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Abstract

This paper provides a geometrical decomposition theorem for the strong Lorenz core

(Dutta and Ray, 1991). As a consequence, we characterize the existence of the set of strong

constrained egalitarian allocations and we give an algorithm to find, for any TU game,

the strong constrained egalitarian allocations. Moreover, we characterize the connectivity

of the strong Lorenz core.

1 Introduction

The egalitarian solution for cooperative TU-games (ES for short), introduced by Dutta and

Ray (1989), unifies the two conflicting concepts of egalitarianism and individual interest.

They show that the ES is a singleton or the empty set and describe, for the class of convex

games, an algorithm to locate the unique egalitarian allocation, showing that in this frame-

work it belongs to the core. Nevertheless, the ES may not exist even for balanced games and,

in general, is difficult to find it.

In order to obtain egalitarian solutions existing for larger classes of games than just

convex games, Dutta and Ray (1991) introduced the strong constrained egalitarian solution

(SCES for short). The definitions of ES and SCES are identical, except in the concept of
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blocking that in the SCES requires every member of the blocking coalition be strictly better

off. However, as shown by Dutta and Ray (1991), this slight modification on the blocking

concept imply meaningful qualitative differences between the ES and the SCES. Precisely,

the SCES exists under very mild conditions, but not posses the uniqueness property. Of

course, both solutions are related, since there is always an strong constrained egalitarian

allocation which Lorenz dominates the egalitarian allocation. For convex games and all four-

player games, every SCEA Lorenz-dominates the ES. The idea of combining stability and

egalitarianism has been also the aim of Arin and Iñarra (2001), Hougaard et all (2001), and

Arin et all (2004) who suggest to select Lorenz maximal imputations in the core arguing

that their approach takes into account the coalitional stability as a natural restriction on the

outcome.

This paper will focus on the SCES, that is, on Lorenz maximal allocations with respect

to the strong Lorenz core. Dutta and Ray (1991) show the coincidence between the strong

Lorenz core and the equal division core introduced by Selten in 1972 to explain outcomes of

experimental cooperative games. From his experimental observations, Selten (1987) argued

that ”the evidence suggests that equity considerations have a strong influence on observed

payoff divisions”. From this coincidence, the strong Lorenz core is not only justified from

the theoretical idea of satisfying participation constraints for the coalitions if the norm of

egalitarianism is treated consistently across coalitions, but also from an experimental point

of view. An axiomatic justification of the equal division core can be found in Bhattacharya

(2004).

Therefore, on one hand it seems natural to consider Lorenz-maximal solutions with respect

to the strong Lorenz core arguing that in this way egalitarianism is treated in a ’consistent’

manner across coalitions, existence is guaranteed for a large class of games and there is

experimental evidence. On the other hand, Dutta and Ray’s construction of the SCES as

a recursive structure being related to the strong Lorenz core suggests that it should be not

easy to implement. So, the aim of this paper is to make the analysis of the SCES and the

strong Lorenz core even clearer by extending their work in two directions.

First, we show that the strong Lorenz core can be decomposed as a union of a finite

number of simple polyhedrons. As a consequence we characterize the non-emptiness and the

connectivity of this set.

Second, we provide an algorithm, for any game and for any number of players, to locate

all the set of SCEA in a finite number of elementary computations and therefore easy to

implement.

The plan of the paper is as follows. In Section 2 we provide some notation. In Section 3

we present the decomposition theorem for the strong Lorenz core and in Section 4 we give the
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direct consequences of the decomposition theorem, the characterization of the non-emptiness

and connectivity of the strong Lorenz core, and the non-emptiness of the SCES. In Section

5 we give an algorithm that computes the set of strong constrained egalitarian allocations

in a finite number of elementary computations. In Section 6 we give some final remarks for

the extension of this work to the asymmetric case and, finally in Section 7 the concluding

comments.

2 Preliminaries

The set of natural numbers N denotes the universe of potential players. By N ⊆ N we denote

a finite set of players, in general N = {1, . . . , n}. A transferable utility coalitional game (a

game) is a pair (N, v) where v : 2N −→ R is the characteristic function with v(∅) = 0 and 2N

denotes the set of all subsets (coalitions) of N . A game (N, v) is nonnegative if v(S) ≥ 0, for

any coalition S ⊆ N . We use S ⊂ T to indicate strict inclusion, that is S ⊆ T but S 6= T .

