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1 Overview

We consider finite multi-player repeated games involving a large number of players with large strategy spaces and enmeshed
utility structures. In these “large-scale” games, players are inherently faced with limitations in both their observational and
computational capabilities. Accordingly, players in large-scale games need to make their decisions using algorithms that ac-
commodate limitations in information gathering and processing. A motivating example is a congestion game [Ros73] in a
complex transportation system [BAL85], in which a large number of vehicles make daily routing decisions to optimize their
own objectives in response to their observations. In this setting, observing and responding to the individual actions of all vehi-
cles on a daily basis would be a formidable task for any individual driver. This disqualifies some of the well known decision
making models such as “Fictitious Play” (FP) [FL98] as suitable models for driver routing behavior. A more realistic assump-
tion on the information tracked and processed by an individual driver is the daily aggregate congestion on the specific roads
that are of interest to that driver. We will show that Joint Strategy Fictitious Play (JSFP) [FL98, FK93, MS97], a close variant
of FP, when modified to include some inertia, accommodates such information aggregation. We establish the convergence of
JSFP with inertia to a pure Nash equilibrium in finite potential games, in both cases of averaged or exponentially discounted
historical data.

It turns out that there is a strong similarity between the JSFP discussed herein and the regret matching algorithm [HMCOQ].
A player’s regret for a particular choice is defined as the difference between 1) the utility that would have been received if that
particular choice was played for all the previous stages and 2) the average utility actually received in the previous stages. A
player using the regret matching algorithm updates a regret vector for each possible choice, and selects actions according to a
probability proportional to positive regret. Similarly, a player using the JSFP algorithm evaluates an average reward for each
possible action. The average reward of a particular choice is the utility that would have been received if that particular choice
was played for all previous stages. A player would than select an action with the highest average reward. It turns out that this
is equivalent to playing an action that yielded the highest regret.

A current open question is whether player choices would converge in coordination-type games when all players use the
regret matching algorithm (except for the special case of two-player games [HMCO03]). There are finite memory versions of
the regret matching algorithm and various generalizations [You05], such as playing best or better responses to regret over the
lastm stages, that are proven to be convergent in weakly acyclic games when players use some sort of inertia. These finite
memory algorithms do not require each player to track the behavior of other players individually. Rather, each player needs to
remember the utilities actually received and the utilities that could have been received in thestages. In contrast, a player
using JSFP best responds according to accumulated experience over the entire history by using a simple recursion which can
also incorporate exponential discounting of the historical data.

This talk presents an analysis of the convergence properties of JSFP with inertia for generalized ordinal potential games. A
congestion game simulation will be presented to illustrate the computational effectiveness of this algorithm.

2 Setup

Consider a finite game with-player set? := {P4, ..., P,,} where each playe&?; € P has an action séf; and a utility function
U;,:Y — RwhereY =Y; x ... xY,,. We will frequently writeU (y) asU (y;, y—;) wherey_; denotes the profile of the actions
of the playersther thanplayerP;.

Definition 2.1 (Nash Equilibrium) An action profiley* is called a pure Nash equilibrium if for all playef®; € P,

Uiyi,y=s) = max Ui(yi, y~s) @)

We will consider “generalized ordinal potential games”, defined as follows.

Definition 2.2 (Generalized Ordinal Potential Games)A finite n-player game with action se{g;}*_, and utility functions
{U;}?_, is ageneralized ordinal potential gamié, for some potential functios : Y7 x ... x Y, — R,

Us(yiy—i) — Uiy y—i) > 0= &y, y—i) — oy}, y—i) >0,

for every player, and for every_; € x,;Y; and for everyy},y! € Y;.



2.1 Fictitious Play

We start with the well-known Fictitious Play (FP) process [FL98].
Define theempirical frequencyq;” (t), as the percentage of stages at which pl&9ehas chosen the actiagp € Y; up to
timet — 1, i.e.,
B 1 t—1
z.li = — I ; = ;
q;"(t) f Tz:;) {vi(t) = v},
wherey; (k) € Y; is playerP;’s action at timek and{-} is the indicator function. Let;(¢) denote the empirical frequency
vector for playerP; formed by the componentg’ (¢)},.cv,. Note that the dimension af(¢) is the cardinality ofY;|.
The action of playefP; at timet is based on the (incorrect) presumption that other players are plegiapmlyandin-
dependentlyaccording to their empirical frequencies. Under this presumption, the expected utility for the gctory;

is
Ui@iq-i(0) =Y Ui y-i) [ a2 (), 2)

Yy_i€Y_; VED)

whereq_;(t) = {qi(t), ..., qi—1(t), ¢qi+1(t), ..., gn ()} @ndY_; := x;»;Y;. In the FP process, play@; uses this expected
utility by selecting an action at timefrom the set

BRi(q—i(t)) := {9 € Y : Ui(9i, q—i(t)) = max U;(yi, q—i(t))}.

Yi €Y

The setBR;(¢q—;(t)) is called playerP;’s best response t@_;(¢). In case of a non-unique best response, pldemakes a
random selection fronBR; (g (t)).
It is known that the empirical frequencies generated by FP converge to a Nash equilibrium in potential games [MS96].
Note that FP as describe above requires each player to observe the actions made by every other individual player. Moreover,
choosing an action based on the predictions (2) amounts to enumerating all possible joint actipYiseémery stage for each
player. Hence, FP is computationally prohibitive as a decision making model in large-scale games.

