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Abstract

A natural extension of superadditivity is not su¢ cient to imply that the
grand coalition is e¢ cient when externalities are present. We provide a con-
dition �analogous to convexity�that is su¢ cient for the grand coalition to be
e¢ cient and show that this also implies that the (appropriately de�ned) core
is nonempty. Moreover, we propose a mechanism which implements the most
e¢ cient partition for all coalition formation games and characterize the payo¤
division of the mechanism.
JEL Classi�cation Numbers: C71, C72, D62
Keywords: Coalition formation, externalities, partition function games,

Shapley value, implementation.

1 Introduction

Most of the work on cooperative game theory tries to understand how coalitions be-
have in environments in which players can cooperate with each other. The central
questions this body of literature asks are: �rst, which coalitions should form and
second, how the gains of cooperation should be shared. Economic environments with
no externalities (in which what a group of players can achieve by cooperating is in-
dependent of what other players do) are best modelled as Characteristic Function
Games (CFGs), introduced by Von Neumann - Morgenstern (1947). Coalition for-
mation games in economic environments with externalities (in which what a group of
players can achieve by cooperating depends on what other coalitions form) were �rst
modelled by Lucas and Thrall (1963) as Partition Function Games (PFGs).
As Maskin (2003) points out, the two most important concepts in cooperative

game theory, the core and the Shapley value, presume that the grand coalition (the
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coalition of all players) would form. Most of the literature following early �ndings in
cooperative game theory, and working on CFGs or PFGs, either assumes or models
the grand coalition to be formed as a result of the game. In this paper, we argue
that for some economic environments, the formation of the grand coalition is not
very natural if one takes e¢ ciency� the maximization of total surplus� into account.
Maskin (2003) also argues that there are games in which it is implausible to expect
that the grand coalition will form. However, his argument is not related to the
ine¢ ciency of the resulting partition; rather, it is about the incentive to free-ride if
the merging of coalitions exerts a positive externality on other coalitions.
Bloch (1996), Ray and Vohra (1999), and Yi (1997) model economic environ-

ments with externalities and show that their noncooperative games might result in
�ner partitions than the grand coalition. However, they do not take the e¢ ciency
of the resulting coalition into account; nor do they provide a characterization of the
payo¤ division of the resulting game. Bloch (1996) assumes that the division of coali-
tional surplus is exogenously �xed: the proposers only choose which coalition they
will o¤er. He shows that any core stable allocation can be attained as a stationary
perfect equilibrium of the game. Ray and Vohra (1999) consider a game in which the
proposers o¤er a coalition and a contingent payo¤division. They prove that there ex-
ists a stationary equilibrium of their game and provide an algorithm to determine the
resulting partition. Yi (1997) characterizes and compares stable coalition structures
under some di¤erent rules of coalition formation.
Myerson (1977), Bolger (1989), Pham Do and Norde (2002), Macho-Stadler,

Perez-Castrillo and Wettstein (2004) and Albizuri, Arin and Rubio (2005) give ax-
iomatic extensions of the Shapley value for CFGs to PFGs. They all assume that the
grand coalition will form, even if it is not e¢ cient. In the �rst part of their paper, de
Clippel and Serrano (2005) require the e¢ ciency of the grand coalition and provide
upper and lower bounds for the players�payo¤s. They also characterize a value by
strengthening their marginality assumption.1 In the second part of their paper, de
Clippel and Serrano (2005) consider the case in which the grand coalition does not
form and characterize a payo¤ con�guration on the basis of Myerson�s (1980) prin-
ciple of balanced contributions. Their result is similar to Maskin (2003): they argue
that considerations of coalition formation may induce formation of �ner partitions
than the grand coalition, even if the grand coalition is e¢ cient.
Maskin (2003) provides an axiomatic characterization of a generalized Shapley

value and exhibits a mechanism that implements it. His mechanism has the interest-
ing property that the grand coalition may not necessarily form. He axiomatizes the
solution to the following noncooperative game: at stage k; agent k enters the room
and all players with the lowest index in coalitions in the room simultaneously bid for
k. Player k either accepts one of the bids or makes his own (singleton) coalition and
the game moves to the k+1st stage. At the end of the game, the lowest index players

1The value they characterize coincides with the value proposed in this paper when the game is
fully cohesive (see Section 4).
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in each coalition distribute the promised bids and keep the rest for themselves. If
there are negative externalities, the grand coalition always form, though it may be
ine¢ cient. If there are positive externalities, this game might result in a partition
�ner than the grand coalition, but again this may be ine¢ cient.
For CFGs, the assumption of superadditivity is commonly used. It says that

what two coalitions can get by merging should not be less than the sum of what
they get separately. This assumption implies the e¢ ciency of the grand coalition
in environments with no externalities. However, as we will show in Section 2, a
straightforward extension of superadditivity does not imply e¢ ciency of the grand
coalition when externalities are present. Therefore, from an e¢ ciency point of view,
superadditive PFGs do not necessarily result in the grand coalition.
Consider a Cournot oligopoly game. Assume that when two �rms merge, by

cost reduction they can do better in the market (keeping other coalitions �xed), but
since negative externalities are present, all other �rms are worse o¤ after they merge.
When a third �rm, which is worse o¤ as a result of the merger, joins the coalition
of two, superadditivity implies that their total payo¤ is no less than what they get
separately. However, the members of the three-�rm coalition do not necessarily gain
over what they get in the initial stage (when �rms 1 and 2 were separated) because
of negative externalities. When players cannot internalize the externalities by taking
decisions jointly,2 the grand coalition is not necessarily e¢ cient, even though the
game is superadditive.
We show that while superadditivity is not su¢ cient, a straightforward extension

of the convexity assumption in CFGs to PFGs implies that the grand coalition is
e¢ cient. In Section 3, we also show that convex PFGs have a nonempty core (for a
speci�c de�nition of the core). Note that for economic environments with externali-
ties, there can be many de�nitions of the core. This is because after a deviation, the
payo¤ of the deviating group depends on what the complementary coalition does.
In Section 4, we turn to the question of a noncooperative implementation of

the e¢ cient partition in PFGs. We propose a mechanism which gives an e¢ cient
predicted partition as well as a payo¤ division among the players. We also provide a
characterization of this value (the resulting payo¤ division).

