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Abstract. We exhibit a new equilibrium of the classic Blotto game in which

players allocate one unit of resources among three coordinates and try to de-

feat their opponent in two out of three. It is well known that a mixed strategy

will be an equilibrium strategy if the marginal distribution on each coordinate

is U
£
0, 23

¤
. All known examples of such distributions have two-dimensional

support. Here we exhibit a distribution which has one-dimensional sup-

port and is simpler to describe than previous examples. The construction

generalizes to give one-dimensional distributions with the same property in

higher-dimensional simplexes as well.

As our second note, we give some results on the equilibrium payoffs when

the game is modified so that one player has greater available resources. Our

results suggest a criterion for equilibrium selection in the original symmetric

game, in terms of robustness with respect to a small asymmetry in resources.

1. Introduction

Consider a game in which the two players simultaneously select vectors from

[0, 1]N whose coordinates sum to 1, and are considered to have won a coordinate

if they select a higher number than their opponent in that coordinate. After

Laslier and Picard (2002), we call the game in which a player’s payoff is the

number of coordinates won minus the number lost the plurality game. Alter-

natively, the object could be simply to win a majority of coordinates. This is

called the majority game. This game can be interpreted as a contest between

Date: First Version: February, 2005;
I especially thank Balazs Szentes and the late Robert Rosenthal for introducing me to

the Blotto game and related unsolved problems. I also thank Muhamet Yildiz and Glenn

Ellison for helpful comments, Emily Gallagher for typing assistance, and Clifford Weinstein

for assisting with the diagrams.
1



2 JONATHAN WEINSTEIN

politicians allocating advertising money among N states in a simplified electoral

college system, where each state is won by the side with greater spending. The

classic case N = 3 was first described by Borel (1921), and equilibria were first

given in Borel and Ville (1938). It is often called the Colonel Blotto game, as it

could be interpreted as a model of resource allocation in warfare, assuming that

even a small advantage in resources allocated to a given battle is enough to win

that battle completely. In the special case that N = 3 and budgets are equal,

the majority game and plurality game coincide because a player can never win

in 0 or 3 coordinates.

It is well-known that a mixed strategy given by a distribution on [0, 1]N

whose marginal distribution on each coordinate is Uniform
£
0, 2

N

¤
will be an

equilibrium strategy in the plurality game. Borel and Ville (1938) found two

examples of such distributions for N = 3, one with support on the inscribed

disc in the triangular representation of the simplex and one, called the Hex

equilibrium, with support on the full hexagon {x1, x2, x3 ∈
£
0, 2

3

¤
: x1+x2+x3 =

1} which is the set of best responses in both equilibria. We will exhibit an

equilibrium strategy here, with the same marginal distributions, that has one-

dimensional support — in particular, its support consists of two line segments.

The construction generalizes to give a solution for the N-dimensional plurality

game. Specifically, we give a distribution on {x ∈ [0, 1]N : Σxi = 1} with
support on N − 1 parallel line segments and the desired marginals.

Also, there are no current results on the modification of the majority game

in which players have different total wealth, i.e. one player picks a vector whose

sum is 1 while the other picks a vector whose sum is r. We will provide

bounds on the equilibrium payoffs in such a game as a function of r. We

obtain particularly tight bounds when r is close to 1, thereby characterizing the

marginal impact of a small advantage in available resources.

2. Recent Literature

Laslier and Picard (2002) apply equilibria of the Blotto game to analyze the

redistribution of goods that results from two-party electoral competition. In
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particular, they give the Lorenz curve and determine other measures of the

inequality that would result from the distributions prescribed by the disc equi-

librium. Kvassov (2003) analyzes Blotto-style contests with the modification

that players do not necessarily use all their available resources. This approach

would be justified in the many applications in which resources have an alter-

native use or can be saved for the next period. Our framework, on the other

hand, in which resources must be spent immediately or lost, would frequently

be appropriate in the context of campaign spending or warfare. Kvassov also

allows for asymmetric budgets. Unlike our results on asymmetric budgets in

Section 4, which focus on the majority game, he focuses on a game in which the

objective is to win as many coordinates as possible (plurality game). Clearly

this would be appropriate in auctions or other contexts where each coordinate

won has value, while the majority perspective would usually be appropriate in

an electoral context.

The majority game is also relevant in the scenario studied by Szentes and

Rosenthal (2003), a simultaneous auction for three objects (chopsticks) in which

the marginal value of acquiring a second object is high compared to the first.

