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Abstract

We address the scheduling problem of reordering an existing queue into its efficient order

through trade. To that end, we consider individually rational and balanced budget direct

and indirect mechanisms. We show that this class of mechanisms allows us to form efficient

queues provided that existing property rights for the service are small enough to enable

trade between the agents. In particular, we show on the one hand that no queue under

a fully deterministic service schedule such as first-come, first-serve can be dissolved effi-

ciently and meet our requirements. If, on the other hand, the alternative is service anarchy

(ie. a random queue), every existing queue can be transformed into an efficient order.

(JEL C72, D44, D82. Keywords: Scheduling, Queueing, Mechanism design.)

1 Introduction

We analyse the problem of organising efficient sequential access of a set of agents to some ser-

vice. All agents value the service equally but have a privately known waiting cost. We assume

that there is an inefficient waiting queue in place upon which we want to improve. Moreover,

efficient access is to be organised among the agents themselves, without payments from or to
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outsiders. Hence the class of mechanisms we are concerned with is that of the individually

rational and balanced budget mechanisms resulting in an efficient allocation. For fully deter-

ministic queues where agents are issued with non-probabilistic slot tickets, it is impossible to

achieve an efficient order using a mechanism from the above class. If, however, agents initially

face service anarchy, then they can mutually agree to implement the efficient order.

Economic applications of our model include the dynamic assignment of airport landing

and takeoff slots, the scheduling of trains through route bottlenecks and ships’ servicing at

sea ports, or any “control of vehicular traffic congestion” (Naor (1969)). Similarly, the joint

scheduling of jobs by different units on a corporate shop floor or the sequential access to re-

search facilities such as supercomputers, radio telescopes or laboratories fits our model well.

Leaving ethical considerations aside, a particularly interesting example arises in the waiting

system of the British National Health Service (NHS). There, patients for certain procedures

(such as nose operations, for example) are put on a waiting list with the ranking being based

on their doctors’ diagnoses. As a result, patients with the same diagnosis are treated first-

come, first-serve but may have differing and privately known waiting costs. ‘Private’ patients

often use the same facilities, doctors and staff, but are not subject to the same schedule. They

are typically treated without significant waiting and their payments are made to the service

provider. If trade between queue-positions in a single queue is possible, the payments made

by these private patients accrue to the other patients whose wait is prolonged through the

speedier servicing of the private patients. Thus the difference to our mechanism is in who gets

the money—the service provider or the other patients through our balanced budget require-

ment. Individual rationality of the mechanism is ensured through the universality principle of

the NHS: everyone is entitled to its services and may or may not accept the offered payments

for switching positions.

Another example arises with the potential short-term dynamic trade of airport landing and

takeoff slots.1 A short-term slot trading mechanism—for, say, one hour of takeoff or landing

activity in advance—is a scheduling problem since the set of arriving and departing airplanes

are known for the period considered. Ball, Donohue, and Hoffman (2006) argue for a near-real-

1 The 2000 AIR-21 Bill prescribes the total deregulation of slot controls at the following US High Density Rule air-
ports for 2007: New York John F Kennedy and LaGuardia, Chicago O’Hare and Washington Reagan National.
By that time, dynamic trading of slots between airlines will be possible.
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time market that allows for the trading of slots: “A key property of these slot-trading markets

is that each airline is potentially both a buyer and seller. In fact, the natural extension of the

current exchange system suggests simply adding the possibility of side payments to the current

trades.” Vindicating our balanced budget condition, they point out that the authorities running

airports are “almost always public agencies [and] typically restricted in that their charges for

services can only achieve cost recovery.”

We view our contribution as mapping two important results into the sphere of queuing.

Myerson and Satterthwaite (1983), on the one hand, show the inexistence of efficient and in-

dividually rational trading mechanisms for a wide class of incomplete information problems

with asymmetric ownership distributions. On the other hand, Cramton, Gibbons, and Klem-

perer (1987) derive the contrary result that there can be efficient trade among a group of agents

provided that initial ownership is equally distributed. We show that the analogue of the for-

mer is any deterministic or, in particular, the first-come, first-serve (fcfs) schedule which can-

not be efficiently rescheduled and the analogue of latter is the random schedule which can

be rescheduled efficiently. Actually, the problem of efficiently reorganising a two player deter-

ministic queue is equivalent to the Myerson-Satterthwaite environment of efficient trade under

incomplete information.

