I(N, v). By Fact 2, if z � x, then there exists a coalition
S ∈ 2N\{∅, N} such (x, S) ∈ P (N, v). On the other hand, E(N, v) = {N}
implies that P (N, v) = ∅. Thus, z 6� x, and x 6� z by the same reasoning.
As x and z are arbitrary, there does not exist any imputation that indirectly
dominates another imputation. Therefore, I(N, v) = LCS(N, v) = C(N, v),
where the last equality follows from the fact that the direct dominance rela-
tion is a special case of the indirect dominance relation.
(b) The TU-game (N, v) is such that E(N, v) ⊃ {N}. By Lemma 1, (N, v)
admits an infinite �-chain. By Lemma 2, there exists x ∈ I(N, v) such
that z � x for each z ∈ I(N, v)\{x}. By Xue’s nonemptiness Theorem,
LCS(N, v) 6= ∅. To see this, it suffices to note that z � x for each
z ∈ I(N, v)\{x} means that {x} is externally stable. Because x 6� x
by definition of player’s preferences, {x} is also internally stable. Thus,
{x} ∈ FS(N, v). Since each farsighted stable set is included in the largest
consistent, the result follows.

In part (a) of the proof of Theorem 1, I(N, v) constitutes trivially the
unique farsighted stable set. Combining this remark with part (b) of the
proof of Theorem 1, we obtain that the rule FS satisfies nonemptiness on the
class of essential TU-games, that is, FS(N, v) 6= ∅ for each essential TU-game
(N, v). We can say more about the structure of the collection of farsighted
stable sets when E(N, v) ⊃ {N}. More precisely, the following result shows
that the collection of farsighted stable sets for an essential TU-game is either
equal to the set of imputations or is a collection of singleton sets.

Theorem 3 Let (N, v) be a TU-game. If E(N, v) ⊃ {N}, then

FS(N, v) = {{x} | ∃S ∈ 2N\{∅, N} such that (x, S) ∈ P (N, v)}.

Otherwise, FS(N, v) = {I(N, v)}.

proof. Suppose that E(N, v) ⊃ {N}. First, we show that a singleton set
{x} is farsighted stable if and only if (x, S) ∈ P (N, v) for some coalition
S ∈ E(N, v)\{N}. Next, we show that no other subset of imputations is
farsighted stable.
Pick any x ∈ I(N, v). Assume that (x, S) 6∈ P (N, v) for every coalition
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S ∈ E(N, v)\{N}. If {x} is farsighted stable, then z � x for each z ∈
I(N, v)\{x} by external stability. By Fact 2, if x indirectly dominates
an imputation z 6= x, then there is a coalition S ∈ 2N\{N, ∅} such that
(x, S) ∈ P (N, v). It follows that {x} cannot be farsighted stable. So, assume
that there exists a coalition S ∈ 2N\{N, ∅} such that (x, S) ∈ P (N, v). By
Lemma 2 and part (b) of the proof of Theorem 1, the singleton set {x} is
farsighted stable. This completes the first part of the proof.
Now, assume, by way of contradiction, that there exists a subset K of impu-
tations such that |K| ≥ 2 and K ∈ FS(N, v). Such a subset K is necessarily
different from I(N, v). To see this, note that if K = I(N, v), then internal sta-
bility is violated by an application of Lemma 2. So, pick any y ∈ I(N, v)\K.
By external stabilility, there exists x ∈ K such that y � x. Therefore, there
exists a coalition S ∈ E(N, v)\{N} such that (x, S) ∈ P (N, v) by Fact 2.
By Lemma 2, z � x for all z ∈ I(N, v)\{x}. In particular, x indirectly
dominates every z ∈ K\{x}, which contradicts the internal stability of K.
Hence, our initial assumption is false. The first part of Theorem 3 follows.
The second part of the Theorem follows directly from part (a) of the proof
of Theorem 1.

Remark The farsighted core of a TU-game with a nonempty core may be
empty. To see this, consider the game (N, v) given by N = {1, 2, 3, 4} and
v(S) = |S|2 for each S ∈ 2N . Because this TU-game is supermodular, it
has a nonempty core. Consider the following imputation x ∈ C(N, v) given
by x(1) = x(2) = 2 and x(3) = x(4) = 6. We have x({1, 2}) = v({1, 2}),
x(1) > v({1}) and x(2) > v({2}). So, (x, {1, 2}) ∈ P (N, v). An application
of Lemma 2 yields z � x for every z ∈ I(N, v)\{x}, which also means that
{x} is a singleton farsighted stable set. By symmetry of (N, v), the core is also
symmetric and so imputation y defined as y(1) = y(2) = 6, y(3) = y(4) = 2
belongs to the core of (N, v). Again, (y, {3, 4}) ∈ P (N, v) and {y} constitutes
a farsighted stable set. We have proven that there do not exist imputations
that are not indirectly dominated. The assertion follows.

This remark can be generalized in order to obtain the following result:

Theorem 4 Let (N, v) be any TU-game. Then FC(N, v) = ∅ if and only if
E(N, v) ⊃ {N}.

proof. (=⇒) Assume that (N, v) is such that E(N, v) ⊃ {N}. By Fact
1, we can pick (x, S) ∈ P (N, v) such that x(S) = v(S) and x(i) > v({i})
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for each i ∈ S. By Lemma 2 and part (b) of the proof of Theorem 1, the
singleton set {x} is farsighted stable, that is, y � x for each imputation y,
y 6= x. This implies that {x} ⊇ FC(N, v). Because |S| ≥ 2 and S 6= N , we
can choose j ∈ S and k ∈ N\S. From imputation x, contruct allocation z as
follows: pick any ε ∈]0, e(x, {j})[ and set z(j) = x(j) − ε, z(k) = x(k) + ε,
and z(i) = x(i) for each N\{j, k}. Then, the pair (z, S) belongs to P (N, v).
Therefore, the singleton set {z} is also farsighted stable by Lemma 2 and
part (b) of the proof of Theorem 1, that is y � z for each imputation y,
y 6= z. In particular, x � z. Hence, x cannot belong to the farsighted core
of (N, v), and so, FC(N, v) = ∅.
(⇐=) By contraposition. Assume that the TU-game (N, v) is such that
E(N, v) = {N}. To show: FC(N, v) 6= ∅. By part (a) of the proof of
Theorem 1, we know that I(N, v) = C(N, v) so that no imputation can be
indirectly dominated. It follows that FC(N, v) = C(N, v).

Theorem 4 says that the farsighted core of an essential TU-game is ei-
ther empty or equal to the set of imputations and thus is not very useful.
Combining Theorem 3 with Theorem 4, we obtain that an essential TU-
game contains at least two farsighted stable (singleton) sets if and only if its
farsighted core is empty. Part (a) of the proof of Theorem 1 suggests that
the largest consistent set of a TU-game contains its core. This assertion is
partially true in superadditive games. The next Proposition gives a suffi-
cient condition for a superadditive TU-games to have the core included in
the largest consistent set.