By |S| we denote the cardinality of the coalition S ⊆ N . The set of all games is denoted

by Γ. Given a coalition S ⊂ N,S 6= ∅ and (N, v) ∈ Γ, we define the subgame (S, vS) by

vS(Q) := v(Q), for all Q ⊆ S.

Let RN stand for the space of real-valued vectors indexed by N , x = (xi)i∈N , and for all

S ⊆ N , x(S) =
∑

i∈S xi, with the convention x(∅) = 0. For each x ∈ RN and T ⊆ N , xT

denotes the restriction of x to T : xT = (xi)i∈T ∈ RT . In addition, we define RN
+ := {x ∈

RN | x ≥ 0} and RN
++ := {x ∈ RN | x > 0}. Given two vectors x, y ∈ RN , x ≥ y denotes that

xi ≥ yi, for all i ∈ N . We say that x > y, if and only if x ≥ y and for some j ∈ N , xj > yj.

By z = max{x, y}, we denote the vector z ∈ RN such that zi = max{xi, yi}, for all i ∈ N .

The pre-imputation set of a game (N, v) is defined by X(N, v) := {x ∈ RN |x(N) = v(N)}.

A solution on a set Γ of games is a mapping σ which associates with any game (N, v) a subset

σ(N, v) of the set X(N, v). Notice that the solution set σ(N, v) is allowed to be empty. For

a game (N, v), the set of imputations is given by I(N, v) := {x ∈ X(N, v) |x(i) ≥ v(i), ∀ i ∈

N}. The core of a game (N, v) is the set of those imputations where each coalition gets at

least its worth, that is C(N, v) := {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. The equal

division core (EDC) (Selten, 1972) is an extension of the core containing those imputations

which can not be improved upon by the equal division allocation of any subcoalition, formally

EDC(N, v) :=
{

x ∈ I(N, v) | ∀ ∅ 6= S ⊂ N, there is i ∈ S with xi ≥
v(S)
|S|

}

. For any x ∈ RN ,

denote by x̂ = (x̂1, . . . , x̂n) the vector obtained by rearranging the coordinates in a non-

decreasing order, that is, x̂1 ≤ x̂2 ≤ . . . ≤ x̂n. For any two vectors y, x ∈ RN , we say that y

Lorenz-dominates x, (y ≻L x), if
∑k

j=1 ŷj ≥
∑k

j=1 x̂j, for every k = 1, . . . , n, with at least one

strict inequality. Given a game (N, v), the strong Lorenz Core (L∗) (Dutta and Ray, 1991)

is defined in a recursive way. The strong Lorenz core of a singleton coalition is L∗({i}) =
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{v({i})}. Now suppose that the strong Lorenz core for all coalitions of cardinality k or less

have been defined, where 1 < k < |N |. The strong Lorenz core of a coalition of size (k + 1)

is defined by L∗(S) = {x ∈ RS | x(S) = v(S), and ∄ T ⊂ S and y ∈ EL∗(T ) s.t. y ≥ xT },

where EL∗(T ) = {x ∈ L∗(T ) | ∄ y ∈ L∗(T ) s.t. y ≻L x}. Theorem 1 in Dutta and Ray

(1991) states that L∗(N) = EDC(N, v), for any game (N, v). Hence, given a game (N, v),

the strong constrained egalitarian allocations is the set EL∗(N) = {x ∈ EDC(N, v) |∄ y ∈

EDC(N, v) such that y ≻L x}.

A game with a non-empty set of imputations is called essential. A game with a non-

empty core is called balanced and, if all its subgames have non-empty cores, the game is

said to be totally balanced. A game (N, v) is convex (Shapley, 1971) if, for every S, T ⊆ N ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). A game (N, v) is superadditive if, for every S, T ⊆

N, S ∩ T = ∅, v(S) + v(T ) ≤ v(S ∪ T ). A game is N -superadditive if for all partition

{S1, . . . , Sm} of N , it holds v(S1)+ . . .+ v(Sm) ≤ v(N). A game (N, v) is said to be modular

if there exists a vector x = (x1, . . . , xn) ∈ RN such that for every S ⊆ N , v(S) =
∑

i∈S xi.

To indicate the modular game generated by x ∈ RN we will use (N, vx).

An ordering θ = (i1, . . . , in) of N , where |N | = n, is a bijection from {1, . . . , n} to N . We

denote by SN the set of all orderings of N .

