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1 Introduction

The modeling framework of contests and tournaments� settings where players under-

take e¤ort or expend resources in pursuit of some �prize�� has been usefully applied

in numerous economic environments. These include patent races, allocating resources

in elections, the private funding of public goods, designing incentive contracts in �rms,

and golf tournaments.1

Early modeling of contests focused on equilibrium outcomes when players move

simultaneously (see, for example, Tullock 1980, 1985). The usual justi�cation for this

modeling choice was that commitment was valuable: if a player can choose between

moving at the same time as a rival or moving earlier, he prefers to move earlier.

Since all competing parties share the same incentive, they will all race to move at the

earliest possible moment. Hence, it was argued that unless some institutional feature

allows some parties to move ahead of others, the right model is that of simultaneous

moves.

Baik and Shogren (1992) and Leininger (1993) question this argument. In both

papers, the order of moves is endogenous and a sequential move contest emerges. The

reason is that, even though both players prefer moving �rst over moving simultane-

ously, the favorite prefers moving second over moving �rst, while the underdog prefers

moving �rst over moving second.

While the literature on contests is vast, the literature on sequential contests is

much smaller.2 The earliest analysis of sequential contests is by Dixit (1987), who

derives conditions under which commitment has value;3 that is, he shows when a

player bene�ts from moving �rst rather than moving simultaneously. The central

theme of this line of the contest literature is that the timing of moves matters, because

actions in earlier stages of the contest have strategic e¤ects on those in later stages

and this a¤ects equilibrium outcomes.

A key assumption shared by all models of sequential contests is that moves made

in earlier periods are costlessly observed by players who move later in the game. In

this paper, we relax this assumption. Instead, we suppose that a player must pay

1See, for instance, Taylor, 1995; Snyder, 1989; Morgan and Sefton, 2000; Lazear and Rosen, 1981;
and Ehrenberg and Bognanno, 1990.

2See Nitzan (1994) for an excellent survey, particularly with respect to modeling rent-seeking.
3See also Baik and Shogren (1992), Baye and Shin (1999), and Dixit (1999) for additional com-

ments on Dixit (1987).
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a small cost to observe the prior action of a rival. Thus, our modeling framework

follows the one �rst suggested by Várdy (2004).4 When strategy spaces are discrete,

he showed that there is no value of commitment in pure strategies but that the value

of commitment can be completely restored if mixed strategies are permitted.

In contrast to Várdy, we focus on contests with continuous strategy spaces. In this

setting, we show that there is no value to commitment whatsoever when observation

is costly. More precisely, e¤orts and payo¤s in all subgame perfect equilibria of the

sequential contest are identical to those in the Nash equilibrium of the standard

simultaneous contest. As such, this paper o¤ers a justi�cation for the attention that

the existing literature has given to simultaneous contests.

The intuition for our result is quite straightforward. Suppose the simultaneous

and the sequential contests are �well-behaved,�in the sense that the players�payo¤

functions are strictly concave in their own levels of e¤ort. In that case, it is easy to

show that the �rst player in a sequential contest with observation costs has a unique

best response to any (sequentially rational) beliefs about the second player�s strategy.

This implies that in any subgame perfect equilibrium, the �rst player plays a pure

strategy. But if player 1 plays a pure strategy, information about player 1�s actual

choice of e¤ort is of no value to player 2 in equilibrium, because player 2 can already

perfectly �solve�what player 1 did. Therefore, the second player will never pay to

observe the �rst player�s choice, even if the cost of doing so is arbitrarily small. In

turn, this destroys any strategic e¤ect player 1�s move could have on player 2. Hence,

there is no value to commitment.

The key problem for the �rst player is that, by playing a pure strategy, he destroys

the incentive for the second player to pay to observe his action in equilibrium. Indeed,

the question arises why the �rst mover does not create his own �noise�by playing

a mixed strategy in order to restore the value of commitment. The reason is that

he cannot resist the temptation to �purify�any mixed strategy and play his unique,

most pro�table action instead, because his optimization problem is �well-behaved�in

the sense of strict concavity. Thus, somewhat paradoxically, it ultimately is the �well-

behavedness�of the �rst player�s problem that destroys the value of commitment.

