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Abstract

We propose a new concept, pairwise farsighted stable set, in order to predict which

networks may be formed among farsighted players. A set of networks G is pairwise

farsighted stable (i) if all possible pairwise deviations from any network g ∈ G are

deterred by the threat of ending worse off or equal off, (ii) if there exists a farsighted

improving path from any network outside the set leading to some network in the

set, and (iii) if there is no proper subset of G satisfying conditions (i) and (ii). We

show that a pairwise farsighted stable set always exists and we provide the necessary

and sufficient condition such that a unique pairwise farsighted stable set consisting

of a single network exists. We find that the pairwise farsighted stable sets and the

set of strongly efficient networks, those which are socially optimal, may be disjoint if

the allocation rules have nice properties. Finally, we study the relationship between

pairwise farsighted stability and other concepts such as the largest consistent set.
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1 Introduction

The organization of individual agents into networks and groups or coalitions has an impor-

tant role in the determination of the outcome of many social and economic interactions.

For instance, networks of personal contacts are important in obtaining information about

job opportunities. Goods can be traded and exchanged through networks, rather than

markets, of buyers and sellers. The partitioning of societies into groups is also important

in many contexts, such as the provision of public goods and formation of alliances, cartels

and federations.1

A simple way to analyze the networks that one might expect to emerge in the long run is

to examine a sort of equilibrium requirement that individuals not benefit from altering the

structure of the network. A weak version of such condition is the pairwise stability notion

defined by Jackson and Wolinsky (1996). There are alternative approaches to modeling

network stability. One is to explicitly model a game by which links form and then to solve

that game using the Nash equilibrium or one of its refinements. Aumann and Myerson

(1988) take such an approach in the context of communication games, where individuals

sequentially propose links. However, such an approach has the disadvantage that the game

is necessarily ad hoc and is quite sensitive to the exact network formation process. Dutta

and Mutuswami (1997) analyze a link formation game where individuals simultaneously

choose all the links they wish to be involved in. But this approach is static and myopic.

Individuals cannot be forward-looking in the sense that they do not forecast how others

might react to their actions. For instance, individuals might not add a link that appears

valuable to them given the current network, as that might in turn lead to the formation

of other links and ultimately lower the payoffs of the original individuals. A dynamic (but

still myopic) network formation process has been recently studied by Jackson and Watts

(2002) who have proposed a dynamic process in which individuals form and sever links

based on the improvement that the resulting network offers them relative to the current

network. This deterministic dynamic process may end at stable networks or in some cases

may cycle.2

We propose a new concept, pairwise farsighted stable set, in order to predict which

networks may be formed among farsighted players. A set of networks G is pairwise far-

sighted stable (i) if all possible pairwise deviations from any network g ∈ G are deterred

by the threat of ending worse off or equal off, (ii) if there exists a farsighted improving

path from any network outside the set leading to some network in the set, and (iii) if there

1Jackson (2003, 2005) provides a survey of models of network formation.
2Watts (2001) has extended the Jackson and Wolinsky model to a dynamic process but she has limited

attention to the specific contest of the connections model and a particular deterministic dynamic.
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is no proper subset of G satisfying conditions (i) and (ii). A farsighted improving path

is a sequence of networks that can emerge when players form or sever links based on the

improvement the end network offers relative to the current network. Each network in the

sequence differs by one link from the previous one. If a link is added, then the two players

involved must both prefer the end network to the current network, with at least one of the

two strictly preferring the end network. If a link is deleted, then it must be that at least

one of the two players involved in the link strictly prefers the end network. We show that

a pairwise farsighted stable set always exists and we provide the necessary and sufficient

condition such that a unique pairwise farsighted stable set consisting of a single network

exists. We find that the pairwise farsighted stable sets and the set of strongly efficient

networks, those which are socially optimal, may be disjoint if the allocation rules have nice

properties. Finally, we study the relationship between pairwise farsighted stability and

other concepts such as the largest consistent set, a notion due to Chwe (1994). By means

of examples we show that there is no relationship between (i) the pairwise farsighted stable

set and the coalitional largest consistent set, (ii) the pairwise farsighted stable set and the

pairwise largest consistent set, (iii) the pairwise largest consistent set and the coalitional

largest consistent set.

Although the literature on stability in networks is well established and growing (see

Jackson, 2005), the literature on farsighted stability is still in its infancy. Page, Wooders

and Kamat (2005) have addressed the issue of farsighted stability in network formation

by extending Chwe’s (1994) result on the nonemptiness of farsightedly consistent sets. In

order to demonstrate the existence of farsightedly consistent directed networks, they have

provided a new framework that extends the standard notion of a directed network and

also introduces the notion of a supernetwork. A supernetwork specifies how the different

directed networks are connected via coalitional moves and coalitional preferences, and thus

provides a network representation of agent preferences and the rules governing network

formation (that is, a supernetwork is equivalent to the social environment studied by

Chwe (1994) where the set of outcomes is replaced by the set of directed networks).

Given the rules governing network formation and agents preferences as represented via

the supernetwork, a directed network (i.e., a particular node in the supernetwork) is said

to be farsightedly consistent if no agent or coalition of agents is willing to alter the network

(via the addition, substraction, or replacement of arcs) for fear that such an alteration

might induce further network alterations by other agents or coalitions that in the end

leave the initially deviating agent or coalition no better off, and possibly worse off. They

have shown that for any supernetwork corresponding to a given collection of directed
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networks, the set of farsightedly consistent networks is nonempty.3 Dutta, Ghosal and

Ray (2005) have studied a model of dynamic network formation where individuals are

farsighted and evaluate the desirability of a move in terms of its consequences on the

entire discounted stream of payoffs. Only special coalitions are active at any date. They

have shown that a Markovian equilibrium process of network formation exists. They

have demonstrated that there are valuation structures in which no equilibrium strategy

profile yields paths that are absorbed solely into a set of efficient networks. This can be

viewed as the dynamic counterpart of the conflict between (static) stability and efficiency

demonstrated by Jackson and Wolinsky (1996). They have finally provided two conditions

on the valuation structure that guarantee that there is some equilibrium profile at which

the complete graph is reached in the limit from all initial networks.4

The paper is organized as follows. In Section 2 we introduce some notations and

basic properties and definitions for networks. In Section 3 we define the notion of pairwise

farsighted stable network and we study its properties. In Section 4 we propose a set-valued

extension, the pairwise farsighted stable set of networks. In Section 5 we analyze the

relationship between pairwise farsighted stable networks and the (pairwise or coalitional)

largest consistent set. In Section 6 we conclude.