3 A decomposition theorem for the strong Lorenz core

The main result of this section is that the strong Lorenz core (or the equal division core) can

be decomposed as the union of a finite number of simple polyhedrons. This will be the basic

tool for our following results. In order to find those polyhedrons we introduce the concept of

equal share worth vectors.

Definition. Let (N, v) be a game and θ = (i1, . . . , in) ∈ SN . We define the equal share

worth vector associated to θ, denoted by x̄θ(v) ∈ RN , as follows:

x̄θ
ik

(v) := max
S∈Pik

{

v(S)

|S|

}

, for k = 1, . . . , n,

where Pi1 := {S ⊆ N | i1 ∈ S} and Pik := {S ⊆ N | i1, . . . , ik−1 6∈ S, ik ∈ S}, for

k = 2, . . . , n.

Remark 3.1. Notice that for all θ = (i1, . . . , in) ∈ SN , the set {Pi1 , . . . , Pin} forms a partition

of the set 2N \ ∅. In addition, for all i ∈ N , x̄θ
i (v) ≥ v({i}), and for any non-empty coalition

S ⊆ N , there is a player i ∈ S such that x̄θ
i (v) ≥ v(S)

|S| . However, in general x̄θ(v) is not an

efficient vector and so it does not belong to the strong Lorenz core.

Next we define the polyhedrons that will give rise to the decomposition of the strong

Lorenz core.
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Definition. Let (N, v) be a game and θ = (i1, . . . , in) ∈ SN . We define the polyhedron

generated by the equal share worth vector x̄θ(v), denoted by ∆x̄θ
(v), as the convex hull of

all x̄θ(v) + δx̄θ ei, where δx̄θ = v(N) − x̄θ(v)(N) and, for any i ∈ N , ei is the i-th canonical

vector of RN . That is,

∆x̄θ

(v) := convex {x̄θ(v) + δx̄θ ei, for all i ∈ N}.

Given a game (N, v) and θ ∈ SN such that δx̄θ ≥ 0, it is easy to see that

(1) ∆x̄θ

(v) = {x ∈ X(N, v) | x ≥ x̄θ(v)}.

To decompose the strong Lorenz core we only need to work with a special kind of the

polyhedrons defined above, those generated by the equal share worth vectors associated to

θ ∈ SN with δx̄θ ≥ 0, and minimal with respect to the usual order in RN .

Lemma 3.2. Let (N, v) be a game and x̄θ(v), x̄θ′(v) such that δx̄θ ≥ 0, δx̄θ′ ≥ 0. Then, the

following statements are equivalent:

1. x̄θ(v) ≤ x̄θ′(v).

2. ∆x̄θ′

(v) ⊆ ∆x̄θ
(v).

Proof: From expression (1) it follows straightforward that x̄θ(v) ≤ x̄θ′(v) implies

∆x̄θ′

(v) ⊆ ∆x̄θ
(v). Next we prove the converse. Assuming ∆x̄θ′

(v) ⊆ ∆x̄θ
(v) we de-

duce that x̄θ′(v) + δx̄θ′ ek ∈ ∆x̄θ

(v), for all k ∈ N . Hence, again from expression (1),

x̄θ′(v) + δx̄θ′ ek ≥ x̄θ(v). Finally, let j ∈ N and take k 6= j, then x̄θ′

j (v) ≥ x̄θ
j(v), getting

the result.�

Definition. Let (N, v) be a game. We define the set of minimal equal share worth vectors

as follows:

M(v) := {x ∈ RN | x = x̄θ(v) for some θ ∈ SN , δx̄θ ≥ 0 and ∄ θ′ ∈ SN ,

s. t. x̄θ′(v) < x̄θ(v)}.
(2)

Now we have all the tools to state a decomposition theorem for the strong Lorenz core

(or the equal division core) in terms of the above polyhedrons.

Theorem 3.3. The strong Lorenz core is the union of a finite set of polyhedrons. In partic-

ular, given a game (N, v)

L∗(N) =
⋃

x∈M(v)

∆x(v).

5



Proof: Let x ∈ L∗(N). We construct a specific order θ ∈ SN and an equal share worth

vector x̄θ(v) such that x ≥ x̄θ(v). This order θ is generated by the following algorithm. First,

choose a coalition S1 ∈ 2N , S1 6= ∅, such that v(S1)
|S1|

= max∅6=C∈2N

{

v(C)
|C|

}

. Having chosen

S1, since we suppose that x ∈ L∗(N), there exists a player i1 ∈ S1 such that xi1 ≥ v(S1)
|S1|

.