We examine the robustness of the loss of the value of commitment by considering

several variations of the problem. First, we study the case of a discrete strategy

4See also Morgan and Várdy (2004) for experiments relating to the fragility of commitment in
this framework.
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space on a �nite grid. We show that, for any �xed cost of observation, there exists

a su¢ ciently �ne grid such that commitment has no value. Next, we study the

case where the leader�s actions are observed costlessly but noisily as in the �noisy

leader�setup of Bagwell (1995) and Van Damme and Hurkens (1997). We �nd that

for a simple but widely used signaling technology where the second player either

observes the �rst player�s action precisely or observes an entirely uninformative signal,

strict concavity of the �rst player�s payo¤ function once again destroys the value of

commitment.

Finally, we study sequential rank-order tournaments with observation costs. In a

sequential tournament, the second mover can observe the e¤ectiveness of the �rst-

mover�s e¤ort rather than the e¤ort itself. We show that the value of commitment

in tournaments is completely preserved provided that the observation costs are su¢ -

ciently small. What accounts for this di¤erence? In tournaments, the �rst player�s

e¤ectiveness is not deterministic, even if he plays a pure strategy. Thus, the second

player derives value from observing the e¤ectiveness of the �rst player�s e¤ort. Hence,

for small enough costs, the second player will choose to observe and, therefore, the

value of commitment is preserved. This result highlights that it is the observability

of the e¤ectiveness of e¤ort� rather than of the e¤ort itself� that creates the value

of commitment.

The remainder of the paper proceeds as follows: Section 2 presents the contest

model. Section 3 contains the main result, namely, that in sequential contests with

observation costs, the value of commitment vanishes completely. Section 4 examines

the robustness of this result. Finally, Section 5 concludes. A generalization of the

main result is contained in the Appendix.

2 Model

Two risk-neutral players, labeled 1 and 2, are competing to win some object. The

players may be thought of as pressure groups and the object as a favorable piece of

legislation, a monopoly concession, and so on. Let Vi denote the (positive and �nite)

value of the object to player i: The valuation that each player places on the object

is commonly known. If i does not receive the object, his payo¤ is normalized to zero

(exclusive of contest expenditures� more on this below).

Players compete for the object by making irreversible e¤ort outlays. The e¤ort
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of player i is denoted xi 2 R+0 . There is a continuously di¤erentiable contest success
function P (x1; x2) ; which gives the probability that the object will be awarded to

player 1 when e¤orts x1 and x2 are expended. The cost of e¤ort is Ci (xi). Hence,

player 1�s expected payo¤ is:

E�1 = P (x1; x2)V1 � C1 (x1)

while player 2�s expected payo¤ is

E�2 = [1� P (x1; x2)]V2 � C2 (x2)

Following Dixit (1987) and much of the contest literature, in the main text we

assume that the contest success function takes the Logit form; that is

P (x1; x2) =

(
f1(x1)

f1(x1)+f2(x2)
if (x1; x2) 6= (0; 0)

1
2

otherwise

where fi (0) = 0; f 0i (�) > 0; and f 00i (�) � 0. We also assume that Ci (xi) = xi; that is,
the cost of e¤ort is equal to the e¤ort itself.

Although, here, the contest success function is assumed rather than derived from

some optimization problem, Clark and Riis (1998) and Skaperdas (1996) o¤er ax-

iomatic foundations for the Logit form of contest success functions. Moreover, in the

Appendix, we o¤er general conditions on payo¤s such that the conclusions derived in

the main text continue to hold.

Simultaneous Contest
Consider the case where x1 and x2 are selected simultaneously. The following facts

are well-known in the contest literature (see, e.g., Yildirim, 2005):

Fact 1. Player i�s problem is strictly concave in xi.