Two widely used service schedules are the first-come, first-serve procedure and the random

schedule. Since both these procedures are inefficient, we analyse whether there exists another

game which implements the efficient allocation and improves the utilities of all players in the

queue without making a budget deficit. While we show that such a game indeed exists for the

random scheduling, it does not exist for the fcfs scheduling or any other deterministic rule. By

a deterministic rule we mean a scheduling rule where an agent is served with probability one

at a particular slot. Throughout the paper we use the fcfs schedule as representative for any

such deterministic rule.

Related literature

Most of the existing literature analysing scheduling problems employing Vickrey-Clarke-Groves

(VCG) mechanisms ignores individual rationality. The exception is Mitra (2001) who assumes
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that individual rationality is with respect to not getting service at all. In contrast, we show

that efficient rescheduling is possible when the alternative is the random queue, ie. when the

probability of being served at any slot is equal among agents. We also show that rescheduling

is impossible when the alternative is any deterministic rule, as for instance fcfs. Individual

rationality with respect to some existing mechanism ensures that no agent is made worse off

through moving to the new mechanism.

Previous work on scheduling problems based on the VCG mechanism starts with Dolan

(1978). Suijs (1996) assumes linear cost (as we do) and shows that a VCG mechanism im-

plements the efficient order in dominant strategies and balances the budget. Strandenes and

Wolfstetter (2005) generalise over Dolan’s equal service time and linear cost assumptions. Mi-

tra (2002) shows that linear cost functions are the only cost functions which can lead to an

efficient allocation in dominant strategies, if budget balancedness is required. Hain and Mitra

(2004) allow for processing time to be private information. They identify the class of mecha-

nisms which lead to efficient allocation and budget balancedness in ex-post equilibrium. The

aforementioned analyse VCG mechanisms but do not impose individual rationality with re-

spect to an existing mechanism. Krishna and Perry (1997) analyse a general problem allowing

for a mechanism which has an equilibrium featuring an efficient allocation while balancing its

budget and being individually rational. An application of their results to our setting, however,

is not a simple task. This is not meant to diminish their contribution as their environment and

mechanism are much more general than ours.

The queueing literature studies the aspect of our problem that arriving customers can gain

priority over others through a single one-off payment to the service provider under the head-

ing of ‘priority pricing.’ Hassin and Haviv (2002) survey the recent queueing literature in-

cluding models where the queueing agents offer payments to the service provider. Afèche

and Mendelson (2004) analyse queues where the delay cost depends on the service valuation

and use auctions to allocate priority. They introduce a multiplicative structure linking delay

costs with valuations over the typically additive formulation in the literature following Naor

(1969). Kittsteiner and Moldovanu (2005) study priority auctions allowing for private informa-

tion on processing time. Mitra (2001) is a mechanism design approach aiming at the identifi-

cation of cost functions for which queues can be efficiently reorganised in dominant strategies
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while balancing the budget. He further derives a subset of individually rational cost functions

where non-participation means obtaining no service at all. Recent cooperative approaches to

queueing where the assigned positions and payments are based on the Shapley value include

Maniquet (2004) and Mishra and Rangarajan (2005). The equally cooperative literature on se-

quencing games studies the problem of sharing the cost gains in moving from an initially given

queue to some optimal ordering. It was surveyed recently by Curiel, Hamers, and Klijn (2002)

and focuses on the existence and properties of the cooperative games’ core.

We can alternatively take the point of view of matching theory. We may simply drop our

interpretation of the private information as waiting cost and the queue as a waiting device and

think about the queue as a general ranking of the type with our cost function discriminating be-

tween the assigned objects.2 From this point of view, our game is an instance of the assignment

game with transferable utility due to Shapley and Shubik (1972) under incomplete information

with side payments within the set of agents. Our problem thus resembles the multi-item auc-

tions problem solved in dominant strategies by Demange, Gale, and Sotomayor (1986) with

the additional constraint of balancing the budget for goods which can be ranked on a single

dimension. More specifically, our mechanism can be applied to the problem of the assignment

of universally ranked dorm rooms with existing tenants or the allocation of places at univer-

sally ranked schools or universities. These or similar problems have been recently analysed in

a strictly nontransferable utility setting—and thus contrasting our analysis—by Abdulkadiroglu

and Sönmez (2003) and Sönmez and Ünver (2005) among others. Extending existing results,

our mechanism allows for the gains from trade between agents to be realised even when agents

have the same ranking over the available objects.

The following section introduces the model. In section 3 we develop the direct revelation

game and in section 4 we construct an indirect game implementing the efficient queue. All

proofs and details are contained in the appendix.

