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Abstract

A decision maker has to recommend a treatment, knows that any outcome will be

in [0; 1] but only has minimal information about the likelihood of outcomes (there is

no prior). The decision maker can design a �nite number of experiments in which

treatments are tested.

For the case of two treatments we present a rule for designing experiments and

making a recommendation that attains minimax regret and can thus ensure a given

maximal error with the minimal number of tests. 11 tests are needed under the so-

called binomial average rule to limit the error to 5%. We also consider the setting where

there is covariate information to then identify minimax regret behavior and drastically

reduce the number of tests needed to attain a given maximal error as compared to the

literature (over 200 to 22 given two covariates). We extend the binomial average rule

to more than two treatments and use it to derive a bound on minimax regret.

Keywords: statistical decision making, treatment response rule, binomial average

rule.
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1 Introduction

Consider the following simple statistical decision problem faced by a so-called decision

maker. There are two actions each associated to a real random variable that yields

payo¤s in [0; 1] with unknown mean. The decision maker wishes to choose the action

that has the higher mean. Before making this choice the decision maker is allowed

to gather information by running randomized experiments. In such a randomized

experiment the decision maker selects one of the two actions and then observes a

random outcome generated by the random variable associated to the action selected.

These tests are run sequentially so that the design of future tests can be conditioned

on previous outcomes. Of course this problem is simple but unrealistic if an unlimited

number of tests can be made. So how many randomized experiments are needed to

be able to make a choice that is guaranteed to be within 5% of the true maximum?1

How should the tests then be designed? We solve this problem for any error. In the

following we provide some intuition on how to achieve and how not to achieve this

objective.

There are two underlying problems: (i) how should tests be conducted, in particular,

is the decision of which action to test next dependent on payo¤s observed earlier during

experimentation and (ii) which action should be chosen based on the observations

during the experiments.

If one decides to make an even number N of experiments and would not be allowed

to observe realized payo¤s until after all tests have been made then it is intuitive to

select each variable equally often during experimentation. However, we assume that

the payo¤ realized in each test is observed before the next test is implemented. So

which action should one test next when half the tests have been conducted and one

action always yielded payo¤ 1 while the other always payo¤ 0? We show that it is

best to ignore the information about payo¤s and to test each treatment equally often

(conditional on N being even).

After running an equal number of experiments of each variable it is intuitive to

use the empirical success rule, to choose the action that achieved the higher average

payo¤s during experimentation as an estimate. This turns out not to be the best

thing to do when payo¤s can take any value in [0; 1]. We do not know how many

experiments the empirical success rule would need but we show that at least 14 are

1The decision maker has to ensure that the expected payo¤ generated by his choice given these

unknown random variables is at least 95% of the highest mean of the two actions.
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needed. The problem with the empirical success rule is that use of absolute di¤erences

in observed payo¤s is not a good way to determine di¤erences in means as the absolute

outcomes only give limited information about the mean (a similar intuition drives the

�ndings in Schlag (1998)). In fact, if one additionally restricts the problem to binomial

random variables then we show that it is best to use the empirical success rule after

all (conditional on N being even). Stoye (2005) has proven a partial result for this

case of binomial random variables, namely conditional on running the same number of

experiments on each action (so how to design testing is not an objective) and shows

that only 12 rounds are needed.

The setting of binomial variables is very restrictive. We solve the case of general

payo¤s by �nding a way to ignore variables that are not binary valued. This can be

done with the help of binomial averages. Accordingly, �rst transform each payo¤ y

obtained from an experiment into a binary payo¤ by assigning value 1 with probability

y and value 0 otherwise. Then apply the empirical success rule to the transformed

payo¤s, selecting each variable equally likely as estimate if there is a tie. We call this

rule the binomial average rule and extend it to odd samples. We then prove that

this rule minimizes the maximal error, in particular 11 experiments are su¢ cient to

guarantee the error to be at most 5%. In general, the error converges to zero at a rate

equal to the square root of sample size. Half the error (so 2:5%) requires about four

times as many experiments, the precise value equals 47: The fact that we �nd that

there is no better way to conduct future tests by some complicated scheme based on

past observations of payo¤s stems from the fact that the binomial average rule acts

in the worst case as if each treatment can be observed for each test. In particular we

obtain that performance cannot be improved by allowing the decision maker to observe

the outcomes of all treatments in each test.

