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Abstract

This paper analyzes multi-sender cheap talk in multidimensional en-
vironments. Battaglini (2002) shows that if the state space is a multidi-
mensional Euclidean space, then generically there exists a fully revealing
equilibrium. We show that if the state space is restricted, either because
the policy space is restricted or the set of rationalizable policies of the
receiver is not the whole space, then Battaglini’s equilibrium construction
is in general not valid. We provide a necessary and sufficient condition
for the existence of fully revealing equilibrium for any state space. For
compact state spaces, we show that in the limit as the magnitudes of bi-
ases go to infinity, the existence of such equilibrium depends on whether
the biases are of similar directions, where the similarity relation between
biases depends on the shape of the state space. Our results imply that
similar qualitative conclusions hold for the existence of fully revealing
equilibrium for one-dimensional and multidimensional state spaces. We
investigate the issue of how much information can be revealed in equi-
librium if full revelation is not possible, and we address the question of
robustness of equilibria.
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1 Introduction
Sender-receiver games with cheap talk have been used extensively in both eco-
nomics and political science to analyze situations in which an uninformed decision-
maker acquires advice from an informed expert whose preferences do not fully
coincide with those of the decision-maker. The seminal paper of Crawford and
Sobel (1982) has been extended in many directions. In particular, Gilligan and
Krehbiel (1989), Austen Smith (1993), and Krishna and Morgan (2001a, 2001b)
investigate the case when the decision-maker can seek advice from multiple ex-
perts. However, Battaglini (2002) challenged the validity of the above models
by showing that the qualitative conclusions of these models are different if one
departs from the simplifying assumption that information is one-dimensional.
He argues that in a multidimensional environment, no matter how large the
biases of the experts are, generically there exists an equilibrium in which all in-
formation is revealed to the decision-maker. The construction provided is simple
and intuitive: each sender only conveys information in directions along which
her interest coincides with that of the receiver (directions that are orthogonal
to the bias of the expert). Generically these directions of common interest span
the whole state space; therefore, by combining the information obtained from
the experts, the decision-maker can perfectly identify the state of the world.
This is in sharp contrast with the conclusions obtained from unidimensional
models in which full information revelation is not possible if experts have biases
in different directions and the biases are large enough. Since in most relevant
situations information is multidimensional, Battaglini concludes that using one-
dimensional models to analyze sender-receiver games with multiple senders is
problematic.

In this paper, we revisit the analysis of multidimensional cheap talk and
claim that a careful comparison between unidimensional and multidimensional
models reveals more similarities in qualitative predictions than what is sug-
gested by the previous analysis. Our starting point is that Battaglini’s equi-
librium construction in a d-dimensional model (where d ≥ 2) assumes that the
state space is Rd. The experts report coordinates along certain dimensions,
and these dimensions span the whole space. The receiver is then supposed to
choose the policy that belongs to the point identified by the above coordinates.
This is always possible if the state space is the whole Euclidean space, but not
necessarily so otherwise. Consider, for example, a situation in which a poli-
cymaker needs to allocate a fixed budget to “education,”“military spending,”
and “healthcare,”and this decision depends on factors that are unknown to her.
Suppose she can ask for advice from two perfectly informed experts, a left-wing
analyst and a right-wing analyst. Assume that the left-wing analyst has a bias
towards spending more on education, while the right-wing analyst has a bias
towards spending more on the military; both of them are unbiased with respect
to healthcare. The situation can be depicted as in Figure 1. The state space in
this example is represented by triangle ABC. B corresponds to a state in which
it is optimal for the policymaker to spend the whole budget on the military; C
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corresponds to a state in which it is optimal to spend all money on education;
while A corresponds to a state in which it is optimal to spend no money on
either education or military.1 The left-wing analyst’s bias is orthogonal to AB,
in the direction of C. The right-wing analyst’s bias is orthogonal to AC, in the
direction of B.

Figure 1

Battaglini’s solution in this case is asking the left-wing analyst to report
along a line parallel to AC, which in effect means asking how much money
should be spent on the military. Similarly, the construction calls for the right-
wing analyst to report along a line parallel to AB. But note that in this example,
it is not true that any pair of such reports identifies a point in the state space.
Consider state θ in Figure 1. If the left-wing analyst sends a truthful report,
then the right-wing analyst can send many reports that are incompatible with
the previous message in the sense that the only point compatible with the mes-
sage pair is outside the state space (like θ0 in the figure). Intuitively, these
incompatible messages call for a combined expenditure on military and edu-
cation that exceeds the budget. These type of incompatible reports of course

1The example would remain valid if there were some positive lower bounds on each type
of spending. In that case, the vertices of the triangle represent scenarios in which all the
remaining part of the budget above the given minimum expenditures goes to one area.
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never arise if the experts indeed play according to the candidate equilibrium.
Nevertheless, it is important to specify what action the policymaker takes after
receiving a message like that, in order to make sure that both of the experts
have the incentive to tell the truth. This raises the question whether Battaglini’s
construction can be extended by specifying actions after incompatible reports
in such a way that it is always in the interest of both experts to tell the truth,
and if not, then whether there exists any fully revealing equilibrium.

We address this question and, more generally, the issue of how much infor-
mation can be transmitted in a multi-sender cheap talk model if the state space
is not necessarily the whole space. We devote highlighted attention to compact
state spaces in multidimension in order to be able to make a fair comparison
between qualitative features of equilibria in multidimensional models and the
results from the earlier literature on unidimensional models. In those models,
the state space is assumed to be a compact interval. To the same extent, we
argue that the case of an unbounded state space in a multidimensional model
should be compared to the case of an unbounded state space in a unidimensional
model.

There are some conceptual questions that need to be clarified before the
analysis: namely, what it means that the state space is bounded in a cheap
talk model, and whether it is a sensible assumption. We take the position of
the existing literature, that a state is associated with a given optimal policy of
the receiver. Therefore, the state space in the model can be bounded for two
reasons. Either the policy space itself is a bounded set, as in the above example
of allocating a fixed budget, or the set of rationalizable policies of the receiver
is bounded. An example for the latter is the same budget allocation problem
with a budget of flexible size, with the assumption that under no circumstance
would the policymaker choose to set the budget outside a bounded region.2

Our first main result provides a necessary and sufficient condition for the
existence of fully revealing equilibrium for any state space. The condition is
used to establish that a fully revealing equilibrium always exists for unbounded
state spaces and that, for bounded state spaces, it is always possible if the
biases are small enough. It can also be used to investigate the possibility of full
revelation for various pairs of biases in concrete examples.

We provide a particularly convenient characterization for the existence of
fully revealing equilibrium for compact state spaces in the limit as the magni-
tudes of biases go to infinity. We show that the existence of such equilibrium
depends on whether the senders have similar biases. Similarity of biases is
defined relative to the shape of the state space: two biases are similar if the

2 If the feasible policy space is the whole space but the set of rationalizable policies is
bounded, then Battaglini’s construction gives a Bayesian equilibrium. But this equilibrium
is not perfect: after certain message pairs, the receiver is supposed to choose a strategy that
cannot be a best response to any belief.
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intersection of the minimal supporting hyperplane to the state spaces that are
orthogonal to the biases contains a point of the state space. The intuition is
that this point can be used to punish players if they send contradicting messages
to the receiver. If the state space has a smooth boundary, then directions are
similar if and only if they are exactly the same. The similarity relation between
directions of biases is always reflexive and symmetric. For regular state spaces,
it is also transitive.

Our results hold for any dimensions, including one. In one dimension, there
are only two types of biases, the same direction and opposite directions. Biases
of the former type are always similar, and biases of the latter type are never
similar. Just as for multidimensional state spaces, biases with similar directions
imply that full revelation is always possible in equilibrium, while non-similar
directions imply that if biases are small enough, then full revelation is possible;
otherwise, it is not.

We also address the question of how much information can be revealed in
equilibrium if full revelation is not possible. First, we show that in this case,
information loss is bounded away from zero in equilibrium. Second, we establish
that if the state space satisfies some regularity conditions, then information rev-
elation in the most informative equilibrium is also bounded away from zero, for
any direction and any magnitude of the biases. This is in contrast with the case
of only one sender, where Crawford and Sobel (1982) show that in a unidimen-
sional state space no information can be transmitted if the bias of the sender
is large enough, and Levy and Razin (2005) show that in a multidimensional
state space there is an open set of environments in which the most informative
equilibrium approaches the noninformative equilibrium as the size of bias goes
to infinity. In the case of exactly opposite biases, we show that in the limit
as biases go to infinity, all policy outcomes implemented in equilibrium have
to be on a hyperplane that goes through the expected value of the state space
(according to the prior distribution) and is orthogonal to the direction of biases.