2 E¢ ciency, Superadditivity and Convexity in PFGs

The set of players is given by N = f1; 2; :::; ng. In Characteristic Function Games
(CFGs), any coalition S � N generates a value v (S) and this value is independent
of what other agents (not in S) do. In Partition Function Games (PFGs) there can
be externalities, and these are captured by taking v as a function of a coalition and
a partition (which has that coalition as a member). That is, in PFGs any coalition
S � N generates a value v (S; �) where � is a partition of N with S 2 �:

2For instance, in this example, when three �rms cannot agree to remain single.
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Formally, given a partition � of N and a coalition S 2 �; the pair (S; �) is called
an embedded coalition of N: The set of all embedded coalitions is denoted by EC (N).
A PFG is a function v that assigns to every embedded coalition (S; �) 2 EC (N) ; a
real number v (S; �). By convention, ? 2 � and v (?; �) = 0 for all partitions � of N:
A PFG is said to have positive externalities if for any C; S; T � N , and for any

partition � of N � (S [ T [ C) ; we have
v (C; fS [ T;Cg [ �) > v (C; fS; T; Cg [ �) :

Similarly a PFG is said to have negative externalities if

v (C; fS [ T;Cg [ �) < v (C; fS; T; Cg [ �) :
In words, a game has positive (negative) externalities if merger between two coali-

tions makes other coalitions better (worse) o¤.

2.1 Superadditivity

It is well known that if a CFG is superadditive, then the grand coalition is e¢ cient.
That is, if for all S; T � N with S \ T = ?; v (S [ T ) � v (S) + v (T ) ; then
v (N) �

P
S2� v (S) for all partitions � of N:

A natural extension of superadditivity to PFGs used in Maskin (2003) and several
others is as follows: A PFG is superadditive if for any S; T � N with S \T = ?; and
any partition � of N � (S [ T ) ;

v (S [ T ; fS [ Tg [ �) � v (S; fS; Tg [ �) + v (T ; fS; Tg [ �) :
For notational convenience, let us denote v (S [ T ; fS [ Tg [ �) by v� (S [ T ; fS [ Tg)

and so on. With this notation, superadditivity can be written as follows: For any
S; T � N with S \ T = ?; and any partition � of N � (S [ T ) ;

v� (S [ T ; fS [ Tg) � v� (S; fS; Tg) + v� (T ; fS; Tg) :
In PFGs, superadditivity is not enough for the e¢ ciency of the grand coalition, as

the following example shows. Because of externalities, although the merging coalitions
bene�t from merging, others might be worse o¤ and the total payo¤ in the grand
coalition might be less then the total payo¤ in some other partition.

Example 1 Consider the following symmetric 3-player PFG: N = f1; 2; 3g
v (fig; ff1g; f2g; f3gg) = 4 for i = 1; 2; 3;

v (fj; kg; ffig; fj; kgg) = 9 and v (fig; ffig; fj; kgg) = 1 for fi; j; kg = N ;

v (N ; fNg) = 11:

This game is superadditive, but the grand coalition is not e¢ cient since v (N; fNg) =
11 <

Pi=3
i=1 v (fig; ff1g; f2g; f3gg) = 12:

In this game, the grand coalition is not e¢ cient because there are negative exter-
nalities. It can be easily shown that if the externalities are positive and the game is
superadditive, then the grand coalition is always e¢ cient.
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2.2 Convexity

A stronger assumption on value functions in CFGs is convexity, or supermodularity.
Convexity implies not only that the merging of two coalitions is bene�cial for them,
but also that merging with bigger coalitions is more bene�cial. That is, the game is
convex if there are increasing returns to cooperation. A natural extension of convexity
to PFGs can be given as follows:3 A PFG is convex if for any S; T � N and any
partition � of N � (S [ T ) ;

v� (S [ T ; fS [ Tg) + v� (S \ T ; fS \ T; S � T; T � Sg)
� v� (S; fS; T � Sg) + v� (T ; fT; S � Tg) :

For CFGs, this de�nition reduces, of course, to the usual de�nition which is given
in Appendix A. As shown by Example 1, superadditivity by itself does not imply
the e¢ ciency of the grand coalition. We will argue below that convexity implies that
any coalition can achieve at least as much as the sum of what its parts can achieve
(independent of whether game has positive, negative or mixed externalities) and in
particular, it implies the e¢ ciency of the grand coalition.