2 Our particular specification of the linear cost, unit processing time and the ‘ideal’ object’s valuation need not fit
well with other interpretations than the above quoted school assignment and dormitory allocation examples.
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2 The model

There is a set N of n > 1 players willing to get some specific service valued at V . Although the

service is valuable, every player incurs a cost of waiting to get the service. More precisely, for

i ∈ N , we assume that player i’s utility from getting the service at the kth period is V − kθi − p

where p is a monetary payment by agent i and θi is waiting cost per one unit of time.3 The

server can serve only one player at each point in time. Waiting cost θi ∈ Θi = [0, 1] is private

information and independently distributed with density f and distribution function F . Finally,

we assume that processing time of any player is the same and normalised to 1 period.

The mechanism designer wishes to implement the efficient order of service, which coincides

with a decreasing ranking of the waiting cost. This maximises the aggregated expected utility

of the players. By the revelation principle we may restrict attention to direct revelation mecha-

nisms, where the players have to reveal only their private information to the designer. Denote

by Θ = [0, 1]n the type space and by θ, any element of Θ. The mechanism M has to specify two

things: The payment that each player should pay and the (possibly stochastic) order of getting

the service. Therefore a direct revelation mechanism is a vector of payments pM =
〈

pM
i

〉n

i=1
and

the order σM =
〈

σM
ij

〉n

i,j=1
, where

pM
i : Θ → R

is bidder i’s payment and for 1 ≤ i, j ≤ k

σM
ij (θ) : Θ → [0, 1]

specifies the probability that agent i is served at the jth period. Consequently we have
∑

i σ
M
ij =

1 for each j and
∑

j σM
ij = 1 for each i. Therefore, expected utility of the player i who observes

signal θi (while the rest of the players observe signals θ−i), if all players report their observed

signals correctly is

Ui (θi) = V −
n
∑

k=1

σM
ik (θ)kθi − pM

i (θ)

where θ = (θi, θ−i). Denote by WM
i (θi) and PM

i (θi) the expected waiting time and the payment

3 As customary in the literature, we do not consider discounting of payments.
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by player i if θi is the reported delay cost. That is

PM
i (θi) = Eθ−i

pM
i (θ) , WM

i (θi) =
n
∑

k=1

k Eθ−i
σM

ik (θ).

The mechanism M is incentive compatible if, for any i and any θi, θ̂i ∈ [0, 1], it is true that

−WM
i (θi)θi − PM

i (θi) ≥ −WM
i (θ̂i)θi − PM

i (θ̂i).

Three possible service schedules are of interest to us: a stochastic order, a deterministic sched-

ule determined through something other than the private information and the efficient order.

1. Random order. In this discipline each player can be at any position with equal probability.

That is

σran
ik (θ) =

1

n
for any i, k, θ.

2. First-come, first-serve order. In this case, each player is served according to deterministic or-

der based on some exogenous parameter (unrelated to the waiting costs), like the arrival

time. That is, for any player i there exists a unique position l such that

σfcfs
ik (θ) =











1 if l = k

0 otherwise.

3. Efficient order. In this case, players get the service based on decreasing waiting cost, ie.

σef
ik (θ) =























1 if |{j : θj > θi}| = k and |{j 6= i : θj = θi}| = 0

1
m

if |{j : θj > θi}| = l and |{j 6= i : θj = θi}| = m 6= 0, where l + m ≥ k > l

0 otherwise

where |S| is the number of elements in set S.

In the following we deal with the question of which kind of schedule can be improved upon

in the mutual interest. Hence we analyse the question whether there exists a game that induces

the efficient allocation, provides all types of all players with expected utilities higher then the
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one obtained in the random or fcfs order while balancing the budget ex post.4

3 Direct mechanisms

The first lemma specifies necessary and sufficient conditions for the mechanism to be incentive

compatible. In particular, it says that in any incentive compatible mechanism, increasing the

delay cost should lead to earlier service and higher payment of that player. This is similar

to a standard result in auction theory (Myerson (1981), among others) that says that in any

incentive compatible mechanism, the probability to get the object increases with a player’s

valuation. Since the proofs for lemmata 1–4 are standard, they are omitted.5

Lemma 1. The mechanism M =
〈

pM , σM
〉

is incentive compatible iff for every i ∈ N and all θ, θ ∈

[0, 1], WM
i is decreasing and

PM
i (θ) − PM

i (θ) =

∫ θ

θ

sdWM
i (s). (1)

The players prefer to adopt any new mechanism if it provides them with higher utility then

the original mechanism. Hence we check whether our proposed mechanism is individually

rational when the outside option is either the random scheduling or the first-come, first-serve

order. The next lemma specifies the type of each player who gains least among all possible

types of that player by moving to our mechanism
〈

pM , σM
〉

. More precisely, it says that the net

utility is minimised for the type of player who on average stays at the same position.