The type of equilibria we construct in case full revelation is possible can
be such that for some out-of-equilibrium message pairs, the policymaker imple-
ments a policy that is far away from states that are compatible with any of
the messages sent. This raises the question whether these out-of-equilibrium
beliefs are reasonable and whether there are fully revealing equilibria with rea-
sonable out-of-equilibrium beliefs. We show that imposing a continuity property
on beliefs of the receiver can further reduce the possibility of full revelation in
equilibrium, and for some state spaces quite drastically. For example, if the state
space is a two-dimensional set with a smooth boundary, and biases are not in
exactly the same direction, then there does not exist a fully revealing continuous
equilibrium, no matter how small the biases are. We motivate the continuity
property we impose several ways. For example, we show that if we restrict at-
tention to strategies that satisfy some regularity conditions, then consistency of
beliefs implies the above property.
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We conclude the paper by discussing some extensions of the model.

2 The model

The model we consider has the same structure as that of Battaglini (2002),
with the exception that we consider state spaces that may be proper subsets of
a Euclidean space. There are two senders and one receiver. The senders, labeled
1 and 2, both perfectly observe the state of the world θ ∈ Θ. Θ is referred to
as the state space, which is a closed subset of Rd. The prior distribution of
θ is given by F . After observing θ, the senders send messages m1 ∈ M1 and
m2 ∈ M2 to the receiver. The receiver observes these messages and chooses a
policy y ∈ Y ⊆ Rd that affects the utility of all players. We assume that the
policy space Y includes co(Θ).

For any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, x · y = Pd
j=1 x

jyj denotes
the inner product, and |x| = √x · x denotes the Euclidean norm.

For state θ and policy y, the receiver’s utility is −|y − θ|2, while sender i’s
utility is −|y−θ−xi|2. xi ∈ Rd is called sender i’s bias. At state θ, the optimal
policy of the receiver is θ, while the set of optimal policies of sender i are the
points in Y that are the closest to θ + xi according to the Euclidean distance
(which is exactly policy θ + xi if the latter is included in the policy space).
Note that the magnitude of a sender’s bias does not just change his optimal
policies; it also changes his preferences over the whole policy space. Intuitively,
as the magnitude of bias increases, the indifference manifolds (curves when
d = 2) of sender i at any state get closer and closer to hyperplanes (lines)
that are orthogonal to xi. We note that this formulation can be generalized
without affecting the main results of the paper. In particular, the quadratic
loss functions can be changed to any smooth quasiconcave utility function, and
some of the results can be extended to state-dependent biases as well.3

Let si : Θ→Mi denote a generic strategy of sender i in the above game, and
let y : M1×M2 → Y denote a generic strategy of the receiver. Furthermore, let
f(m1,m2) denote the receiver’s probabilistic belief of θ given messages m1,m2.
Strategies s1, s2, y constitute a perfect Bayesian equilibrium if there exists a
belief function f such that (i) si is optimal given s−i and y for each i ∈ {1, 2};
(ii) y(m1,m2) is optimal given f(m1,m2) for each (m1,m2) ∈ M1 ×M2; and
(iii) f(m1,m2) is consistent with Bayes’ rule for equilibrium message pairs given
s1, s2, and F . Beliefs f like above are said to support the perfect Bayesian
equilibrium (s1, s2, y). From now on we, refer to perfect Bayesian equilibrium
simply as equilibrium. Note that the receiver’s quadratic utility function implies

3See the related discussion in Section 6.
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that condition (ii) above is equivalent to requiring that y(m1,m2) be equal to
the expectation of θ under f(m1,m2). Let µ(m1,m2) denote this expectation.

3 Existence of fully revealing equilibrium
In this section, we investigate the existence of a fully revealing equilibrium.
First, we establish a necessary and sufficient condition for existence that applies
to any state space and any pair of biases. Although several useful insights are
obtained from this result and it provides a tool for further analysis, the charac-
terization is somewhat indirect, in the sense that it does not make transparent
how existence of full revelation in equilibrium is related to the shape of the
state space and the direction of biases. We provide a more direct necessary and
sufficient condition for large enough biases.

3.1 General biases

Similarly to the well-known revelation principle in mechanism design, we do not
lose generality by concentrating on truthful equilibria when investigating the
existence of fully revealing equilibria. This makes our task much easier.

An equilibrium (s1, s2, y) is fully revealing if s1(θ) = s1(θ
0) and s2(θ) = s2(θ

0)
imply θ = θ0. In this case, by Bayes’ rule, f(s1(θ), s2(θ)) is the point mass on
θ. An equilibrium (s1, s2, y) is truthful if M1 = M2 = Θ and s1(θ) = s2(θ) = θ
for every θ ∈ Θ. A truthful equilibrium is fully revealing.

Lemma 1 (Battaglini (2002, Lemma 1)) For any fully revealing equilibrium,
there exists a truthful equilibrium which is outcome-equivalent to the fully reveal-
ing equilibrium.

Proof: For any fully revealing equilibrium (s1, s2, y), consider a strategy
profile (s̃1, s̃2, ỹ) such that each sender reports the state θ truthfully and the
receiver has a belief f̃(θ1, θ2) = f(s1(θ1), s2(θ2)) and takes an action ỹ(θ1, θ2) =
µ(s1(θ1), s2(θ2)). Then, similarly to the standard argument about the revelation
principle, each sender’s strategy is optimal. Also, for each message pair (θ1, θ2),
the sender’s action is optimal because ỹ(θ1, θ2) is the expectation of θ under
belief f̃(θ1, θ2). Also, Bayes’ rule is satisfied whenever it can apply because
belief f̃(θ, θ) = f(s1(θ), s2(θ)) is a point mass on θ when two reports coincide.
QED

In cheap talk games, sequential rationality is a weak requirement. In partic-
ular, in truthful equilibria, after incompatible reports θ 6= θ0, belief f(θ, θ0) can
be an arbitrary distribution on Θ. The only restriction is that no sender has a
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strict incentive not to report the true state, to change the beliefs of the receiver,
given that the other sender reports the truth.

Let B(x, r) = {y ∈ Rd | |y − x| < r} be the open ball with center x and
radius r. For each sender i, B(θ+xi, |xi|) is the set of policies that are preferred
to θ by sender i at state θ.

Proposition 2 Belief f supports a truthful equilibrium if and only if, for every
θ, θ0 ∈ Θ,

f(θ, θ) is a point mass on θ, (1)

µ(θ, θ0) /∈ B(θ0 + x1, |x1|), (2)

µ(θ, θ0) /∈ B(θ + x2, |x2|). (3)

Proof: (1) comes from Bayes’ rule. (2) is the condition for sender 1 not to
strictly prefer reporting θ to reporting truthfully when the true state is θ0. (3)
is similar to (2). QED

Figure 2

Figure 2 illustrates this graphically: in order to keep incentives for truthtelling
both at state θ and θ0, it is necessary that the policy chosen after message pair
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(θ, θ0) be a point that is both outside B(θ0+x1, |x1|) (otherwise, sender 1 would
find it profitable to pretend that the state is θ in case the true state is θ0) and
B(θ+ x2, |x2|) (otherwise, sender 2 would find it profitable to pretend that the
state is θ0 in case the true state is θ).

The above conditions give necessary and sufficient conditions for the exis-
tence of fully revealing equilibrium, stated in the next proposition. The result
is a generalization of Proposition 1 of Battaglini (2002) to general state spaces
in any dimension.

Proposition 3 There exists a fully revealing equilibrium if and only if B(θ0 +
x1, |x1|) ∪B(θ + x2, |x2|) + co(Θ) for all θ, θ0 ∈ Θ.

Proof: By Lemma 1 and Proposition 2, a fully revealing equilibrium exists if
and only if there exists µ(θ, θ0) satisfying (1)—(3). Since µ(θ, θ0) is in the convex
hull of Θ, if B(θ0+x1, |x1|)∪B(θ+x2, |x2|) ⊇ co(Θ) for some θ, θ0 ∈ Θ then (2)—
(3) cannot hold simultaneously for any µ(θ, θ0). Otherwise, for every θ 6= θ0 ∈ Θ
, let µ(θ, θ0) be an arbitrary element of co(Θ)/(B(θ0+x1, |x1|)∪B(θ+x2, |x2|)).
QED

Figure 3
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There cannot be a fully revealing equilibrium whenever there exists a pair
(θ, θ0) of states such that the open balls B(θ0+x1, |x1|) and B(θ+x2, |x2|) cover
the convex hull of the state space. Figure 3 depicts a pair like that. Note that
the existence of fully revealing equilibrium depends only on the shape of the
state space Θ and the biases x1, x2, not on the prior distribution F .

Proposition 3 can be used to derive the following general results on the
existence of fully revealing equilibrium.

Definition: x1 and x2 are in the same direction if x1 = αx2 for some α ≥ 0
or x2 = 0.

Proposition 4 If x1 and x2 are in the same direction, then there exists a fully
revealing equilibrium.