2 Networks

Let N = {1, ..., n} be the finite set of players who are connected in some network rela-
tionship. The network relationships are reciprocal and the network is thus modeled as a

non-directed graph. Individuals are the nodes in the graph and links indicate bilateral

relationships between individuals. Thus, a network g is simply a list of which pairs of

individuals are linked to each other. If we are considering a pair of individuals i and j,

then {i, j} ∈ g indicates that i and j are linked under the network g. For simplicity, we

write ij to represent the link {i, j}, and so ij ∈ g indicates that i and j are linked under

3Page and Wooders (2005) have introduced the farsighted network formation game induced by a su-

pernetwork. They have shown that in any farsighted network formation game the feasible set of networks

contains a unique, finite, disjoint collection of nonempty subsets having the property that each subset forms

a strategic basin of attraction. These basins of attraction contain all the networks that are likely to emerge

and persist if individuals behave farsightedly in playing the network formation game. A von Neumann

Morgenstern stable set of the farsighted network formation game (or farsighted basis) is constructed by se-

lecting one network from each basin of attraction. The core of the farsighted network formation game (the

farsighted core) is constructed by selecting one network from each basin of attraction containing a single

network. The farsighted core is shown to be nonempty if and only if there exists at least one farsighted

basin of attraction containing a single network.
4Other approaches to farsightedness in network formation are suggested by the work of Xue (1998),

Herings, Mauleon and Vannetelbosch (2004), and Mauleon and Vannetelbosch (2004).
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the network g. Let gN be the set of all subsets of N of size 2. G denotes the set of all

possible networks or graphs on N , with gN being the complete network. The network

obtained by adding link ij to an existing network g is denoted g + ij and the network

obtained by deleting link ij from an existing network g is denoted g− ij. For any network
g, let N(g) = {i | ∃j such that ij ∈ g} be the set of players who have at least one link in
the network g.

A path in a network g ∈ G between i and j is a sequence of players i1, ..., iK such that

ikik+1 ∈ g for each k ∈ {1, ...,K − 1} with i1 = 1 and iK = j. A nonempty network g0 ⊆ g

is a component of g, if for all i ∈ N(g0) and j ∈ N(g0), i 6= j, there exists a path in g0

connecting i and j, and for any i ∈ N(g0) and j ∈ N(g), ij ∈ g implies ij ∈ g0. The set

of components of g is denoted as C(g). We can partition the players into groups within

which players are connected. Let Π(g) denote the partition of N induced by g. That is,

S ∈ Π(g) if and only if either there exists h ∈ C(g) such that S = N(h) or there exists

i /∈ N(g) such that S = {i}.
Different network configurations lead to different values of overall production or overall

utility to players. These various possible valuations are represented via a value function.

A value function is a function v : G→ R. The set of all possible value functions is denoted
V. A value function only keeps track of how the total societal value varies across different
networks. We also wish to keep track of how that value is allocated or distributed among

the players forming a network. An allocation rule is a function Y : G × V → RN such

that
P

i∈N Yi(g, v) = v(g) for all v and g. It is important to note that an allocation rule

depends on both g and v. This allows an allocation rule to take full account of a player

i’s role in the network. This includes not only what the network configuration is, but also

and how the value generated depends on the overall network structure.

Jackson and Wolinsky (1996) have proposed basic properties of value and allocation

functions. A value function is component additive if v(g) =
P

g0∈C(g) v(g
0) for all g ∈ G.

Component additive value functions are ones for which the value of a network is the

sum of the value of its components. An allocation rule Y is component balanced if for

any component additive v, g ∈ G, and g0 ∈ C(g), we have
P

i∈N(g0) Yi(g
0, v) = v(g0).

Component balance only makes requirements on Y for v’s that are component additive,

and Y can be arbitrary otherwise. Given a permutation of players π and any g ∈ G,
let gπ = {π(i)π(j) | ij ∈ g}. Thus, gπ is a network that shares the same architecture
as g but with the specific players permuted. A value function is anonymous if for any

permutation π and any g ∈ G, v(gπ) = v(g). Given a permutation π, let vπ be defined by

vπ(g) = v(gπ
−1
) for each g ∈ G. An allocation rule Y is anonymous if for any v, g ∈ G,
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and permutation π, we have Yπ(i)(gπ, vπ) = Yi(g, v).5

In evaluating societal welfare, we may take various perspectives.6 A network g is Pareto

efficient relative to v and Y if there does not exist any g0 ⊆ G such that Yi(g0, v) ≥ Yi(g, v)

for all i with strict inequality for some i. This definition of efficiency of a network takes

Y as fixed, and hence can be thought of as applying to situations where no intervention

is possible. A network g ⊆ G is strongly efficient relative to v if v(g) ≥ v(g0) for all

g0 ⊆ G. This is a strong notion of efficiency as it takes the perspective that value is fully
transferable.

The network-theoretic literature uses two different notions of a coalition deviation.

Pairwise deviations (Jackson and Wolinsky, 1996) are deviations on a single link at a time

and deviations by at most a pair of players at a time. That is, link addition is bilateral

(two players that would be involved in the link must agree to adding the link), link deletion

is unilateral (at least one player involved in the link must agree to delete the link), and

network changes take place one link at a time. Coalitionwise deviations (Jackson and

van den Nouweland, 2005) are deviations on several links at a time and deviations by

some group of players at a time. Link addition is bilateral, link deletion is unilateral,

but multiple link changes can take place at a time. Whether a pairwise deviation or a

coalitionwise deviation makes more sense will depend on the setting network formation

takes place. We will mainly restrict our analysis to pairwise deviations. A simple way

to analyze the networks that one might expect to emerge in the long run is to examine

a sort of equilibrium requirement that agents not benefit from altering the structure of

the network. A weak version of such condition is the pairwise stability notion defined

by Jackson and Wolinsky (1996). A network is pairwise stable if no player benefits from

severing one of their links and no other two players benefit from adding a link between

them, with one benefiting strictly and the other at least weakly.

Definition 1 A network g is pairwise stable with respect to value function v and allocation

rule Y if

(i) for all ij ∈ g, Yi(g, v) ≥ Yi(g − ij, v) and Yj(g, v) ≥ Yj(g − ij, v), and

(ii) for all ij /∈ g, if Yi(g, v) < Yi(g + ij, v) then Yj(g, v) > Yj(g + ij, v).

5Anonymous value functions are those such that the architecture of a network matters, but not the

labels of individuals. Anonimity of an allocation rule requires that if all that has changed is the labels of

the agents and the value generated by networks has changed in an exactly corresponding fashion, then the

allocation only change according to the relabeling.
6Throughout the paper we use the notation ⊆ for weak inclusion and Ã for strict inclusion. Finally, #

will refer to the notion of cardinality.
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Let us say that g0 is adjacent to g if g0 = g+ ij or g0 = g− ij for some ij. A network g0
defeats g if either g0 = g−ij and Yi(g0, v) > Yi(g, v), or if g0 = g+ij with Yi(g0, v) ≥ Yi(g, v)

and Yj(g
0, v) ≥ Yj(g, v) with at least one inequality holding strictly. Pairwise stability is

equivalent to saying that a network is pairwise stable if it is not defeated by another

(necessarily adjacent) network.7

3 Pairwise farsighted stable sets of networks

The following example shows that a network that is both pareto-dominant and pairwise

stable can be "less farsightedly stable" than another network.