Proposition 1 If a PFG is convex, then for any coalition C, any partition � of
N � C and �0 of C;

v� (C) �
X
S2�0

v� (S; �
0) :

Proof. Fix a coalition C � N and a partition � of N�C: The proof will be inductive
on the cardinality of the partition �0 of C. Let us denote �0 by fC1; C2; :::; Ckg with
k � jCj (suppose Ci 6= ?):
For notational simplicity denote Ci [ Ci+1 [ ::: [ Cj by

_

Sij and fCi; Ci+1; :::; Cjg
by Si;j:
Induction hypothesis: For any 3� l � k and any partition �00 of Cl+1[Cl+2[:::[Ck,

v�[�00
�_
S1;l; f

_

S1;lg
�
� v�[�00

�_
S1;l�2; f

_

S1;l�2; Cl�1; Clg
�
+v�[�00 (Cl�1;S1;l)+v�[�00 (Cl;S1;l)

Induction base: For l = 3; in the de�nition of convexity take S =
_

S1;2 and T =
_

S2;3
(so S \ T = fC2g); and get

v�[�00
�_
S1;3; f

_

S1;3g
�
+v�[�00 (fC2g;S1;3) � v�[�00

�_
S1;2; f

_

S1;2; C3g
�
+v�[�00

�_
S2;3; f

_

S2;3; C1g
�
;

and by superadditivity applied to the right hand side of the above inequality, obtain:

v�[�00
�_
S1;3; f

_

S1;3g
�
� v�[�00 (C1;S1;3) + v�[�00 (C2;S1;3) + v�[�00 (C3;S1;3) :

3For more discussion of di¤erent possible de�nitions of convexity for PFGs, see Appendix A. We
are grateful to Geo¤roy de Clippel for suggesting this analysis.
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Induction proof: Assume that the induction hypothesis is true for l = t� 1: We
need to show that it is true for l = t as well.
Fix a partition �00 of Ct+1[Ct+2[ :::[Ck: For S =

_

S1;t�1 and T =
_

S2;t (so S\T =_

S2;t�1), from convexity, obtain:

v�[�00
�_
S1;t; f

_

S1;tg
�
+ v�[�00

�_
S2;t�1; f

_

S2;t�1; C1; Ctg
�

� v�[�00
�_
S1;t�1; f

_

S1;t�1; Ctg
�
+ v�[�00

�_
S2;t; f

_

S2;t; C1g
�
: (1)

Again from convexity, obtain (by S =
_

S1;t�2 and T =
_

S2;t�1; so S \ T =
_

S2;t�2):

v�[�00
�_
S1;t�1; f

_

S1;t�1; Ctg
�
+ v�[�00

�_
S2;t�2; f

_

S2;t�2; C1; Ct�1; Ctg
�

� v�[�00
�_
S1;t�2; f

_

S1;t�2; Ct�1; Ctg
�
+ v�[�00

�_
S2;t�1; f

_

S2;t�1; C1; Ctg
�
: (2)

Add up (1) and (2) and obtain:

v�[�00
�_
S1;t; f

_

S1;tg
�
+ v�[�00

�_
S2;t�2; f

_

S2;t�2; C1; Ct�1; Ctg
�

� v�[�00
�_
S1;t�2; f

_

S1;t�2; Ct�1; Ctg
�
+ v�[�00

�_
S2;t; f

_

S2;t; C1g
�
: (3)

Use induction hypothesis for at l = t� 1 to obtain:

v�[�00[fC1g

�_
S2;t; f

_

S2;tg
�
� (4)

v�[�00[fC1g

�_
S2;t�2; f

_

S2;t; Ct�1; Ctg
�
+ v�[�00[fC1g (Ct�1;S2;t) + v�[�00[fC1g (Ct;S2;t) :

Use (3), (4), and induction hypothesis to obtain:

v�[�00
�_
S1;t; f

_

S1;tg
�
� v�[�00

�_
S1;t�2; f

_

S1;t�2; Ct�1; Ctg
�
+v�[�00 (Ct�1;S1;t)+v�[�00 (Ct;S1;t) ;

which completes the induction proof.
Using induction hypothesis and the base for l = 3; we conclude that for any

partition �0 of C; we have
v� (C) �

X
S2�0

v�[�0 (S) :

Now, we can state the immediate corollary of the above proposition, which states
that convexity implies the e¢ ciency of the grand coalition.

Corollary 1 If a PFG is convex, then for any partition � of N;

v (N ; fNg) �
X
S2�

v� (S) :
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It should be noted that convex PFGs do not necessarily have positive externalities.
Consider Example 1, with the di¤erence that v (N ; fNg) = 15 instead of 11: This
game is convex, yet has negative externalities.
Let us de�ne the PFGs with the property that any coalition can achieve at least

as much as the sum of what its parts can achieve by fully cohesive4 PFGs. Formally,
a PFG is fully cohesive if for any coalition C, any partition � of N � C and �0 of C;

v� (C) �
X
S2�0

v� (S; �
0) :

In other words, a fully cohesive PFG assigns more to the subset C � N; than
to any of its partitions, for any partition of the set N � C: Proposition 1 shows
that convexity implies full cohesiveness. One might wonder if convexity is too strong
to guarantee full cohesiveness. The example in Appendix A shows that a weaker
de�nition of convexity (which is, for CFGs, equivalent to the convexity de�nition
given in this paper) is not enough to guarantee full cohesiveness. Therefore, we might
conclude that convexity, although it is not a necessary condition for full cohesiveness,
is not a very strong one.

3 The Core

In this section, we focus on convex PFGs. Hence, in the games we consider here, the
grand coalition is the most e¢ cient partition. Therefore, any other coalition can be
Pareto improved by making appropriate side-transfers.
For CFGs, a vector of payo¤s x = (x1; x2; :::; xn) is in the core if for all S � N;

we have X
i2S

xi � v (S) :

A nice feature of convex CFGs is that they have a nonempty core. In CFGs, when
group of agents is deciding whether or not to deviate, they do not consider what other
agents would do (a coalition�s value is independent of what other coalitions form).
However, this is not the case in PFGs. In PFGs, one has to make assumptions about
what a deviating coalition conjectures about the reaction of the others while de�ning
the core. Hence, there can be many de�nitions of the core. One simple de�nition
of the core can be given by supposing that the agents in the deviating coalition S
presume that agents in N � S will form singletons after the deviation.