Fact 1 implies that for each xj; player i has a unique best response xi (xj) satisfying

@E�i=@xi = 0: Together with the earlier assumptions made on fi and Ci; this implies

that xi (xj) is continuously di¤erentiable and bounded. Hence, a pure strategy Nash
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equilibrium is a pair (x�1; x
�
2) satisfying

f2 (x
�
2) f

0
1 (x

�
1)

(f1 (x�1) + f2 (x
�
2))

2V1 � 1 = 0

f1 (x
�
1) f

0
2 (x

�
2)

(f1 (x�1) + f2 (x
�
2))

2V2 � 1 = 0

Fact 2. The best-response function xi (xj) is strictly increasing when e¤orts xi
and xj are such that fi (xi) > fj (xj), reaches its maximum when fi (xi) = fj (xj),

and is strictly decreasing when fi (xi) < fj (xj).

Fact 2 implies that the best-response functions x1 (x2) and x2 (x1) cross the locust

where fi (xi) = fj (xj) exactly once. Therefore, the Nash equilibrium (x�1; x
�
2) exists

and is unique.

Sequential Contest
Next, suppose that the contest is played sequentially. That is, player 1 chooses

x1; player 2 costlessly and perfectly observes x1, and then chooses x2:

Note that player 2�s best-response function, x2 (x1), is identical to his best-response

function in the simultaneous contest. Player 1�s optimization problem is to choose x1
to maximize E�1, recognizing that player 2 will be playing a best response to x1:

Fact 3. Given that player 2 is playing a best response, player 1�s problem is

strictly concave in x1:

From Fact 3 it now follows that there exists a unique subgame perfect equilibrium

in the sequential contest, which we denote by (x��1 ; x2 (x
��
1 )).

Finally, following Dixit (1987), we say that there is value to commitment if the

pro�ts of the �rst mover in the subgame perfect equilibrium of the sequential contest

are higher than in any pure strategy Nash equilibrium of the simultaneous contest.

It is easily checked that this condition corresponds to f1 (x�1) 6= f2 (x�2) for the Nash
equilibrium pair (x�1; x

�
2). We assume that this condition holds.

For the remainder of the paper, consider the sequential contest but suppose that,

prior to deciding on x2; player 2 must decide whether to pay a cost " > 0 to observe

player 1�s choice of e¤ort, x1. If player 2 pays this cost, then player 1�s choice is

revealed to him. If not, then player 2 obtains no information about 1�s choice.5

5Note that the limiting case where " = 0 is not entirely equivalent to the standard sequential
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3 Main Result

We now present the main result of the paper: the value of commitment vanishes

completely when observation is costly.

Proposition 1 Fix " > 0: In any subgame perfect equilibrium of the sequential con-

test with observation costs, there is no value to commitment.

To establish Proposition 1, we show that all subgame perfect equilibria of the

sequential contest with observation costs correspond to the Nash equilibrium of the

simultaneous contest.

First, we prove the following lemma.

Lemma 1 Fix " > 0: In any pure strategy subgame perfect equilibrium of the sequen-
tial contest with observation costs, player 2 never pays to observe player 1�s choice.

Proof. By de�nition of pure strategy equilibrium, the leader takes a speci�c action
with probability one. The follower holds some beliefs about this action even without

observing it. In equilibrium, these beliefs must be correct and, therefore, also degen-

erate. Degeneracy of correct beliefs implies that the follower can perfectly predict

the leader�s equilibrium action. In that case, it can never be optimal for the follower

to spend any amount, no matter how small, to merely con�rm his (correct) beliefs.

Therefore, in any pure strategy equilibrium, the follower never observes the leader�s

action.

For the moment, we continue to restrict attention to pure strategies. Given that

player 1 anticipates that player 2 never observes player 1�s e¤ort, player 1�s choice of

x1 satis�es the �rst order condition

f2 (x̂2) f
0
1 (x1)

(f1 (x1) + f2 (x̂2))
2V1 � 1 = 0

Here, x̂2 is player 1�s conjecture about player 2�s choice, where player 2�s choice cannot

depend on x1 because he does not observe x1.

contest. The reason is that in the limiting case, the follower still has the option of not observing the
leader�s choice whereas in the base game no such option exists. If, however, one eliminates weakly
dominated strategies, then the limiting case becomes identical to the base game.
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Player 2�s optimal choice of x2 satis�es the �rst order condition

f1 (x̂1) f
0
2 (x2)

(f1 (x̂1) + f2 (x2))
2V2 � 1 = 0

where x̂1 is player 2�s conjecture about player 1�s choice.