Second, choose S2 ∈ 2N\{i1}, S2 6= ∅, such that v(S2)
|S2|

= max∅6=C∈ 2N\{i1}

{

v(C)
|C|

}

. As before,

since x ∈ L∗(N), there exists a player i2 ∈ S2 such that xi2 ≥ v(S2)
|S2|

. Following this process

we obtain an ordering θ = (i1, i2, . . . , in) ∈ SN such that

(3) x ≥ x̄θ(v),

where x̄θ
ij
(v) =

v(Sj)
|Sj |

, j = 1, 2, . . . , n.

Since x ∈ X(N, v), from (3) it follows that δx̄θ ≥ 0. Hence, from expression (1) we have

x ∈ ∆x̄θ
(v). If x̄θ(v) ∈ M(v), we are finished. If not, we can find an order θ′ such that

x̄θ′(v) < x̄θ(v) with x̄θ′(v) ∈ M(v). But then, from Lemma 3.2, ∆x̄θ

(v) ⊆ ∆x̄θ′

(v), and so

x ∈ ∆x̄θ′

(v).

To show the reverse inclusion, let x ∈ ∆x̄θ
(v), where ∆x̄θ

(v) is generated by x̄θ(v) ∈ M(v).

Then, from , x ∈ X(N, v) and x ≥ x̄θ(v). Recall that for all θ = (i1, . . . , in) ∈ SN , the set

{Pi1 , . . . , Pik} as described in Definition 3 forms a partition of the set 2N \ {∅} (see Remark

3.1). Now let S ∈ 2N \ {∅}, and ir ∈ S be the first player in S with respect to the ordering

θ. Then, S ∈ Pir , and so xir ≥ x̄θ
ir

(v) = maxC∈Pir

{

v(C)
|C|

}

≥ v(S)
|S| . Hence, we can conclude

that x ∈ L∗(N). �

4 Consequences of the decomposition theorem

In this part we are going to use the decomposition theorem stated in the section above in order

to characterize non-emptiness and connectivity of the strong Lorenz core, and non-emptiness

of the strong constrained egalitarian solution.

4.1 Non-emptiness

First of all, notice that since the strong Lorenz core is a compact set, the non-emptiness of

the strong Lorenz core and the strong constrained egalitarian solution are equivalent.

Since the strong Lorenz core is an extension of the core, balancedness (Bondareva, 1963

and Shapley, 1967) gives a first condition to guarantee the non-emptiness. However, it is

well-known that strong Lorenz core can be non-empty even if the core is empty. On the other

hand, Dutta and Ray (1991) state that for weakly superadditive games both the strong Lorenz

core and the strong constrained egalitarian solution are non-empty. Nevertheless, as we will

see in the following example, weak superadditivity does not characterize non-emptiness.
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Example 1. Let (N, v) be a three-person game, and v({i}) = 0, for all i = 1, 2, 3, v({1, 2}) =

2, v({1, 3}) = v({2, 3}) = 0, v(N) = 1.

Notice that this game is not weakly superadditive since v({1, 2}) + v({3}) > v({1, 2, 3}) and

the strong Lorenz core L∗(N) = {x ∈ I(N, v) | x1 ≥ 1 or x2 ≥ 1} is a non-empty set.

So, our objective is now to characterize non-emptiness using Theorem 3.3. Since the strong

Lorenz core is a compact set, the non-emptiness of L∗(N) implies the non-emptiness of the

set of strong constrained egalitarian allocations, EL∗(N). Hence, it follows immediately the

following result.

Theorem 4.1. Let (N, v) be a game. Then, the following statements are equivalent:

1. L∗(N) 6= ∅.

2. EL∗(N) 6= ∅

3. There exists x ∈ M(v) such that x(N) ≤ v(N).

4.2 Connectedness

In general, the strong Lorenz core is not a connected set. To show this consider the following

example.