Example 1. Criminal networks.8 Each player is a criminal. If two players are connected,

then they are part of the same criminal network. Each group of connected criminals has a

positive probability of winning the loot. The loot is divided among the connected criminals

based on the network architecture. Let ni be the number of links criminal i has. Let B

be the loot. Criminal i’s payoff is given by

Yi(v, g) = pi(g) · (yi(v, g)− φ) + (1− pi(g)) · yi(v, g) = yi(v, g)− pi(g) · φ (1)

where yi(v, g) is i’s expected share of the loot, pi(g) is i’s probability of being caught, and

φ the corresponding fine. Beside being competitors in the crime market, criminals may

also benefit from having criminal mates. It is assumed that (i) the bigger the group of

connected criminals, the higher its probability of getting the loot, and (ii) the higher the

criminal connections to a criminal, the lower his individual probability of being caught.

Thus, it is assumed that pi(g), the individual probability of being caught, is decreasing

with the number of links criminal i has, ni. Criminal i’s expected share of the loot is given

by

yi(v, g) =
|S|P

S0∈Π(g)
|S0| ·

niP
j∈S

nj
·B

where |S| · [PS0∈Π(g) |S0|]−1 is the probability that the group S will win the loot, and

7Jackson and van den Nouweland (2005) have proposed a refinement of pairwise stability where coali-

tionwise deviations are allowed: the strongly stable networks. A strongly stable network is a network which

is stable against changes in links by any coalition of individuals. Strongly stable networks are Pareto effi-

cient and maximize the overall value of the network if the value of each component of a network is allocated

equally among the members of that component.
8 It is a simplified version of Calvó-Armengol and Zenou’s (2004) model where, in addition to forming

links with criminal mates, criminals choose their level of criminal activities and whether or not to be

involved in criminal activities.
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ni · [
P

j∈S nj ]
−1 is the share of the loot criminal i ∈ S would obtain.9 In Figure 1 we have

depicted the 3−player case with B = 6 and pi(g) = (n− 1− ni)/n. For φ < 3
2 , both the

partial networks (g1, g2, g3) and the complete network (g7) are pairwise stable networks.

For φ ≥ 3
2 , the complete network is the unique pairwise stable network.¤
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Figure 1: Farsightedness in criminal networks.

Take φ being smaller than 3
2 in Example 1. Suppose that two links are added from any

partial network to form the complete network g7. Then, from g7 no farsighted improving

path will go back to the partial network. A farsighted improving path10 is a sequence of

networks that can emerge when players form or sever links based on the improvement the

end network offers relative to the current network. Each network in the sequence differs

by one link from the previous one. If a link is added, then the two players involved must

both prefer the end network to the current network, with at least one of the two strictly

preferring the end network. If a link is deleted, then it must be that at least one of the

two players involved in the link strictly prefers the end network. Suppose now that two

or three links are deleted to the complete network to form g0. Then, from g0 no myopic

improving path go back to the complete network but there are farsighted improving paths

that go back to the complete network. Moreover, from any g 6= g7 there is a farsighted

improving path going to g7. Thus, we say that the partial networks are "less farsightedly
9This assumption captures the idea that delinquents learn from other criminals belonging to the same

network how to commit crime in a more efficient way by sharing the know-how about the technology of

crime (see Calvó-Armengol and Zenou, 2004).
10Jackson and Watts (2002) have provided a myopic definition of an improving path. A "myopic"

improving path is a sequence of networks that can emerge when players form or sever links based on the

improvement the resulting network offers relative to the current network.
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stable" than the complete network, while they are pairwise stable.

Let us introduce the formal definition of a farsighted improving path.

Definition 2 A farsighted improving path from a network g to a network g0 is a finite

sequence of graphs g1, ..., gK with g1 = g and gK = g0 such that for any k ∈ {1, ...,K − 1}
either:

(i) gk+1 = gk − ij for some ij such that Yi(gK) > Yi(gk), or

(ii) gk+1 = gk + ij for some ij such that Yi(gK) > Yi(gk) and Yj(gK) ≥ Yj(gk).

If there exists a farsighted improving path from g to g0, then we use the symbol g → g0.

For a given network g, let F (g) = {g0 ⊆ gN | g → g0}. This is the set of networks for
which there is a farsighted improving path leading to from g. Thus, g → g0 means that g0

should be the endpoint of a farsighted improving path if g is its initial point, and that at

least one farsighted improving path from g should go to g0.

We now introduce our new concept, pairwise farsighted stable sets. A set of networks G

is pairwise farsighted stable (i) if all possible pairwise deviations from any network g ∈ G

are deterred by the threat of ending worse off or equal off, (ii) if there exists a farsighted

improving path from any network outside the set leading to some network in the set,

and (iii) if there is no proper subset of G satisfying conditions (i) and (ii) (minimality

condition). Formally, pairwise farsighted stable sets are defined as follows.

Definition 3 A set of networks G ⊆ G is pairwise farsighted stable with respect to allo-

cation rule Y and value function v if

(i) ∀ g ∈ G,

(ia) ∀ ij /∈ g such that g+ij /∈ G, ∃ g0 ∈ G∩F (g+ij) such that (Yi(g0, v), Yj(g0, v)) =
(Yi(g, v), Yj(g, v)) or Yi(g0, v) < Yi(g, v) or Yj(g0, v) < Yj(g, v),

(ib) ∀ ij ∈ g such that g−ij /∈ G, ∃ g0, g00 ∈ G∩F (g−ij) such that Yi(g0, v) ≤ Yi(g, v)

and Yj(g
00, v) ≤ Yj(g, v),

(ii) ∀ g0 /∈ G we have g ∈ F (g0) for some g ∈ G,

(iii) @ G0 Ã G such that G0 satisfies (ia), (ib) and (ii).

Part (i) in Definition 3 requires that all possible pairwise deviations from any network

g ∈ G are deterred by the threat of ending worse off or equal off. Consider a "pairwise"

deviation from g ∈ G to an adjacent network that does not belong to G. There might be
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further pairwise deviations which end up at g0 ∈ G, where g + ij → g0 or g − ij → g0. If

either i or j is worse off or both are equal off at g0 compared to the original network g

then the "pairwise" deviation is deterred. Notice that the set G (trivially) satisfies (ia),

(ib) and (ii) in Definition 3. This motivates the requirement of a minimality condition,

namely condition (iii).

Theorem 1 There always exists at least one pairwise farsighted stable set of networks.