Now notice that the resulting �rst-order conditions, in combination with the equi-

librium restrictions x̂1 = x1 and x̂2 = x2, are identical to those for the unique Nash

equilibrium of the simultaneous move contest. Thus, we have:

Lemma 2 The e¤ort levels in any pure strategy subgame perfect equilibrium of the

sequential contest with observation costs are identical to the e¤ort levels in the unique

pure strategy Nash equilibrium of the simultaneous move contest.

Next, we turn to mixed strategies.

Suppose player 1 believes that player 2 pays to observe player 1�s e¤ort with

probability p: Conditional on observing, subgame perfection implies that player 2

plays his (unique) best response x2 (x1). Represent player 1�s beliefs about player 2�s

action x2 conditional on not observing by the cumulative distribution function H (�).
Then, player 1�s optimization problem is

max
x1
E�1 = p

�
f1 (x1)

f1 (x1) + f2 (x2 (x1))
V1 � x1

�
+(1� p)

Z
x2

�
f1 (x1)

f1 (x1) + f2 (x2)
V1 � x1

�
dH (x2)

This optimization problem is strictly concave in x1, because it is a convex combination

of expressions that are strictly concave in x1 by assumption. Therefore, for all H (�),
there is a unique x1 that solves this optimization problem. Hence, player 1 plays a

pure strategy in any subgame perfect equilibrium which, in turn, implies that p = 0.

Therefore, player 2 also plays a pure strategy. We conclude:

Lemma 3 All subgame perfect equilibria of the sequential contest with observation
costs are in pure strategies.

Now, Lemmas 2 and 3 imply Proposition 1. This completes the proof of the main

result.
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Discussion
In the case of �nite games, Bagwell (1995) �rst observed that if one restricts

attention to pure strategy equilibria, the value of commitment in sequential move

games of complete information is fragile to small perturbations of the game where

the second player only imperfectly observes the �rst player�s move. Várdy (2004)

made a similar observation for �nite sequential move games with observation costs.

However, it is well known that the value of commitment in these settings can be

restored if one allows for mixed strategies.

Sequential contests� games with continuous strategy spaces� lead to a stronger

result. Proposition 1 shows that the value of commitment vanishes, regardless of

whether one includes mixed strategies.

Why is it that allowing for mixed strategies does not restore the value of com-

mitments in contests? In games with �nite strategy spaces, it is always possible to

�nd two or more actions for player 1 over which he is indi¤erent in equilibrium. This

allows player 1 to �commit�to playing a mixed strategy which, in turn, creates pos-

itive value to observing player 1�s action. Indeed, if the cost is su¢ ciently small, it

induces player 2 to observe players 1�s choice with strictly positive probability, thus

restoring the �transmission path�for commitment to have value.

In the continuous case by contrast, precisely because the game is �well-behaved�

in the sense that the �rst player�s payo¤ function is strictly concave regardless of the

(sequentially rational) strategy pro�le of the second player, the �rst player cannot

credibly commit to anything other than his unique best response. In other words,

mixing is not incentive compatible for the �rst player.

One may wonder how robust the result in Proposition 1 really is. In the next

section, we investigate several variations of the model and show in which directions

the result is robust and which it is not. In the Appendix, we o¤er general conditions on

contest success functions and cost of e¤ort functions such that Proposition 1 continues

to hold. These conditions illustrate that our main result does not crucially depend

on the Logit form of the contest success function or the linear cost of e¤ort.

4 Robustness

Discrete Strategy Spaces
A key di¤erence between our model and the extant literature is that in our model
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strategy spaces are continuous rather than discrete. Thus, one might speculate that

the loss of the value of commitment is purely an artifact of this modelling choice. As

we show below, this is not the case.