They are able to completely describe the equilibria of such auctions, which are

closely related to Blotto games. The key difference is that the lower bidder for

each object does not pay, whereas the usual Blotto game is similar to an all-pay

auction. The all-pay condition is a sensible model when resources cannot be

recovered, as in campaign spending or warfare.

3. One-Dimensional Equilibrium

In this section, we will exhibit a one-dimensional distribution on the N-

dimensional simplex ∆N =

½
x ∈ RN : xi > 0,

NP
i=1

xi = 1

¾
whose marginal dis-

tribution on each coordinate is Uniform
£
0, 2

N

¤
and which is therefore an equi-

librium of the plurality game. We can depict this distribution graphically in

the case N = 3 as a uniform distribution on the two line segments pictured

in Figures 1 and 2. Figure 1 depicts the simplex explicitly as a subset of R3,
while in Figure 2 we have the usual two-dimensional representation which we
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(0, 1/3, 2/3)

(1/3, 2/3, 0)

(2/3, 1/3, 0)

(1/3, 0, 2/3)

x1

x3

Figure 1

will use henceforth. This is obtained by letting the plane of the page be the

plane x1+x2+x3 = 1. Notice that the distribution of x3 is uniform on each line

segment individually. Also, coordinate x1 is distributed U
£
0, 1

3

¤
on the left-

hand segment in Figure 2 and U
£
1
3
, 2
3

¤
on the right-hand segment, yielding the

correct distribution overall. Similarly, coordinate x2 is distributed U
£
0, 1

3

¤
on

the right-hand segment and U
£
1
3
, 2
3

¤
on the left-hand segment. In general, our

distribution will be uniform onN−1 parallel line segments in theN-dimensional
simplex, as described below.

Proposition 1. Let T = 1 + 2 + ... + (N − 1) = N(N−1)
2

. The uniform dis-

tribution on the N − 1 parallel line segments whose endpoints are given by
1
T
(k, k + 1, ..., N − 2, 0, ..., k − 1, N − 1) and 1

T
(k + 1, k + 2, ..., N − 1, 1, ..., k, 0)
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(0, 1/3, 2/3) (1/3, 0, 2/3)

(1/3, 2/3, 0) (2/3, 1/3, 0)

(0,0,1)

(0,1,0) (1,0,0)

Figure 2

for k = 0, 1, ..., N − 2 gives a distribution on ∆N whose marginal distribution

on each coordinate is Uniform
£
0, 2

N

¤
.

Proof. First notice that the coordinates of each endpoint sum to 1, so that

each line segment is indeed contained in the simplex. Also, the distribution of

the last coordinate xN , which plays a special role, is U
£
0, N−1

T

¤
= U

£
0, 2

N

¤
on

each segment. The distribution of the first coordinate is U
£
k
T
, k+1

T

¤
on the kth

segment, yielding the correct overall distribution as k runs from 0 to N − 2. A
similar argument applies to coordinates x2 through xN−1. ¤

Notice that we would get a different distribution if we relabelled the coordi-

nates; if we take the average of the distributions formed by the possible labellings

we get a distribution which, like the classic examples, is symmetric between the

coordinates. In the 3-dimensional case this is a uniform distribution on the

six-pointed star pictured in Figure 3.
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(0, 1/3, 2/3) (1/3, 0, 2/3)

(1/3, 2/3, 0) (2/3, 1/3, 0)

(0, 2/3, 1/3) (2/3, 0, 1/3)

(0,0,1)

(0,1,0) (1,0,0)

Figure 3

Distributive Implications and the Lorenz Curve

Laslier and Picard (2002) compute the average Lorenz curve that would result

if wealth were distributed as in the disc equilibrium. If we order a division of one

unit of wealth among N individuals so that yi 6 y2 6 ... 6 yn, the Lorenz curve

is defined by the partial sums ck(y) = Σk
i=1yi. Given the mixed strategy defined

above, a straightforward computation shows that the expected values of these

partial sums are lk(N) = k2

N2 . In the limit, this approximates an average Lorenz

curve of c(t) = t2; that is, the average proportion of total wealth held by the

poorest fraction t of the population is t2. In contrast, for the disc equilibrium

Laslier and Picard find that the corresponding curve is cd(t) = t − 1
4
sinπt,

which lies above our curve, so that there is more inequality in our equilibrium.