Proof: Let f be the following point belief:

µ(θ, θ0) =
½
θ if x2 · θ > x2 · θ0
θ0 if x2 · θ ≤ x2 · θ0

Then f supports a fully revealing equilibrium. QED

Another general consequence of Proposition 3 is that the existence of fully
revealing equilibrium depends monotonically on the magnitudes of biases.

Proposition 5 Fix Θ. If there exists no fully revealing equilibrium for biases
x1, x2 ∈ Rd, then there exists no fully revealing equilibrium for biases (t1x1, t2x2)
for any t1, t2 ≥ 1.
Proof: B(θ0 + t1x1, |t1x1|) ∪ B(θ + t2x2, |t2x2|) ⊇ B(θ0 + x1, |x1|) ∪ B(θ +

x2, |x2|). Hence the claim follows from Proposition 3. QED

Finally, it can be shown that there is a fully revealing equilibrium if the
biases are small enough relative to the size of the state space.

Let diam(Θ) = supθ,θ0∈Θ |θ − θ0|.

Proposition 6 If |x1| + |x2| ≤ diam(Θ)/2, then there exists a fully revealing
equilibrium.

Proof: Choose θ, θ0 ∈ Θ such that |θ − θ0| ≥ 2(|x1| + |x2|). Then no two
open balls with radii |x1| and |x2| can cover the line segment between θ and θ0.
QED
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Corollary 7 If Θ is unbounded, then there exists a fully revealing equilibrium.

Proof: This claim follows from Proposition 6 since diam(Θ) =∞. QED

Corollary 8 Fix Θ. There exists ε > 0 such that if max(|x1|, |x2|) ≤ ε, then
there exists a fully revealing equilibrium.

Proof: If Θ consists of one point, then the claim is trivial. Otherwise, this
claim follows from Proposition 6 if we set ε = diam(Θ)/4 > 0. QED

3.2 Examples

Our primary goal is to characterize conditions for full information revelation for
large biases. Before providing the general result, it is useful to look at some
concrete examples to develop intuition on how the possibility of full revelation
depends on the shape of the state space and the directions and magnitudes of
biases.

We analyze closed balls and hypercubes. In the next subsection, closed balls
will be generalized to compact spaces with smooth boundaries and hypercubes
to compact spaces with kinks.

Let Dd be the d-dimensional unit closed ball {θ ∈ Rd | |θ| ≤ 1}.

Proposition 9 Suppose Θ = Dd with d ≥ 2. There exists a fully revealing
equilibrium if and only if x1 and x2 are in the same direction or max(|x1|, |x2|) ≤
1.

Proof: If part: By Proposition 4, we can assume that max(|x1|, |x2|) ≤ 1.
For any given (θ, θ0), since d ≥ 2, there exists a unit vector v perpendicular to
θ0 + x1. Let w = −v. We have v, w ∈ Dd. Since |x1| ≤ 1, (2) is satisfied both
by µ(θ, θ0) = v and by µ(θ, θ0) = w. Since |v − w| = 2 and |x2| ≤ 1, either v or
w satisfies (3).
Only-if part: Suppose that x1 and x2 are in different directions and that

max(|x1|, |x2|) > 1. Without loss of generality, we can assume |x1| > 1. By
rotating the state space, we also have x1 = (−a, 0, . . . , 0) with a > 1 without
loss of generality. Substituting θ0 = e := (1, 0, . . . , 0) into (2), we have |µ(θ, e)−
(e+ x1)| ≥ a. By the triangle inequality, µ(θ, e) ∈ Dd, and |e+ x1| = a− 1, we
have

a ≤ |µ(θ, e)− (e+ x1)| ≤ |µ(θ, e)|+ |e+ x1| ≤ 1 + (a− 1) = a.

Therefore, all the inequalities above hold with equality. Because |µ(θ, e)| = 1,
and µ(θ, e) and −(e+ x1) are in the same direction, we have µ(θ, e) = e.
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However, this violates (3) when θ is chosen appropriately. Again, without
loss of generality, we have x2 = (b, c, 0, . . . , 0) with c 6= 0, or b > 0 and c = 0.
For c > 0, we choose θ = (

√
1− ε2,−ε, 0, . . . , 0) for small ε > 0. For

c < 0, we choose θ = (
√
1− ε2, ε, 0, . . . , 0) for small ε > 0. For b > 0 and

c = 0, we choose θ = (1 − ε, 0, . . . , 0) for small ε > 0. In each case, we have
e ∈ B(θ + x2, |x2|), which violates (3). QED

Therefore, when Θ is a closed ball, as long as x1 and x2 are in different
directions, whether a fully revealing equilibrium exists or not is determined by
how large biases are. If the biases are small enough, then we can construct a
fully revealing equilibrium. If at least one of the biases is large enough, though,
then there is no such equilibrium.

Consider next [0, 1]d, the unit hypercube in d dimensions. We say that x1
and x2 are in the same orthant if x

j
1x

j
2 ≥ 0 for every j ∈ {1, . . . , d}.

Proposition 10 Suppose Θ = [0, 1]d.

1. If x1 and x2 are in the same orthant, then there exists a fully revealing
equilibrium.

2. If x1 and x2 are in different orthants and maxi∈{1,2}minj∈{1,...,d} |xji | >
1/2, then there does not exist a fully revealing equilibrium.

Proof: For the first claim, without loss of generality, we can assume that
xji ≥ 0 for all i ∈ {1, 2} and j ∈ {1, ..., d}. Let µ(θ, θ0) = (0, . . . , 0) for any
θ 6= θ0. Then (1)—(3) are satisfied.
For the second claim, without loss of generality, we can assume that xj1 > 1/2

∀ j ∈ {1, ..., d}, and x12 < 0. Then, when θ0 = (0, . . . , 0) in (2), we have
µ(θ, (0, . . . , 0)) = (0, . . . , 0) for any θ ∈ [0, 1]d. However, this violates (3) when
θ = (ε, . . . , 0) for 0 < ε < min(−2x12, 1). QED

The second part of the proposition establishes that if one of the biases xi
is large enough such that there is a state θ such that B(θ + xi, |xi|) covers the
whole hypercube with the exception of θ, then no matter how small the other
bias x−i is, as long as it is in a different orthant, there is a state θ0 such that
B(θ0 + x−i, |x−i|) covers θ (see Figure 4 for illustration).
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Figure 4

Combining Proposition 10 with Proposition 5 and Corollary 8 yields that if
z1 and z2 are in different orthants, then there exists T > 0 such that there exists
a fully revealing equilibrium for biases (x1, x2) = (tz1, tz2) if t < T and does not
exist if t > T . Therefore, for biases that are in different orthants, the qualitative
conditions for the existence of fully revealing equilibrium are similar to the case
when the state space is a d-dimensional unit closed ball. However, for the case of
biases from the same orthant, the qualitative conclusion is different. Note that
the proof–that, in this case, independent of the magnitudes of biases, there
always exists a fully revealing equilibrium–uses the fact that for these biases,
there is a point in the state space that is minimal among points of the state
space in both directions of biases. This point can serve as a punishment after
any incompatible messages, which deters both senders from not revealing the
true state.

3.3 Large biases

Proposition 3 establishes that the existence of fully revealing equilibrium de-
pends on whether for any two states the state space can be covered with two
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open balls that are towards the direction of biases from the above states and
that have radii equal to the magnitudes of biases. The next proposition shows
that, for compact state spaces, the above condition for large biases is equivalent
to whether the state space can be covered by the union of two open half spaces
with boundaries that are orthogonal to the directions of biases.

Let Sd−1 denote the (d − 1)-dimensional unit sphere {x ∈ Rd | |x| = 1}.
Sd−1 represents the set of possible directions in Rd. For any λ ∈ Sd−1 and
k ∈ R, let H◦(λ, k) = {x ∈ Rd | λ · x > k}. H◦(λ, λ · x) is the open half space
orthogonal to λ whose boundary goes through x.

Proposition 11 Fix a compact state space Θ and the directions of biases z1,
z2 ∈ Sd−1. There exists a fully revealing equilibrium with biases (x1, x2) =
(t1z1, t2z2) for every t1, t2 ∈ R+ if and only if H◦(z1, z1 · θ0) ∪H◦(z2, z2 · θ) +
co(Θ) for all θ, θ0 ∈ Θ.
Proof: If part: The claim follows from Proposition 3 because H◦(z1, z1 ·

θ0) ∪H◦(z2, z2 · θ) ⊇ B(θ0 + t1z1, t1) ∪B(θ + t2z2, t2) for every t1, t2 ∈ R+.
Only-if part: Suppose that H◦(z1, z1 · θ0) ∪H◦(z2, z2 · θ) ⊇ co(Θ) for some

θ, θ0 ∈ Θ. Then, since co(Θ) is compact, there exists ε > 0 such that H◦(z1, z1 ·
θ0 + ε) ∪ H◦(z2, z2 · θ + ε) ⊇ co(Θ). Since co(Θ) is bounded, we have B(θ0 +
t1z1, t1) ∩ co(Θ) ⊇ H◦(z1, z1 · θ0 + ε) ∩ co(Θ) and B(θ + t2z2, t2) ∩ co(Θ) ⊇
H◦(z2, z2 · θ+ ε)∩ co(Θ) for sufficiently large t1and t2. Hence the claim follows
from Proposition 3. QED

The intuition for the result is fairly simple: as biases go to infinity, with
respect to a bounded state space, the balls in Proposition 2 converge to the half
spaces in Proposition 11. This result makes it possible to provide a convenient
necessary and sufficient condition for the existence of fully revealing equilibrium
for large enough biases, for any pair of directions of biases.