De�nition 1 A vector of payo¤s x = (x1; x2; :::; xn) is in the core with singleton
expectations, named s-core, if for all S � N; we haveX

i2S
xi � v (S; fSg [ [N � S]) :

4This term was �rst de�ned by Currarini (2003).
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where [N � S] denotes the partition of N � S to singletons.

Next proposition shows that any convex game has a nonempty s-core.

Proposition 2 If a PFG is convex, then s-core is nonempty

Proof. De�ne the following CFG with
_
v (S) = v (S; fSg [ [N � S]) : We claim that

the CFG
_
v is convex.

Take any S; T � N; with jT � Sj = jS � T j = 1; then from de�nition of convexity5
in the PFG (with � = [N � (S [ T )])

v� (S [ T ; fS [ Tg) + v� (S \ T ; fS \ T; S � T; T � Sg)
� v� (S; fS; T � Sg) + v� (T ; fT; S � Tg) ;

or in characteristic function notation,
_
v (S [ T ) +

_
v (S \ T ) �

_
v (S) +

_
v (T ) : (5)

Now, by using (5) we need to show that for all S 0 and T 0 (without the restriction
jT 0 � S 0j = jS 0 � T 0j = 1), (5) is true.
We claim that (5) is true for all S 0 and T 0 with S 0 [ T 0 = S [ T:
Let S � S 0 = fs1; ::; skg and denote fs1; ::; slg by Sl for 1 � l � k and similarly

let T � T 0 = ft1; ::; tmg and denote ft1; ::; tlg by Tl for 1 � l � m:
Write down the following inequalities:

_
v (S [ T ) +

_
v (S \ T ) �

_
v (S) +

_
v (T ) ;

_
v (T ) +

_
v ((S \ T )� T1) �

_
v (S \ T ) +

_
v (T � T1) ;

_
v (T � T1) +

_
v ((S \ T )� T2) �

_
v ((S \ T )� T1) +

_
v (T � T2) ;

:::::
_
v (T � Tm�1) +

_
v ((S \ T )� Tm) �

_
v ((S \ T )� Tm�1) +

_
v (T � Tm) :

When we sum up above inequalities, we obtain:
_
v (S [ T ) +

_
v ((S \ T )� Tm) �

_
v (S) +

_
v (T � Tm)

_
v (S [ T ) +

_
v (S \ T 0) �

_
v (S) +

_
v (T 0) :

Then, write down the following inequalities:
_
v (S [ T ) +

_
v (S \ T 0) �

_
v (S) +

_
v (T 0) ;

_
v (S) +

_
v ((S \ T 0)� S1) �

_
v (S \ T 0) +

_
v (S � S1) ;

_
v (S � S1) +

_
v ((S \ T 0)� S2) �

_
v ((S \ T 0)� S1) +

_
v (S � S2) ;

:::::
_
v (S � Sk�1) +

_
v ((S \ T 0)� Sm) �

_
v ((S \ T 0)� Sm�1) +

_
v (S � Sm) :

5Note that we are using the de�nition of convexity only for sets with jT � Sj = jS � T j = 1:
Therefore, this proposition would be true for weakly convex games (discussed in Appendix A) as
well.
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We sum up above inequalities, and we obtain:

_
v (S [ T ) +

_
v ((S \ T 0)� Sm) �

_
v (T 0) +

_
v (S � Sm) ;

_
v (S 0 [ T 0) +

_
v (S 0 \ T 0) �

_
v (T 0) +

_
v (S 0) :

This completes the proof of
_
v convex.

A very well known result of convex CFG tells us that xi =
_
v (f1; ::; ig)�

_
v (f1; ::; i� 1g)

is in the core of the game (see Moulin, 1988, page 113). Hence we obtain that the
s-core is nonempty for convex PFGs, since

xi = v (f1; ::; ig; f1; ::; ig; fi+ 1g; :::; fng)� v (f1; ::; i� 1g; f1; ::; i� 1g; fig; :::; fng)

is in the core of the PFG.
Note that the s-core de�nition is very pessimistic for PFGs with positive exter-

nalities but it is the most optimistic one for PFGs with negative externalities (which
makes it very easy to block). Therefore, we immediately have the following remark.

Remark 1 A convex PFG with negative externalities has a nonempty core (indepen-
dent of agents conjectures about what will happen after the deviation.)

Another natural core speci�cation is given by the following de�nition.

De�nition 2 A vector of payo¤s x = (x1; x2; :::; xn) is in the core with cautious
expectations, named c-core, if for all S � N; we haveX

i2S
xi � v�� (S; fSg) ;

where �� = argmin
�
v� (S; fSg) :

This de�nition of the core is analogous to the de�nition of �-core in the literature.
It is easy to see that if the game has positive externalities, then �� = [N � S] and if
the game has negative externalities, then �� = fN � Sg: The following corollary is
an implication of Proposition 2.

Corollary 2 A convex PFG game has a nonempty c-core.

There can be other de�nitions of the core. Maskin (2003) makes the assumption
that any deviating coalition S presumes the complementary coalition N � S:

De�nition 3 A vector of payo¤s x = (x1; x2; :::; xn) is in the core with merging
expectations, named m-core, if for all S � N; we haveX

i2S
xi � v (S; fS;N � Sg) :
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The following example shows that convexity does not imply a nonempty m-core.