Example 2. Let (N, v) be a three-person game, and v({i}) = 0, for all i ∈ N , v({1, 2}) = 0,

v({1, 3}) = v({2, 3}) = v(N) = 1. The set of minimal equal share worth vectors is M(v) =

{x = (0.5, 0.5, 0), y = (0, 0, 0.5)}, and from Theorem 3.3 we can express L∗(N) = ∆x(v) ∪

∆y(v), where ∆x(v) = {(0.5, 0.5, 0)} and ∆y(v) = convex {(0.5, 0, 0.5) , (0, 0.5, 0.5) , (0, 0, 1)} .

Now it is easy to see that L∗(N) is not connected.

Let us consider a game with a connected strong Lorenz core.

Example 3. Let (N, v) be a four-player glove market game. Assume player 1 and 2 own one

right-hand glove each, and player 3 and 4 own one left-hand glove each. Single gloves (or

several gloves from the same hand) are worthless; any pair of gloves can, however, be sold for

1$ (it is assumed that the gloves are identical except for the left-right distinction). Thus, the

characteristic function of the game is v({i}) = 0 for all i = 1, . . . , 4, v({1, 2}) = v({3, 4}) = 0,

v(N) = 2 and v(S) = 1 otherwise.

In this example M(v) = {x = (0.5, 0.5, 0, 0), y = (0, 0, 0.5, 0.5)}. Again from Theorem

3.3, we know that L∗(N) = ∆x(v)∪∆y(v), where ∆x(v) = convex {(1.5, 0.5, 0, 0), (0.5, 1.5, 0, 0),

(0.5, 0.5, 1, 0), (0.5, 0.5, 0, 1)} and ∆y(v) = convex{(1, 0, 0.5, 0.5), (0, 1, 0.5, 0.5), (0, 0, 1.5, 0.5),

(0, 0, 0.5, 1.5)}.
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Figure 1 represents the core and the strong Lorenz core of the game in the efficiency

hyperplane (of dimension 3). The strong Lorenz core corresponds to the two shadowed

pyramides and the core is the discontinuous black segment.

∆y(v)

∆x(v)

C(N, v)

(0, 0, 1.5,0.5)

(0, 0, 0.5, 1.5)

(1.5, 0.5, 0, 0)

(0.5, 1.5, 0, 0)

(2, 0, 0, 0)

(0, 0, 0, 2)

(0, 0, 2, 0)

(0, 2, 0, 0)

(1, 1, 0, 0)

(0, 0, 1, 1)

(0.5, 0.5, 0.5, 0.5)

Figure 1: The strong Lorenz core and the core of Example 3.

What is most important for our purpose is to see what kind of relationship has the

minimal share worth vectors in the examples above. Notice that in example 2, the vector

z = max{0.5, 0.5, 0), (0, 0, 0.5)} = (0.5, 0.5, 0.5) is not Pareto optimal, that is, z(N) = 1.5 >

v(N). While, in example 3, z = max{(0.5, 0.5, 0, 0), (0, 0, 0.5, 0.5)} = (0.5, 0.5, 0.5, 0.5) sat-

isfies Pareto optimality. As we will see, this “max-relation” between minimal equal share

worth vectors will allow us to characterize connectedness. First we need to introduce some

additional notation.

Given a game (N, v) with non-empty strong Lorenz core, we define the finite graph

(V,E), where V := {x ∈ RN | x ∈ M(v)} is the set of vertices and E := {{x, y} | x, y ∈

M(v) and
∑

i∈N max{xi, yi} ≤ v(N)} is the set of edges. Two minimal equal share worth

vectors x, y ∈ V , x 6= y, are connected if there exists a sequence of vertices {xi1 , xi2 , . . . , xit},

with xik ∈ V for all k ∈ {1, 2, . . . , t}, such that xi1 = x, xit = y, and {xik , xik+1
} ∈ E, for

all k ∈ {1, 2, . . . , t − 1}. Finally, a graph is connected if for any two vertices x, y there is a

sequence of connected vertices from x to y.

Theorem 4.2. Let (N, v) be a game such that L∗(N) 6= ∅. Then, the following statements

are equivalent:
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1. L∗(N) is connected.

2. The graph (V,E) is connected.

Proof:

1 ⇒ 2) Let x, y ∈ V . Since, by hypothesis, L∗(N) is connected, from Theorem 3.3 it

follows the existence of a sequence of vectors {x1, . . . , xk} ∈ V such that x = x1, y = xk,

and ∅ 6= ∆xl(v) ∩ ∆xl+1(v), for all l = 1, . . . , k − 1. Let z ∈ ∆xl(v) ∩ ∆xl+1(v). Then,

from expression (1), z(N) = v(N) and z ≥ max{xl, xl+1}, which implies {xl, xl+1} ∈ E,

for all l = 1, . . . , k − 1, and so the graph (V,E) is connected.

