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1 Overview

We consider finite multi-player repeated games involving a large number of players with large strategy spaces and enmeshed
utility structures. In these “large-scale” games, players are inherently faced with limitations in both their observational and
computational capabilities. Accordingly, players in large-scale games need to make their decisions using algorithms that ac-
commodate limitations in information gathering and processing. A motivating example is a congestion game [Ros73] in a
complex transportation system [BAL85], in which a large number of vehicles make daily routing decisions to optimize their
own objectives in response to their observations. In this setting, observing and responding to the individual actions of all vehi-
cles on a daily basis would be a formidable task for any individual driver. This disqualifies some of the well known decision
making models such as “Fictitious Play” (FP) [FL98] as suitable models for driver routing behavior. A more realistic assump-
tion on the information tracked and processed by an individual driver is the daily aggregate congestion on the specific roads
that are of interest to that driver. We will show that Joint Strategy Fictitious Play (JSFP) [FL98, FK93, MS97], a close variant
of FP, when modified to include some inertia, accommodates such information aggregation. We establish the convergence of
JSFP with inertia to a pure Nash equilibrium in finite potential games, in both cases of averaged or exponentially discounted
historical data.

It turns out that there is a strong similarity between the JSFP discussed herein and the regret matching algorithm [HMC00].
A player’s regret for a particular choice is defined as the difference between 1) the utility that would have been received if that
particular choice was played for all the previous stages and 2) the average utility actually received in the previous stages. A
player using the regret matching algorithm updates a regret vector for each possible choice, and selects actions according to a
probability proportional to positive regret. Similarly, a player using the JSFP algorithm evaluates an average reward for each
possible action. The average reward of a particular choice is the utility that would have been received if that particular choice
was played for all previous stages. A player would than select an action with the highest average reward. It turns out that this
is equivalent to playing an action that yielded the highest regret.

A current open question is whether player choices would converge in coordination-type games when all players use the
regret matching algorithm (except for the special case of two-player games [HMC03]). There are finite memory versions of
the regret matching algorithm and various generalizations [You05], such as playing best or better responses to regret over the
last m stages, that are proven to be convergent in weakly acyclic games when players use some sort of inertia. These finite
memory algorithms do not require each player to track the behavior of other players individually. Rather, each player needs to
remember the utilities actually received and the utilities that could have been received in the lastm stages. In contrast, a player
using JSFP best responds according to accumulated experience over the entire history by using a simple recursion which can
also incorporate exponential discounting of the historical data.

This talk presents an analysis of the convergence properties of JSFP with inertia for generalized ordinal potential games. A
congestion game simulation will be presented to illustrate the computational effectiveness of this algorithm.

2 Setup

Consider a finite game withn-player setP := {P1, ...,Pn} where each playerPi ∈ P has an action setYi and a utility function
Ui : Y → R whereY = Y1× ...×Yn. We will frequently writeU(y) asU(yi, y−i) wherey−i denotes the profile of the actions
of the playersother thanplayerPi.

Definition 2.1 (Nash Equilibrium) An action profiley∗ is called a pure Nash equilibrium if for all playersPi ∈ P,

Ui(y∗i , y∗−i) = max
yi∈Yi

Ui(yi, y
∗
−i). (1)

We will consider “generalized ordinal potential games”, defined as follows.

Definition 2.2 (Generalized Ordinal Potential Games)A finiten-player game with action sets{Yi}n
i=1 and utility functions

{Ui}n
i=1 is ageneralized ordinal potential gameif, for some potential functionφ : Y1 × ...× Yn → R,

Ui(y′i, y−i)− Ui(y′′i , y−i) > 0 ⇒ φ(y′i, y−i)− φ(y′′i , y−i) > 0,

for every player, and for everyy−i ∈ ×j 6=iYj and for everyy′i, y
′′
i ∈ Yi.



2.1 Fictitious Play

We start with the well-known Fictitious Play (FP) process [FL98].
Define theempirical frequency, qȳi

i (t), as the percentage of stages at which playerPi has chosen the action̄yi ∈ Yi up to
time t− 1, i.e.,

qȳi

i (t) =
1
t

t−1∑
τ=0

I{yi(τ) = ȳi},

whereyi(k) ∈ Yi is playerPi’s action at timek andI{·} is the indicator function. Letqi(t) denote the empirical frequency
vector for playerPi formed by the components{qyi

i (t)}yi∈Yi
. Note that the dimension ofqi(t) is the cardinality of|Yi|.

The action of playerPi at timet is based on the (incorrect) presumption that other players are playingrandomlyand in-
dependentlyaccording to their empirical frequencies. Under this presumption, the expected utility for the actionȳi ∈ Yi

is
Ui(ȳi, q−i(t)) :=

∑
y−i∈Y−i

Ui(ȳi, y−i)
∏
j 6=i

q
yj

j (t), (2)

whereq−i(t) := {q1(t), ..., qi−1(t), qi+1(t), ..., qn(t)} andY−i := ×j 6=iYj . In the FP process, playerPi uses this expected
utility by selecting an action at timet from the set

BRi(q−i(t)) := {ỹi ∈ Yi : Ui(ỹi, q−i(t)) = max
yi∈Yi

Ui(yi, q−i(t))}.

The setBRi(q−i(t)) is called playerPi’s best response toq−i(t). In case of a non-unique best response, playerPi makes a
random selection fromBRi(q−i(t)).

It is known that the empirical frequencies generated by FP converge to a Nash equilibrium in potential games [MS96].
Note that FP as describe above requires each player to observe the actions made by every other individual player. Moreover,

choosing an action based on the predictions (2) amounts to enumerating all possible joint actions in×jYj every stage for each
player. Hence, FP is computationally prohibitive as a decision making model in large-scale games.