As an aside, it follows directly from our analysis that these values of maximal error

for given number of experiments are also tight upper bounds on the error that can be

achieved by a rational (or Bayesian) decision maker who is endowed with a prior over

the possible outcome distributions. So any rational decision maker can guarantee an

error of at most 5% in 11 tests.

Assume now that the mean of one treatment is known so only the unknown (inno-

vation) treatment is tested. Then our results above can be used to attain a bound on

minimax regret. One can act as if one has 2N experiments of two unknown treatments,

hence only 6 tests are needed for 5% error and 24 for 2:5%: Of course this bound is
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too crude. The setting of only one unknown treatment has been solved by Manski

(2004) with an explicit formula given by Stoye (2005) for the binomial setting. With

the insights of this paper (using binomial averages) it follows that the value of the

smallest maximal error under binomial payo¤s is the same as under general payo¤s.

Combining this with values in Table 3.1 in Manski (2005) indicate that at most 3 tests

are needed for 5%.

Consider next a more intricate problem that we present in a more speci�c context:

each variable is associated to a treatment, an experiment is conducted by testing a

treatment on a subject belonging to some large population. The new aspect is that

information about covariates (or attributes) is available for each subject. The same

treatment may yield di¤erent means for di¤erent covariates and treatments can be rec-

ommended based on the observed covariates. The decision maker is assumed to know

the distribution of covariates in the population of subjects. During experimentation

one may decide on which covariate to test a selected treatment on. New questions arise.

Should all be treated the same or will di¤erent covariates be recommended di¤erent

treatments when observed outcomes di¤er? Is it necessary to perform experiments on

speci�c covariates (called strati�ed random sampling)? If so, then how does the fre-

quency of a covariate in�uence the number of experiments? Here it becomes important

whether future tests may depend on the outcomes of earlier tests (sequential testing)

or not (simultaneous testing). Notice that while we show that sequential testing adds

no value when there is no covariate information, it will when there are at least two

covariates. Most of our �ndings concern simultaneous testing, the setting considered

in Manski (2004).

Manski (2004) allows payo¤s to be in [0; 1] ; derives upper and lower bounds and uses

these to show that it is better to condition treatment choice on covariate information

than to recommend the same treatment for all provided N is su¢ ciently large. We

identify rules that minimize the maximal error which shows this to be true for all

N . These rules �rst determine randomly how many tests to assign to each covariate

and then apply the binomial average rule to each covariate separately. The table for

two covariates in Manski (2004, Table 2) seem to indicate that 52 experiments are

needed to obtain an error below 11% when one covariate is three times as frequent

as the other.2 This extrapolates via the upper bound on the convergence rate shown

2Of course the bounds in Manski (2004) are upper bounds and the tables were only presented to

show how performance increases with sample size.
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in Manski (2004) to requiring over 200 tests to get below 5%: However, when testing

each covariate equally often and then applying the binomial average rule we limit

the number of tests to at most 11 times the number of covariates regardless of how

covariates are distributed. Of course, tests should be assigned di¤erently depending on

the distribution. For the case of large N and two covariates we use a general method

of Stoye (2005) to demonstrate how to assign tests to each covariate as a function of

its frequency. It turns out that the number of tests can be reduced by at most 10%

when compared to testing proportionally to the frequencies.

An interesting side e¤ect is that we �nd that the value of minimax regret is even

lower under sequential testing provided N is not too small. This is shown without

entering into more detail how minimax regret behavior would look under sequential

testing.

We then consider the case of more than two treatments and return to simultaneous

testing. We generalize the binomial average rule by making recommendations via

pairwise comparisons. Whether or not this rule attains minimax regret is not known.

Instead we derive an upper bound on the maximal regret of this rule and �nd the

same rate of convergence 1=
p
N as in the case of two treatments. Of course, it is

more di¢ cult to learn with more treatments, choosing T instead of 2 treatments is like

multiplying the number of experiments by T 3=2:

Formally speaking, the above problem is set in the framework of minimax regret

going back to Savage�s (1951) interpretation of Wald (1950) and �rst axiomatized by

Milnor (1954). Minimax regret is derived by �nding a saddle point of the zero sum

game between the decision maker and nature. The trick to reduce general distributions

to binomial distributions and thus complexity was �rst used in Schlag�s (2003) analysis

of repeated decision making. For a literature review on treatment response we refer

the reader to Manski (2004, 2005) and Stoye (2005).