Consider a compact state space Θ. For any λ ∈ Sd−1, define k∗(λ,Θ) =
minθ∈Θ λ · θ and let H∗(λ,Θ) = {x ∈ Rd | λ · x ≥ k∗(λ,Θ)}. Note that the
compactness of Θ implies that k∗(λ,Θ) and therefore H∗(λ,Θ) are well-defined.
H∗(λ,Θ) is the minimal half space that is orthogonal to λ and contains Θ.
Let h∗(λ,Θ) denote the boundary of H∗(λ,Θ): h∗(λ,Θ) = {x ∈ Rd | λ · x =
k∗(λ,Θ)} is the supporting hyperplane to Θ in the direction of λ.

For every θ ∈ Θ, let NΘ(θ) = {λ ∈ Rd | λ · (θ0 − θ) ≤ 0 ∀θ0 ∈ Θ}. ∂θ(Θ) is
the set of normal cones to Θ at point θ. Then z1 and z2 are similar with respect
to Θ if there exists θ ∈ Θ such that −z1, −z2 ∈ NΘ(θ).

Proposition 12 Fix a compact state space Θ and the directions of biases z1,
z2 ∈ Sd−1. The following conditions are equivalent:

1. There exists a fully revealing equilibrium with biases (x1, x2) = (t1z1, t2z2)
for every t1, t2 ∈ R+.
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2. h∗(z1,Θ) ∩ h∗(z2,Θ) ∩Θ 6= ∅.
3. h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ co(Θ) 6= ∅.
4. z1 and z2 are similar with respect to Θ.

Proof: 1⇒ 2: If not, then we have

H∗(z1,Θ) ∩H∗(z2,Θ)/(h∗(z1,Θ) ∩ h∗(z2,Θ)) ⊇ Θ.

Since the left-hand side of this formula is a convex subset of H◦(z1, k∗(z1,Θ))∪
H◦(z2, k∗(z2,Θ)), we have

H◦(z1, k∗(z1,Θ)) ∪H◦(z2, k∗(z2,Θ)) ⊇ co(Θ),

which contradicts Proposition 11.
2⇒ 3: Trivial.
3 ⇒ 1: Pick any θ̃ ∈ h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ co(Θ). Then the claim follows

from Proposition 11 because θ̃ /∈ H◦(zi, zi · θ) for any i ∈ {1, 2} and any θ ∈ Θ.
2 ⇒ 4: There exists θ ∈ h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ Θ. Then we have −z1,

−z2 ∈ NΘ(θ).
4⇒ 2: Suppose that −z1, −z2 ∈ NΘ(θ) for some θ ∈ Θ. Then θ ∈ h∗(zi,Θ)

for both i ∈ {1, 2}. QED

This proposition makes it easy to check whether for an arbitrary pair of
bias directions full revelation is possible in the limit. If the intersection of the
supporting hyperplanes to the state space in the given directions contains a point
of the state space, then the answer is no; otherwise, it is yes (see Figure 5 below).
This intersection is a lower dimensional hyperplane, and if it contains a point of
the state space and z1 6= z2, then that point has to be a kink of the state space.
For example, in two dimensions, if z1 6= z2 and h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ Θ 6= ∅,
then h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ Θ is a single point, which is such that there are
supporting hyperplanes to Θ both in the direction of z1 and in the direction of
z2. For a concrete example, recall the example of the d-dimensional cube with
edges parallel to the axis from the previous subsection and consider d = 2. We
saw that full revelation in equilibrium is possible even in the limit if biases go
to infinity if and only if the directions of biases are in the same quadrant. Note
that for each of these direction pairs, there is a vertex of the square such that
there are two lines orthogonal to the biases that are tangential to the square
and go through the vertex.
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Figure 5

An immediate consequence of Proposition 12 is that for opposite biases (z1 =
−z2), full revelation is possible in the limit if and only if Θ is included in
a lower dimensional hyperspace that is orthogonal to the direction of biases.
To see this, note that in any other case, h∗(z1,Θ) ∩ h∗(z2,Θ) = ∅; therefore,
h∗(z1,Θ) ∩ h∗(z2,Θ) ∩Θ = ∅.

Another conclusion we can derive from the proposition is that if Θ is a
compact set with a smooth boundary, then full revelation in equilibrium is
possible in the limit as biases go to infinity if and only if the biases are in
the same direction. This generalizes our result from the previous subsection
concerning the d-dimensional disk.

A compact Θ has a smooth boundary if λ, λ0 ∈ NΘ(θ)∩Sd−1 implies λ = λ0

for any θ ∈ Θ.

Corollary 13 Fix a compact state space Θ with a smooth boundary and the
directions of biases z1, z2 ∈ Sd−1. There exists a fully revealing equilibrium
with biases (x1, x2) = (t1z1, t2z2) for every t1, t2 ∈ R+ if and only if z1 = z2.
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Proof: It follows from Proposition 12. QED

We also can show from Proposition 12 that we can assume the state space to
be convex without loss of generality when we discuss the possibility of full rev-
elation for large biases. This follows because the third condition in Proposition
12 depends only on co(Θ).

Note that the similarity relation used in Proposition 12 is reflexive and sym-
metric, but not necessary transitive. It can be shown that if Θ is regular in the
sense that λ ∈ NΘ(θ) and λ ∈ NΘ(θ

0) for some λ ∈ Sd−1 implies θ = θ0, then
the relation is also transitive.

We conclude the section by comparing the possibility of full revelation of
information in one dimension and in more than one dimension. In each case,
the same general result applies: if the state space is compact, then for biases in
similar directions, full revelation of information is possible for any magnitudes
of biases; for biases that are not in similar directions, the magnitudes of biases
matter: full revelation of information is possible for small biases, but not possible
for large enough biases. There is a potential difference between one dimension
and many dimensions concerning whether nonsimilar directions are generic or
not. In one dimension, there are only two types of direction pairs: the same
direction and opposite directions. The former directions are always similar while
the latter directions are always nonsimilar as long as the state space is not a
singleton; therefore, neither of them is generic. In more than one dimension,
the similarity relation depends on the shape of the state space. For state spaces
with smooth boundaries, nonsimilar directions are generic, while for any other
state space, neither similar nor nonsimilar direction pairs are generic. In any
case, for a two-sender cheap talk model with a compact state space, one can get
the same qualitative conclusions with respect to the possibility of fully revealing
equilibrium if using a one-dimensional model (which is typically much easier to
analyze) and if using a multidimensional model. The only caveat is that if
one considers the one-dimensional model as a simplification of a more realistic
multidimensional model, and similar biases are unlikely in that multidimensional
model, then the one-dimensional analysis should put more emphasis on the case
of opposite biases than on the case of like biases.

4 Partial information revelation

In this section, we examine how much information can be transmitted in equilib-
rium if full revelation is not possible. First, we show that in this case, informa-
tion transmission is bounded away from efficiency, in the sense that there is an
open set of states such that the implemented policy at these states is bounded
away from the optimal policy of the receiver.
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Proposition 14 There exists no fully revealing equilibrium if and only if there
exist ε > 0 and open sets U and U 0 satisfying U ∩Θ 6= ∅ and U 0 ∩Θ 6= ∅ such
that, for any equilibrium (s1, s2, µ), either |µ(s1(θ), s2(θ))− θ| > ε for all θ ∈ U
or |µ(s1(θ0), s2(θ0))− θ0| > ε for all θ0 ∈ U 0.