Proposition 1 Let (N, v) be a superadditive TU-game. Assume that if
E(N, v) ⊃ {N}, it holds that

⋂
S∈E(N,v) S = ∅. Then, C(N, v) ⊆ LCS(N, v).

proof. See appendix A.

The sufficient condition of Proposition 1 is not very restrictive. It is
satisfied in strictly superadditive TU-games, that is, in TU-games (N, v)
where v(S ∪T ) > v(S)+ v(T ) for all disjoint coalitions S, T ∈ 2N\{∅}. Note
also that for the class of positive 0-normalized TU-games, this condition
amounts to the absence of veto player, i.e., a player i for which v(S) = 0
for each S with i 6∈ S. The following example shows that if a superadditive
TU-game does not satisfy the sufficient condition of Proposition 1, the core
is not necessarily included in the largest consistent set.
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Example 1

Consider the superadditive TU-game with player set N = {1, 2, 3, 4} and
coalition function v given by v(N) = v({1, 2, 4}) = v({1, 2, 3}) = 2, v({1, 2}) =
1 and v(S) = 0 otherwise. The sufficient condition of Proposition 1 does
not hold because E(N, v) = {N, {1, 2}, {1, 2, 3}, {1, 2, 4}} and

⋂
S∈E(N,v) S =

{1, 2}. Pick x and x1 in I(N, v), where x and x1 are defined as x(1) =
x(3) = x(4) = 0, x(2) = 2 and x1(1) = x1(2) = 0, x1(3) = x1(4) = 1,
respectively. Imputation x ∈ C(N, v) and imputation x1 6∈ C(N, v). More-
over, there is no coalition S such that (x1, S) or (x, S) is in P (N, v). We
assert that x 6∈ LCS(N, v). To show: there exist z ∈ I(N, v), S ∈ 2N\{∅}
with x −→S z such that for each y ∈ LCS(N, v), where y = z or z � y,
it holds that x(i) < y(i) for each i ∈ S. Consider the move x −→{1} x1,
where x1(1) = v({1}). Pick any y ∈ LCS(N, v). First, assume that x1 6= y
and x1 � y. By Fact 2, there exists a coalition S ∈ E(N, v)\{N} such
that (y, S) ∈ P (N, v). Because player 1 belongs to

⋂
S∈E(N,v) S, we neces-

sarily have v({1}) < y(1). On the other hand, x(1) = v({1}) implies that
x(1) < y(1), as desired. Now, it remains to show that the case x1 = y
is not possible, that is, x1 6∈ LCS(N, v). Pick w ∈ I(N, v) defined as
w(1) = w(2) = 1/2, w(3) = 0, w(4) = 1. Consider the move x1 −→{1,2} w.
We have, x1(1) < w(1) and x1(2) < w(2). Observe also that {1, 2} belongs
to

⋂
S∈E(N,v) S. Thus, by using the same reasoning as above, we can show

that if w � z for some z ∈ I(N, v)\{w}, then x1(1) < z(1) and x1(2) < z(2).
It follows that x1 cannot belong to LCS(N, v), The result follows.

In the general context of social environments as defined by Chwe (1994),
it has been noted that a farsighted stable set can be too exclusive while the
largest consistent set can be too inclusive (see Chwe, 1994, Xue, 1998, Xue,
Diamantoudi, 2003, Mauleon, Vannetelbosch, 2004). Proposition 2 below
picks out a minimal set of properties on (N, v) for which the largest consistent
is too inclusive in the sense that it does not exclude any imputation. To
understand why the largest consistent set can be too inclusive, recall that
players have a pessimistic view on the part of a deviating coalition. Indeed,
we can see from the definition of the largest consistent set that for each
element of this set, each deviating coalition expects that ensuing deviations
would terminate at the least favorable outcome for that coalition in the set
at which ensuing deviations may terminate.
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Proposition 2 Let (N, v) be a strictly superadditive TU-game with at least
four players. Then, LCS(N, v) = I(N, v).

proof. Assume that (N, v) is strictly superadditive. We have to show that
I(N, v) is internally consistent. Pick x and z in I(N, v) and S ∈ 2N\{∅}
such that x −→S z. If S = N , then the argument runs as follows: by Fact
1 and Theorem 3, there is y ∈ I(N, v) such that z � y. Because x and y
are two imputations, there is at least one player i ∈ N such that y(i) ≤ x(i).
In case S 6= N , consider any player j ∈ S. Because the game is strictly
superadditive, each non-singleton coalition S belongs to E(N, v). Thus, we
can choose T ∈ E(N, v) such that |T | = 2 and j 6∈ T . Now, define imputa-
tion y as y(j) = v({j}), y(i) = v({i}) + [v(T ) −

∑
i∈T v({i})]/|T | for each

i ∈ T , y(i) = v({i}) + [v(N) − v(T ) −
∑

i∈N\T v({i})]/(|N | − |T | − 1) for

each i ∈ N\(T ∪ {j}). Imputation y is well defined since |N | − |T | > 1 by
assumption. Observe that (y, T ) ∈ P (N, v) sot that using Theorem 3 yields
z � y and y ∈ LCS(N, v). In addition, j ∈ S and y(j) = v({j}) ≤ x(j)
imply that coalition S does not strictly prefer y to x. Since x −→S z was an
arbitrary element in the set of effective moves, Proposition 2 follows.

When a TU-game satisfies the sufficient condition of Proposition 1, it is
not clear whether or not the largest consistent set coincides with the set of
imputations. Proposition 3 and Example 2 below answer this question by
stating that the largest consistent set contains each interior imputation, that
is, all imputations which are strictly individually rational for each player.
More precisely, Example 2 shows that we cannot conclude from Proposition
3 that the largest consistent set of a superadditive TU-game satisfying the
sufficient condition of Proposition 1 is equal to the set of imputations.

Lemma 3 Let (N, v) be a superadditive TU-game. Then, for each interior
imputation x, it holds that x ∈ C(N, v) or {x} ∈ FS(N, v).

proof. Choose any superadditive TU-game (N, v). If N is the only coalition
in E(N, v), then the assertion holds because C(N, v) = I(N, v) by part (a)
of the proof of Theorem 1. Otherwise, pick any interior imputation x, that
is, x(i) > v({i}) for each i ∈ N . Assume that x 6∈ C(N, v). Then, there
exists a coalition S ∈ 2N\{N, ∅} such that x(S) < v(S). It then follows that
(x, S) ∈ P (N, v) and so {x} ∈ FS(N, v) by Theorem 3.
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Proposition 3 Assume that the superadditive TU-game (N, v) satisfies the
sufficient condition of Proposition 1. Then, each interior imputation belongs
to the largest consistent set of (N, v).

proof. Follows directly from Proposition 1 and Lemma 3.