Lemma 2. Given an incentive compatible mechanism M =
〈

pM , σM
〉

, player i’s net utility with respect

to mechanism Z is minimised at

θ∗i (Z) =
1

2
[inf Θ∗

i (Z) + sup Θ∗

i (Z)] ∈ [0, 1] (2)

where Θ∗

i (Z) =
{

θi|Wi(θj) < WZ
i (θi)∀θj < θi; Wi(θk) > WZ

i (θi)∀θk > θi

}

and Z ∈ {ran, fcfs}.

In the next lemma we derive a condition for any incentive compatible mechanism to be

individually rational.

4 It is easy to relax our balanced budget condition to allow for a surplus if that should be desired.
5 For complete proofs of very similar statements see Cramton, Gibbons, and Klemperer (1987).
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Lemma 3. An incentive compatible mechanism M =
〈

pM , σM
〉

is individually rational with respect to

mechanism Z ∈ {ran, fcfs} iff, for all i ∈ N and θ∗i (Z) as defined in the previous lemma,

PM
i (θ∗i (Z)) ≤ 0. (3)

The mechanism satisfies budget balance if
∑n

i=1 pM
i (θ) = 0. The next lemma specifies a

condition for the budget to balance in the mechanism that satisfies incentive compatibility and

individual rationality.

Lemma 4. For any expected waiting time WM
i (θi) which is decreasing for all i ∈ N , there exists a

transfer function pM such that
〈

pM , σM
〉

is incentive compatible, individually rational with respect to

mechanism Z ∈ {ran, fcfs} and budget balanced iff, for θ∗i (Z) defined in lemma 2

n
∑

i=1

[

∫ θ∗
i
(Z)

0

sF (s)dWM
i (s) −

∫ 1

θ∗
i
(Z)

s(1 − F (s))dWM
i (s)

]

≥ 0. (4)

Now we start the analysis of the properties of the efficient schedule.

Lemma 5. In the efficient schedule, type θi’s expected waiting time is

W ef
i (θi) = n + (1 − n)F (θi). (5)

In the following we refer to the efficient queuing schedule as implementable with respect

to any other discipline Z, if and only if there exists a mechanism
〈

pM , σef
〉

which is incentive

compatible, individually rational (with respect to Z) and budget balanced. The next theorem

follows from the last lemma and lemma 4.

Theorem 1. Efficient scheduling is implementable with respect to schedule Z ∈ {ran, fcfs} iff

n
∑

i=1

[

∫ θ∗
i
(Z)

0

sF (s)f(s)ds −

∫ 1

θ∗
i
(Z)

s(1 − F (s))f(s)ds

]

≤ 0 (6)

where θ∗i (Z) =











F−1
(

n−k
n−1

)

if Z = fcfs

F−1 (1/2) if Z = ran

and k is the position of player i in the fcfs schedule.

9



Notice that the worst possible type in fcfs depends on the position of the player in the initial

order. The next proposition shows that for an initially random schedule, it is always possible

to reschedule efficiently.

Proposition 2. For any distribution of types F , the efficient scheduling is implementable with respect

to the random order.

As we show in the following proposition, the opposite holds if the initial schedule is fcfs.

Proposition 3. For any distribution of types F , the efficient scheduling is not implementable with

respect to first-come, first-serve order.

It is the existing property rights in a service slot which explain the difference between the

different outside option mechanisms. The key difference between the random and fcfs initial

schedules is that the fcfs order gives players full possession over their time of service (with

probability one) while the random order only issues a probabilistic ticket. This concentration

of property rights on a single service ticket which comes with the fcfs schedule makes it impos-

sible to efficiently reschedule the queue. The reason is that the agent who is to be served first

in the initial schedule knows that he will not ‘buy forward’ (ie. get earlier service) for sure and

thus will not exchange his slot with a marginally higher type behind him for a merely marginal

payment.

As follows from the previous results, the insertion of some uncertainty into a deterministic

queue (thus making it stochastic) makes efficient rescheduling possible. For instance, consider

a lottery which results with probability p in the random queue and probability 1 − p the fcfs

queue. Let this lottery be executed if at least one player disagrees in participating in the efficient

mechanism. Since the worst-off type in the lottery is continuous in p, for p sufficiently high,

there exists an equilibrium where the efficient allocation is implemented.

4 An efficient indirect mechanism

As an illustration of our prior results, we now analyse an auction game that implements the

efficient schedule. The auction’s basic structure is given by the following properties:
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• each player i offers some payment for being served in each position of the queue, ie. each

player offers an n-vector of bids,

• we assign queue positions s = 1, . . . , n in increasing order; the highest bidder for position

s gets this position and pays the own bid for this slot;6 the assigned bidder’s bids are

removed from subsequent slot-allocations,

• every slot’s payment is shared in equal amounts by all other players.