Proof: The if part is trivial. For the only if part, suppose that there exists
no fully revealing equilibrium. Then Θ is bounded, and there exist eθ,eθ0 ∈ Θ
such that

B(eθ0 + x1, |x1|) ∪B(eθ + x2, |x2|) ⊇ co(Θ)

Since the left-hand side is the union of two open balls and the right-hand
side is the compact set, the above inclusion holds for other two nearby balls.
Namely, there exist ε > 0 and neighborhoods U of eθ and U 0 of eθ0 such that

B(θ0 + x1, |x1|− ε) ∪B(θ + x2, |x2|− ε) ⊇ co(Θ)

for any θ ∈ U and θ0 ∈ U 0.
For any equilibrium (s1, s2, µ) and any θ ∈ U, θ0 ∈ U 0, we must have either

|µ(s1(θ), s2(θ))− θ| > ε or
¯̄
µ(s1(θ

0), s2(θ0))− θ0
¯̄
> ε because otherwise we have

B(θ0 + x1,
¯̄
θ0 + x1 − µ(s1(θ

0), s2(θ0))
¯̄
) ∪B(θ + x2, |θ + x2 − µ(s1(θ), s2(θ))|) ⊇

co(Θ), where the first ball is the set of policies sender 1 strictly prefers to
µ(s1(θ

0), s2(θ0)) at state θ0, and the second ball is the set of policies sender 2
strictly prefers to µ(s1(θ), s2(θ)) at state θ. Therefore, similarly to the proof
of Proposition 3, no matter what µ(s1(θ), s2(θ

0)) is, either sender 1 wants to
report θ at state θ0 or sender 2 wants to report θ0 at state θ, which contradicts
the equilibrium condition.
Therefore, if |µ(s1(θ), s2(θ))− θ| ≤ ε for some θ ∈ U , then

¯̄
µ(s1(θ

0), s2(θ0))
−θ0 ¯̄ > ε for all θ0 ∈ U 0. Otherwise, |µ(s1(θ), s2(θ))− θ| ≤ ε ∀ θ ∈ U . QED

The proof establishes that if there is no fully revealing equilibrium, then
there exist two open balls and a positive constant such that if in an equilibrium
the implemented policy for at least one state in one ball is closer than epsilon to
the state itself, then at every state in the other ball, the difference between the
implemented policy and the state is at least as much as this constant. Note that
the balls are defined independently of the equilibrium at hand; hence the above
property applies to all equilibria. This is worth pointing out because typically
there are many different types of equilibria, and it is hard to find nontrivial
properties that hold for every equilibrium.

Next we establish that if the prior distribution is continuous and the expected
value of the state space is an interior point of the state space (which holds, for
example, if Θ is convex and full dimensional), then information transmission
in the most informative equilibrium is bounded away from zero.4 First, we

4Note that the claim is about the most informative equilibrium. As is well-known in the
literature, there is always a babbling equilibrium in which no information is transmitted.
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show the result for the case of non-opposite biases, where a stronger claim can
be established: that there exists an open set of states such that there is an
equilibrium that is fully revealing with respect to this set, independently of the
magnitudes of biases.

Let bθ = E(θ), where E denotes the expectation with respect to the prior
distribution F.

Proposition 15 Assume F is continuous. If bθ is an interior point of Θ and
z1, z2 ∈ Sd−1 are not opposite directions, then there is an open set C ⊆ Θ
such that for any t1, t2 ∈ R+, there is an equilibrium with biases (x1, x2) =
(t1z1, t2z2) such that y(s1(θ), s2(θ)) = θ for all θ ∈ C.

Proof: Let t > 0 be such that for any t1, t2 ≤ t, full revelation is possible
with biases (x1, x2) = (t1z1, t2z2). Since z1, z2 are not orthogonal, B(bθ+tz1, t)∩
B(bθ + tz2, t) ∩ Θ has at least one interior point eθ. Then, by the continuity of
F , there exist an open neighborhood C of eθ and an open neighborhood C0 ofbθ such that for every t1, t2 ≥ t, θ ∈ B(θ0 + t1z1, t1) ∩ B(θ0 + t2z2, t2) for all
θ ∈ C and θ0 ∈ C 0 and E(θ|θ /∈ C) ∈ C0. Then the following is an equilibrium
for biases (x1, x2) = (t1z1, t2z2) with message spaces M1 = M2 = C ∪ {m−C}:
s1(θ) = s2(θ) = θ for θ ∈ C and s1(θ) = s2(θ) = m−C otherwise, while
y(θ, θ) = θ for θ ∈ C and y(θ0, θ00) = E(θ|θ /∈ C) if either θ0 = m−C , θ00 = m−C ,
or θ0 6= θ00. QED

Consider now the case of opposite biases. Let bHi = {y ∈ Rd : xi ·(y−bθ) = 0}
for i = 1, 2. bH1 and bH2 are the hyperplanes going through the expected value
of the state space (according to the prior distribution) that are orthogonal to
the biases. For the case of opposite biases, bH1 = bH2 ≡ bH.
Proposition 16 Assume d ≥ 2 and F is continuous. Let z1, z2 ∈ Sd−1 be
such that z1 = −z2. If bθ is an interior point of Θ, then there exists an open
neighborhood C of bθ such that for any t1, t2 ∈ R+, there is an equilibrium with
biases (x1, x2) = (t1z1, t2z2) such that y(s1(θ), s2(θ)) = projHθ for all θ ∈ C.

Proof: The assumptions above imply that there exists C ∈ Θ such that
C is an open neighborhood of bθ and E(θ|θ ∈ C, projHθ = θ) = θ for all θ ∈
projHC. Then the following is an equilibrium for biases (x1, x2) = (t1z1, t2z2)
with message spaces M1 = M2 = (projHC) ∪ {m−C}: s1(θ) = s2(θ) = projHC

for θ ∈ C and s1(θ) = s2(θ) = m−C otherwise, while y(θ, θ) = θ for θ ∈ bH ∩ C0
and y(θ0, θ00) = E(θ|θ /∈ C) if either θ0 = m−C , θ00 = m−C , or θ0 6= θ00. QED

The above implies that even in the limit as the magnitudes of biases go
to infinity, information transmission is bounded away from zero. This is in
contrast to the one-sender case. Crawford and Sobel (1982) show that there is
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no informative equilibrium for large enough biases if the state space is a compact
interval. In multidimensional environments, Levy and Razin (2005) provide a
condition for the receiver to play at most k actions with positive probability if
the magnitude of bias is sufficiently large. If this condition holds with k = 1,
then there is no informative equilibrium for a large enough bias.5

It can also be shown that, for opposite biases in the limit as the magnitudes
of biases go to infinity, all policies implemented in equilibrium must be contained
in bH.6 This gives an upper bound on how much information can be transmitted
in the limit if biases are in opposite directions. This upper bound is tight if
both Θ and F are symmetric around bH.
Proposition 17 Let Θ be compact and let z1, z2 ∈ Sd−1 be such that z1 = −z2.
Then for every ε > 0, there exists t ∈ R+ such that for every t1, t2 > t,
every equilibrium of the model with biases (t1z1, t2z2) is such that for all θ ∈ Θ
minx∈H |y(s1(θ), s2(θ))− x| < ε.

Proof: For every y ∈ co(Θ) , let bH(y) denote the hyperplane going through
y that is orthogonal to the biases. For every ε > 0, there exists t ∈ R+ such
that for every t1, t2 > t, every y, y0 ∈ co(Θ) with z1 · y ≥ z1 · y0 + ε/2, and
every θ ∈ Θ , we have − |y − θ − x1|2 > − |y0 − θ − x1|2 and − |y − θ − x2|2 <
− |y0 − θ − x2|2 (in words, sender 1 prefers policy y to y0 in every state, while
sender 2 prefers y0 to y in every state). Suppose now that biases are (t1z1, t2z2)
with t1, t2 > t and that there is an equilibrium for which z1 · y(s1(θ), s2(θ)) ≥
z1 · y(s1(θ0), s2(θ0)) + ε for some θ, θ0 ∈ Θ. Consider y(s1(θ), s2(θ0))). Then
either (i) z1 · y(s1(θ), s2(θ0)) ≥ z1 · y(s1(θ0), s2(θ0)) + ε/2 and hence

− ¯̄y(s1(θ), s2(θ0))− θ0 − x1
¯̄2
> − ¯̄y(s1(θ0), s2(θ0))− θ0 − x1

¯̄2
,

or (ii) z1 · y(s1(θ), s2(θ)) ≥ z1 · y(s1(θ), s2(θ0)) + ε/2 and hence

− ¯̄y(s1(θ), s2(θ0))− θ − x2
¯̄2
> − |y(s1(θ), s2(θ))− θ − x2|2 ,

contradicting that the profile is an equilibrium. Therefore, z1 · (y(s1(θ), s2(θ))−
y(s1(θ

0), s2(θ0))) < ε for all θ, θ0 ∈ Θ. Since sequential rationality implies that
E(y(s1(θ), s2(θ))) = bθ, all the equilibirum policies are in the ε-neighborhood ofbH. QED

5It is not true though that informative equilibria never exist for large enough biases.
Chakraborty and Harbough (2005) construct an informative equilibrium in symmetric multi-
dimensional environments. They also show that this equilibrium construction is generically
robust to small asymmetries of payoff functions and the prior distribution.