Example 2

Consider the 4-player superadditive TU-game where N = {1, 2, 3, 4}, v(S) =
0 for each S such that |S| < 3, v(S) = 5 for each S of size 3 and v(N) = 7.
Then, E(N, v) = {S ∈ 2N | |S| ≥ 3} so that

⋂
S∈E(N,v) S = ∅. Consider

now imputations x and z given by: x(1) = x(2) = x(3) = 0 and x(4) = 7;
z(1) = z(2) = z(3) = 1 and z(4) = 4. We see that imputation x is not
interior. We are going to show that x does not belong to the largest con-
sistent set. Consider the move x −→{1,2,3} z. By Proposition 3, z belongs
to the largest consistent set but x(i) < z(i) for each i ∈ {1, 2, 3}, as de-
sired. Next, for each imputation y ∈ LCS(N, v), where z � y, there exists
S ∈ 2N\{∅, N} such that (y, S) ∈ P (N, v) and S is the set of players who
deviate in the last step of the sequence of moves by Fact 2. By definition
of E(N, v)\{N}, coalition S is of size 3 and so y(S) ≤ 5. Because y indi-
rectly dominates z, it must be that 1 ≤ z(i) < y(i) for each i ∈ S. Thus,
y(S) ≤ 5 and 1 ≤ z(i) < y(i) for each i ∈ S imply that S = {1, 2, 3}. It fol-
lows that if z � y, then x(i) < y(i) for each i ∈ S = {1, 2, 3}, as desired.

The bankruptcy game given in introduction is a superadditive game with
a clan. This game does not satisfy the sufficient condition of Proposition
1. Thus, we cannot conclude from Proposition 3 that its largest consistent
set contains each interior imputation. However, we will show in the next
section that the largest consistent set of this game is a strict subset of the
set of interior imputations. This fact is of some interest because it implies
that each veto player will get a strictly positive payoff on each farsighted
stable imputation, which is not the case for all core imputations. The next
section explores the properties of the farsighted stable sets and of the largest
consistent set in clan games.

4 Clan games

The class of clan games was introduced by Potters, Poos, Tijs and Muto
(1989) to model social interaction between a “powerful” coalition of players
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(the clan) and “powerless” players (nonclan members). Economic applica-
tions of such games include bankruptcy problems, production economies, in-
formation acquisition and holding situations. Potters, Poos, Tijs and Muto
(1989) have shown that solution concepts on this class of TU-games have
very appealing properties; we mention here, and below, that the core and
the bargaining set (Aumann, Maschler, 1964) of a clan game coincide, the
kernel (Davis, Maschler, 1965) consists of one imputation – the nucleolus
(Schmeidler, 1969) of the game.

A TU-game (N, v) is a clan game with clan C ∈ 2N\{N, ∅} if it satisfies
the following four properties:

Positivity: v(S) ≥ 0 for each S ∈ 2N .

Positive marginal contribution to N : v(N) − v(N\{i}) ≥ 0 for each
i ∈ N .

Clan property: each player i ∈ C is a veto player, that is, v(S) = 0 for
each S 6⊇ C.

Union property: v(N)− v(S) ≥
∑

i∈N\S(v(N)− v(N\{i})) if C ⊆ S.

Note that in a clan game the grand coalition N maximizes v over 2N .
Every clan game with at most four players is superadditive but need not be
supermodular when the number of players is equal to or greater than five. A
TU-game (N, v) is called a big clan game if it is a clan game where the clan
contains all but one player. Big clan games can be opposed to big boss games
studied in Muto, Nakayama, Potters, Tijs (1988). Big boss games are mono-
tonic clan games where the clan consists of one player – the big boss. One of
the most appealing economic applications of clan games is the bankruptcy
problem. A bankruptcy problem is a tuple B = (N, e, (di)i∈N). A firm goes
bankrupt leaving an estate with value e > 0 and a finite set of creditors
or claimants N with claims (di)i∈N , where

∑
i∈N di > e. The bankruptcy

problem deals with the problem of how to divide the estate among all credi-
tors. In order to study this problem, O’Neill (1982) proposed the bankruptcy
game (N, vB) where N is the set of creditors and vB is the coalition function
that gives what a coalition S can get for sure without going to court; i.e., by
accepting either nothing, or what is left of the estate e after each member i
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of the complementary coalition N\S is paid his complete claim di. Hence

vB(S) = max

e−
∑

i∈N\S

di, 0

 .

It is known that (N, vB) is a supermodular TU-game. It is also known that
for each clan game, there exists a corresponding bankruptcy problem and so a
corresponding bankruptcy game (Potters, Poos, Tijs and Muto, 1989, p.292).
The relationships between clan games and supermodular games are studied
in Branzei, Dimitrov and Tijs (2006). The following Theorem, from Potters,
Poos, Tijs and Muto (1989), establishes that the core and the bargaining set
of a clan game coincide and provides an explicit description of the core.

Theorem 5 (Potters, Poos, Tijs and Muto, 1989, Theorem 2.1)
Let (N, v) be a clan game with clan C. Then, the bargaining set and the
core coincide. Moreover, the core is given by

C(N, v) = {x ∈ I(N, v) |x(i) ≤ v(N)− v(N\{i}) for each i ∈ N\C}.

Theorem 5 does not exclude core imputations which assign to some members
of the clan a null payoff though the wealth that the clan earns is strictly pos-
itive (see Example 3 below). This situation is counter-intuitive since Clan
property indicates that no positive wealth can be attained without the co-
operation of each clan member. When we amend the myopic behavior, on
the part of players, embedded in the core, this situation disappears in many
instances. More precisely, when the clan C belongs to E(N, v), each impu-
tation belonging to the largest consistent set assigns to each clan member
a strictly positive payoff and the largest consistent set excludes some core
imputations. These results are contained in the following Theorem:2

Theorem 6 Let (N, v) be a clan game with clan C ∈ E(N, v). Then, (a)
for each imputation x where x(i) = 0 for some i ∈ C, it holds that x 6∈
LCS(N, v), (b) C(N, v) 6⊆ LCS(N, v).

2Note that points (a) and (b) in Theorem 6 hold for a broader class of games than the
class of clan games since the proof of the result only uses the Clan property. However, we
state the result for clan games since the bargaining set, which incorporates foresight in
the behavior of the players, coincide with the core for that class of games.
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proof. (a) Pick any clan game (N, v) with clan C ∈ E(N, v). We show
that there does not exist x ∈ LCS(N, v) which assigns to some members
of the clan a null payoff. Because C ∈ E(N, v), |C| ≥ 2. By definition
of the clan game, it holds that v({i}) = 0 for each i ∈ N , v(C) > 0,
and C =