2.2 Joint Strategy Fictitious Play

In JSFP, each player tracks the empirical frequencies ojfoiheactionsof all other players. In contrast to FP, the action of
playerP; at timet is based on the (still incorrect) presumption that other players are plegtinipmlybut jointly according to
theirjoint empirical frequencies, i.e., each player views all other players as a collective group.

Let 2"~ (t) be the percentage of stages at which players other then gRayeve chosen the joint action profije; € Y-,

K2

up to timet — 1, i.e.,
- 1
Joifgy _ & i —
Z—i (t) - t ;I{y—z(T) y—z}' (3)

Let z_,(t) denote the empirical frequency vector formed by the componerts (t)};_.cv_,. Note that the dimension of
z_;(t) is the cardinality| x;;Y;|.

Similarly to FP, playefP;’s action at timef is based on an expected utility for the actigne Y;, but now based on the joint
action model of opponents given'y

Ui(Gis 2—i(t)) = Z Ui(Gi,y—i)275" (1) 4)

Y_i€Y_;
In the JSFP process, playBr uses this expected utility by selecting an action at tirfrem the set

BRL(Z_l(t)) = {gz S K : Ut(gl, Z_i(t)) = max U7(yL,Z_L(t))}

Yi€Y;

When written in this form, JSFP appears to have a computational burden for each player that is even higher than that of FP,
since tracking the empirical frequencies;(t) € A(Y_;) of the joint actions of the other players is more demanding for player
P, than tracking the empirical frequencies; (t) € x,-;A(Y;) of the actions of the other players individually, whek¢Y")
denotes the set of probability distributions on a finite¥setHowever, it is possible to rewrite JSFP to significantly reduce the
computational burden on each player.

To choose an action at any timeplayerP; using JSFP needs only the predicted utilii€$y;, z_;(t)) for eachy; € Y.
Substituting (3) into (4) results in

” 1

VP () = Uilgi, (1) = 5 i UilGi, (7)),
=0

INote that we use the same notation for the related quaniitigs, y—:), U (v:, g—:), andU (y;, z—;), where the latter two are derived from the first as
defined in equations (2) and (4), respectively.



which is the average utility playég?; would have received if actiop, had been chosen at every stage up to timd and other
players used the same actions. Furthermore, this is the same (hypothetical) average utility that is used in the aforementioned
no-regret algorithms.

The average utilithi (t) admits the following simple recursion,
VIt +1) =

7‘/}71'75 —U;(y;, y—i(t
1V O+ Ui y—i(t),

which permits the JSFP dynamics to proceed without requiring each player to track the empirical frequencies of the joint actions
of the other players and without requiring each player to compute an expectation over the space of the joint actions of all other
players. Each player using JSFP merely updates the predicted utilities for each action using the recursion above, and chooses
an action each stage with maximal predicted utility.

The convergence properties, even for potential games, of JSFP in the case of more than two players is uhisolitid.
establish convergence of JSFP in the case where players use some inertia, i.e., players are hesitant to change actions even whe
there is a perceived opportunity for improvement.

2.3 Joint Strategy Fictitious Play with Inertia
The JSFP with inertia process is defined as follows. Players choose their actions according to the following rules:
JSFP-1: If the action; (¢t — 1) chosen by playeP; at timet — 1 belongs taBR;(z_;(t)), theny; () = y;(t — 1).
JSFP-2: Otherwise, play&; chooses an action,(t), at timet according to the probability distribution
a;(t)Bi(t) + (1 — o (t))v¥ =1,

whereq;(t) is a parameter representing playgrs willingness to optimize at time, 5;(t) € A(Y;) is any probability
distribution whose support is contained in the B&t;(z_;(t)), andv¥ (=1 is the vertex ofA(Y;) corresponding to the
actiony; (t — 1).

According to these rules, play@; will stay with the previous actiog; (¢ — 1) with probability 1 — «;(¢) even when there
is a perceived opportunity for utility improvement. We make the following standing assumption on the players’ willingness to
optimize.

Assumption 2.1 There exist constantsandé such that for all time > 0 and for all playersi € {1, ...,n},
O<e<at)y<e<l.

This assumption implies that players are always willing to optimize with some nonzerodinertia

2.3.1 Convergence to Nash Equilibrium

We will assume that no player is indifferent between distinct action profiles.

Assumption 2.2 Player utilities satisfy

Uz(yzlayfl) 7& Ui(y?7y7i)7 vyzlayzz S Ytiv yzl 7é y?a Vyfi S Yfia Vie {17 77’1} (5)
The following establishes the main result regarding the convergence of JSFP with inertia.

Theorem 2.1 In any finite generalized ordinal potential game in which no player is indifferent between distinct strategies as
in Assumption 2.2, the action profilegt) generated by JSFP with inertia under Assumption 2.1 converge to a pure Nash
equilibrium almost surely.

2.4 lllustrative Simulations

The talk will present simulations of the JSFP with Inertia algorithm applied to congestion games.
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