6Note that in one dimension, H1 = {θ}; therefore, in that context, this claim implies the
known result that no information can be revealed in equilibrium when biases are opposite
direction and the size of biases goes to infinity.
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5 Robust equilibria
In cheap talk games, perfect Bayesian equilibrium (PBE) does not impose any
restriction on out-of-equilibrium beliefs of the receiver. Given this great flex-
ibility in specifying out-of-equilibrium beliefs–which is made transparent in
Proposition 2–the question arises which equilibria can be supported by “plau-
sible” beliefs. The importance of this issue in our paper is mitigated by the fact
that our central results concern nonexistence of fully revealing PBE. Of course,
nonexistence of fully revealing PBE implies nonexistence of any refinement of
PBE that is fully revealing. However, we show how imposing a plausible refine-
ment criterion strengthens our nonexistence results considerably for some state
spaces.

An extensive investigation of robustness of PBE, and related to this inves-
tigating PBE in models with noisy state observation, is a difficult exercise for
general state spaces and is beyond the scope of this paper.7 We focus on equilib-
ria that satisfy a particular continuity property. The property is motivated by
requiring robustness to small mistakes in senders’ observations, and it is satis-
fied by the construction provided by Battaglini (2002 and 2004) for unrestricted
state spaces. We also show that a strong definition of consistency of equilib-
rium beliefs implies this property. We then establish that if the state space is
two-dimensional and has a smooth boundary, and biases are not in exactly the
same direction, then there exists no fully revealing equilibrium that satisfies the
continuity property, even if the magnitudes of the biases are arbitrarily small.
A similar result is shown for the case when the state space is a d-dimensional
cube.

5.1 Diagonal continuity

The equilibrium construction provided in Battaglini (2002, 2004) satisfies the
property that the policy implemented by the receiver is continuous in the ob-
servations made by the senders. In what follows, we investigate a requirement
that is weaker than this, in that it only requires continuity at points where the
observations of senders are the same.

Definition: An equilibrium (s1, s2, y) is called continuous on the diagonal
if limn→∞ y(s1(θ

n
1 ), s2(θ

n
2 )) = y(s1(θ), s2(θ)) for any sequence {(θn1 , θn2 )}n∈N of

pairs of states such that limn→∞ θn1 = limn→∞ θn2 = θ.

Our motivation for investigating equilibria that satisfy this property comes
from multiple sources. One is that we are interested in whether in restricted
state spaces there exist fully revealing equilibria that can be obtained by some
continuous transformation of the Battaglini construction.

7Battaglini (2002) investigates one definition of robustness with restricted state spaces
in one dimension and unrestricted state spaces in multiple dimensions; Battaglini (2004)
considers a different definition of robustness with unrestricted multidimensional state spaces.
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Second, this property is equivalent to robustness to all small misspecification
of the model. More precisely, suppose that signals that two senders receive are
slightly different from the true state in reality, although all players (incorrectly)
believe that both senders know the true state, they believe that other players
believe that both senders know the true state, and so on. In such a situation,
if the equilibrium is continuous on the diagonal, then the ex post loss for the
receiver that arises from false beliefs is small for any realization of the true state
when both senders receive signals close enough to the true state.

Third, as the next proposition shows, diagonal continuity is necessary for
nonexistence of incompatible reports. The latter is a convenient property in
settings where it is unclear how to specify out-of-equilibrium beliefs.8

Proposition 18 For compact Θ, a fully revealing equilibrium (s1, s2, y) is con-
tinuous on the diagonal if

1. for each sender i, Mi is Hausdorff and si : Θ→Mi is continuous, and

2. for each (m1,m2) ∈ s1(Θ) × s2(Θ), there exists a state θ ∈ Θ such that
(s1(θ), s2(θ)) = (m1,m2).

Proof: Consider function g on Θ that maps θ to (s1(θ), s2(θ)). By the
assumptions, g is a continuous function onto s1(Θ) × s2(Θ). g is also one-
to-one because (s1, s2, y) is fully revealing. Since g is a continuous bijection
from compact space Θ to Hausdorff space M1 × M2, the inverse µ(m1,m2)
is a continuous function of (m1,m2) ∈ s1(Θ) × s2(Θ).9 Since s1 and s2 are
continuous, µ(s1(θ1), s2(θ2)) is also continuous in (θ1, θ2). QED

The last motivation comes from consistency of beliefs, i.e., that beliefs should
be limits of beliefs obtained from noisy models as the noise in senders’ obser-
vations goes to zero. In Appendix A, we show that if we restrict attention to
equilibria in which players’ strategies satisfy some regularity conditions, then
every PBE that satisfies consistency of beliefs has to satisfy diagonal continu-
ity. The regularity conditions we impose are fairly strong, but they are needed
to ensure that the conditional beliefs of the receiver in “nearby” noisy models
(which are invoked in the definition of consistent beliefs) are well-defined by
Bayes’ rule.

8For example, Battaglini’s (2002) equilibrium does not have incompatible reports if the
state space is a whole Euclidean space.

9 See Royden (1988), Proposition 5 of Chapter 9.
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5.2 Nonexistence of fully revealing equilibria that are con-
tinuous on the diagonal

Below we show that requiring diagonal continuity can drastically reduce the
possibility of full revelation in equilibrium. First we consider two-dimensional
smooth compact sets. Recall Proposition 6, according to which for any pair of
bias directions, if biases are small enough (positive), then there always exists a
fully revealing equilibrium. As opposed to this, the next proposition shows that
unless biases are exactly in the same direction, no matter how small they are,
there does not exist a continuous fully revealing equilibrium.

Proposition 19 In a two-dimensional smooth compact set Θ, if (x1, x2) are
not in the same direction, then there does not exist a fully revealing equilibrium
that satisfies diagonal continuity.

Proof: Since Θ is a two-dimensional smooth set and (x1, x2) is not in the
same direction, there exists θ ∈ Θ such that θ is separated from other points in
Θ \ (B(θ − x1, |x1|) ∪B(θ − x2, |x2|)). Since y(θ, θ0) is continuous with respect
to θ0 at θ0 = θ, when we change θ0 slightly, y(θ, θ0) has to move continuously.
However, we can change θ0 appropriately so that we can cover byB(θ0−x1, |x1|)∪
B(θ−x2, |x2|) the region close enough to θ. This leads to a contradiction. QED

Figure 6 illustrates the argument used in the proof: if biases are not in the
same direction, then there are states θ and θ0 arbitrarily close to each other
(close to the boundary of the state space) such that the balls B(θ0 − x1, |x1|)
and B(θ − x2, |x2|) cover an open set that includes both θ and θ0. This means
that in order to induce truthtelling in equilibrium, the policy implemented by
the receiver after receiving messages corresponding to θ and θ0 has to be “far
away” from both θ and θ0. This implies that the equilibrium does not satisfy
diagonal continuity in these points.

A similar nonexistence result holds for models in which the state space is a
d-dimensional cube (note the difference to the result in Proposition 10).

Proposition 20 Suppose that Θ = [0,W ]d with W > 0. There exists no con-
tinuous fully revealing equilibrium if xj1 > 0 for all j ∈ {1, . . . , d} and xk2 < 0
for some k ∈ {1, . . . , d}.

Proof: When θ = θ0 = (0, . . . , 0), (0, . . . , 0) is separated from other points
in Θ \ (B(−x1, |x1|)∪B(−x2, |x2|)). Then, similarly to the proof of Proposition
19, we can change θ from (0 . . . , 0) toward the positive direction of the k-th
coordinate so that we can cover by B(−x1, |x1|) ∪ B(θ − x2, |x2|) the region
close enough to (0, . . . , 0). This leads to a contradiction. QED
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Figure 6: nonexistence of continuous truthtelling equilibrium

6 Discussion and extensions

6.1 More general preferences

The results for finite biases (Subsection 3.1) generalize to any preference spec-
ification for the senders. In particular, the quadratic loss function does not
play any role in these results. Moreover, the senders’ preferences (biases) can
be state dependent. It can also be shown that the existence of fully revealing
equilibrium is robust to introducing a small amount of state dependence into
the senders’ preferences. Formally, if there exists a fully revealing equilibrium
in a state-independent bias model in which sender i’s utility function is given
by −|y− θ−xi|2, then there exists ε > 0 such that there exists a fully revealing
equilibrium in a state-dependent bias model in which sender i’s utility function
is given by −|y− θ−xi(θ)|2 with |xi(θ)−xi| < ε for all θ. The intuition behind
this result is that if two open balls cover the state space as in Proposition 2,
then if the balls are changed slightly, they still cover the state space. We do
not formalize this claim here since the arguments are straightforward. We note
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that Battaglini’s equilibrium construction cannot be extended to all models with
state-dependent sender preferences obtained as above (if bias vectors are state
dependent, then so are the directions orthogonal to the bias, which can ruin
the incentives of the senders to report truthfully), even if the state space is the
whole Euclidean space.

The results for large biases in Subsection 3.3 can be generalized as well, for
cases when the indifference manifolds of the senders are smooth. The latter
requirement is needed to make sure that indifference manifolds over a compact
state space approach hyperplanes. These limit hyperplanes are not necessarily
orthogonal to the bias vectors if preferences are not quadratic, but depend on
the shape of the indifference curves. The assumption of state-independent biases
can again be relaxed.