Example 2 Consider the following symmetric 3-player PFG: N = f1; 2; 3g

v (fig; ff1g; f2g; f3gg) = 4 for i = 1; 2; 3;

v (fj; kg; ffig; fj; kgg) = 9 and v (fig; ffig; fj; kgg) = 6 for fi; j; kg = N ;

v (N ; fNg) = 16:

One can easily verify that above game is convex: Take S = f1; 2g and T = f2; 3g;
we have:

20 = v (N ; fNg) + v (f2g; ff1g; f2g; f3gg)
> v (f1; 2g; ff1; 2g; f3gg) + v (f2; 3g; ff2; 3g; f1gg) = 18:

However, this game has an empty m-core. When a singleton deviates, he presumes
that the other two will make a coalition, so he can get a payo¤of 6 by deviating. This
implies the grand coalition should allocate at least 18; hence the m-core is empty.
Note that the above example has positive externalities. Moreover, Maskin (2003)�s

de�nition of the core relies on a very optimistic conjecture about the reactions of other
agents when the externalities are positive.
One natural expectation of the deviating agents is that others will take this de-

viation as given and try to maximize their own payo¤. We call this expectation as
rational expectations.

De�nition 4 A vector of payo¤s x = (x1; x2; :::; xn) is in the core with rational
expectations, named r-core, if for all S � N; we haveX

i2S
xi � v�� (S; fSg) ;

where �� = argmax
�

X
C2�

v� (C; fSg) :

Although natural, convex PFGs might have an empty core with rational expec-
tations. The game speci�ed in Example 2 has an empty r-core. When a singleton i
deviates, the best j and k achieve is obtained by forming a coalition since they can
get 9 rather than a total of 8: This then implies any core allocation should allocate
at least 18; which is not possible.6

6One could also look for a consistent core notion. Speci�cally, a core de�nition in which a
deviating coalition expects that a partition the complementary coalition would form would be in
the core of the reduced game. For the game in Example 2, however, the consistent core is empty.
This is because when a singleton deviates, the core of the two person game contains only the grand
coalition of two players.

10



4 A noncooperative implementation

In this section, we do not impose any restrictions on PFGs. Speci�cally, we do not
require v to have superadditivity, convexity, or positive or negative externalities.
For PFGs, Myerson (1977), Bolger (1989), Pham Do and Norde (2002), Maskin

(2003), Macho-Stadler, Perez-Castrillo and Wettstein (2004), Albizuri, Arin and Ru-
bio (2005) and de Clippel and Serrano (2005) give extensions of Shapley value of
CFGs to PFGs. Except for Maskin (2003) and de Clippel and Serrano (2005), other
papers propose that the grand coalition will form. Most of these models consider
the environments in which the grand coalition is the most e¢ cient partition. Their
values and implementations are either not applicable to environments in which the
grand coalition is not the most e¢ cient one or they result in ine¢ cient partitions.
Maskin (2003) proposes that for superadditive games, the grand coalition will form
with negative externalities (where the grand coalition is not necessarily e¢ cient), but
might not form with positive externalities (where the grand coalition is e¢ cient.)
Both Maskin (2003) and de Clippel and Serrano (2005) argue that ine¢ cient

outcomes may emerge in superadditive games if one introduces the considerations
of coalition formation, while we argue in this paper that the �nonformation�of the
grand coalition might emerge from the e¢ ciency considerations. In an environment
in which side payments are allowed, formation of ine¢ cient partitions is implausible
since a Pareto superior allocation and a payo¤ division would be available to the
agents.
We propose a noncooperative implementation which always results in the e¢ cient

partition. Consider the following simple game.7

Take any ordering of the players (consider the natural ordering, the game will be
the same for any other permutation � of the players): at stage k; agent k enters the
room. Suppose that before he enters, agents 1; :::; k�1 has already formed a partition
of K � 1 = f1; :::; k � 1g and there are three kinds of people in the room: a boss,
dependents and independents. The boss at stage k � 1 has promised the dependents
a payo¤ to be given at the end of the game. At stage k, agent k has all the bargaining
power. k proposes a partition of K = f1; ::; kg and a payo¤ division for all agents
in K � 1: If everybody accepts the proposal then the proposed partition forms, k
becomes the new boss and all others become dependents. If anybody rejects, the old
partition and singleton coalition of k forms (k becomes an independent). At the end
of the game (stage n) independents enjoy their payo¤ from the resulting partition.
The boss gets the rest of the total payo¤s, distributes the promised payo¤s to the
dependents and enjoys what is left. This game is played for all possible orderings of
players. The E¢ cient Generalized Shapley Value (EGSV ) of players is the average
of their payo¤s obtained for di¤erent orderings.
For the above game, it is not di¢ cult to see that at every stage, the newcomers

will propose an acceptable o¤er and become the new boss. Before showing why this

7We provide an alternative game and a characterization in Appendix B.
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is the case, let us introduce some notation.
Let �k denote a typical partition of K: De�ne V

�
�k
�
as follows:

V
�
�k
�
=
X
C2�k

v
�
C; �k [ [N �K]

�
;

where [N �K] denotes the partition of N �K to singletons.
Let �k be de�ned as follows:

�k = argmax
�k

V
�
�k
�
:

That is, �k is the most e¢ cient partition given that agents k + 1; :::; n remain
singletons. Let e�k be the proposed partition at stage k of the game. Finally, let pki
be the promised payo¤ to i at stage k:
Consider the last stage. If any of the agents rejects agent n�s o¤er, then �nal

partition �n�1 [ fng forms (where �n�1 is equal to e�n�1 if n� 1�s o¤er was accepted
at stage n � 1), independents enjoy their resulting payo¤s, dependents enjoy what
has been promised, and the boss enjoys what is left. Then, for an independent agent
i in N � 1 to accept the o¤er, he needed to be promised at least v (fig; �n�1 [ fng) :
For a dependent agent i to accept the o¤er, he needed to be promised at least pn�1i

and the boss needed to be promised at least V (�n�1) minus what independents and
dependents get after a rejection. Hence, agent n can propose an acceptable o¤er at a
sum of V (�n�1) : If his o¤er got rejected, n enjoys v (fng; �n�1 [ fng) : Whereas, by
proposing the partition �n; he can get the payo¤ V (�n)�V (�n�1) which is never less
than v (fng; �n�1 [ fng) (note that �n is the most e¢ cient partition of N). Therefore,
n�s (weakly) best strategy is to o¤er e�n = �n and promise to each agent what they
get if they reject the o¤er. This actually proves that this game always results in the
most e¢ cient partition.
At stage n�1; if the proposal is rejected then partition �n�2[fn�1g forms, then