Indeed, they find that the limit of the Gini index of inequality (defined as twice

the area between the Lorenz curve and the diagonal) is 1
π
, while for us it is 1

3
.
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4. Asymmetric Budgets

In this section we will analyze the majority game in the case N = 3, with the

modification that player 2 has a total budget of 1 unit but player 1 has a total

budget of r. Note that in the plurality game payoffs are completely determined

by the marginal distributions on each coordinate, because of the additively

separable utility functions. This property does not hold in the majority game

except in the special case of equal budgets. In general, this makes it more

difficult to describe equilibria, but we will be able to show some results giving

bounds on the equilibrium payoffs for different values of r. In particular, let

w(r) be the equilibrium probability of winning for player 1. This section will

establish some properties of the function w.

It will be convenient to modify our tie-breaking rule and specify that the

player with the larger budget wins all ties, as suggested by Kvassov (2003).

This ensures that payoffs are weakly lower-semicontinuous, which along with

the fact that we have a constant-sum game with compact action spaces, and

discontinuities lie in a lower-dimensional space, allows us to apply a result of

Dasgupta and Maskin (1986) to guarantee existence of a mixed-strategy equi-

librium.

We note that in two-player zero-sum games, it is appropriate to speak of

equilibrium strategies rather than strategy profiles. Indeed, we can define an

equilibrium strategy as one which guarantees that the player receives at least his

equilibrium (or maximin) payoff, and any pair of equilibrium strategies will be

an equilibrium in the usual sense. Similarly, we can speak of an ε-equilibrium

strategy as one which guarantees that the player comes within ε of his maximin

payoff.

We observe that changing r to 1
r
effectively interchanges the roles of the two

players, so that we have the following:

Fact 1: w(1
r
) = 1− w(r).
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Because of this symmetry, we will focus on the case r > 1. We will now

specify exactly how much of an advantage is necessary for player 1 to guarantee

victory.

Proposition 2. w(r) = 1 if and only if r > 3
2
.

Proof. If r > 3
2
player 1 can guarantee victory by choosing the vector ( r

3
, r
3
, r
3
);

player 2 cannot win because beating player 1 in two coordinates would require

more than 2r
3
> 1 unit of wealth.

Now suppose r < 3
2
, and let player 2 use the strategy which is uniformly

distributed on the simplex. Take any action of player 1, and assume without

loss of generality x1 6 x2 6 x3, so that x1 + x2 6 2
3
r < 1. Then the region of

player 2’s action space in which he wins coordinates 1 and 2 is an equilateral

triangle of side 1 − x1 − x2 > 1 − 2
3
r, so for fixed r, there is a positive lower

bound on his winning probability proportional to
¡
1− 2

3
r
¢2
. ¤

We also have the following:

Proposition 3. If r > 5
4
then w(r) > 2

3
.

Proof. Suppose player 1 uses an equal mixture among the three vectors given by

(1
2
, 1
2
, r− 1) and its permutations. We claim that any vector chosen by player

2 defeats at most one of these three vectors, so player 1 is guaranteed to win at

least two-thirds of the time. Suppose to the contrary, so that without loss of

generality player 2 has a vector (x1, x2, x3) which wins against (12 ,
1
2
, r− 1) and

(1
2
, r − 1, 1

2
). In order to win against the first of these vectors we must have

x3 > r − 1 > 1
4
and in order to win against the second vector we must have

x2 > r − 1 > 1
4
, implying that x1 < 1

2
. Then, we would have to win against

both vectors in both the second and third coordinate, implying x2 and x3 are

both greater than 1
2
which is impossible. ¤

As our main result in this section, we will determine the marginal impact of a

player having a small advantage in available resources. The general idea is that
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the equilibrium strategies from the symmetric case will still approximate equi-

librium strategies here. From this argument, we will get the following result,

which gives tight bounds on w(r) when r is close to 1. It will turn out to be

important that the stronger player uses an equilibrium strategy with bounded

density. The Hex equilibrium has density proportional to maxi
¯̄
xi − 1

3

¯̄
, which

is bounded above. Thus, the one-dimensional distribution given in the previous

section, or the disc equilibrium, which has unbounded density near the bound-

ary, would be inferior to the Hex strategy when budgets are slightly asymmetric,

in the sense that they do not approximate equilibrium strategy as closely, giving

the weaker player a higher maximum payoff.

Proposition 4. There exists A > 0 such that for all r > 1, 3
2
r−1−A(r−1)2 6

w(r) 6 3
2
r − 1.