De�ne grid G (m) on R+0 to be
�
0; 1

m
; 2
m
; 3
m
; :::
	
, where parameter m is some pos-

itive integer. The larger m is, the �ner the grid. We now show that

Proposition 2 For discrete strategy spaces on a su¢ ciently �ne grid, Proposition 1
continues to hold.

Formally: �x " > 0 and constrain players�e¤orts, xi where i 2 f1; 2g ; to values
on the grid G (m). For m su¢ ciently large, there is no value to commitment in any

subgame perfect equilibrium of the sequential contest with observation costs.

Proof. We prove the result by showing that, when m is su¢ ciently large (i.e., the

grid is su¢ ciently �ne), the second player chooses to never observe the �rst player�s

e¤ort.

Clearly, in any equilibrium where player 1 plays a pure strategy, player 2 never

observes. Now suppose player 1 is mixing in equilibrium. In that case, we claim

that player 1 must be mixing between exactly two adjacent actions. If player 1 mixes

between more than two actions, by strict concavity, he cannot be indi¤erent between

them. Similarly, if the two actions are not adjacent, strict concavity implies that

any action in between is strictly more pro�table. Now, by increasing m, the distance

between adjacent actions becomes arbitrary small. This implies that the value to

player 2 of learning which one of the two possible actions player 1 has actually played

becomes arbitrarily small as well. By continuity, player 2 is then strictly better o¤

not expending " to observe player 1�s action for m su¢ ciently large. This proves the

result.

How can we reconcile the result in Proposition 2 with the apparently opposite

result obtained in Várdy (2004)? The key is the di¤erence in what we keep �xed and

what we make small. In Proposition 2, we keep the size of the observation cost " �xed

while we make the grid size su¢ ciently small. In contrast, Várdy considers the case of

a �xed grid size and studies what happens when we make " su¢ ciently small. A mixed

strategy equilibrium that preserves player 1�s value of commitment exists only in the

latter case. Thus, whether the value of commitment is lost or (potentially) preserved

depends on the size of the observation cost " relative to the coarseness of the grid: if
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the cost of observation is small relative to the grid, the value of commitment can be

preserved; if the grid is su¢ ciently �ne relative to the cost of observation, then the

value of commitment is lost.

Noisy Sequential Contest
An alternative modeling approach to study the fragility of commitment was o¤ered

by Bagwell (1995). He studies �nite leader-follower games where, with small but

positive probability, the follower receives the wrong signal about the leader�s action.

The pure strategy Nash equilibrium outcomes of such a �noisy leader game� turn

out to be equal to the pure strategy Nash equilibrium outcomes of the simultaneous

game. In other words, the leader�s value of commitment may not be robust to noise in

the communication technology.6 Van Damme and Hurkens (1997) partly salvage the

value of commitment in �nite noisy leader games by showing that these games always

have a mixed strategy equilibrium in which the value of commitment is preserved

asymptotically when the noise vanishes.7

In view of our main result, one may wonder whether the value of commitment

survives in noisy leader games when strategy spaces are continuous. In this section

we show that, for a simple but widely used signaling structure, concavity arguments

analogous to those in Proposition 1 imply that there is no value to commitment either.

To see this, suppose that the contest success function satis�es all of the assump-

tions given above and that the strategy space is Xi �
�
0; C�1i (Vi)

�
; that is, e¤ort

levels are restricted to undominated strategies. Suppose further that player 2 faces

the following signal structure. With probability p; player 2 observes a signal s1 = x1;

that is, player 1�s e¤ort is perfectly revealed to player 2. With probability 1 � p;
player 2 receives a signal s1 that is uniformly distributed on X1; that is, the signal

is completely uninformative. Now suppose that player 1 chooses e¤ort according to

the cdf H1 (�) : If player 2 observes a signal s1 whose value lies in the support of H1;
then Bayes� rule implies that player 2 must believe that x1 = s1 with probability