2 ⇒ 1) Let x1, x2 ∈ L∗(N). From Theorem 3.3, we know that there exist y1, y2 ∈ M(v)

such that x1 ∈ ∆y1(v) and x2 ∈ ∆y2(v). Since we suppose that (V,E) is connected,

then there exist a sequence of vertices {z1, . . . , zk} ∈ V such that y1 = z1, y2 = zk, and

{zl, zl+1} ∈ E, for all l = 1, . . . , k − 1. But then, v(N) ≥
∑

i∈N max{zl,i, zl+1,i}, for

all l = 1, . . . , k − 1, which implies ∆zl(v) ∩ ∆zl+1(v) 6= ∅. Let wl ∈ ∆zl(v) ∩ ∆zl+1(v),

l = 1, . . . , k − 1. Since for all j = 1, . . . , k, ∆zj(v) is a convex set, [x1, w1] ⊂ ∆z1(v),

[wl, wl+1] ⊂ ∆zl+1(v), for l = 1, . . . , k− 2, and [wk−1, x2] ⊂ ∆zk(v). But then, [x1, w1]∪

[w1, w2] ∪ . . . ∪ [wk−1, x2] ⊂ L∗(N), which prove the connectivity of the strong Lorenz

core L∗(N).�

Now we examine conditions under which the strong Lorenz core is non-empty and con-

nected.

Definition. Let (N, v) be a game and ∅ 6= S ⊆ N . Then, S is an equity coalition if
v(S)
|S| ≥ v(T )

|T | , for all T ⊆ S.

Proposition 4.3. Let (N, v) be a game. Then, the following statements are equivalent:

1. N is an equity coalition.

2. L∗(N) is connected and eN ∈ L∗(N), where eN =
(

v(N)
|N | , . . . , v(N)

|N |

)

.

Proof:

1 ⇒ 2) Let x ∈ M(v). Since N is an equity coalition, eN ≥ x. Hence, from expression

1 and Theorem 3.3, we have that eN ∈
⋂

x∈M(v) ∆x(v) ⊆ L∗(N), and thus L∗(N) is a

non-empty connected set.

2 ⇒ 1) Let ∅ 6= S ⊂ N . Since eN ∈ L∗(N), there exists a player i ∈ S such that

eN,i ≥
v(S)
|S| , and so N is an equity coalition.�
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5 An algorithm for locating the strong constrained egalitarian

allocations

In this section we will describe an algorithm to compute de strong constrained egalitarian

allocations in any game with non-empty strong Lorenz core. We start by introducing some

definitions. Let (N, v) be a game with L∗(N) 6= ∅. A payoff vector x is Lorenz maximal in

L∗(N) if x ∈ L∗(N) and there exists no z ∈ L∗(N) such that z Lorenz dominates x.

Definition. Let (N, v) be a game, x ∈ M(v), and θ = (i1, i2, . . . , in) ∈ SN such that

xi1 ≥ xi2 ≥ . . . ≥ xin . Given k ∈ {1, . . . , n − 1}, n ≥ 2, we define the vectors yk and yx as

follows:

1. For j = 1, . . . , n

(4) yk
ij

:=







xij if j ≤ k
v(N)−xi1

−...−xik

n−k
otherwise.

2. yx := yk∗
, where k∗ = min{k ∈ {1, . . . , n − 1} | yk ∈ ∆x(v)}.

Remark 5.1. Notice that yn−1 is an extreme point of the polyhedron ∆x(v). Since {1, . . . , n−

1} is a finite set, there exists a minimal k∗ ∈ {1, . . . , n − 1} such that yk∗
∈ ∆x(v). Hence,

yk is well defined. Moreover, if x is an efficient vector, then ∆x(v) = {x} and x = yn−1.

Lemma 5.2. Let (N, v) be a game with non-empty L∗(N), and x ∈ M(v). Then, yx Lorenz

dominates any other element z ∈ ∆x(v), z 6= yx.

Proof: See appendix.

Now combining Theorem 3.3 and Lemma 5.2 we get the following result.