Proof. Let us proceed by contradiction. Let us assume that there does not exist any set

of networks G ⊆ G that is pairwise farsighted stable. This means that for any G0 ⊆ G
that satisfies (i) and (ii) in Definition 3 (there always exist such a G0), we can find a

proper subset G1 that satisfies (i) and (ii). But again for G1, we can find a proper subset

G2 that satisfies (i) and (ii). Iterating the reasoning we can build an infinite (decreasing)

sequence {Gk}k≥0 of distinct elements of G satisfying (i) and (ii). But since #G <∞,
this is not possible; so the proof is completed.

In Example 1 with n = 3, B = 6 and pi(g) = (n− 1− ni)/n, the set consisting of the

complete network is the unique pairwise farsighted stable set whatever the fine φ. For φ <
3
2 , F (g0) = {g1, g2, g3, g7}, F (g1) = {g2, g3, g7}, F (g2) = {g1, g3, g7}, F (g3) = {g1, g2, g7},
F (g4) = {g1, g2, g3, g7}, F (g5) = {g1, g2, g3, g7}, F (g6) = {g1, g2, g3, g7}, and F (g7) = ∅;
for φ ≥ 3

2 , F (g0) = G\{g0}, F (g1) = {g4, g5, g7}, F (g2) = {g4, g6, g7}, F (g3) = {g5, g6, g7},
F (g4) = {g7}, F (g5) = {g7}, F (g6) = {g7}, and F (g7) = ∅ So, g7 ∈

T
g∈G\{g7} F (g) and

@g0 6= g7 such that g0 ∈
T
g∈G\{g0} F (g). Thus, {g7} is the unique pairwise farsighted stable

set.

Now we give the necessary and sufficient condition for the existence of a singleton set

that is pairwise farsightedly stable.

Theorem 2 {g} is a pairwise farsighted stable set if and only if ∀ g0 ∈ G \ {g} we have
g ∈ F (g0).

Proof. If {g} is a pairwise farsighted stable set then by (ii) in Definition 3 we have that
∀ g0 ∈ G \ {g} we have g ∈ F (g0). Now suppose that ∀ g0 ∈ G \ {g} we have g ∈ F (g0).

Since g ∈ F (g + ij) and g ∈ F (g − ij), (ia) and (ib) hold for g0 = g and g00 = g. Finally,

(iii) is satisfied because {g} is a singleton; so the proof is completed.

Theorem 2 tells us that {g} is a pairwise farsighted stable set if and only if there exists
a farsighted improving path from any network leading to g.
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Example 2. Symmetric Connections Model (Jackson and Wolinsky, 1996). Players form

links with each other in order to exchange information. If player i is connected to player

j, by a path of t links, then player i receives a payoff of δt from his indirect connection

with player j. It is assumed that 0 < δ < 1, and so the payoff δt decreases as the path

connecting players i and j increases; thus information that travels a long distance becomes

diluted and is less valuable than information obtained from a closer neighbor. Each direct

link ij results in a cost c to both i and j. This cost can be interpreted as the time a player

must spend with another player in order to maintain a direct link. Formally, player i’s

payoff from network g is given by

Yi(v, g) =
X
j 6=i

δt(ij) −
X
j:ij∈g

c (2)

where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =

∞ if there is no path between i and j). In Figure 2 we have depicted the 3−player
case where (i) for c < δ(1 − δ), the complete network (g7 in Figure 2) is the unique

pairwise stable network, (ii) for δ(1 − δ) < c < δ, the star networks (g4, g5, g6 in Figure

2) are pairwise stable, (iii) for c > δ, the empty network is the unique pairwise stable

network. Applying our newly defined concept to the symmetric connections model with

three players, we obtain that a network g is pairwise stable if and only if {g} is pairwise
farsighted stable. Indeed, we have (i) for c < δ(1 − δ), F (g7) = ∅, F (g6) = {g4, g5, g7},
F (g5) = {g4, g6, g7}, F (g4) = {g5, g6, g7}, F (g3) = {g4, g5, g6, g7}, F (g2) = {g4, g5, g6, g7},
F (g1) = {g4, g5, g6, g7}, and F (g0) = {g1, g2, g3, g4, g5, g6, g7}; (ii) for δ(1 − δ) < c <

δ, F (g7) = {g4, g5, g6}, F (g6) = {g4, g5}, F (g5) = {g4, g6}, F (g4) = {g5, g6}, F (g3) =
{g4, g5, g6}, F (g2) = {g4, g5, g6}, F (g1) = {g4, g5, g6}, and F (g0) = {g1, g2, g3, g4, g5, g6};
(iii) for c > δ, F (g7) = {g0, g1, g2, g3, g4, g5, g6}, F (g6) = {g0, g2, g3}, F (g5) = {g0, g1, g3},
F (g4) = {g0, g1, g2}, F (g3) = {g0}, F (g2) = {g0}, F (g1) = {g0}, and F (g0) = ∅.¤

Thus, Example 1 and Example 2 suggest that pairwise farsighted stability may be a

refinement of Jackson and Wolinsky (1996) pairwise stability notion. The next example

is a counter-example where a pairwise farsighted stable set does not include the unique

pairwise stable network.

Example 3. Consider a situation where three players can form links. The payoffs they

obtained from the different network configurations are given in Figure 3. The network

g6 is the unique pairwise stable network but {g7} and {g4, g6} are the pairwise farsighted
stable sets of networks. Indeed, F (g7) = {g4, g6}, F (g6) = {g7}, F (g5) = {g4, g6, g7},
F (g4) = {g7}, F (g3) = {g4, g5, g6, g7}, F (g2) = {g4, g5, g6, g7}, F (g1) = {g4, g5, g6, g7}, and
F (g0) = {g1, g2, g3, g4, g5, g6, g7}.¤
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Figure 2: The symmetric connections model with three players.

We observe that, in Example 3, if {g} is a pairwise farsighted stable set then g does

not belong to any other pairwise farsighted stable sets. This result holds in general as is

shown in Lemma 1.

Lemma 1 If {g} is a pairwise farsighted stable set then there does not exist G ⊆ G such

that g ∈ G and G is a pairwise farsighted stable set.

Proof. Obviously if {g} is a pairwise farsighted stable set and g ∈ G then G cannot be a

pairwise farsighted stable set because the minimality condition (iii) in Definition 3 would

be violated.

Theorem 3 Suppose {g} is a pairwise farsighted stable set. Then, {g} is the unique
pairwise farsighted stable set if and only if F (g) = ∅.