Notice that an agent’s bid for the kth slot is relevant only if the bidder did not secure service

at any previous slot. Thus given that an agent is still unassigned, he ignores all previous pro-

ceedings when deciding on his kth bid. Therefore, if all bidders’ bidding function is given by

the increasing function βk (θj), then agent i submits the bid b for the kth slot which maximises

Πk
i (b

k) = pr(b > max
j∈S

{

βk(θj)
}

) E
[

−b − kθi + LW
∣

∣ b > max
j∈S

{

βk(θj)
}

] +

pr(b < max
j∈S

{

βk(θj)
}

) E

[

max
{

βk(θj)
}

n − 1
+ LL

∣

∣

∣

∣

∣

b < max
j∈S

{

βk(θj)
}

]

where

LW :=
∑

l>k

max
{

β̃l(θj)
}

n − 1
, LL := Πk+1

i (bk+1)

and β̃l(θj) is the winning bid for slot l. S is the set of the n− k opponents with the lowest types

among n − 1 players, other than i. Notice that the above Πk
i (·) is not agent i’s utility. However,

if we want to write agent i’s utility as a function only of bids for slot k, we obtain an expression

like A + BΠk
i (·), where A and B only depend on the bids for the slots previous to k.

Proposition 4. An equilibrium bidding function of the indirect game described above is increasing in

the agent’s type and is given by

βk(θi) =

(

∫ θi

0

(−kx − LL + LW )

(∫ x

0

F̃k(θj)dθj

) 1

n−1

F̃k(x)dx

)

(∫ θi

0

F̃k(θj)dθj

)−
n

n−1

(7)

6 Ties are broken with equal probability among winners.
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for k = 1, ..., n − 1, where

F̃k(θj) = (F (θj))
n−k

k−1
∑

j=0







n − k + j − 1

n − k − 1






(1 − F (θj))

j

is the distribution of the n − k highest order statistic among n − 1 variables.

Note that an agent’s payment consists of two parts: He gets the average winning bid of all

slots assigned to other players and he pays his own bid for the position at which he is served.

Since βk(θi) is an increasing function, this mechanism leads to the efficient allocation.

Conclusion

In this paper we analyse the possibility of rearranging an existing queue into its efficient or-

der through voluntary trade between the queuing agents. Desirable generalisations are over

the linear waiting cost and the equal (unit) processing time assumptions. Well known existing

results, however, make us pessimistic about the prospects of such generalisations. Another po-

tential generalisation is to extend the model with a stream of stochastically arriving customers

and thus turn the scheduling problem into a queueing problem. This will create technical diffi-

culties, but our main conclusion that too strong property rights prevent efficient reordering of

the queue will remain in place. Allowing for agents’ private information on the time required

to complete the service does not make the model more interesting, since this information will

be revealed and can be conditioned upon. In case of misrepresenting the service time, fines can

be imposed.

Appendix

Proof of lemma 5. In efficient scheduling, the expected waiting time of type θi is given by

W ef
i (θi) =

n
∑

i=1

i

(

n − 1

i − 1

)

(F (θi))
n−i(1 − F (θi))

i−1 = n + (1 − n)F (θi)
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where the second equality follows from the expectation of the binomial distribution where the

success probability of each trial is 1−F (θi), the number of trials is n−1, and i−1 is the number

of successes.

Proof of theorem 1. Inserting (5) into (4) results in (6). The waiting time in the fcfs schedule

for position i is given by i. Thus the worst-off type θ∗i (fcfs) is

n + (1 − n)F (θ∗i (fcfs)) = i or F (θ∗i (fcfs)) =
i − n

1 − n
and θ∗i (fcfs) = F−1

(

n − i

n − 1

)

.

Waiting time in the random queue is

1

n
1 +

1

n
2 + · · · +

1

n
n =

1

n

n
∑

i=1

i =
1

n

(

n2 + n

2

)

=
n + 1

2

and thus the worst-off type θ∗(ran) solves

n + (1 − n)F (θ∗(ran)) =
n + 1

2
or θ∗(ran) = F−1(1/2).

Proof of proposition 2. We have to show that, for θ∗ = F−1 (1/2),

(1 − n)

[∫ θ∗

0

θF (θ)f(θ)dθ −

∫ 1

θ∗
θ(1 − F (θ))f(θ)dθ

]

≥ 0.