Theorem 5.3. Let (N, v) be a game. Then, the strong constrained egalitarian allocations

are the Lorenz maximal elements in Lmax(∆), where Lmax(∆) := {yx | x ∈ M(v)}.

Remark 5.4. From the result above, we have a way to compute the strong constrained

egalitarian allocations working as follows.

1. Let (N, v) be a game. Then, find the set of minimal equal share worth vectors, M(v).

2. For any x ∈ M(v), construct the allocation yx (see expression (4)).

3. Finally, check the Lorenz maximal allocations in Lmax(∆).

Notice that the above procedure is easy to implement since it only requires a finite number

of elementary operations.
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6 Final remarks

The notion of the equity core of a cooperative TU-game was introduced by Selten (1978) as

a generalization of the equal division core or the strong Lorenz core to the asymmetric case

by taking into account exogenous and positive weights of the players. And, of course, when

all players have the same weight both notions coincide.

The equity core, with respect to a positive vector w ∈ RN
++ of weights of the players, is the

set of payoff vectors efficient for the grand coalition and such that there is no any coalition

being able to block by the proportional allocation to w. In other words, a payoff vector is

in the equity core if no coalition can divide its value proportionally to w among its members

and, in this way, give more to all its members than the amount they receive in the payoff

vector.

It is worth emphasizing that, by using equivalent reasonings, we can extend the decom-

position theorem obtained for the strong Lorenz core to the asymmetric case and we obtain a

decomposition theorem for the equity core. Therefore, all the results we have obtained about

existence and connectivity of the strong Lorenz core based on the decomposition theorem can

also be extended for the equity core.

7 Concluding comments

The notion of SCES has an intrinsic difficulty. We provide a geometric approach of the strong

Lorenz core and an intuitive method to find the SCES for any game. It seems natural to

think that, by using similar arguments it could be possible to find a decomposition theorem

for the Lorenz core and so an algorithm to locate the egalitarian solution, if it exists, for any

game. Dutta and Ray already gave a simple algorithm to locate the egalitarian solution for

the particular class of convex games which has been widely used in the literature.

8 Appendix

The aim of this appendix is to provide a proof of Lemma 5.2. The Lemma is proved in three

stages. First, we show the rearranged vector ŷx in a non-decreasing order. Second, we check

the inequalities to prove the Lorenz dominance and third we check that at least one of those

inequalities is strict.

If |N | = 1, then ∆x(v) = {x} with x = v(N). If |N | ≥ 2, let x ∈ M(v) and suppose,

without loss of generality,

(5) x1 ≥ x2 ≥ · · · ≥ xn.
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Take k∗ = min{k ∈ {1, . . . , n − 1} | yk ∈ ∆x(v)} and yx = yk∗
as defined in (4). Step 1: We

prove that ŷk∗
=

(v(N)−x1−···−xk∗

n−k∗ , . . . , v(N)−x1−···−xk∗

n−k∗ , xk∗ , . . . , x1

)

. We must distinguish two

cases:

Case 1: If k∗ = 1. In this situation yx = y1 =
(

x1,
v(N)−x1

n−1 , . . . , v(N)−x1

n−1

)

. Suppose, on

the contrary, that v(N)−x1

n−1 > x1. Then, v(N)
n

> x1 which is a contradiction since, by

definition, x1 ≥ v(N)
n

.

Case 2: If 2 ≤ k∗ ≤ n − 1. In this case, yk∗
∈ ∆x(v) and, for h = 1, . . . , k∗ − 1,

yh /∈ ∆x(v). Hence, from expression (4) we know that for some i ∈ {k∗, . . . , n} it holds

v(N) − x1 − · · · − xk∗−1

n − (k∗ − 1)
< xi ≤ xk∗

v(N) − x1 − · · · − xk∗−1 < (n − (k∗ − 1))xk∗

(6)
v(N) − x1 − · · · − xk∗−1 − xk∗

n − k∗
< xk∗

Then, taking into account that xk∗ ≤ xk∗−1 ≤ · · · ≤ x2 ≤ x1 (see expression (5)), from

(6) it follows ŷk∗
=

(v(N)−x1−···−xk∗

n−k∗ , . . . , v(N)−x1−···−xk∗

n−k∗ , xk∗ , . . . , x1

)

.