6.2 Long cheap talk

It is well-known that multiple rounds of costless signaling (“long cheap talk”)
may expand the set of equilibrium payoffs. In particular, in a one-sender model
with two-stage conversation, Krishna and Morgan (2004) show that there al-
most always exists an equilibrium outcome that dominates all the equilibrium
outcomes in the model with a single round of cheap talk. In our setting, first we
show that additional rounds of communication (including allowing the receiver
to send messages, as in Krishna and Morgan (2004)) do not affect the possibility
of full revelation in pure strategy equilibrium, although they may affect partially
revealing equilibria when full revelation is impossible.

Proposition 21 If there exists no fully revealing equilibrium under a single
round of cheap talk, then there also exists no fully revealing pure strategy equi-
librium under multiple rounds of cheap talk.

Proof: Suppose that there exists a fully revealing equilibrium under multiple
rounds of cheap talk. Let s0 be the receiver’s strategy in the cheap-talk stage,
and si(θ) be sender i’s strategy at state θ. Each of the strategies is a sequence
of messages contingent on all players’ past messages. Given the sequence of
messages generated by (s0, s1(θ), s2(θ

0)), the receiver forms the belief µ(θ, θ0)
about the state of the world. For every θ, θ0 ∈ Θ, we have to keep sender 1
from mimicking sender 1 of type θ and playing s1(θ) when the real state is θ

0.
Similarly, we have to keep sender 2 from playing s2(θ

0) when the real state is θ.
Thus µ(θ, θ0) satisfies (1)—(3) as in the game with a single round of cheap talk,
which contradicts the assumption. QED

In a fully revealing equilibrium without generality, it can be assumed that
both the receiver and the senders use pure strategies (any mixing over actions
has to be irrelevant in terms of the final outcome that is chosen). However, in
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a game with multiple rounds of cheap talk, off the equilibrium path players can
mix in a payoff relevant manner. This means that deviatons by the senders can
lead to stochastic outcomes, which can affect the existence of fully revealing
equilibrium. Below we provide a necessary condition for the existence of fully
revealing equilibrium in a game with multiple rounds of cheap talk. Then we
show that for large biases, having multiple rounds of cheap talk (as opposed to
just one) does not affect the existence of fully revealing equilibrium.

Let D = diam(Θ)/2, where diam(Θ) = sup
θ,θ0∈Θ

¯̄
θ − θ0

¯̄
. For i = 1, 2 let ri =q

max(0, |xi|2 −D2)).

Proposition 22 In any game with multiple rounds of cheap talk, there exists
no fully revealing equilibrium if there exist θ, θ0 ∈ Θ such that B(θ0 + x1, r1) ∪
B(θ + x2, r2) ⊇ co(Θ).

Proof: In a fully revealing equilibrium, for any pair of states θ and θ0, it
has to be true that player 1 at θ0 cannot gain by deviating to playing what her
strategy would prescribe at state θ, and at θ cannot gain by deviating to playing
what her strategy would prescribe at state θ0. Fix any strategy profile which
satisfies that at every state the policy outcome is equal to the state. Let y(θ, θ0)
denote the probability distribution of policy outcomes resulting from sender 1
playing the continuation strategy that the above profile prescribes for her after
observing θ and from sender 2 playing the continuation strategy that the above
profile prescribes for her after observing θ0. Then since the above profile is an
equilibrium, we have −E(y(θ, θ0)− θ0−x1)2 ≤ − |x1|2. Note that −E(y(θ, θ0)−
θ0 − x1)

2 = −(Ey(θ, θ0) − θ0 − x1)
2 − E|y(θ, θ0) − Ey(θ, θ0)|2. Since y(θ, θ0) is

a distribution over co(Θ), E|y(θ, θ0) − Ey(θ, θ0)|2 ≤ (diam(Θ)/2)2 = D2. This
means that a necessary condition for the above profile to be an equilibrium is
(Ey(θ, θ0) − θ0 − |x1|)2 > |x1|2 − D2. A symmetric argument establishes that
another necessary condition is (Ey(θ, θ0)− θ − |x2|)2 ≥ |x2|2 −D2. Combining
the two conditions yields Ey(θ, θ0) /∈ B(θ0 + x1, r1) ∪ B(θ + x2, r2). Therefore,
B(θ0+x1, r1)∪B(θ+x2, r2) ⊇ co(Θ) for some θ, θ0 ∈ Θ implies that there does
not exist a fully revealing equilibrium. QED

The above result is similar in spirit to Proposition 3: if a sender pretends
to have observed a different state than the true state, then the resulting prob-
ability distribution over outcomes should yield a lower expected utility for her
than revealing the true state. For quadratic utilities, the above expected utility
only depends on the expectation and the variance of the resulting distribution.
The variance of the distribution is bounded by a constant that depends on the
diameter of the state space. This can be used to show that the expected value of
the distribution has to be in the two open balls in the statement, B(θ0+ x1, r1)
and B(θ + x2, r2) (if player 1 played as if she observed θ and player 2 played
as if she observed θ0). Note that these balls have the same centers as the ones
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in Proposition 3, but smaller. As opposed to Proposition 3, which provides a
necessary and sufficient condition, the above claim only provides a necessary
condition for the existence of fully revealing equilibrium in games with multiple
rounds of cheap talk. The condition can be tightened for specific state spaces,
for example, by using the fact that, for different expected values, typically the
maximal variance of a distribution with the given expected value is different (if
the state space is bounded).

We conclude this subsection by showing that in a bounded state space, for
any fixed direction pair of biases, in the limit as the magnitude of biases go to
infinity there exists fully revealing equilibrium in a game with arbitrary rounds
of communication if and only if there exists one in a game with only one round of
communication. This means that the results of Subsection 3.3 on large enough
biases hold for games with arbitrary rounds of communication. The key insight
is that the open balls in Proposition 22 converge to the ones in Proposition 3.

Proposition 23 Fix a compact state space Θ and directions of biases z1, z2 ∈
Sd−1. If there exists t∗ ∈ R+ such that for every t1, t2 > t∗ and bias pair
(x1, x2) = (t1z1, t2z2) there exists no fully revealing equilibrium in a game with
one round of cheap talk, then there exists t∗∗ ∈ R+ such that for every t1, t2 > t∗∗

and bias pair (x1, x2) = (t1z1, t2z2) there exists no fully revealing equilibrium in
a game with arbitrary rounds of cheap talk.

Proof: Let ri(ti) =
q
max(0, |xi|2 −D2)) for i = 1, 2. Note that θ0 is not

on the boundary of B(θ0+ tz1, r1(t1)), but the difference between θ
0 and B(θ0+

tz1, r1(t1)) is |t1|− r1(t1) = |t1|−
p
t21 −D2 = D2

t1+
√
t21−D2

for large enough t1,

which goes to 0 as t1 →∞. A symmetric argument shows that |t2|− r2(t2)→ 0
as t2 →∞. Given this, the same arguments as in Proposition 11 establish that
for any θ, θ0 ∈ Θ, we have B(θ0 + tz1, r1(t1))∪B(θ+ tz2, r2(t2)) + co(Θ) for all
t1, t2 ∈ R+ if and only if H◦(z1, z1 · θ0)∪H◦(z2, z2 · θ) + co(Θ). The claim then
follows from Propositions 11 and 22. QED.

6.3 Commitment

In the model discussed so far, we assumed that the policymaker cannot commit
to a policy function, i.e., after every message pair, she has to play a best response
to her updated belief. The case in which the policymaker can commit to a policy
function is a mechanism-design problem, which is referred to as delegation in
the cheap talk literature. Typically the equilibria of a cheap talk game with
and without commitment are very different from each other, and the payoff of
the receiver is strictly higher if she is able to commit to a policy function than
if such commitment is not possible. However, if the set of feasible policies is
equal to the set of policies rationalizable by some belief on the state space, then
there is no difference between the mechanism-design problem and the cheap-
talk model in terms of full revelation. Namely, if Y = co(Θ), then the receiver
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gets the best feasible payoff (zero) in the mechanism-design problem if and only
if there exists a fully revealing equilibrium in the cheap-talk model without
commitment. This is because the best feasible payoff in the mechanism-design
problem can only be achieved if the mechanism implements policy θ in every
state θ. Then by the revelation principle, there has to be a mechanism achieving
the same outcome in which the senders both report state, and the mechanism
selects policy θ after a message pair (θ, θ) for every θ ∈ Θ, while it selects some
y ∈ Y after incompatible messages. Note that if Y = co(Θ), then the above are
exactly the conditions for a truthful equilibrium in the case of no commitment,
which by Lemma 1 are also the conditions for a fully revealing equilibrium.