(from backward induction) an independent agent i enjoys v (fig; �n�2 [ fn� 1g [ fng) ;
dependents enjoy what has been promised, and the boss enjoys what is left from
V (�n�2 [ fn� 1g) : Agent n � 1 can then propose an acceptable o¤er at a sum of
V (�n�2) : By proposing the partition �n�1; he can get the payo¤ V (�n�1)� V (�n�2)
which is never less than v (fn� 1g; �n�2 [ fn� 1g [ fng) (note that �n�1 is the most
e¢ cient partition of N�1 when n remains singleton). Therefore, n�1�s best strategy
is to o¤er e�n�1 = �n�1 and promise each agent what they get (at the end of the game)
if they reject.
Continuing in this fashion of using backward induction, we can conclude that

agent k at stage k proposes the partition �k and the acceptable promises of payo¤s
which add up to V

�
�k�1

�
: Hence, at the end of the game agent k gets a payo¤ of

mk = V
�
�k
�
� V

�
�k�1

�
(for the natural ordering) and the most e¢ cient partition is

the result of the game. Then EGSV of player i; which is denoted by  Shi (v) is the
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average of these marginal contributions. That is,

 Shi (v) =
1

n!

P
�

m�(i):

Note that this value reduces to Shapley value for superadditive CFGs.

4.1 The Characterization

When we consider a fully cohesive8 PFG, then e�k = �k = K and the payo¤ division
of above game coincides with the value given by Pham Do and Norde (2002) and
de Clippel and Serrano (2005). It is not di¢ cult to see that for arbitrary games the
value  Sh is not additive. This is true even for (nonsuperadditive) CFGs. Consider
the following example.

Example 3 Consider the following two symmetric 3-player CFGs: v (fig) = 2;
v (fi; jg) = 1, v (f1; 2; 3g) = 4 and w (fig) = 1; w (fi; jg) = 5; w (f1; 2; 3g) = 4:
Any value which is e¢ cient and symmetric should give the value (2; 2; 2) to the play-
ers in both of the games. However, in the game v +w this value should give (3; 3; 3).
Hence, the value is not additive.

On the other hand,  Sh is e¢ cient-cover additive. That is, when we consider the
e¢ cient cover (or fully-cohesive cover) of two games, then EGSV is additive. More
formally, let the e¢ cient cover of the game v be de�ned as follows:

_
v� (S; fSg) = max

�0: partition of S

P
C2�0

v� (C; �
0) :

A value  is e¢ cient-cover additive if  i
�_
v
�
+  i

�_
w
�
=  i

�_
v +

_
w
�
and fully

e¢ cient if P
i2N

 i (v) = V (�n) :

The other two axioms that will characterize  are null player property and sym-
metry. A value  satis�es the null-player property if V �

�
��(k)

�
= V �

�
��(k)�1

�
for

all permutations, then  k (v) = 0: A value is symmetric if for players i and j; if
V �
�
��(i)

�
� V �

�
��(i)�1

�
= V �0

�
��

0(j)
�
� V �0

�
��

0(j)�1� where only di¤erence between
� and �0 is the places of i and j; then  i (v) =  j (v) :
Now, we can introduce the characterization for EGSV.

Proposition 3 A value is e¢ cient-cover additive, fully e¢ cient, symmetric and sat-
is�es null-player property if and only if it is E¢ cient Generalized Shapley Value,  Sh.

The proof of this proposition follows from the above observations and Proposition
3 in de Clippel and Serrano (2005).

8The formal de�nition was given at the end of Section 2.
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4.2 An Example

In this section, we consider an example to illustrate the di¤erence between our re-
sults and results of de Clippel and Serrano�s (2005) and Maskin�s (2003) in terms of
the resulting partition and payo¤ division. Consider the following PFG, which was
considered in both de Clippel and Serrano (2005) and Maskin (2003).

Example 4 Consider the following 3-player PFG: N = f1; 2; 3g

v (fig; ff1g; f2g; f3gg) = 0 for i = 1; 2; 3;

v (fig; ffig; fj; kgg) = 9 for fi; j; kg = N

v (f1; 2g; ff1; 2g; f3gg) = 12;

v (f1; 3g; ff1; 3g; f2gg) = 13;

v (f2; 3g; ff2; 3g; f1gg) = 14;

v (N ; fNg) = 24:

Note that in this game the most e¢ cient partition is the grand coalition. However,
both balanced contributions approach of de Clippel and Serrano (2005) and coalition
formation game of Maskin (2003) result in the partition of a singleton and a coalition
of two. More speci�cally, for any ordering, the �rst agent forms a singleton and other
two joins for a coalition in de Clippel and Serrano (2005) and the one with higher
index among �rst two agents forms a coalition with the third agent, while other agent
(the one with lower index among �rst two agents) forms a singleton in Maskin (2003).
For this game, the resulting values (the payo¤ division) is given by