Step 2: We prove that for any z ∈ ∆x(v), z 6= yk∗
, it holds: ŷk∗

1 + · · · + ŷk∗

j ≥ zi1 + · · · + zij

for j = 1, . . . , n where zi1 ≤ zi2 ≤ · · · ≤ zin . Once again, we distinguish two cases:

Case 1: If j ∈ {n − k∗, . . . , n}. By efficiency, we have ŷk∗

1 + · · · + ŷk∗

n = zi1 + · · · + zin .

We want to see that for any j ∈ {n − k∗, . . . , n − 1}, ŷk∗

1 + · · · + ŷk∗

j ≥ zi1 + · · · + zij ,

which is equivalent to

v(N) − ŷk∗

j+1 − · · · − ŷk∗

n ≥ v(N) − zij+1 − · · · − zin ,

equivalently

ŷk∗

j+1 + · · · + ŷk∗

n ≤ zij+1 + · · · + zin ,

which is true because

ŷk∗

j+1 + · · · + ŷk∗

n ≤ xn−j + · · · + x1 ≤ zn−j + · · · + z1 ≤ zij+1 + · · · + zin ,

where the last before inequality follows from the fact that z ∈ ∆x(v).

Case 2: If j ∈ {1, . . . , n − k∗ − 1}. Here we use an induction argument.

• For j = n − k∗ − 1: Suppose, on the contrary, that

(7) ŷk∗

1 + · · · + ŷk∗

n−k∗−1 < zi1 + · · · + zin−k∗−1
.
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From Case 1, we know that ŷk∗

1 + · · · + ŷk∗

n−k∗ ≥ zi1 + · · ·+ zin−k∗
. This inequality

together with expression (7) implies ŷk∗

n−k∗ > zin−k∗
. But then, since zin−k∗

≥ · · · ≥

zi2 ≥ zi1 , we have (n − k∗ − 1)ŷk∗

n−k∗ > zi1 + · · · + zin−k∗−1
. From Step 1, we know

that ŷk∗

1 = · · · = ŷk∗

n−k∗−1 = ŷk∗

n−k∗, and so ŷk∗

1 + · · ·+ ŷk∗

n−k∗−1 > zi1 + · · ·+zin−k∗−1
,

which contradicts (7). Hence, we can conclude that

ŷk∗

1 + · · · + ŷk∗

n−k∗−1 ≥ zi1 + · · · + zin−k∗−1
.

• Induction hypothesis: ŷk∗

1 + · · · + ŷk∗

l+1 ≥ zi1 + · · · + zil+1
.

• Now we have to see that ŷk∗

1 + · · · + ŷk∗

l ≥ zi1 + · · · + zil for l = n − k∗ − 2, . . . , 1.

To show this it is enough to follow the reasoning used for j = n − k∗ − 1, taking

into account the induction hypothesis.

Step 3: Finally, we have to prove that, if yk∗
6= z then at least one of the inequalities stated

in Step 2 is strict. Equivalently, we show that if

(8) ŷk∗

1 + · · · + ŷk∗

j = zi1 + · · · + zij for j = 1, . . . , n

then yk∗
= z. Indeed, if expression (8) holds, then ŷk∗

j = zij , for j = 1, . . . , n and so

zi1 = · · · = zin−k∗
=

v(N) − x1 − · · · − xk∗

n − k∗
,

zin−k∗+1
= xk∗

zin−k∗+2
= xk∗−1

...

zin−1 = x2

zin = x1

(9)

Suppose that z1 6= yk∗

1 = x1, then from (9): z1 = xj for some j ∈ {2, . . . , k∗}, or

z1 = v(N)−x1−···−xk∗

n−k∗ . In any case z1 ≤ x1. But z ∈ ∆x(v), which implies z1 ≥ x1. Hence

z1 = x1 = yk∗

1 . Now suppose that z2 6= yk∗

2 = x2. Then, z2 = xj for some j ∈ {3, . . . , k∗} or

z2 = v(N)−x1−···−xk∗

n−k∗ . In any case z2 ≤ x2. But z ∈ ∆x(v), and so z2 ≥ x2. Hence, z2 = x2 =

yk∗

2 . Following a symmetric reasoning we get z3 = x3 = yk∗

3 , . . . , zk∗ = xk∗ = yk∗

k∗ . But then,

from (9), it follows straightforward zk∗+1 = · · · = zn = v(N)−x1−···−xk∗

n−k∗ = yk∗

k∗+1 = · · · = yk∗

n .

Hence, we have proved that z = yk∗
.
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