⋂
S∈E(N,v) S. For each nonempty coalition S ⊆ C, define impu-

tations xS as follows: xS(S) = 0 and xS(N\S) = v(N). First, we show
that imputations xC do not belong to the largest consistent set. To this
end, define imputation z as follows: z(i) = v(C)/|C| for each i ∈ C and
z(i) = [v(N) − v(C)]/(|N | − |C|) for each i ∈ N\C. Consider any move
xC −→C z, where z(C) = v(C). It holds that (z, C) ∈ P (N, v). Then,
the singleton set {z} is farsighted stable by Theorem 3 and so z belongs
to the largest consistent set. But, xC(i) < z(i) for each i ∈ C. Now,
consider any y ∈ LCS(N, v), where z � y. By Fact 2, there must exist
T ∈ E(N, v)\{N} such that (y, T ) ∈ P (N, v). This implies that T ⊇ C and
so xC(i) = v({i}) < y(i) for each i ∈ C. We conclude that every xC satisfies
condition (b) of the definition of the largest consistent set which means that
xC 6∈ LCS(N, v). To show that for each S ⊂ C and each xS, imputation
xS 6∈ LCS(N, v), we proceed as follows: consider any move xS −→S xC ,
where xS(S) = xC(S) = 0. Using the same reasoning as above, S ⊂ C im-
plies that S ⊂ T for each T ∈ E(N, v)\{N} and so xS(i) = v({i}) < y(i) for
each i ∈ S, each y ∈ LCS(N, v) where xC � y. The first part of the proof
follows.
(b) Pick any j ∈ C and define imputation x as follows: x(j) = v(N) and
x(i) = 0 for each i ∈ N\{j}. By Theorem 5, imputation x ∈ C(N, v) and by
the first part of the proof, x 6∈ LCS(N, v). This completes the proof of the
second part of Theorem 6.

We close this section with a characterization of the largest consistent set
in big clan games. Let (N, v) be a big clan game with big clan C ∈ E(N, v).
Denote by j the only player outside the clan C and define the subset of
imputations V (N, v) as

V (N, v) = {x ∈ I(N, v) |x(i) > 0, i ∈ C, x(j) ≥ v(N)− v(C)}.

Note that x(j) ≥ v(N) − v(C) implies x(C) ≤ v(C) and reciprocally. The-
orem 7 below establishes that V (N, v) constitutes the largest consistent set
of such big clan games. Moreover, the union of all farsighted stable sets is
equal to the largest consistent set. In case the marginal contribution of the
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powerless player j is strictly positive, each imputation of V (N, v) is strictly
individually rational and assigns to player j a payoff greater than or equal to
his marginal contribution to coalition N . In contrast to imputations of the
core, each imputation of the largest consistent set assigns to each player of
the game a strictly positive payoff. In particular, the powerless player gets
at least the best payoff he can expect in the core, that is, v(N)− v(C) > 0.
In case the marginal contribution of the powerless player is null, the largest
consistent set is the set of imputations which assigns to each player of the
clan a strictly positive payoff. Once again, the powerless player can expect
more than his marginal contribution but cannot avoid situations where he
gets a null payoff since v(N)− v(C) = 0.

Theorem 7 Let (N, v) be a big clan game with clan C ∈ E(N, v). Then,
(a) FS(N, v) = {{x} |x ∈ V (N, v)} and (b) LCS(N, v) = V (N, v).

proof (a) Because E(N, v) ⊃ {N}, every farsighted stable set is a sin-
gleton {x} where imputation x is such that (x, C) ∈ P (N, v) by Theorem
3. Pick any x ∈ V (N, v). We have x(i) > 0 for each player i ∈ C and
x(C) ≤ v(C) so that (x, C) ∈ P (N, v) and thus {x} ∈ FS(N, v). This
proves that each element of V (N, v) constitutes a farsighted stable set. It
remains to show that no other imputation constitutes a farsighted stable set.
Pick any x ∈ I(N, v)\V (N, v). If x(C) > v(C), which is possible only if
v(N)−v(C) > 0, then (x, C) 6∈ P (N, v) and so {x} cannot be farsighted sta-
ble. If x(C) = v(C) and x(i) = 0 for some i ∈ C, then the same conclusion
holds. Part (a) of Theorem 7 follows.
(b) Because the largest consistent set contains each farsighted stable set, the
largest consistent set contains V (N, v) by part (a). It remains to prove the
no other imputation belongs to the largest consistent set. To this end, pick
any x ∈ I(N, v)\V (N, v). If x(i) = 0 for some i ∈ C, then imputation x
does not belong to the largest consistent by Theorem 6. So, assume that
x(i) > 0 for each i ∈ C and 0 ≤ x(j) < v(N) − v(C), which is possible
only if v(N)− v(C) > 0. Pick any player i1 ∈ C and define imputation z as
follows: z(i1) = v(N) and z(i) = 0 for each other player i. Consider the move
x −→{j} z. By Theorem 6, z does not belong to the largest consistent set. So,
consider any y ∈ LCS(N, v) where z � y. By Fact 2, (y, C) ∈ P (N, v). This
means that y(i) > 0 for each i ∈ C, y(C) ≤ v(C) and so y(j) ≥ v(N)−v(C).
Therefore, x(j) < y(j). We have shown that x satisfies condition (b) of the
definition of the largest consistent set. Part (b) of Theorem 7 follows.
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Using the results obtained in Theorem 7, the next example illustrates a
bankruptcy problem with one small claimant. It generalizes the one given in
introduction.

Example 3 A bankruptcy game with one small claimant

Consider the bankruptcy problem B = (N, e, (di)i∈N) with claimant set N =
{1, 2, . . . , n}, estate e > 0, claims di ≥ e for all i 6= j and dj < e. Then,
the corresponding bankruptcy game (N, vB) is a big clan game with clan
C = N\{j} and coalition function defined as vB(N) = e, vB(C) = e − dj,
and v(S) = 0 for all remaining coalitions. Each member of the clan is a
big claimant and j 6∈ C is a small claimant. By Theorem 5, the core or
equivalently the bargaining set of this game is given by

C(N, vB) = {x ∈ I(N, vB) |x(j) ≤ dj}

Because this bankruptcy game is supermodular, the core coincides with the
unique stable set with respect to the relation < and the Shapley value belongs
to the core (see Shapley, 1971). The Shapley value allocates to each player a
payoff strictly inferior to his claim, that is, Sh(N, vB)(i) = (e−dj)/n for each
i ∈ C and Sh(N, vB)(j) = dj/n. It is worth noting that core imputations do
not allocate more than dj units of money to the small claimant j. Further-
more, there exist core imputations which assign to some big claimants a null
payoff. Assume now that the game is played by farsighted players. By The-
orem 7, the largest consistent set coincides with the collection of farsighted
stable sets and is given by

LCS(N, vB) =
⋃

x∈FS(N,vB)

{x} = {x ∈ I(N, v) |x(i) > 0, i ∈ C, x(j) ≥ dj}.

The intersection between C(N, vB) and LCS(N, vB) is given by

{x ∈ I(N, v) |x(i) > 0, i ∈ C, x(C) = e− dj, x(j) = dj}.