1. If player 2 observes a signal s1 whose value does not lie in the support of H1;

then Bayes�rule implies that player 2�s posterior belief is equal to H1: In that case,

denote the cumulative distribution of player 2�s e¤ort choice as H2 (�) : Now, player
6See Huck and Müller (2000) for experiments relating to Bagwell�s game.
7See also Güth et al. (1998) for restoration of commitment with n players, as well as Maggi (1999)

for a restoration of commitment under private information. Oechssler and Schlag (2000), however,
question the reasonableness of mixed strategy equilibria restoring commitment, while Bhaskar (2005)
shows they may not exist in certain economic environments.
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1�s optimization problem is:

max
x1
E�1 = p

�
f1 (x1)

f1 (x1) + f2 (x2 (x1))
V1 � x1

�
+(1� p)

Z
x2

�
f1 (x1)

f1 (x1) + f2 (x2)
V1 � x1

�
dH2 (x2)

Notice that it is identical to the optimization problem of player 1 in the sequential

contest with costly observation. Therefore, by the same strict concavity arguments

that underlie Proposition 1 it follows that H1 and H2 are degenerate in equilibrium.

In other words, all equilibria are in pure strategies. Now, one may directly apply the

proof in Bagwell (1995) with respect to pure strategy equilibria to conclude that the

value of commitment is lost in all equilibria.

While this demonstrates that for a simple signal generating function the value of

commitment vanishes completely, it remains for future research to determine if the

result holds more generally.

Tournament
Returning to the intuition behind Proposition 1, it seems clear that what the �rst

player needs in order to restore the value of commitment is a mechanism to credibly

commit to unpredictable behavior, and thereby induce player 2 to pay to observe

player 1�s actions. Here we show that sequential rank-order tournaments o¤er an

avenue to do this.

Our model of tournaments closely follows that of Lazear and Rosen (1981). In

Lazear and Rosen, e¤ort xi has an e¤ectiveness yi = xi+�i, which may be interpreted

as output. That is, the output generated by a player�s e¤ort depends on the e¤ort

itself as well as on a random component �i: The object is then awarded to the player

with the greater output. In a simultaneous tournament, both players choose their

e¤ort at the same time. Subsequently, the random variables �1 and �2 are realized

and the player with the higher output is the winner. Lazear and Rosen (1981) show

that, with su¢ cient structure, there exists a pure strategy equilibrium (x�1; x
�
2) :

In a sequential tournament, player 1 chooses x1 and immediately thereafter �1 is

realized. The e¤ectiveness y1 = x1 + �1 is then revealed to player 2. Upon observing

y1, player 2 chooses his e¤ort x2 and �2 is realized. Finally, the players receive their

payo¤s.8 One can show that, with su¢ cient structure, there exists a subgame perfect

8Dixit (1987) studies a di¤erent kind of sequential tournament. In his model, �1 and �2 are
realized after both x1 and x2 have been chosen. In that case, a sequential tournament simply
is a sequential contest with a particular functional form for the success function. However, for
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equilibrium in pure strategies (x��1 ; x
��
2 (y1)) where commitment has value.

9

Now consider the case of a sequential tournament with costly observation. Suppose

that player 2 observes player 1�s output. Then, even if player 1 is playing a pure

strategy x1, player 2�s best response varies depending on the realization of player 1�s

output y1: This means that, for su¢ ciently small costs of observation, player 2 will

indeed �nd it optimal to observe y1. Together, these considerations imply that in

a sequential tournament the value of commitment is preserved when observation is

costly.

Proposition 3 For su¢ ciently small costs of observation, the value of commitment
is preserved completely in the sequential tournament with observation costs.

Formally: there exists a k > 0, such that, for all " < k; strategies where e¤ort levels

(x��1 ; x2 (y1)) are chosen and where player 2 observes with probability one constitute a

subgame perfect equilibrium of the sequential tournament with observation costs.

5 Conclusions

Previously, Bagwell and others have shown that if one restricts attention to pure

strategies, the value of commitment is fragile in leader-follower games with discrete

strategy spaces. However, the value of commitment in these games can be restored

by allowing for mixed strategies.