Proof. (⇒) First we show that if {g} is a pairwise farsighted stable set and F (g) = ∅,
there does not exist another pairwise farsighted stable set G, G 6= {g}. By Lemma 1 we
know that g /∈ G. In order G to be a pairwise farsighted stable set we need that ∀ g0 /∈ G,

F (g0) ∈ G. Since F (g) = ∅, condition (ii) in Definition 3 is violated.
(⇐) We have to show now that if {g} is the unique pairwise farsighted stable set

then F (g) = ∅. Suppose however that {g} is the only pairwise farsighted stable set but
F (g) 6= ∅, for example, F (g) = G with G containing at least one network g∗. Then, we

need to show that there exists G∗ such that G∗ is a pairwise farsighted stable set and

g /∈ G∗ (by Lemma 1). Since g /∈ G∗, G∗ should contain at least one network g∗ ∈ G with

g∗ ∈ F (g). Let G = {g ∈ G such that g∗ /∈ F (g)}. Different cases should be considered.

11
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Figure 3: Pairwise stable networks and pairwise farsighted stable sets.

(a) G = ∅. Then, G∗ = {g∗} satisfies (ii) in Definition 3 and is a pairwise farsighted
stable set. Indeed, consider any pairwise deviation from g∗ to g0, g0 /∈ G∗. Then, g∗ ∈ F (g0)

and the deviation is deterred. Also (iii) in Definition 3 is satisfied.

(b) G = {g}. Then, G∗ = {g, g∗} satisfies (ii) in Definition 3. Now we have to show
that conditions (ia) and (ib) in Definition 3 are satisfied for g and g∗. Consider any

pairwise deviation from g to g0, g0 /∈ G∗. We know that g∗ ∈ F (g0). Then, conditions (ia)

and (ib) in Definition 3 are satisfied because otherwise we will have a sequence of pairwise

deviations starting at g and finishing at g∗ and such that the initial deviating players

prefer g∗ to g; i.e., g∗ ∈ F (g). Consider any pairwise deviation from g∗ to g0, g0 /∈ G∗.

Then, g∗ ∈ F (g0) and the deviation is deterred. Finally, we have to show that (iii) in

Definition 3 is satisfied: @ G0 Ã G∗ such that G0 satisfies (ia), (ib) and (ii). Indeed,

G0 = {g} violates condition (ii) since g /∈ F (g), for {g} being a pairwise farsighted stable
set; and G0 = {g∗} violates condition (ii) since g∗ /∈ F (g).

(c) G = {g, bg}. Two cases should be considered.
(c.1.) g /∈ F (bg) and bg /∈ F (g). Then, G∗ = {g, bg, g∗} satisfies (ii) in Definition

3. Consider any pairwise deviation from g (or from bg) to g0, g0 /∈ G∗. We know that

g∗ ∈ F (g0). Then, conditions (ia) and (ib) in Definition 3 are satisfied because otherwise

g∗ ∈ F (g)(or g∗ ∈ F (bg)). Consider any pairwise deviation from g∗ to g0, g0 /∈ G∗. Then,

g∗ ∈ F (g0) and the deviation is deterred. Finally, we have to show that @ G0 Ã G∗ such

that G0 satisfies (ia), (ib) and (ii). Indeed, G0 = {g, bg} violates condition (ii) since
g /∈ F (g) and bg /∈ F (g), for {g} being a pairwise farsighted stable set; G0 = {g∗} violates
condition (ii) since g∗ /∈ F (g) and g∗ /∈ F (bg); and G0 = {g, g∗} (or G0 = {bg, g∗}) violates

12



condition (ii) since g /∈ F (bg) (or bg /∈ F (g)) and g∗ /∈ F (bg).
(c.2.) g ∈ F (bg) (or bg ∈ F (g) or both, g ∈ F (bg) and bg ∈ F (g)). Then, G∗ = {g, g∗} (or

G∗ = {bg, g∗}) satisfies (ii) in Definition 3. Consider any pairwise deviation from g to g0,

g0 6= bg, g0 /∈ G∗. We know that g∗ ∈ F (g0). Then, conditions (ia) and (ib) in Definition

3 are satisfied because otherwise g∗ ∈ F (g). Consider the pairwise deviation from g to bg
(if such a deviation is possible). Since g ∈ F (bg) such deviation is deterred. Consider any
pairwise deviation from g∗ to g0, g0 6= bg, g0 /∈ G∗. Then, g∗ ∈ F (g0) and the deviation is

deterred. Consider the pairwise deviation from g∗ to bg (if such a deviation is possible).
But g ∈ F (bg). Thus, either g /∈ F (g∗) and the deviation is deterred, or g ∈ F (g∗) and the

deviation is not deterred. In the first case, condition (iii) in Definition 3 is satisfied (as

in case (b)) and then G∗ = {g, g∗} (or G∗ = {bg, g∗}) is a pairwise farsighted stable set. In
the second case, G∗ = {g, bg, g∗} will be a pairwise farsighted stable set satisfying (ii) and
(ia) and (ib) in Definition 3 (as in case (c.1)) and also satisfying condition (iii). Indeed,

G0 = {g, bg} violates condition (ii) since g /∈ F (g) and bg /∈ F (g), for {g} being a pairwise
farsighted stable set; G0 = {g∗} violates condition (ii) since g∗ /∈ F (g) and g∗ /∈ F (bg); and
G0 = {g, g∗} (or G0 = {bg, g∗}) violates (ia) or (ib) since we have shown that a pairwise
deviation from g∗ to bg is not deterred.

(d) G = {g, bg, eg}. Two cases should be considered.
(d.1.) g /∈ F (bg), g /∈ F (eg), bg /∈ F (g), bg /∈ F (eg), eg /∈ F (g) and eg /∈ F (bg). Then,

G∗ = {g, bg, eg, g∗} satisfies (ii) in Definition 3. Consider any pairwise deviation from g

(from eg or bg) to g0, g0 /∈ G∗. We know that g∗ ∈ F (g0). Then, conditions (ia) and (ib) in

Definition 3 are satisfied because otherwise g∗ ∈ F (g)(g∗ ∈ F (bg) or g∗ ∈ F (eg)). Consider
any pairwise deviation from g∗ to g0, g0 /∈ G∗. Then, g∗ ∈ F (g0) and the deviation is

deterred. Finally, we have to show that @ G0 Ã G∗ such that G0 satisfies (ia), (ib) and

(ii). Indeed, G0 = {g, bg, eg} violates condition (ii) since g /∈ F (g), bg /∈ F (g) and eg /∈ F (g),

for {g} being a pairwise farsighted stable set; G0 = {g∗} violates condition (ii) since
g∗ /∈ F (g), g∗ /∈ F (bg) and g∗ /∈ F (eg); G0 = {g, bg, g∗} (or G0 = {g, eg, g∗} or G0 = {bg,eg, g∗})
violates condition violates condition (ii) since g /∈ F (bg) and g∗ /∈ F (eg); and G0 = {g, g∗}
(or G0 = {bg, g∗} or G0 = {eg, g∗}) violates condition (ii) since g /∈ F (bg) (or g /∈ F (eg)) and
g∗ /∈ F (bg) (or g∗ /∈ F (eg)).