We see that the core predicts very different outcomes compared with solutions
which capture foresight of the players. In particular, each farsighted stable
set corresponds to an imputation which assigns to each player of the clan a
strictly positive payoff and to player j a payoff greater than or equal to his
claim. If, moreover, dj > e/2, then the small claimant gets a payoff strictly
superior to one half of the estate and each player of the clan gets a strictly
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smaller payoff than j. A property of the largest consistent set is that any
claim that exceeds the estate cannot be allocated to its claimant. So, the
small claimant is the only one who gets his claim in the largest consistent
set. To understand why the small claimant j has a strict interest to induce
a deviation from core imputations which assigns to him a payoff strictly
inferior to dj, consider, for example, the Shapley value and imputation yk

defined as yk(i) = 0 for each i ∈ C\{k}, yk(k) = e, k 6= j, and y(j) =
0. If player j deviates from the Shapley value to imputation yk, he knows
that members of C\{k} are strictly worse off and he or she anticipates that
coalition C\{k} will make a counter offer. Coalition C\{k} is powerless and
anticipates that player k will not take seriously a proposal which assigns to
him a null payoff. So, coalition C\{k} decides to allocate the total wealth
to player j, knowing that player k may, later on, make a counter proposal.
Player k has several alternatives but he knows that the clan C is the only
coalition which has the power to enforce any imputation, say y, where he
gets a strictly positive payoff. In each move of the process initiated by player
j and leading to y, the active coalition strictly prefers the final outcome y
to the alternative it faces at that step. This implies that y(i) > 0 for each
i ∈ C and y(C) ≤ e−dj so that y(j) ≥ dj. The players are sufficiently clever
to understand that the bargaining process will lead to such a final outcome
y which is farsighted stable. If players’ expectations come to be focused
on some particular farsighted stable outcome, they know that each other
imputation is unstable with respect to � because each farsighted stable set
is a singleton set. These expectations will give them incentives to behave in
such a way as to justify these expectations.

5 Stability of the Shapley value

When players are myopic, it is intuitively clear why it is desirable to use
core allocation. However, there are two possible problems with this rule of
thumb. The first one is that the core may be empty, even in superadditive
TU-games. The second one is that the core may contain many elements. To
get around this problem, several allocation rules have been introduced. An
allocation rule is a function that assigns a unique allocation to each TU-game.
A prevalent allocation rule in the literature is the Shapley value, introduced
by Shapley (1953). There are several ways of explaining the Shapley value.
For our purpose, it can be viewed as a procedure in which players decide
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to play the TU-game in the grand coalition. The latter is formed by adding
players one at a time, where the order in which the players join is determined
at random and all orders are equally likely. Each player gets the value he
contributes to the coalition at the moment he joins it. The expected value to
the players under this procedure is the Shapley value. Formally, the Shapley
value is the map Sh from the set of essential TU-games (N, v) into RN whose
value at any i ∈ N is given by

Sh(N, v)(i) =
∑
S∈2N

i∈S

(|N | − |S|)!(|S| − 1)!

|N |!
[v(S)− v(S\{i})].

For an arbitrary TU-game (N, v), the Shapley value is an efficient allo-
cation, that is, Sh(N, v)(N) = v(N), but need not be individually rational.
Whenever the TU-game is superadditive, the Shapley value is an imputation
but need not be in the core and hence can be directly dominated by another
imputation. Shapley (1971) shows that the Shapley value of a supermodular
TU-games is in the core so that the Shapley value is not dominated with
respect to the relation <. In this section we prove that the Shapley value is
always a stable imputation in superadditive TU-games in the following sense:

Theorem 8 Let (N, v) be superadditive TU-game. Then, Sh(N, v) ∈ C(N, v)
or {Sh(N, v)} ∈ FS(N, v).

Note that Theorem 8 is not a corollary of Lemma 3 since the Shapley value of
a superadditive TU-game need not be interior. Theorem 8 is useful because
if we know that the Shapley value is not an element of the core, then we
can assert that it indirectly dominates each other imputation of the game.
Equivalently, if we know that the Shapley value does not constitute a far-
sighted stable set, then we can assert that it belongs to the core. Note that
Theorem 8 does not exclude the situation where the Shapley value both be-
longs to the core and constitutes a farsighted stable set. Because each stable
set with respect to the direct dominance relation < contains the core, we
can reformulate Theorem 8 as follows: the Shapley value of a superadditive
TU-game belongs to a stable set or it is a farsighted stable set.

To prove this result, we need a few more definitions and one Lemma. Let
(N, v) be a superadditive TU-game. A player i ∈ N is called inessential for
a coalition S, where i ∈ S, if v(S)− v(S\{i}) = v({i}). We denote by D(S)
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the set of inessential players for S. In case v(S)−v(S\{i}) > v({i}), player i
is said to be essential for the coalition S. Player i ∈ N is inessential in (N, v)
if he is inessential for each coalition S he belongs to. Otherwise, player i is
said to be essential in (N, v).

Lemma 4 Let (N, v) be a superadditive TU-game. If player j is inessential
in (N, v), then Sh(N, v)(i) = Sh(N\{j}, v|N\{j})(i) for each i ∈ N\{j}.

proof. Consider any superadditive TU-game (N, v) which contains at least
one inessential player, say j. Then, for each coalition S ⊆ N\{j}, the
marginal contribution v(S ∪ {j}) − v(S) of player j when added to coali-
tion S is equal to v({j}). Thus, for each nonempty coalition S ⊆ N\{j},
each i ∈ S, it holds that

v(S ∪ {j})− v((S ∪ {j})\{i}) = v(S)− v(S\{i}). (1)

Now, compute the Shapley value of any player i 6= j in (N, v). Using (1), we
obtain:

Sh(N, v)(i) =
∑

S⊆N\{j}
i∈S

(|N | − |S|)!(|S| − 1)!

|N |!
[v(S)− v(S\{i})]

+
∑

S⊆N\{j}
i∈S

(|N | − |S| − 1)!|S|!
|N |!

[v(S ∪ {j})− v((S ∪ {j})\{i})]

=
∑

S⊆N\{j}
i∈S

(|N |−|S|)!(|S|−1)!+(|N |−|S|−1)!|S|!
|N |!

[v(S)−v(S\{i})]

=
∑

S⊆N\{j}
i∈S

(|N | − |S| − 1)!(|S| − 1)!

(|N | − 1)!
[v(S)− v(S\{i})]

= Sh(N\{j}, v|N\{j})(i).

Corollary 1 Let (N, v) be a superadditive TU-game. Then, each essential
player in (N, v) is essential in the subgame (N e, v|Ne), where N e is the set of
essential players in (N, v).
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proof. Because each inessential player in (N, v) remains inessential in each
subgame of (N, v), Sh(N e, v|Ne)(i) = Sh(N, v)(i) for each i ∈ N e by applying
inductively Lemma 4. Since v|Ne({i}) = v({i}) for each i ∈ N and i ∈ N e is
essential in (N, v), we get

Sh(N e, v|Ne)(i) = Sh(N, v)(i) > v({i}) = v|Ne({i}) for each i ∈ N e.