In this paper we have shown that, for a general class of contests, mixed strategies

do not restore the value of commitment. In fact, the same conditions that ensure

that a sequential contest is well behaved destroy the value of commitment when the

follower is obliged to pay even arbitrarily small costs to observe the action of the

leader. Speci�cally, if the leader�s payo¤ function is strictly concave, the value of

commitment is destroyed.

Why is this so? For commitment to have value, the second player must choose to

observe the �rst player�s action with strictly positive probability. This only happens if

tournaments such as the Olympic long jump, or a sequential version of the sales �contest�described
in Glengarry Glenn Ross (Mamet, 1984), modeling �i as occurring contemporaneously with xi seems
to us more reasonable.

9Following Lazear and Rosen, consider the case where �i v N
�
0; �2

�
, V1 6= V2, and Ci (xi) = 


2x
2
i ;

where 
 is a parameter describing the degree of convexity of the cost function. It may be veri�ed
that for su¢ ciently large values of 
 and �2, there indeed exists a pure strategy subgame perfect
equilibrium where commitment has value.
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observing the �rst player�s move is indeed valuable. When the �rst mover is playing

a pure strategy however, in equilibrium, his move is perfectly predictable. Thus,

actually observing the move adds no value. In principle, the �rst mover in a sequential

contest could inject noise into his strategy to restore the value of observation for

the second mover. But while this would clearly be desirable, because of the strict

concavity of his payo¤ function the �rst mover cannot overcome the temptation to

�purify�his behavior and always play the unique pure strategy that maximizes his

pro�ts given his beliefs. Of course, the second mover anticipates this and the scenario

unravels.

While in this paper we have focused on contests, the same techniques can be

applied to other games where the �rst mover�s problem is strictly concave. An im-

portant example is Cournot/Stackelberg quantity competition. It is easy to see that

the same conclusion as in Proposition 1 applies: in all subgame perfect equilibria

of the sequential Stackelberg game with observation costs, quantities produced are

identical to those in the unique Cournot-Nash equilibrium of the simultaneous move

game regardless of the size of the observation costs.

To conclude, this paper o¤ers a justi�cation for the attention that the existing

literature has given to simultaneous contests. Indeed, in settings where e¤ectiveness

of lobbying is unobservable even though the lobbying itself can be observed at some

small cost, the sequential contest is outcome equivalent to the simultaneous contest.

As is illustrated by the radically di¤erent conclusions for sequential tournaments,

another way to interpret our results is that the value of commitment depends crucially

on modeling assumptions that might seem innocuous or are even mathematically

equivalent in the simultaneous case.
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A Appendix: Contests with General Payo¤Struc-

tures

In this section, we derive general su¢ cient conditions for contest success and cost of

e¤ort functions such that Proposition 1 continues to hold.

First, suppose that the contest success function, P; is continuously di¤erentiable

and that P1 � @P (x1;x2)
@x1

> 0 and P2 � @P (x1;x2)
@x2

< 0, for all x1; x2: That is, player 1�s

chances of winning are increasing in his own e¤ort and decreasing in his rival�s e¤ort.

Let Ci (xi) denote the cost to player i of expending e¤ort xi and assume that Ci (�) is
continuously di¤erentiable, strictly increasing, and (weakly) convex. We also assume

that limxi!1Ci (xi) = 1. Since Vi is bounded, this ensures that players undertake
�nite e¤ort levels.

Simultaneous Contest
Suppose that the two players compete simultaneously. To ensure that this problem

is well-behaved we make the following regularity assumption.

Assumption 1. Player i�s problem is strictly concave. That is, for all x1; x2 :

P11 (x1; x2)V1 � C 001 (x1) < 0

and

�P22 (x1; x2)V2 � C 002 (x2) < 0

Assumption 1 is satis�ed if Ci is su¢ ciently convex or P11 < 0 and P22 > 0.