6.4 Imperfectly observed state

The assumption in our paper, and in most of the literature in cheap talk, that
the experts observe the state perfectly is not realistic in many settings. One
of our motivations for examining equilibria that satisfy diagonal continuity in
Section 4 is that senders might make small mistakes in observing the state. A
more direct way of addressing the issue is explicitly analyzing models in which
the senders’ observations are noisy. Battaglini (2004) shows that the construc-
tion in Battaglini (2002), which is fully revealing in the limit as noise goes to
zero, remains an equilibrium for a multidimensional Euclidean space even if ob-
servations are noisy. However, the proof of this claim relies on various special
assumptions. In particular, the state is assumed to be distributed ex ante ac-
cording to an improper uniform prior. We argue that the uniform prior is very
special in a multi-sender cheap talk model, in the sense that it is the only prior
distribution which is compatible with the Battaglini construction to be an equi-
librium. It is not clear to what set of priors and how the results of Battaglini [04]
can be extended. If extreme states are very unlikely–a reasonable assumption
in most cases when the policy space is unbounded–then no matter how small
(positive) the noise in observations is, after some message pairs the receiver
thinks that it is much more likely that the noise term of one of the senders was
particularly large than that a very unlikely state occurred. This can corrupt the
incentives of the senders to report their observations truthfully in the Battaglini
construction. Consider again the budget allocation game depicted in Figure 1,
but now assume that the state space is the whole Euclidean space (the budget
is of flexible size). If states outside triangle ABC are unlikely enough, then
in a noisy model, the receiver will still choose a policy in or close to triangle
ABC after any message pair. Therefore, thin tails of the distribution in a noisy
model can invalidate Battaglini’s equilibrium construction for the same reason
that support restrictions do in a model where observations are perfect. The
assumption of improper uniform prior avoids this problem because the tails of
the distribution are extremely thick. The problem of analyzing noisy cheap talk
models with general prior distributions is a difficult but important direction of
future research.
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7 Conclusion

This paper argues that in a cheap talk model with multiple senders, the amount
of information that can be transmitted in equilibrium depends not on the di-
mensionality of the state space but on finer details of the model specification.
These details include the shape of the boundary of the state space and how
similar preferences of the senders are, where similarity is defined with respect to
the state space. It is worth pointing out that the properties of the state space
and sender preferences cannot be investigated independently, once we allow
for general (state-dependent) preferences. For example, an open bounded state
space with state-independent preferences can be transformed into an unbounded
state space with state-dependent preferences in a way that the resulting games
are strategically equivalent. The conclusion that qualitative predictions from a
cheap talk model depend on the parameters of the model (state space, senders’
preferences in different states) in a relatively complicated way suggests that in
applications of cheap talk models, it is important to derive these parameters
from more basic underlying objective functions.
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8 Appendix A: Consistency of beliefs and diag-
onal continuity

In this Appendix, we show that if we restrict attention to strategies that satisfy
some regularity conditions, then every equilibrium in which the receivers’ beliefs
are consistent satisfies diagonal continuity (as defined in 5.1).

Consider a PBE (s1, s2, y) and conditional beliefs of the sender f() that
support this equilibrium. For any m1 ∈M1 and m2 ∈M2, let µ(m1,m2) denote
the expectation of θ according to f(m1,m2).

In order to check for consistency of the above beliefs, we need to define
models in which the observations of senders are noisy. We will consider a se-
quence of noisy models indexed by k = 1, 2, ... In the noisy model indexed by
k, senders 1 and 2 observe signals θ1 ∈ Θ and θ2 ∈ Θ, respectively. For each
true state θ ∈ Θ, the joint density function of signals (θ1, θ2) conditional on θ is
given by gk(θ1, θ2|θ). We assume that noise disappears in the limit: gk(θ1, θ2|θ)
converges in probability to (θ, θ) as k →∞.

An example for the above construction, which is similar in spirit to the one
proposed in Battaglini (2004), is when

θi = θ + εkui,

where (u1, u2) is a truncated standard normal distribution on R2d and εk → 0
as k →∞. Truncation is needed to assure that θi belongs to Θ for sure.10

Fixing the senders’ strategies in the sequence of noisy models to be si(θi),
let fk(m1,m2) denote the posterior belief of the receiver in the model indexed
by k, given two reports (m1,m2). Let µk(m1,m2) be the expectation of θ with
respect to fk(m1,m2).

Definition: We say f is consistent if fk(m1,m2) weakly converges to
f(m1,m2) uniformly over (m1,m2) ∈ s1(Θ) × s2(Θ), i.e., for any ε > 0 and
any continuous and bounded function b on Θ, there exists K such that we have¯̄̄̄Z

b(θ)fk(m1,m2)(dθ)−
Z

b(θ)f(m1,m2)(dθ)

¯̄̄̄
< ε,

for any (m1,m2) ∈ s1(Θ)× s2(Θ) and any k > K.11

If Θ is bounded, then this definition implies that µk(m1,m2) uniformly con-
verges to µ(m1,m2) as k →∞.
10On the other hand, noise structures like the one in Section 3 of Battaglini (2002) are not

compatible with our framework because they do not admit a density function gk(θ1, θ2|θ).
11We note that the requirement of uniform convergence is strong. We do not know whether

consistency implies diagonal continuity if we use pointwise convergence.
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To show our main result concerning consistent beliefs in the limit model, first
we establish a result that applies to beliefs in the noisy models defined above. We
show that µk(m1,m2) is continuous in (m1,m2) for any k. Intuitively speaking,
in a noisy model, even if the receiver gets two pairs of messages that are a little
different from each other, she does not drastically change her belief about the
true state, for the difference between the message pairs does not necessarily
mean a drastic difference in the true state, but means a small change in the
noise contained in the senders’ signals. Once we establish the continuity of µk,
we show that continuity is inherited to µ in the limit model without noise, which
implies diagonal continuity when reporting functions si are continuous.

In order to use Bayes’ rule for continuous random variables, we impose sev-
eral restrictions on senders’ reporting functions. For each i, the message space
Mi is a subset of a Euclidean space Rni , and each inverse image of message
mi with respect to si, s

−1
i (mi) = {θi ∈ Θ|si(θi) = mi}, is parametrized by

ti ∈ Ti ⊆ Rd−ni . That is to say, there exists a continuously differentiable
bijection

hi : Mi × Ti → Θ
such that mi = si(θi) if and only if θi = hi(mi, ti) for some ti ∈ Ti.12

Given (h1, h2), the density function of (m1,m2) with respect to the Lebesgue
measure on M1 ×M2 conditional on the true state θ isZ

T2

Z
T1

gk(h1(m1, t1), h2(m2, t2)|θ)|J1(m1, t1)J2(m2, t2)|dt1dt2,

where Ji(mi, ti) is the Jacobian of hi at (mi, ti):

Ji(mi, ti) = det
∂hi(mi, ti)

∂(mi, ti)
.

Proposition 24 Suppose

1. Θ, T1, and T2 are compact;

2. gk(θ1, θ2|θ) is continuous in (θ1, θ2), gk(θ1, θ2|θ) > 0, and bounded;
3. for each sender i, Ji(mi, ti) is continuous in mi, Ji(mi, ti) 6= 0, and

Ji(mi, ti) is bounded.

Then the expectation µk(m1,m2) of θ conditional on (m1,m2) in the k-th
noisy model is continuous in (m1,m2).

12For example, in Battaglini’s (2002) equilibrium construction, hi is the identity function
on Rd; M1 and M2 are subspaces of Rd that form a coordinate system: every point in θ ∈ Rd
is uniquely expressed by a linear combination of m1 ∈M1 and m2 ∈M2; Mi contains sender
j’s bias direction; and Ti = Mj . Such a coordinate system exists if d ≥ 2 and two senders’
biases are not parallel.
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Proof: µk(m1,m2) is given by

E
h
θ
R
T1

R
T2
gk(h1(m1, t1), h2(m2, t2)|θ)|J1(m1, t1)J2(m2, t2)|dt1dt2

i
E
hR

T2

R
T1
gk(h1(m1, t1), h2(m2, t2)|θ)|J1(m1, t1)J2(m2, t2)|dt1dt2

i .

The denominator is nonzero. Also, by the Lebesgue Convergence Theorem, both
the numerator and the denominator are continuous in (m1,m2).13 Therefore,
µk(m1,m2) is continuous with respect to (m1,m2). QED

Proposition 25 Let (s1, s2, y) be an equilibrium in the limit game. In addition
to the assumptions in Proposition 24, suppose that mi = si(θi) is continuous in
θi for each i = 1, 2. Then every equilibrium that is supported by a consistent
belief is continuous on the diagonal.

Proof: By Proposition 24, µk(m1,m2) is continuous in (m1,m2). Since
µk(m1,m2) converges to µ(m1,m2) uniformly over (m1,m2), µ(m1,m2) is also
continuous in (m1,m2), and hence µ(s1(θ1), s2(θ2)) is continuous in (θ1, θ2).
QED

13See Royden (1988), Theorem 16 of Chapter 4.
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