Because the superadditivity of (N, v) is inherited by the subgame (N e, v|Ne),
we conclude that each i ∈ N e is essential in (N e, v|Ne).

proof of theorem 8: Choose any superadditive TU-game (N, v). If N
is the only coalition in E(N, v), then the assertion holds because C(N, v) =
I(N, v). Now, assume that E(N, v) ⊃ {N}. Note that E(N, v) 6= ∅ im-
plies that N e 6= ∅. If N e = N , then Sh(N, v)(i) > v({i}) for each i ∈ N
and the result follows by Lemma 3. In case N e ⊂ N , consider the subgame
(N e, v|Ne). By Corollary 1, each player i ∈ N e is essential in (N e, v|Ne).
It then follows that the Shapley value of (N e, v|Ne) is an interior imputa-
tion and so Sh(N e, v|Ne) ∈ C(N e, v|Ne) or {Sh(N e, v|Ne)} ∈ FS(N e, v|Ne)
by Lemma 3. If {Sh(N e, v|Ne)} ∈ FS(N e, v|Ne), then there exists S ∈
2Ne\{N e, ∅} such that (Sh(N e, v|Ne), S) ∈ P (N e, v|Ne). Applying induc-
tively Lemma 4 yields Sh(N e, v|Ne)(i) = Sh(N, v)(i) for each i ∈ N e and
so Sh(N e, v|Ne)(N e) = Sh(N, v)(N e). We conclude that (Sh(N, v), S) ∈
P (N, v) and so {Sh(N, v)} ∈ FS(N, v) by Theorem 3. Now, consider the
alternative case where Sh(N e, v|Ne) belongs to C(N e, v|Ne). For each i ∈
N\N e, we have Sh(N, v)(i) = v({i}), and for each i ∈ N e, Sh(N e, v|Ne)(i) =
Sh(N, v)(i). Thus, for each S ⊆ N e, each T ⊆ N\N e, it holds that
Sh(N, v)(S) = Sh(N e, v|Ne)(S) ≥ v|Ne(S) = v(S) and

Sh(N, v)(S∪T ) = Sh(N, v)(S)+Sh(N, v)(T ) ≥ v(S)+
∑
i∈T

v({i}) = v(S∪T ).

This shows that Sh(N, v) is a core imputation of (N, v). This completes the
proof of Theorem 8.

Theorem 8 does not answer the question whether or not the Shapley value
belongs to the largest consistent set of a superadditive TU-game which does
not satisfy the sufficient condition of Proposition 1. Example 3 partially
answers this question by showing that the Shapley value can lie outside the
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largest consistent set. From this example, we provide a necessary and suf-
ficient condition for a TU-game to have the Shapley value in the largest
consistent set.

Theorem 9 Let (N, v) be a superadditive TU-game. Then, Sh(N, v) 6∈
LCS(N, v) if and only if |E(N, v)\{N}| = 1 and D(N) = ∅.

proof. See Appendix B.

Note that a big clan game with clan C ∈ E(N, v) and v(N) − v(C) > 0
satisfies the condition of Theorem 9. So, in every such big clan game, the
largest consistent set excludes the Shapley value.

6 Conclusion

We conclude the paper with some remarks and possible extensions. Trough-
out the paper we have considered the problem of sharing the value of the
grand coalition. In superadditive games, the worth generated by the grand
coalition is the highest among the coalition set. However, this may not be
the case if the game is not superadditive. One way to deal with this prob-
lem is to divide the worth that can be achieved under the most favorable
coalition. Our model is flexible enough to allow for that modification. Es-
pecially, Theorems 1 to 4 are robust to that change. Another way to tackle
this problem is to consider the total worth generated by a coalition structure
and to divide among the players the highest total worth that can be achieved
among all coalition structures. The feasibility constraints must be changed
accordingly. An imputation x will be called feasible from another imputation
through a coalition S if x(T ) ≤ v(T ) for each coalition T belonging to the
coalition structure induced by S. More generally, we can also study games
in partition function form (Thrall and Lucas, 1963).

As noted by Chwe (1994), the definition of the largest consistent set does
not incorporate the idea of “best response” along the deviating path. In fact,
coalitions will move to outcomes which are better than the status quo, not
necessarily to the best outcomes. This point is illustrated by the bankruptcy
game given in introduction of this paper. Some imputations x for which
x({1, 2, 3}) is less than 3 belong to the largest consistent even if the clan
{1, 2, 3} will surely form to move to another imputation y which directly
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dominates x and where y({1, 2, 3}) = 3. To amend this problem, Xue (1998)
introduces some perfection in the indirect dominance process. In his paper,
a player compares the status quo to the final outcomes but he also takes into
account how, if at all, the final outcomes can be reached. To capture “perfect
foresight”, Xue assumes that players consider possible deviations along the
paths that lead to final outcomes. Looking back at our bankruptcy prob-
lem, the clan will consider possible deviations in the last step of the indirect
dominance path. When coalition {1, 2, 3} is called upon to move, one of its
best responses is to propose a farsighted stable imputation y, which directly
dominates x and where y({1, 2, 3}) = 3 and not to propose a farsighted sta-
ble imputation x, where x({1, 2, 3}) < 3. Mauleon and Vannetelbosch (2004)
introduce another refinement of the largest consistent set based on the as-
sumption that players are cautious. This refinement, the largest cautious
consistent set, is successfully applied to coalition formation games. Refine-
ments of these sorts can constitute another possibility to deal with foresight
within the framework of cooperative games with transferable utility.

A

proof of proposition 1. Choose any superadditive TU-game (N, v). If
C(N, v) = ∅, we are done. Thus, assume that C(N, v) 6= ∅. When (N, v)
is such that E(N, v) = {N}, then C(N, v) = LCS(N, v) by part (a) of the
proof of Theorem 1. It remains to prove that the assertion holds in case
E(N, v) ⊃ {N}. By assumption, it holds that

⋂
S∈E(N,v) S = ∅. Pick any

x ∈ C(N, v). To show: for each z ∈ I(N, v), each S ∈ 2N\{∅} such that
x −→S z, there exists y ∈ LCS(N, v), where y = z or z � y, such that
y(i) ≤ x(i) for at least one i ∈ S.

Pick any z ∈ I(N, v), S ∈ 2N\{∅} such that x −→S z. We split the proof
in two parts.
(a) S = N . By Fact 1 and Lemma 2, we can pick (y, S) ∈ P (N, v) such
that z � y. By Theorem 3, the singleton set {y} is farsighted stable and so
y ∈ LCS(N, v). First, assume that y 6= x. Since x and y belong to I(N, v),
there is i ∈ N such that x(i) > y(i), as desired. Next, assume that y = x.
The irreflexivity of < on I(N, v) yields x(i) 6< x(i) for each i ∈ N .
(b) S 6= N . Recall that x ∈ C(N, v) implies that x(T ) ≥ v(T ) for each
T ∈ 2N . Thus, we have to consider three types of moves x −→S z.

30



(b.1) x(S) ≥ v(S) >
∑

i∈S v({i}). By Fact 1 and Lemma 2, we can
pick (y, S) ∈ P (N, v) such z � y. By Theorem 3, the singleton set {y} is
farsighted stable and so y ∈ LCS(N, v). Because x(S) ≥ v(S) ≥ y(S), we
conclude that x(i) ≥ y(i) for at least one i ∈ S.