Integration by parts of the first expression between brackets gives

∫ θ∗

0

θF (θ)f(θ)dθ = θ(F (θ))2

∣

∣

∣

∣

θ∗

0

−

∫ θ∗

0

θF (θ)f(θ)dθ −

∫ θ∗

0

(F (θ))2dθ (8)

and integrating the second expression by parts gives

∫ 1

θ∗
θ(1 − F (θ))f(θ)dθ = −θ(1 − F (θ))2

∣

∣

∣

∣

1

θ∗

−

∫ 1

θ∗
θ(1 − F (θ))f(θ)dθ +

∫ 1

θ∗
(1 − F (θ))2dθ.

Therefore we can rewrite the original expression as

(1 − n)

[

−

∫ θ∗

0

(F (θ))2

2
dθ −

∫ 1

θ∗

(1 − F (θ))2

2
dθ

]

≥ 0.
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Proof of proposition 3. Without loss of generality and for notational simplicity we will as-

sume that player i is served in position i in the initial fcfs schedule. We rewrite (6) as claim of

non-implementability as

n
∑

i=1

[

∫ 1

0

θF (θ)f(θ)dθ −

∫ 1

θ∗
i

θf(θ)dθ

]

> 0, for θ∗i = F−1

(

n − i

n − 1

)

.

Using (8) on the first term in brackets and integration by parts on the second term gives

−
n

2
−

n

2

∫ 1

0

(F (θ))2dθ +
n
∑

i=1

[

∫ 1

θ∗
i

F (θ)dθ + θ∗i
n − i

n − 1

]

> 0

which transforms into

π (F (θ)) :=
n
∑

i=1

[

∫ 1

θ∗
i

F (θ) −
n − i

n − 1

]

dθ −
n

2

∫ 1

0

(F (θ))2dθ > 0

since
∫ 1

θ∗
i

n − i

n − 1
dθ =

n − i

n − 1
(1 − θ∗) and

n
∑

i=1

n − i

n − 1
=

n

2
.

For any distribution of types F [θ], we can thus rewrite (6) as the claim that π (F (θ)) > 0. Now

define a distribution F ∗(θ), which puts all probability mass at the single point A ∈ [0, 1] and

thus removes all uncertainty about the agent’s type. Below we show that for any distribution

F (θ) that is different from F ∗(θ), it is true that

π (F (θ)) > π (F ∗(θ)) , where F ∗(θ) =











0 if θ < A

1 if θ ≥ A
. (9)

Since π (F ∗(θ)) = n (1 − A) − (1 − A)
n
∑

i=1

n − i

n − 1
−

n

2
(1 − A) = 0 for any A ∈ [0, 1], this would

complete our proof. We show (9) in two steps. In the first step we show that, for any distribu-

tion function F (θ), it is true that

π (F (θ)) > π
(

F̂ (θ)
)

where F̂ (θ) is a distribution function that has no positive measure with positive density and

has at most n − 1 mass points (ie. a discrete distribution). In the second step we show that
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gathering any two mass points from F̂ (θ) into a single mass point must decrease π.

0 1

1

θ

n−i−1
n−1

n−i
n−1

θ∗i+1 θ∗i

F (θ)

bi

F (θ)

0 1

1

θ

n−i−2
n−1

n−i
n−1

bi+1 bi

F (θ)

bi

F (θ)

0 1

1

θ

1
n−1

1
n−1

1
n−1

1
n−1

1
n−1

bi+1 bi

F (θ)

bi

F (θ)

Figure 1: Step 1 (left): The area under the solid F (θ) is replaced by the equally sized rectangle under
the dashed F (θ). Step 2 (centre): Combining two steps of the solid F (θ) into a single step of equivalent
‘virtual’ weight. Right: Redistributing a double mass point in F (θ) into its neighbours.

Step 1. Since in the following we will change the distribution function, denote by θ∗i (F ) the worst

type of player i if the underlying probability is F , which was specified in lemma 2. In this

step we show that if, for some i, θ∗i+1(F ) < θ∗i (F ) then π (F (θ)) > π
(

F (θ)
)

where F (θ) is

defined in the following way

F (θ) =























F (θ) if θ < θ∗i+1(F ) or θ ≥ θ∗i (F )

F (θ∗i+1) if θ∗i+1(F ) ≤ θ < bi

F (θ∗i ) if bi ≤ θ < θ∗i (F )

and bi is the solution to

1

n − 1

(

F−1

(

n − i

n − 1

)

− bi

)

=

∫ F−1( n−i

n−1
)

F−1(n−i−1

n−1
)

(

F (θ) −
n − i − 1

n − 1

)

dθ.