(d.2.) Some network of G farsightedly dominates some other network in G, for example,

g ∈ F (bg). Then, as in case (c.2.), either G∗ = {g, eg, g∗} or G∗ = {g, bg, eg, g∗} is a pairwise
farshigted stable set. Indeed, both sets satisfy (ii) in Definition 3. Moreover, if g /∈ F (g∗)

and eg /∈ F (g∗), then G∗ = {g, eg, g∗} satisfies (ia), (ib) and (iii) in Definition 3; while in
case that g ∈ F (g∗) then G∗ = {g, bg, eg, g∗} satisfies all conditions in Definition 3 (see the
argument in (c.2.)).
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Next we show that the set of pairwise farsighted stable networks and the set of strongly

efficient networks, those which are socially optimal, may be disjoint if the allocation rules

are component balanced and anonymous. Bhattacharya (2005) has obtained a similar

result with respect to the notion of the coalitional largest consistent set.

Proposition 1 There exists a value function such that for every component balanced and

anonymous rule, strongly efficient networks are not included in the pairwise farsighted

stable sets with respect to the value function and the allocation rule.

Proof. Take the following value function defined for any g ∈ G : v({12, 23, 13}) = 9,

v({12, 23}) = 0, v({12, 13}) = 0, v({23, 13}) = 0, v({12}) = 8, v({23}) = 8, v({13}) = 8,
v(∅) = 0, and v(g) = 0 to any g which has a link involving a player other than players

1, 2 and 3. Fix any component balanced and anonymous allocation rule Y . Then, by

component balance and anonymity,

(i) Y1({12, 23, 13}, v) = Y2({12, 23, 13}, v) = Y3({12, 23, 13}, v) = 3,
(ii) Y1({12, 23}, v) = c, Y3({12, 23}, v) = c, Y2({12, 23}, v) = −2c, Y2({12, 13}, v) =
c, Y3({12, 13}, v) = c, Y1({12, 13}, v) = −2c, Y1({13, 23}, v) = c, Y2({13, 23}, v) = c,

Y3({13, 23}, v) = −2c,
(iii) Y1({12}, v) = Y2({12}, v) = 4, Y3({12}, v) = 0, Y1({13}, v) = Y3({13}, v) = 4,

Y2({13}, v) = 0, Y2({23}, v) = Y3({23}, v) = 4, Y1({23}, v) = 0,
(iv) Y1(∅, v) = Y2(∅, v) = Y3(∅, v) = 0,
(v) Y1(g, v) = Y2(g, v) = Y3(g, v) = 0 for any g which has a link involving a player other

than players 1, 2 and 3, and

(vi) for i ∈ N \ {1, 2, 3}, Yi(g, v) for all g ∈ G.11
The unique strongly efficient network is {12, 23, 13}. We have (i) F ({12, 23, 13}) =
{{12, 23}, {23, 13}, {12, 13}, {12}, {23}, {13}} for c > 3 and F ({12, 23, 13}) = {{12}, {23},
{13}} otherwise; (ii) F ({12, 23}) = {{12, 23, 13}, {12}, {23}, {13}} for c < 3, F ({12, 23}) =
{{12}, {23}, {13}} for 3 ≤ c < 4, and F ({12, 23}) = {{12}, {23}} for c ≥ 4. F ({12, 13}) =
{{12, 23, 13}, {12}, {23}, {13}} for c < 3, F ({12, 13}) = {{12}, {23}, {13}} for 3 ≤ c < 4,

and F ({12, 13}) = {{12}, {13}} for c ≥ 4. F ({13, 23}) = {{12, 23, 13}, {12}, {23}, {13}}
for c < 3, F ({13, 23}) = {{12}, {23}, {13}} for 3 ≤ c < 4, and F ({13, 23}) = {{13}, {23}}
for c ≥ 4; (iii) F ({12}) = {{13}, {23}}, F ({13}) = {{12}, {23}}, F ({23}) = {{12}, {13}};
(iv) F (∅) = {{12, 23, 13}, {12}, {23}, {13}}; (v) for any g which has a link involving a

11This network formation game is a slight modification of the 3-player game given in the proof of Theorem

2 in Dutta, Ghosal and Ray (2005) and in the proof of Proposition 1 in Bhattacharya (2005) that we have

extended to |N | > 3 by assigning v(g) = 0 to any g which has a link involving a player other than players

1, 2 and 3.
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player other than players 1, 2 and 3, {{12}, {23}, {13}} ⊆ F (g). Thus, {{12}}, {{23}}
and {{13}} are the only pairwise farsighted stable sets.

Remark 1 An allocation rule is said to be egalitarian if for every v ∈ V and g ∈ G,
Yi(g, v) = v(g)/n. Suppose that Y is the egalitarian rule and there is a unique strongly

efficient network ge. Then, {ge} is the unique pairwise farsighted stable set.

Before studying the relationship between pairwise farsighted stable sets and other far-

sighted solution concepts we analyze some classical examples.

Example 4. Co-author Model (Jackson and Wolinsky, 1996). Each player is a researcher

who spends time writing papers. If two players are connected, then they are working on

a paper together. The amount of time researcher i spends on a given project is inversely

related to the number of projects, ni, that he is involved in. Formally, player i’s payoff is

given by

Yi(v, g) =
X
j:ij∈g

1

ni
+
1

nj
+

1

ninj
(3)

for ni > 0. For ni = 0 we assume that Yi(g) = 0. In Figure 4 we have depicted the

3−player case where the complete network g7 is the unique pairwise stable network.¤
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Figure 4: The co-author model with three players.

Unfortunately, no singleton set is pairwise farsighted stable in Example 4. Indeed,

there is no network such that there is a farsighted improving path from any other network

leading to it. Precisely, F (g0) = {g1, g2, g3, g4, g5, g6}, F (g1) = {g4, g6}, F (g2) = {g5, g6},
F (g3) = {g4, g5}, F (g4) = {g7}, F (g5) = {g7}, F (g6) = {g7}, and F (g7) = ∅. However,
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a set formed by the complete and two star networks is a pairwise farsighted stable set

of networks. Precisely, the pairwise farsighted stable sets are {g4, g5,g7}, {g4, g6,g7} and
{g5, g6,g7} in the co-author model with three players.