(b.2) x(S) > v(S) =
∑

i∈S v({i}). Pick any T ∈ E(N, v), T 6= N .
Because x(S) >

∑
i∈S v({i}), there is j ∈ S such that x(j) > v({j}). We

consider three cases depending on the location of player j.
(b.2.1) Assume that j ∈ S ∩ T . Choose any ε ∈]0, e(x, {j})[, where

e(x, {j}) = x(j)−v({j}). Construct allocation y as follows: y(j) = v({j})+ε,
y(i) = v({i}) + [v(T ) −

∑
i∈T v({i}) − ε]/(|T | − 1) for each i ∈ T\{j}, and

y(i) = v({i})+ [v(N)− v(T )−
∑

i∈N\T v({i})]/(|N | − |T |) for each i ∈ N\T .

By construction, y ∈ I(N, v) and (y, T ) ∈ P (N, v). According to Theorem
3, the singleton set {y} is farsighted stable and so y ∈ LCS(N, v). Because
{y} is a farsighted stable set, we have z � y. Finally, y(j) < x(j) and j ∈ S
shows that at least one player in S does not strictly prefer y to z.

(b.2.2) Assume that j 6∈ S∩T and T 6= N\{j}. Construct allocation y
as follows: y(j) = x(j), y(i) = v({i}) + [v(T )−

∑
i∈T v({i})]/|T | for each i ∈

T , and y(i) = v({i})+[v(N)−v(T )−x(j)−
∑

i∈N\(T∪{j}) v({i})]/(|N |−|T |−1)

for each i ∈ N\(T ∪ {j}). We want to show that (y, T ) ∈ P (N, v). Since
y(T ) = v(T ) and y(i) > v({i}) for each i ∈ T , it is enough to verify that
y ∈ I(N, v). First, observe that y(N) = v(N). Next, x ∈ I(N, v) and
x(j) = y(j) imply that

x(T )− y(T ) = y(N\(T ∪ {j}))− x(N\(T ∪ {j})) (2)

From this last observation, we obtain

v(N)− v(T )− x(j)−
∑

i∈N\(T∪{j})

v({i})

= y(N)− y(T )− y(j)−
∑

i∈N\(T∪{j})

v({i})

≥ y(N)− y(T )− y(j)− y(N\(T ∪ {j}))
= 0.

The two equalities follow from the construction of y. The inequality fol-
lows from x ∈ C(N, v) and equality (2). Indeed, x ∈ C(N, v) implies that
x(T ) ≥ v(T ) and x(N\(T ∪ {j})) ≥ v(N\(T ∪ {j})). It then follows that
y(N\(T ∪ {j})) ≥ x(N\(T ∪ {j})) ≥ v(N\(T ∪ {j})) by combining equal-
ity (2) with equality v(T ) = y(T ). By superadditivity of (N, v), it holds
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that v(N\(T ∪ {j})) ≥
∑

i∈N\(T∪{j}) v({i}). Therefore, y(N\(T ∪ {j})) ≥∑
i∈N\(T∪{j}) v({i}) showing the first inequality. From the last equality, we

obtain y(i) ≥ v({i}) for each i ∈ N\(T ∪ {j}), completing the proof of
y ∈ I(N, v). Since (y, T ) ∈ P (N, v), we again apply Theorem 3 which leads
to z � y and y ∈ LCS(N, v). Finally x(j) = y(j) and j ∈ S shows that at
least one player in S does strictly prefer y to x.

(b.2.3) Assume that j 6∈ T ∩ S and T = N\{j}. By assumption,⋂
T∈E(N,v) T = ∅. Thus, there exists R ∈ E(N, v) such that R 6= T,N . If

j ∈ S ∩R, then we apply (b.2.1.), otherwise, we apply (b.2.2). So, from any
z ∈ I(N, v) such that x −→S z, it is possible to construct an imputation
y ∈ LCS(N, v) such that z � y and y(i) ≤ x(i) for at least one i ∈ S, as
desired.

(b.3) x(S) = v(S) =
∑

i∈S v({i}). Because S 6∈ E(N, v) and
⋂

T∈E(N,v) T =

∅ by assumption, we can choose T ∈ E(N, v) such that S 6⊆ T . Pick any
j ∈ S such that j 6∈ T . Construct allocation y as follows: y(j) = v({j}),
y(i) = v({i}) + [v(T )−

∑
i∈T v({i})]/|T | for each i ∈ T , and y(i) = v({i}) +

[v(N)− v(T )−
∑

i∈N\T v({i})]/(|N | − |T | − 1) for each i ∈ N\(T ∪{j}). We

see that (y, T ) ∈ P (N, v) so that an application of Theorem 3 yields z � y
and y ∈ LCS(N, v). Again, y(j) = x(j) shows that at least one player in S
does not strictly prefer y to x.
By (b.1), (b.2) and (b.3), it follows that for any S 6= N , z ∈ I(N, v) such that
x −→S z, we can construct y ∈ LCS(N, v) such that z � y and y(i) ≤ x(i)
for at least one i ∈ S. This result constitutes part (b) of the proof. By
combining part (a) with part (b), we conclude that the core imputation x
belongs to the largest consistent set. Since x was an arbitrarily element of
C(N, v), Proposition 1 follows.

B

proof of Theorem 9. (=⇒) Assume that |E(N, v)\{N}| = 1 and D(N) =
∅. Denote by S the unique coalition in E(N, v)\{N}. Firstly, note that S =
N\{j} for a unique player j ∈ N ; otherwise S∪{i} ⊂ N and superadditivity
of v imply that S ∪ {i} ∈ E(N, v)\{N} for each i ∈ N\S. Secondly, each
player of N\{j} is essential for that coalition, that is, D(N\{j}) = ∅; other-
wise, N\{i, j} ⊂ N and i ∈ D(N\{j}) imply that N\{i, j} ⊂ E(N, v)\{N}.
Thirdly, E(N, v) = {N, N\{j}} and superadditivity of v imply that v(T ) =∑

i∈T v({i}) for each T ∈ 2N\E(N, v). Fourthly, from above and D(N) = ∅,
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it is easy to compute the payoff received by player j under the Shapley allo-
cation rule, i.e.,

Sh(N, v)(j) =
(|N | − 1)v({j})

|N |
+

v(N)− v(N\{j})
|N |

(3)

and Sh(N, v)(j) > v({j}). To prove that Sh(N, v) 6∈ LCS(N, v), we general-
ize the procedure used in Example 3. Pick any player i1 ∈ N\{j} and define
three imputations x1, x2 and x3 as follows: x1(i1) = v(N)−

∑
i∈N\{i1} v({i}),

x1(i) = v({i}) for each i ∈ N\{i1}; x2(j) = v(N)−
∑

i∈N\{j} v({i}), x2(i) =

v({i}) for each i ∈ N\{j}; x3(j) = v(N) − v(N\{j}), x3(i) = v({i}) +
[v(N\{j}) −

∑
i∈N\{j} v({i})]/(|N | − 1) for each i ∈ N\{j}. We proceed in

four steps. In Step 1, we show that any imputation which indirectly domi-
nates another imputation of this TU-game is strictly individually rational for
each member of the coalition N\{j} and is feasible for that coalition. Step
2 shows that x2 does not lie in the largest consistent set of this TU-game
which means that the largest consistent set is strictly included in the set of
imputations. Step 3 makes use of Step 2 to show that x1 is not included
in the largest consistent set. In Step 4, we use Step 3 to show that the
Shapley value does not belong to the largest consistent set.