Notice that the boundary points θ∗ of the new distribution F (θ) coincide: θ∗i (F ) = θ∗i+1

(

F
)

=

bi. By choice of bi the first term of π
(

F (θ)
)

does not change, while the change in the sec-

ond term is

∫ 1

0

F (θ)2dθ −

∫ 1

0

F (θ)2dθ =

∫ F−1( n−i

n−1
)

F−1(n−i−1

n−1
)
F (θ)2dθ−

(

(

bi − F−1

(

n − i − 1

n − 1

))(

n − i − 1

n − 1

)2

+

(

F−1

(

n − i

n − 1

)

− bi

)(

n − i

n − 1

)2
)

.
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Below we show that
∫ 1

0
F (θ)2dθ −

∫ 1

0
F (θ)2dθ is negative. Notice that the second line of

the previous expression can be rewritten as

(

n − i − 1

n − 1

)2(

F−1

(

n − i

n − 1

)

− F−1

(

n − i − 1

n − 1

))

+
1

(n − 1)2

(

F−1

(

n − i

n − 1

)

− bi

)

+

2 (n − i − 1)

(n − 1)2

(

F−1

(

n − i

n − 1

)

− bi

)

=

(

n − i − 1

n − 1

)2(

F−1

(

n − i

n − 1

)

− F−1

(

n − i − 1

n − 1

))

+

2n − 2i − 1

(n − 1)

∫ F−1( n−i

n−1
)

F−1(n−i−1

n−1
)

(

F (θ) −
n − i − 1

n − 1

)

dθ.

Therefore, we can rewrite
∫ 1

0
F (θ)2dθ −

∫ 1

0
F (θ)2dθ as follows

∫ F−1( n−i

n−1
)

F−1(n−i−1

n−1
)
F (θ)

(

F (θ) −
2n − 2i − 1

(n − 1)

)

dθ +

(

F−1

(

n − i

n − 1

)

− F−1

(

n − i − 1

n − 1

))

(

(n − i − 1) (2n − 2i − 1) − (n − i − 1)2

(n − 1)2

)

=

∫ F−1( n−i

n−1
)

F−1(n−i−1

n−1
)
F (θ)

(

F (θ) −
2n − 2i − 1

(n − 1)

)

dθ +

(

F−1

(

n − i

n − 1

)

− F−1

(

n − i − 1

n − 1

))

(n − i − 1) (n − i)

(n − 1)2 .

Notice that since

max
x∈[n−i−1

n−1
, n−i

n−1
]
x

(

x −
2n − 2i − 1

(n − 1)

)(

F−1

(

n − i

n − 1

)

− F−1

(

n − i − 1

n − 1

))

>

∫ F−1( n−i

n−1
)

F−1(n−i−1

n−1
)
F (θ)

(

F (θ) −
2n − 2i − 1

(n − 1)

)

dθ

it is sufficient to show that

max
x∈[n−i−1

n−1
, n−i

n−1
]
x

(

x −
2n − 2i − 1

(n − 1)

)(

F−1

(

n − i

n − 1

)

− F−1

(

n − i − 1

n − 1

))

+

(

F−1

(

n − i

n − 1

)

− F−1

(

n − i − 1

n − 1

))

(n − i − 1) (n − i)

(n − 1)2 ≤ 0.

Since for

x =
n − i − 1

n − 1
and x =

n − i

n − 1
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the expression above is zero, we are done. Our argument allows us to restrict attention

to distributions which have at most n − 1 mass points where the probability of any mass

point is k/(n − 1) where k is natural number.

Step 2. Note that step 1 allows us to restrict attention to discrete distributions with n − 1 mass

points. After step 1, every mass point has probability 1/(n − 1).

Since π (F (θ)) is continuous in bi and 1 ≥ bi−1 ≥ bi ≥ bi+1 ≥ 0, we can conclude that there

exist b∗1 ≥ . . . ≥ b∗n−1 that minimises π (F (θ)). To complete the proof, we show that if there

is an i such that bi > bi+1, then π (F (θ)) > π
(

F (θ)
)

where F (θ) is defined as

F (θ) =























F (θ) if θ < bi+1 or θ ≥ bi

n−i−2
n−1

if bi+1 ≤ θ < bi

n−i
n−1

if bi ≤ θ < bi

and bi is given by
(

bi − bi+1

)

(n − i − 1) =
(

bi − bi

)

(n − i) or

bi =
bi (n − i) + bi+1 (n − i − 1)

2n − 2i − 1
.