Proof. Assume that r > 1 and that player 2 employs a strategy which has

marginal distribution U
£
0, 2

3

¤
on each coordinate. Then for any vector in

player 1’s choice set {(x1, x2, x3) : x1 + x2 + x3 = r} his probability of winning
in coordinate i is pi = min(3

2
xi, 1). Then p1 + p2 + p3 6 3

2
r, with equality

if x1, x2, x3 6 2
3
. With r > 1, player 1 could win in one, two, or all three

coordinates. Let the probability that he wins in exactly j coordinates be qj.

We can now compute his expected number of coordinates won in two different

ways, as q1+2q2+3q3 = p1+p2+p3. Thus, the probability that player 1 wins a

majority is q2+q3 = p1+p2+p3−(q1+q2+q3)−q3 = p1+p2+p3−1−q3 6 3
2
r−1.

Therefore, w(r) 6 3
2
r − 1.

Now, to get a lower bound on w(r), assume player 1 employs a scaled version

of the Hex strategy which has marginal distribution U
£
0, 2

3
r
¤
on each coordi-

nate, and has maximum density ρ. We will seek the action for player 2 that

maximizes his winning probability. For each vector (y1, y2, y3) in player 2’s

choice set, his probability of winning each coordinate i is pi = min( 3
2r
yi, 1).

Since player 2 will always win in 0, 1, or 2 coordinates, a derivation similar to

that above gives that his winning probability is s2 = p1+ p2+ p3− 1+ s0 where

sj is the probability that he wins exactly j coordinates. For a fixed action

of player 2, the region in player 1’s action space for which player 2 wins in 0
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coordinates will be an equilateral triangle of side r− 1, as depicted in Figure 4.
He will want to choose his action so that this triangle is in a region of maximal

density1, which is why it is important that the density of player 1’s strategy be

bounded. We then have that player 2’s winning probability satisifies

s2 6 p1 + p2 + p3 − 1 + ρ

√
3

4
(r − 1)2

6 3

2r
− 1 + ρ

√
3

4
(r − 1)2

Therefore

w(r) > 1− smax2 > 2− 3

2r
− ρ

√
3

4
(r − 1)2

Now we will use the expansion

1

r
=

1

1− (1− r)
= 1 + (1− r) + (1− r)2 + (1− r)3...

< 1 + (1− r) + (1− r)2

when r > 1. Substituting this into the inequality above, we have

w(r) > 2− 3
2

£
1 + (1− r) + (1− r)2

¤
− ρ

√
3

4
(r − 1)2

=
3

2
r − 1− (ρ

√
3

4
+
3

2
)(r − 1)2

as desired. ¤

In the course of the proof, we also showed

Corollary 1. Fix r > 1 and let ε = A(r − 1)2. Any equilibrium strategy of

the symmetric game is an ε-equilibrium strategy for the weaker player. The

Hex strategy is an ε-equilibrium strategy for the stronger player, while any other

equilibrium strategy of the symmetric game with higher maximum density is not.

Our bounds on w(r), which only differ by a second-order term for r close to

1, also yield the following result.

1It may momentarily seem obscure that he wants to maximize his probability of losing all

three coordinates. The key is that his expected number of coordinates won is constant, and

winning exactly one coordinate is a useless waste of resources.
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2

22 1

0
11

Figure 4. The simplex represents the action space of player 1,

who is assumed to have fixed a mixed strategy. The point repre-

sents an action (y1, y2, y3) for player 2. The label in each region

is the number of coordinates player 2 would win if 1’s action were

in that region, so he is trying to maximize the total mass under

player 1’s strategy of the regions labeled 2. This turns out to be

equivalent to maximizing the mass of the triangle labeled 0.

Corollary 2. w0(1) = 3
2
.

Proof. For the right derivative this is immediate. The left derivative follows

from a short derivation using symmetry considerations (i.e. Fact 1). ¤
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5. Concluding Remarks

The proof of our final proposition suggests that an equilibrium strategy of

the standard Blotto game will be more robust to small asymmetries in players’

available resources when the density of the strategy is bounded above. It is

relatively easy to show that the Hex strategy has the smallest maximum density

of any distribution with the appropriate marginals, so that it is maximally

robust from this point of view. The new distribution which we presented,

of course, does not do well under this criterion, since it has one-dimensional

support. It does have the aesthetic advantage of being extremely easy to

describe and verify.
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