2.2 Joint Strategy Fictitious Play

In JSFP, each player tracks the empirical frequencies of thejoint actionsof all other players. In contrast to FP, the action of
playerPi at timet is based on the (still incorrect) presumption that other players are playingrandomlybut jointly according to
their joint empirical frequencies, i.e., each player views all other players as a collective group.

Let z
y−i

−i (t) be the percentage of stages at which players other then playerPi have chosen the joint action profiley−i ∈ Y−i

up to timet− 1, i.e.,

z
ȳ−i

−i (t) =
1
t

t−1∑
τ=0

I{y−i(τ) = ȳ−i}. (3)

Let z−i(t) denote the empirical frequency vector formed by the components{zȳ−i

−i (t)}ȳ−i∈Y−i . Note that the dimension of
z−i(t) is the cardinality|×i 6=jYj |.

Similarly to FP, playerPi’s action at timet is based on an expected utility for the actionȳi ∈ Yi, but now based on the joint
action model of opponents given by1

Ui(ȳi, z−i(t)) :=
∑

y−i∈Y−i

Ui(ȳi, y−i)z
y−i

−i (t). (4)

In the JSFP process, playerPi uses this expected utility by selecting an action at timet from the set

BRi(z−i(t)) := {ỹi ∈ Yi : Ui(ỹi, z−i(t)) = max
yi∈Yi

Ui(yi, z−i(t))}.

When written in this form, JSFP appears to have a computational burden for each player that is even higher than that of FP,
since tracking the empirical frequenciesz−i(t) ∈ ∆(Y−i) of the joint actions of the other players is more demanding for player
Pi than tracking the empirical frequenciesq−i(t) ∈ ×j 6=i∆(Yj) of the actions of the other players individually, where∆(Y )
denotes the set of probability distributions on a finite setY . However, it is possible to rewrite JSFP to significantly reduce the
computational burden on each player.

To choose an action at any timet, playerPi using JSFP needs only the predicted utilitiesUi(ȳi, z−i(t)) for eachȳi ∈ Yi.
Substituting (3) into (4) results in

V ȳi

i (t) := Ui(ȳi, z−i(t)) =
1
t

t−1∑
τ=0

Ui(ȳi, y−i(τ)),

1Note that we use the same notation for the related quantitiesU(yi, y−i), U(yi, q−i), andU(yi, z−i), where the latter two are derived from the first as
defined in equations (2) and (4), respectively.
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which is the average utility playerPi would have received if action̄yi had been chosen at every stage up to timet− 1 and other
players used the same actions. Furthermore, this is the same (hypothetical) average utility that is used in the aforementioned
no-regret algorithms.

The average utilityV ȳi

i (t) admits the following simple recursion,

V ȳi

i (t + 1) =
t

t + 1
V ȳi

i (t) +
1

t + 1
Ui(ȳi, y−i(t)),

which permits the JSFP dynamics to proceed without requiring each player to track the empirical frequencies of the joint actions
of the other players and without requiring each player to compute an expectation over the space of the joint actions of all other
players. Each player using JSFP merely updates the predicted utilities for each action using the recursion above, and chooses
an action each stage with maximal predicted utility.

The convergence properties, even for potential games, of JSFP in the case of more than two players is unresolved.2 We will
establish convergence of JSFP in the case where players use some inertia, i.e., players are hesitant to change actions even when
there is a perceived opportunity for improvement.

2.3 Joint Strategy Fictitious Play with Inertia

The JSFP with inertia process is defined as follows. Players choose their actions according to the following rules:

JSFP-1: If the actionyi(t− 1) chosen by playerPi at timet− 1 belongs toBRi(z−i(t)), thenyi(t) = yi(t− 1).

JSFP-2: Otherwise, playerPi chooses an action,yi(t), at timet according to the probability distribution

αi(t)βi(t) + (1− αi(t))vyi(t−1),

whereαi(t) is a parameter representing playerPi’s willingness to optimize at timet, βi(t) ∈ ∆(Yi) is any probability
distribution whose support is contained in the setBRi(z−i(t)), andvyi(t−1) is the vertex of∆(Yi) corresponding to the
actionyi(t− 1).

According to these rules, playerPi will stay with the previous actionyi(t − 1) with probability1 − αi(t) even when there
is a perceived opportunity for utility improvement. We make the following standing assumption on the players’ willingness to
optimize.

Assumption 2.1 There exist constantsε and ε̄ such that for all timet ≥ 0 and for all playersi ∈ {1, ..., n},
0 < ε < αi(t) < ε̄ < 1.

This assumption implies that players are always willing to optimize with some nonzero inertia3

2.3.1 Convergence to Nash Equilibrium

We will assume that no player is indifferent between distinct action profiles.

Assumption 2.2 Player utilities satisfy

Ui(y1
i , y−i) 6= Ui(y2

i , y−i), ∀ y1
i , y2

i ∈ Yi, y1
i 6= y2

i , ∀ y−i ∈ Y−i, ∀ i ∈ {1, ..., n}. (5)

The following establishes the main result regarding the convergence of JSFP with inertia.

Theorem 2.1 In any finite generalized ordinal potential game in which no player is indifferent between distinct strategies as
in Assumption 2.2, the action profilesy(t) generated by JSFP with inertia under Assumption 2.1 converge to a pure Nash
equilibrium almost surely.

2.4 Illustrative Simulations

The talk will present simulations of the JSFP with Inertia algorithm applied to congestion games.
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2For two player games, JSFP and standard FP are equivalent, hence the convergence results for FP hold for JSFP.
3This assumption can be relaxed to holding for sufficiently larget, as opposed to allt.
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