�
43
6
; 44
6
; 45
6

�
in de

Clippel and Serrano (2005) and
�
7; 22

3
; 25
3

�
in Maskin (2003). Note that these two

payo¤ vectors adds up to less than 24; the total attainable by the grand coalition.
Let us apply our implementation to above PFG. Consider the ordering 1; 2; 3: In

the case that agent 2 is independent when agent 3 enters the room, if either agent 1
or agent 2 rejects 3�s o¤er, they will get 0 payo¤. Therefore, agent 3 will o¤er the
partition of fNg and will o¤er payo¤ of 0 to both agent 1 and 2 in this case. Given
this, agent 2 will o¤er agent 1 a payo¤ of 0 in the second stage (because if agent 1
rejects 2�s o¤er, agent 2 will be an independent and agent 1 will have 0 payo¤ at
the end of the game) and the partition of f1; 2g: Therefore, 3 will face the partition
f1; 2g in the third stage and o¤er payo¤ of 0 payo¤ to agent 1; payo¤ of 12 to agent
2 and the partition of fNg: We then can conclude that for the ordering 1; 2; 3 the
grand coalition is the resulting partition and payo¤ divisions are (0; 12; 12): For the
other orderings we can con�rm that the grand coalition will form and payo¤divisions
are given by: (0; 11; 13) if the ordering is 1; 3; 2; (12; 12; 0) if the ordering is 2; 1; 3;
(10; 14; 0) if the ordering is 2; 3; 1; (13; 11; 0) if the ordering is 3; 1; 2; and (10; 14; 0) if
the ordering is 3; 2; 1: We therefore conclude that EGSV for above PFG is given by�
15
2
; 8; 17

2

�
:
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5 Conclusion

When externalities are present, the assumption of �two coalitions together can do
better than what they can make separately�(superadditivity) is not enough to con-
clude that the grand coalition is the most e¢ cient partition. We have identi�ed a
natural extension of convexity (supermodularity) to be a su¢ cient condition imply-
ing that �any number of coalitions together can do better than what they can make
separately.�We have also shown that convexity implies that a particular de�nition
of the core is nonempty. As a remark, we noted that convex PFGs with negative
externalities always have a nonempty core and the core with cautious expectations is
also nonempty.
There have been di¤erent extensions of the Shapley value to PFGs that have been

proposed, but except for Maskin (2003) and de Clippel and Serrano (2005), all im-
plicitly or explicitly assume that the grand coalition will form. We have proposed a
mechanism which always results in an e¢ cient partition and provided a characteri-
zation of the resulting payo¤ division.
Application of our game to noncooperative setups, such as bidding rings and

distribution of payo¤s after the bidding in the auction theory setup, is left for future
work.

A Appendix: Di¤erent convexity de�nitions in PFGs

For CFGs, the convexity de�nition �v (S [ T ) + v (S \ T ) � v (S) + v (T ) for all
S; T � N�is equivalent to the de�nition �v (S [ T ) + v (S \ T ) � v (S) + v (T ) for
all S; T � N with jS � T j = jT � Sj � 1�. The proof of this argument is not di¢ cult
to obtain (see Moulin, 1988, page 112). A straightforward extension of the latter
de�nition to PFGs can be given as: A PFG is weakly convex if for any S; T � N with
jS � T j = jT � Sj � 1 and any partition � of N � (S [ T ) ;

v� (S [ T ; fS [ Tg) + v� (S \ T ; fS \ T; S � T; T � Sg)
� v� (S; fS; T � Sg) + v� (T ; fT; S � Tg) :

or, if the game is superadditive and for any S � N � fi; jg and any partition of
N � (S [ fi; jg) ;

v� (S [ fi; jg; fS [ fi; jgg)� v� (S [ fig; fS [ fig; fjgg)
� v� (S [ fjg; fS [ fjg; figg) + v� (S; fS; fjg; figg) :

The following example shows that weak convexity is not equivalent to convexity.
Moreover, it shows that weak convexity does not imply the e¢ ciency of the grand
coalition.
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Example 5 Consider the following symmetric 5-player PFG: N = f1; 2; 3; 4; 5g =
fi; j; k; l;mg

v (fig; [N ]) = 3 for i 2 N ;
v (fi; jg; ffi; jg; fkg; flg; fmgg) = 7 and v (fkg; ffi; jg; fkg; flg; fmgg) = 3;
v (fi; jg; ffi; jg; fk; lg; fmgg) = 9 and for v (fmg; ffi; jg; fk; lg; fmgg) = 8;

v (fi; j; kg; ffi; j; kg; flg; fmgg) = 12 and v (flg; fffi; j; kg; flg; fmgg) = 3;
v (fi; j; kg; ffi; j; kg; fl;mgg) = 17 and v (fl;mg; fffi; j; kg; fl;mgg) = 6;

v (fi; j; k; lg; ffi; j; k; lg; fmgg) = 18 and v (fmg; fffi; j; k; lg; fmgg) = 3;
v (N ; fNg) = 25:

We can con�rm that above game is weakly convex. First, note that the game is
superadditive. Next, check the inequalities required by weak convexity. If S = f1g,
weak convexity implies:

5 = v (f1; 2; 3g; ff1; 2; 3g; f4g; f5gg)� v (f1; 2g; ff1; 2g; f3g; f4g; f5gg)
� v (f1; 3g; ff1; 3g; f2g; f4g; f5gg)� v (f1g; ff1g; f2g; f3g; f4g; f5gg) = 4;

and

8 = v (f1; 2; 3g; ff1; 2; 3g; f4; 5gg)� v (f1; 2g; ff1; 2g; f3g; f4; 5gg)
� v (f1; 3g; ff1; 3g; f2g; f4; 5gg)� v (f1g; ff1g; f2g; f3g; f4; 5gg) = 6:

If S = f1; 2g; weak convexity implies:

6 = v (f1; 2; 3; 4g; ff1; 2; 3; 4g; f5gg)� v (f1; 2; 3g; ff1; 2; 3g; f4g; f5gg)
� v (f1; 2; 4g; ff1; 2; 4g; f3g; f5gg)� v (f1; 2g; ff1; 2g; f3g; f4g; f5gg) = 3:

If S = f1; 2; 3g; weak convexity implies:

7 = v (f1; 2; 3; 4; 5g; ff1; 2; 3; 4; 5gg)� v (f1; 2; 3; 4g; ff1; 2; 3; 4g; f5gg)
� v (f1; 2; 3; 5g; ff1; 2; 3; 5g; f4gg)� v (f1; 2; 3g; ff1; 2; 3g; f4g; f5gg) = 6:

Since all inequalities are satis�ed, the game is weakly convex. However, the grand
coalition is not e¢ cient, since 2v (f1; 2g; ff1; 2g; f3; 4g; f5gg)+v (f5g; ff1; 2g; f3; 4g; f5gg) =
26 > 25 = v (N ; fNg) : We can also con�rm that above game is not convex, since for
S = f1; 2; 3; 4g and T = f3; 4; 5g we have

34 = v (S [ T ; fS [ Tg) + v (S \ T ; fS \ T; S � T; T � Sg)
< v (S; fS; T � Sg) + v (T ; fT; S � Tg) = 35:
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B Appendix: An Alternative Implementation

The game we provide here is the same with the game in Section 4, except for the last
stage: Consider the natural ordering of the players. At stage k; agent k enters the
room and proposes a partition of K = f1; ::; kg and a payo¤ division for all agents
in K � 1: If everybody accepts the proposal then the proposed partition forms, k
becomes the new boss and all others become dependents. If anybody rejects, the old
partition and singleton coalition of k forms (k becomes an independent).
At the end of the game (stage n) independents randomly form a partition among

themselves with each partition forming with equal chance. The last agent, n; becomes
the boss of independents and enjoy the total of payo¤s from the resulting partition
among independents. The boss of dependents gets the the total payo¤s from partition
among dependents and himself, distributes the promised payo¤s to the dependents
and enjoys what is left. This game is played for all possible orderings of players.
The E¢ cient Generalized Shapley Value2 (EGSV2 ) of players is the average of their
payo¤s obtained for di¤erent orderings.
For the above game, the newcomers will propose an acceptable o¤er and become

the new boss.
Let p (k) represents the number of partitions of a set with cardinality k: Let �k

denote a typical partition of K: De�ne V2
�
�k
�
as follows:

V2
�
�k
�
=

1

p (n� k)

X
�: partition of N�K

X
C2�k

v
�
C; �k [ �

�
:

Let �k be de�ned as follows:

�k2 = argmax
�k

V2
�
�k
�
:

That is, �k2 is the most e¢ cient partition given that agents k + 1; :::; n form a
random partition among themselves, all being formed with equal chance. Let e�k2 be
the proposed partition at stage k of the game.
Consider the last stage. The last stage in this game is the same as the last stage

in the game given in Section 4: Therefore, the weakly best option is to o¤er e�n2 = �n2
and promise to each agent what they get if they reject the o¤er.
At stage n � 1; if the proposal is rejected then the partition �n�2 [ fn � 1g

forms and agent n� 1 becomes an independent, then (from backward induction) an
independent agent i enjoys 0 payo¤, dependents enjoy what has been promised, and
the boss enjoys what is left from

V2
�
�n�2 [ fn� 1g

�
=
1

2

0@ X
C2�n�2

v�n�2 (C; fn� 1g [ fng) + v�n�2 (C; fn� 1; ng)

1A :
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Agent n � 1 can then propose an acceptable o¤er at a sum of V2 (�n�2) : By
proposing an o¤er which will not be accepted, agent n�1 will get 0 payo¤. Therefore,
n � 1�s best strategy is to o¤er e�n�12 = �n�12 and promise each agent what they get
(at the end of the game, in expected terms) if they reject.
Continuing in this fashion of using backward induction, we can conclude that

agent k at stage k proposes the partition �k2 and the acceptable promises of payo¤s
which add up to V2

�
�k�12

�
: Hence, at the end of the game agent k gets a payo¤ of

mk
2 = V2

�
�k2
�
�V2

�
�k�12

�
(for the natural ordering) and the most e¢ cient partition is

the result of the game. Then EGSV2 of player i; which is denoted by 'Shi (v) is the
average of these marginal contributions. That is,

'Shi (v) =
1

n!

P
�

m
�(i)
2 :

When we consider a fully cohesive PFG, then e�k = �k = K and the payo¤division
of above game coincides with value given by Albizuri, Arin and Rubio (2005). In
addition to axioms of e¢ cient cover additivity, full e¢ ciency and symmetry we add
the following two axioms which were �rst given by Albizuri, Arin and Rubio (2005).
A value  satis�es the oligarchy axiom if the following holds. If there exists S � N

such that

v� (C) =

�
v (N ;N) if C � S
0 otherwise

;

then,
P

i2S  i (v) = v (N ; fNg) :
A value satis�es embedded coalition anonymity if  i (�Sv) =  i (v) for all bijections

�S on f(T ; �) : T = Sg and for all i 2 N: According to this axiom, only worths of dif-
ferent embedded coalitions are important, not which embedded coalitions correspond
to those worths.
Now, we can introduce the characterization for EGSV2.

Proposition 4 A value is e¢ cient-cover additive, fully e¢ cient, symmetric and sat-
is�es oligarch and embedded coalition anonymity axioms if and only if it is EGSV2,
'Sh.

The proof of this proposition follows from Section 4 of this paper and Theorem 3
in Albizuri, Arin and Rubio (2005).
The di¤erence between the payo¤ con�gurations�of the game introduced above

and the game in Section 4 is that the value given by the above game can be obtained
as the Shapley value of an expected CFG (with all partitions being formed with equal
chance), whereas the value given by the game in Section 4 can be obtained as the
Shapley value of a �ctitious CFG (with ev (S) = v (S; fSg [ [N � S])).
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