Consider again the symmetric connections model of Example 2 but now with four

players (see Figure 5). For c < δ(1−δ), the complete network (g7 in Figure 5) is the unique
pairwise stable and {g7} is the unique pairwise farsighted stable set, (ii) for δ(1 − δ) <

c < δ(1 − δ2), the star and circle networks (g2, g3 in Figure 5) are pairwise stable and

{g2} and {g3} are pairwise farsighted stable sets, (iii) for δ(1− δ2) < c < δ, the star and

chain networks (g2, g1 in Figure 5) are pairwise stable and {g1} and {g2} are pairwise
farsighted stable sets, (iv) for δ+ 1

2δ
2 < c, the empty network is the unique pairwise stable

and {g0} is the unique pairwise farsighted stable set. However, for δ < c < δ + 1
2δ
2 a

pairwise farsighted stable set that is singleton fails to exist while the empty network is the

unique pairwise stable network. Indeed, there is no network such that there is a farsighted

improving path from any other network leading to it. The empty network {g0} is not a
pairwise farsighted stable set because g0 /∈ F (g1) and g0 /∈ F (g3). But, there is a unique

pairwise farsighted stable set that includes only the empty network (g0), the circle network

(g3) and the chain networks (similar to g1). Thus, similarly to Watts (2002), we have that

if players are farsighted then the circle network is stable.12

4 The largest consistent set

In this section we study the relationship between pairwise farsighted stability and two

definitions of the largest consistent set: (i) the pairwise largest consistent set where only

pairwise deviations or moves are allowed, and (ii) the coalitional largest consistent set

where coalitionwise deviations or moves are allowed.

4.1 The pairwise largest consistent set

First we define the largest consistent set when only pairwise deviations and moves are

possible.

Definition 4 Let Z0 ≡ G. Then, Zk (k = 1, 2, ...) is inductively defined as follows:

g ∈ Zk−1 belongs to Zk with respect to Y and v if and only if

12Watts (2002) has analyzed the dynamic formation of networks by self-interested players who can form

and sever links in the symmetric connections model with n players. Assuming that players are initially

unconnected and that δ < c, she has shown that if players are non-myopic then it is possible for a network

shaped like a circle to form.
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Figure 5: The symmetric connections model with four players.

(ia) ∀ ij /∈ g, ∃ g0 ∈ Zk−1 where g0 = g+ij or g0 ∈ F (g+ij) such that (Yi(g0, v), Yj(g0, v)) =

(Yi(g, v), Yj(g, v)) or Yi(g0, v) < Yi(g, v) or Yj(g0, v) < Yj(g, v),

(ib) ∀ ij ∈ g, ∃ g0, g00 ∈ Zk−1 where g0 = g − ij or g0 ∈ F (g − ij), g00 = g − ij or

g00 ∈ F (g − ij), such that Yi(g0, v) ≤ Yi(g, v) and Yj(g
00, v) ≤ Yj(g, v).

The pairwise largest consistent set PLCS (G) is
T
k≥1 Z

k.

That is, a network g ∈ Zk−1 is stable (at step k) and belongs to Zk, if all possible

pairwise deviations are deterred. Consider a pairwise deviation from g to an adjacent

network by coalition S. There might be further pairwise deviations which end up at g0,

where g + ij → g0 or g − ij → g0. If either i or j is worse off or both are equal off at

g0 compared to the original network g then the pairwise deviation is deterred. Since G
is finite, there exists m ∈ N such that Zk = Zk+1 for all k ≥ m, and Zm is the pairwise

largest consistent set PLCS (G). If a network is not in the pairwise largest consistent set,
it cannot be stable.
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Theorem 4 If {g} is a pairwise farsighted stable set then g belongs to the pairwise largest

consistent set PLCS (G).

Proof. Since {g} is a pairwise farsighted stable set we have that for all ij /∈ g : g ∈
F (g + ij) and for all ij ∈ g : g ∈ F (g − ij). So g ∈ Z1. By induction, g ∈ Zk for k ≥ 1.
So, g ∈ PLCS(G).

Remember that two networks g and g0 are adjacent if they differ by one link.

No indifference Y and v exhibit no indifference if for any g and g0 that are adjacent

either g defeats g0 or g0 defeats g.

Proposition 2 Suppose that Y and v exhibit no indifference. If g is pairwise stable then

it belongs to the pairwise largest consistent set.

Proof. Since Y and v exhibit no indifference, we have that a pairwise stable network g

defeats (i) g + ij for all ij /∈ g and (ii) g − ij for all ij ∈ g. Thus, g ∈ F (g + ij) and

g ∈ F (g − ij). So g ∈ Z1. By induction g ∈ Zk for k ≥ 1. So, g ∈ PLCS(G).

4.2 The coalitional largest consistent set

Second we define the largest consistent set when coalitional deviations and moves are

possible. A network g0 ∈ G is obtainable from g ∈ G via deviations by coalition S ⊆ N ,

denoted g 7−→S g0, if

(i) ij ∈ g0 and ij /∈ g implies {i, j} ⊂ S, and

(ii) ij ∈ g and ij /∈ g0 implies {i, j} ∩ S 6= ∅.

Definition 5 A network g ∈ G is indirectly weakly dominated by g0 ∈ G, or g ¿ g0,

if there exists a sequence g0, g1, ..., gm (where g0 = g and gm = g0) and a sequence

S0, S1, ..., Sm−1 such that gj 7−→Sj g
j+1, Yi(g0, v) ≥ Yi(g

j , v) for all i ∈ Sj and Yi(g
0, v) >

Yi(g
j , v) for some i ∈ Sj, for j = 0, 1, ..,m− 1.

Based on the indirect weak dominance relation, the coalitional largest consistent set

CLCS (G) is defined in an iterative way (see Mauleon and Vannetelbosch, 2004). Chwe
(1994) has shown that there uniquely exists a coalitional largest consistent set.

Definition 6 Let Z0 ≡ G. Then, Zk (k = 1, 2, ...) is inductively defined as follows:

g ∈ Zk−1 belongs to Zk with respect to allocation rule Y and value function v if and only

if ∀ g0, S such that g 7−→S g0, ∃ g00 ∈ Zk−1, where g0 = g00 or g0 ¿ g00, such that we do
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not have Yi(g, v) ≤ Yi(g
00, v) for all i ∈ S and Yi(g, v) < Yi(g

00, v) for some i ∈ S. The

coalitional largest consistent set CLCS (G) is
T
k≥1 Z

k.

That is, a network g ∈ Zk−1 is stable (at step k) and belongs to Zk, if all possible

deviations are deterred. Consider a deviation from g to g0 by coalition S. There might

be further deviations which end up at g00, where g0 ¿ g00. There might not be any further

deviations, in which case the end network g00 = g0. In any case, the end network g00 should

itself be stable (at step k−1), and so, should belong to Zk−1. If some member of coalition

S is worse off or all of them are equal off at g00 compared to the original network g, then

the deviation is deterred. Since G is finite, there exists m ∈ N such that Zk = Zk+1 for all

k ≥ m, and Zm is the coalitional largest consistent set CLCS (G). If a network is not in
the coalitional largest consistent set, it cannot be stable. The coalitional largest consistent

set is the set of all networks which can possibly be stable.13

Theorem 5 If {g} is a pairwise farsighted stable set then g belongs to the coalitional

largest consistent set CLCS (G).

Proof. Since {g} is pairwise farsighted stable we have that for all g0 6= g it holds that

g ∈ F (g0). So g ∈ Z1. By induction g ∈ Zk for k ≥ 1. So, g ∈ CLCS(G).