It guarantees that the �rst-order conditions are both necessary and su¢ cient for

characterizing the best-response functions of the players. Hence, a pure strategy

Nash equilibrium is a pair (x�1; x
�
2) satisfying

P1 (x
�
1; x

�
2)V1 � C 01 (x�1) = 0

�P2 (x�1; x�2)V2 � C 02 (x�1) = 0

Note that at least one such equilibrium exists, since the best-response functions are

bounded and continuous.
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Sequential Contest
Next, suppose that the contest is played sequentially. That is, player 1 chooses

x1; player 2 costlessly and perfectly observes its value, and then chooses x2:

Player 2�s best-response function, which we denote by x2 (x1), is identical to his

best-response function in the simultaneous contest. It is characterized by the �rst

order condition

P2 (x1; x2)V2 � C 02 (x1) = 0

Player 1�s optimization problem is to choose x1 to maximize E�1; recognizing

the dependence of x2 on x1: To ensure that player 1�s optimization problem is well

behaved, we make the following assumption which is again satis�ed provided that Ci
is su¢ ciently convex:

Assumption 2. Player 1�s problem is strictly concave. That is, for all x1,

V1

24 P11 (x1; x2 (x1)) + 2P12 (x1; x2 (x1))
@x2
@x1
+

P22 (x1; x2 (x1))
�
@x2
@x1

�2
+ P2 (x1; x2 (x1))

@2x2
(@x1)

2

35� C 001 (x1) < 0
If Assumptions 1 and 2 hold, then there exists a unique subgame perfect equilib-

rium, (x��1 ; x2 (x
��
1 )), in the sequential contest. This equilibrium is characterized by

the following �rst order conditions:

V1

�
P1 (x

��
1 ; x2 (x

��
1 )) + P2 (x

��
1 ; x2 (x

��
1 ))

@x2 (x
��
1 )

@x1

�
� C 01 (x��1 ) = 0

�P2 (x1; x2)V2 � C 02 (x2) = 0

where
@x2 (x

��
1 )

@x1
=

�P12 (x��1 ; x2 (x��1 ))V2
P22 (x��1 ; x2 (x

��
1 ))V2 � C 02 (x2 (x��1 ))

Value of Commitment
Fix the e¤ort levels of the two players at some pure strategy Nash equilibrium,

(x�1; x
�
2), of the simultaneous contest. The following assumption guarantees that there

is positive value of commitment.
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Assumption 3. For all (x�1; x
�
2) ;

V1

�
P2 (x

�
1; x2 (x

�
1))
@x2 (x

�
1)

@x1

�
6= 0

Here, x2 (x�1) = x
�
2, by de�nition, and

@x2 (x
�
1)

@x1
=

�P12 (x�1; x2 (x�1))V2
P22 (x�1; x2 (x

�
1))V2 � C 02 (x2 (x�1))

Together, Assumptions 1-3 ensure that the class of contests we study excludes

�pathological cases,�where the �rst mover�s problem is ill-behaved, equilibrium only

exists in mixed strategies, or the follower is non-reactive.

Sequential Contest with Costly Observation
Recall that our main result was:

In any subgame perfect equilibrium of the costly leader contest, there is no value

to commitment.

To establish the result for the current, more general set up, we again show that all

subgame perfect equilibria of the costly leader contest correspond to Nash equilibria

of the simultaneous contest.

First, note that Lemmas 1 and 2 carry over immediately to the more general

setting without requiring any changes in their proofs. Thus, we need only worry

about mixed strategy equilibria.

Suppose player 1 believes that player 2 pays to observe player 1�s e¤ort with

probability p: Conditional on observing, subgame perfection implies that player 2

plays his (unique) best response x2 (x1). Represent player 1�s beliefs about player 2�s

action x2 conditional on not observing by the cumulative distribution function H (�).
Then, player 1�s optimization problem is

max
x1
E�1 = p [P (x1; x2 (x1))V1 � C1 (x1)]+(1� p)

Z
x2

[P (x1; x2)V1 � C1 (x1)] dH (x2)

This optimization problem is strictly concave in x1, as it is a convex combination

of expressions that we know to be strictly concave in x1 by Assumptions 1 and 2.

Hence, player 1 plays a pure strategy in any subgame perfect equilibrium. Finally,

this implies that p = 0. Therefore, all subgame perfect equilibria in the sequential
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contest with observation costs are in pure strategies and Proposition 1 follows.
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