Step 1: Consider any two distinct imputations x and y such that x �
y. By Fact 2, there exists a coalition S ∈ 2N\{N, ∅} such that (y, S) ∈
P (N, v). The only candidate is the coalition N\{j} and we have y(N\{j}) ≤
v(N\{j}) and v({i}) < y({i}) for each i ∈ N\{j}. This shows the claim.

Step 2: We show that x2 satisfies condition (b) of the definition of the
largest consistent set. Consider the move x2 −→N\{j} x3, where x3(N\{j}) =
v(N\{j}). Because (x3, N\{j}) ∈ P (N, v), imputation x3 ∈ LCS(N, v) by
an application of Theorem 3. But, x2(i) < x3(i) for each i ∈ N\{j}, as
desired. Next, for each other imputation y ∈ LCS(N, v)\{x3} such that
x3 � y, it holds that y(N\{j}) ≤ v(N\{j}) and v({i}) < y({i}) for each
i ∈ N\{j} by Step 1. Because x2(i) = v({i}) for each i ∈ N\{j}, it follows
that x2(i) < y(i) for each i ∈ N\{j}, as desired.

Step 3: As in Step 2, we show that x1 satisfies condition (b) of the defini-
tion of the largest consistent set. Pick any player i2 ∈ N\{j, i1} and consider
the move x1 −→{i2} x2, where x2({i2}) = v({i2}) and x2 6∈ LCS(N, v) by
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Step 2. Thus, for all y ∈ LCS(N, v), where x2 � y, it must be true
that x2(i2) < y(i2). But, if x2 � y, then y(N\{j}) ≤ v(N\{j}) and
v({i}) < y({i}) for each i ∈ N\{j} by Step 1. Because x1(i2) = v({i2}), it
follows that x1(i2) < y(i2), as desired.

Step 4: Consider the move Sh(N, v) −→{j} x1, where x1(j) = v({j}). We
know that x1 6∈ LCS(N, v) by Step 3. To show that the Shapley value does
not belong to the largest consistent set, consider any y ∈ LCS(N, v) such
that x1 � y. By Step 1, x1 � y implies that y(N\{j}) ≤ v(N\{j}) so that
y(j) = v(N) − y(N\{j}) ≥ v(N) − v(N\{j}). By (3), superadditivity of v
and D(N) 6= ∅, we get Sh(N, v)(j) < y(j). It follows that the Shapley value
does not belong to the largest consistent set of (N, v).

(⇐=) By contraposition. Assume that |E(N, v)\{N}| 6= 1 or D(N) 6= ∅.
We have to show that Sh(N, v) ∈ LCS(N, v). Firstly, if |E(N, v)\{N}| = 0,
then LCS(N, v) = I(N, v) by Theorem 1 and the Shapley value belongs
trivially to the largest consistent set. Secondly, if |E(N, v)\{N}| = 1 and
D(N) 6= ∅, then it is easy to verify that D(N) = {j} and using the expression
of Sh(N, v)(j), we see that Sh(N, v)(j) = v({j}). Thus, Sh(N, v)(N\{j}) =
v(N)− v({j}) = v(N\{j}). By the first part of the proof, we also know that
D(N\{j}) = ∅ and hence Sh(N, v)(i) > v({i}) for each player i ∈ N\{j}.
Therefore, (Sh(N, v), N\{j}) ∈ P (N, v) and by Theorem 3, the Shapley
value constitutes a farsighted stable set which is sufficient to prove that
it belongs to the largest consistent set. Thirdly, if |E(N, v)\{N}| > 1
and

⋂
S∈E(N,v)\{N} S = ∅, then C(N, v) ∈ LCS(N, v) by Proposition 1 and

Sh(N, v) ∈ C(N, v) or {Sh(N, v)} ∈ FS(N, v) by Theorem 8. Therefore,
the Shapley value belongs to the largest consistent set. It remains to con-
sider the case where |E(N, v)\{N}| > 1 and

⋂
S∈E(N,v)\{N} S 6= ∅ whatever

the condition on D(N). Pick any z ∈ I(N, v) and R ∈ 2N\{∅} such that
Sh(N, v) −→R z. To show that the Shapley value belongs to the largest con-
sistent set, we have to verify that there exists y ∈ LCS(N, v), where y = z
or z � y, such that y(i) ≤ Sh(N, v)(i) for at least one player i ∈ R. Pick
T ∈ E(N, v)\{N} with D(T ) = ∅. This leaves two possibilities.
(a) T ∩R 6= ∅. Pick any j ∈ T ∩R. Because D(T ) = ∅, Sh(N, v)(j) > v({j}).
Choose any ε ∈]0, m[ where m is the minimal value between e(Sh(N, v), {j})
and v(T )−

∑
i∈T v({i}). Define imputation y as follows: y(j) = v({j}) + ε,

y(i) = v({i}) + [v(T ) −
∑

i∈T v({i}) − ε]/(|T | − 1) for each i ∈ T\{j}, and
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y(i) = v({i})+ [v(N)− v(T )−
∑

i∈N\T v({i})]/(|N | − |T |) for each i ∈ N\T .

Observe that (y, T ) ∈ P (N, v) so that {y} ∈ FS(N, v) by Theorem 3. It
follows that y ∈ LCS(N, v) and z � y. By construction, y(j) < Sh(N, v)(j)
and so y(i) ≤ Sh(N, v)(i) for at least one player i ∈ R.
(b) T ∩ R = ∅. Because

⋂
S∈E(N,v)\{N} S = ∅, coalition R 6∈ E(N, v) so that

v(R) =
∑

i∈R v({i}). Define imputation y as follows: y(i) = v({i}) for each
i ∈ R, y(i) = v({i}) + [v(T )−

∑
i∈T v({i})]/|T | for each i ∈ T , and, in case

R∪ T ⊂ N , y(i) = v({i}) + [v(N)− v(T )−
∑

i∈N\T v({i})]/(|N | − |R| − |T |)
for each i ∈ N\(R ∪ T ). Observe that (y, T ) ∈ P (N, v) so that {y} ∈
FS(N, v) by Theorem 3. Thus, y ∈ LCS(N, v) and z � y. Because
y(i) = v({i}) for each i ∈ R, y(i) ≤ Sh(N, v)(i) for each i ∈ R. In case
R ∪ T = N , imputation y is defined as: y(i) = v({i}) for each i ∈ R and
y(i) = v({i}) + [v(N) −

∑
i∈N v({i})]/|T | for each i ∈ T . It is possible to

draw the same conclusion as above. Therefore, parts (a) and (b) prove that
Sh(N, v) ∈ LCS(N, v).
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