Example 5. Consider a slightly modified version of the co-author model with three

players. The payoffs they obtained from the different network configurations are given by

(3) except in the complete network g7 where Yi(g7) = 2 for all i ∈ N (see Figure 6). We

have F (g0) = {g1, g2, g3, g4, g5, g6}, F (g1) = {g4, g6}, F (g2) = {g5, g6}, F (g3) = {g4, g5},
F (g4) = ∅, F (g5) = ∅, F (g6) = ∅, and F (g7) = ∅. There is a unique pairwise farsighted
stable set: {g4, g5,g6, g7}, but none of these networks belong to the coalitional largest
consistent set CLCS. It consists of g1, g2, and g3.¤
13Bhattacharya (2005) has studied the conflict between stability and efficiency in network formation

when players are farsighted. He has used the social environment introduced by Chwe (1994) to define an

environment of social networks in which the feasible coalitional moves are assumed to be as in Jackson and

van den Nouweland (2005). Identifying the stable networks as the ones in the coalitional largest consistent

set, it is shown that there exists a value function such that for every component balanced and anonymous

allocation rule, the corresponding coalitional largest consistent set does not contain any strongly efficient

network. Relaxing the requirement of component balanced or anonymity leads to some possibility results.

It is also shown that there exists an environment of social networks (with a component balanced and

anonymous allocation rule) such that the corresponding largest consistent set does not contain any Pareto

efficient network. Finally, it is shown that the largest consistent set with respect to the component-wise

egalitarian allocation rule contains at least a Pareto efficient network, and it contains every strongly efficient

network whenever the value function is top-convex; i.e., if some strongly efficient network also maximizes

the per-capita value among individuals.
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Figure 6: An example where the pairwise farsighted stable set and the coalitional largest

consistent set are disjoint.

Concept Example 4, n = 3 Example 5

Pairwise stability {g7} {g4,g5, g6, g7}
Pairwise farsighted

stable sets of networks

{g4, g5,g7}, {g4, g6,g7},
{g5, g6,g7}

{g4,g5, g6, g7}

PLCS {g1, g2,g3, g7} {g4,g5, g6, g7}
CLCS {g1, g2,g3, g4, g5, g6, g7} {g1,g2, g3}

Table 1: The (no)-relationships among solution concepts for network stability.

Remark 2 There is no relationship between (i) the pairwise farsighted stable set and the

coalitional largest consistent set, (ii) the pairwise farsighted stable set and the pairwise

largest consistent set, (iii) the pairwise largest consistent set and the coalitional largest

consistent set.

5 Conclusion

We have proposed a new concept, pairwise farsighted stable set, in order to predict which

networks may be formed among farsighted players. A set of networks G is pairwise far-

sighted stable (i) if all possible pairwise deviations from any network g ∈ G are deterred

by the threat of ending worse off or equal off, (ii) if there exists a farsighted improving

path from any network outside the set leading to some network in the set, and (iii) if there

is no proper subset of G satisfying conditions (i) and (ii). We have shown that a pairwise
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farsighted stable set always exists and we have provided the necessary and sufficient condi-

tion such that a unique pairwise farsighted stable set consisting of a single network exists.

We have found that the pairwise farsighted stable sets and the set of strongly efficient net-

works, those which are socially optimal, may be disjoint if the allocation rules have nice

properties. Finally, we have studied the relationship between pairwise farsighted stability

and other concepts such as the largest consistent set, a notion due to Chwe (1994). By

means of examples we have shown that there is no relationship between (i) the pairwise

farsighted stable set and the coalitional largest consistent set, (ii) the pairwise farsighted

stable set and the pairwise largest consistent set, (iii) the pairwise largest consistent set

and the coalitional largest consistent set.

References

[1] Aumann, R. and R. Myerson, "Endogenous Formation of Links between Players and

Coalitions: an Application of the Shapley Value," in The Shapley value, A. Roth Ed.,

Cambridge University Press, 175-191 (1988).

[2] Bhattacharya, A., "Stable and Efficient Networks with Farsighted Players: the

Largest Consistent Set," mimeo, University of York (2005).

[3] Calvó-Armengol, A. and Y. Zenou, "Social Networks and Crime Decisions: The Role

of Social Structure in Facilitating Delinquent Behavior," International Economic Re-

view 45(3), 939-958 (2004).

[4] Chwe, M.S., "Farsighted Coalitional Stability," Journal of Economic Theory 63, 299-

325 (1994).

[5] Dutta, B., S. Ghosal and D. Ray, "Farsighted Network Formation," Journal of Eco-

nomic Theory 122, 143-164 (2005).

[6] Dutta, B. and S. Mutuswami, "Stable networks," Journal of Economic Theory 76,

322-344 (1997).

[7] Herings, P.J.J., A. Mauleon and V. Vannetelbosch, "Rationalizability for Social En-

vironments," Games and Economic Behavior 49(1), 135-156 (2004).

[8] Jackson, M.O., "The Stability and Efficiency of Economic and Social Networks," in

Networks and Groups: Models of Strategic Formation, edited by B. Dutta and M.O.

Jackson, Springer-Verlag: Heidelberg (2003).

21



[9] Jackson, M.O., "A Survey of Models of Network Formation: Stability and Efficiency,"

in Group Formation in Economics: Networks, Clubs and Coalitions, edited by G.

Demange and M. Wooders, Cambridge University Press (2005).

[10] Jackson, M.O. and A. van den Nouweland, "Strongly Stable Networks," Games and

Economic Behavior 51, 420-444 (2005).

[11] Jackson, M.O. and A. Watts, "The Evolution of Social and Economic Networks,"

Journal of Economic Theory 71, 44-74 (2002).

[12] Jackson, M.O. and A. Wolinsky, “A Strategic Model of Social and Economic Net-

works,” Journal of Economic Theory 71, 44-74 (1996).

[13] Mauleon, A. and V. Vannetelbosch, "Farsightedness and Cautiousness in Coali-

tion Formation Games with Positive Spillovers," Theory and Decision 56(3), 291-324

(2004).

[14] Page, F.H., Jr., M. Wooders and S. Kamat, "Networks and Farsighted Stability,"

Journal of Economic Theory 120, 257-269 (2005).

[15] Page, F.H., Jr. and M. Wooders, "Strategic Basins of Attraction, the Path Domi-

nance Core, and Network Formation Games," Working Paper 05-W09, Department

of Economics, Vanderbilt University (2005).

[16] Watts, A., "A Dynamic Model of Network Formation," Games and Economic Behav-

ior 34, 331-341 (2001).

[17] Watts, A., "Non-Myopic Formation of Circle Networks," Economics Letters 74, 277-

282 (2002).

[18] Xue, L., "Coalitional Stability under Perfect Foresight," Economic Theory 11, 603-

627 (1998).

22