Similarly to the first step, this change does not affect first term of π. Note that

∫ 1

0

F (θ)2dθ −

∫ 1

0

F (θ)2dθ

=

(

n − i − 1

n − 1

)2

(bi − bi+1) −

(

n − i − 2

n − 1

)2
(

bi − bi+1

)

−

(

n − i

n − 1

)2
(

bi − bi

)

=

(

n − i − 1

n − 1

)2

(bi − bi+1) −

(

n − i − 1

n − 1

)2
(

bi − bi+1

)

−

(

n − i − 1

n − 1

)2
(

bi − bi

)

−
1 − 2(n − i − 1)

(n − 1)2

(

bi − bi+1

)

−
1 + 2(n − i − 1)

(n − 1)2

(

bi − bi

)

= −
1

(n − 1)2 (bi − bi+1) −
2(n − i − 1)

(n − 1)2

(

bi + bi+1 − 2bi

)

.

Plugging the definition of bi into the last expression gives us

−
1

(n − 1)2 (bi − bi+1) +
2(n − i − 1)

(n − 1)2

bi − bi+1

2n − 2i − 1
= −

bi − bi+1

(n − 1)2

[

1 −
2(n − i − 1)

2n − 2i − 1

]

< 0

which completes the argument. Notice that after the first application of step 2, the com-
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bined mass point has probability mass of 2/(n − 1). In order to be able to apply step 2

again, one can think of this one point as actually consisting of two mass points of equal

probability of 1/(n − 1) each. Reapplying step 2 to combine these into their respective

neighbouring mass points then makes no problems. This is illustrated in the right hand

panel of figure 1.

Proof of proposition 4. Agent i chooses b to maximise

Πk
i (b

k) = pr(b > max
j∈S

{

βk(θj)
}

) E
[

−b − kθi + LW
∣

∣ b > max
j∈S

{

βk(θj)
}

]+

pr(b < max
j∈S

{

βk(θj)
}

) E

[

max
{

βk(θj)
}

n − 1
+ LL

∣

∣

∣

∣

∣

b < max
j∈S

{

βk(θj)
}

]

(10)

where LW :=
∑

l>k

max
{

β̃l(θj)
}

n − 1
, and LL := Πk+1

i (bk+1).

LW can be interpreted as the slot k winner’s utility from the opponents’ payments for the slots

auctioned after k. LL is the expected utility a bidder who does not win slot k (or any previ-

ous slot) gets from the auctioning of slots after k. Since bidding functions are monotonically

increasing, we know that pr(b > max
j∈S

{

βk(θj)
}

) =

F̃k(β
k−1

(b)) := pr(θj < βk−1
(b)∀j ∈ S) = (F (βk−1

(b)))n−k

k−1
∑

j=0







n − k + j − 1

n − k − 1







(

1 − F (βk−1
(b))
)j

.

Using this notation, we can rewrite (10) as

Πk
i (b

k) =

∫ βk−1
(b)

0

(−b − kθi + LW )F̃k(θj)dθj +

∫ 1

βk−1(b)

(

βk(θj)

n − 1
+ LL

)

F̃k(θj)dθj.

Maximising wrt b gives

∂Πk
i (b

k)

∂b
= −

∫ βk−1
(b)

0

F̃k(θj)dθj + (−b − kθi + LW )F̃k(β
k−1

(b))
1

βk ′(θ̂)

−

(

b

n − 1
+ LL

)

F̃k(β
k−1

(b))
1

βk ′(θ̂)
= 0

(11)
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where θ̂ is such that βk(θ̂) = b. This transforms into the ordinary differential equation

−

∫ βk−1
(b)

0

F̃ (θj)dθj −

(

b + kθi +
b

n − 1
+ LL − LW

)

F̃ (βk−1
(b))

βk ′(θ̂)
= 0. (12)

A solution to this is obtained (for the initial condition of b(0) = 0) as

βk(θi) =

(

∫ θi

0

(−kx − LL + LW )

(∫ x

0

F̃ (θj)dθj

) 1

n−1

F̃ (x)dx

)

(∫ θi

0

F̃ (θj)dθj

)−
n

n−1

which equals (7). Checking the slope of this bidding function gives

∂βk(bk)

∂θi

=
(

−kθi − LL + LW
)

(∫ θi

0

F̃ (θj)dθj

)

1

n−1

F (θi)dθi

(∫ θi

0

F̃ (θj)dθj

)−
n

n−1

+

(

F̃ (θi)
)

−
n

n−1

∫ θi

0

(−kx − LL + LW )

(∫ x

0

F̃ (θj)dθj

) 1

n−1

F̃ (x)dx

(13)

where each constituent component is positive, since LW > LL + kθi.
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