We would like to emphasize that while we use the term treatment it is only one of

many examples. Basically the results in this paper apply whenever someone has the

possibility to experiment and gain information via independent draws at no cost and

then has to commit to some action. Examples are easily found in marketing, operations

research, production planning, crime prevention and pro�ling, etc..
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2 Setting

Following Manski (2004), consider a decision maker (or policy maker or planner) that

has to recommend (or choose) some treatment (in decision theory also called arm or

action) that belongs to a �nite set of treatments f1; ::; Tg.
Choice (or implementation) of treatment i 2 T generates a random outcome, out-

comes belong to a set of outcomes Y where Y contains at least two elements. Random-

ness is generated as follows. There is an unknown (joint) distribution (or environment)

P 2 �
�
Y T
�
and the random outcome generated from choosing treatment i is drawn

from the marginal of P with respect to the i-th component, denoted by Pi.3 Depending

on the speci�cation of P; treatments can but need not generate independent outcomes.

A treatment i is called binary valued if only one of two outcomes can occur under

this treatment. The distribution P is called binary valued if all treatments are binary

valued. For instance, all distributions are binary valued if jY j = 2.
The analysis in this paper will also apply if attention is restricted to jY j = 2. How-

ever, even if outcomes are only measured in terms of success or failure, the restriction

to binomial P is only applicable if the value of a success and of a failure does not

depend on which treatment was tested (e.g. treatment speci�c side e¤ects would be

ruled out).

Before making a recommendation the decision maker is allowed to run a given num-

ber of N independent tests (or randomized experiments or trials or samples). In each

of N rounds the decision maker may choose a treatment and observe a random payo¤

generated by this treatment where payo¤s are generated independently across rounds.

This testing we also call the test phase, the choice thereafter also the recommendation

or �nal choice. So a strategy (or treatment rule) of the decision maker consists of two

parts: (i) which treatments to test in the test phase and (ii) which treatment to rec-

ommend based on the observations in the test phase. We consider two informational

settings for the test phase. We say that N sequential randomized experiments are

performed if earlier observations within the test phase are allowed to in�uence which

treatments are tested in later rounds. If on the other hand the decision maker has to

pre-commit to the number tests run with each treatment before starting the test phase

we speak of N simultaneous randomized experiments.

3�A denotes the set of distributions over the set A: Any element a 2 A is identi�ed with the

distribution that places probabilty 1 on a, hence A � �A: Y T denotes the set of all functions

f1; ::; Tg ! Y:
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We �rst formally describe strategies for running sequential randomized experiments.

After running n 2 f1; ::; Ng tests, the history h of length n is given by h =

((t1; y1) ; (t2; y2) ; :::; (tn; yn)) where tk is the treatment chosen and yk is the outcome

generated in the k-th round of the test phase. So yk is an outcome randomly drawn

from the distribution Ptk : The strategy � of the decision maker for running sequential

tests is to assign to each history of length n with n < N the treatment to test next

and after testing is over to decide based on the history of length N which treatment

to recommend. We allow for the decision maker to randomize over treatments both

during the test phase and when making the recommendation. Formally,4

� : [Nn=0 (f1; ::; Tg � Y )
n ! � f1; ::; Tg

where � is described as a behavioral strategy. If the recommendation is always de-

terministic, i.e. for any history h of length N we have � (h) 2 f1; ::; Tg, then the
treatment rule is also referred to as a singleton rule (Manski, 2004). We say that � is

deterministic if � (h) 2 f1; ::; Tg holds for any history of any length n 2 f0; ::; Ng :

Now we analogously describe strategies for the more restricted setting of simulta-

neous randomized experiments. It is more restricted as the decision maker can ignore

previous information during the test phase of a sequential randomized experiment and

thus behave as if simultaneous randomized experiments are executed. If not mentioned

otherwise we will be considering the setting of sequential randomized experiments.

An element n 2 �dN :=
n
n 2 NT0 s.t.

PT
i=1 ni = N

o
speci�es that treatment i will

be tested in ni rounds, � (;) (n) denotes the probability of this assignment of treat-
ments. The history h of observations generated by the set of observations during the

test phase is as above except that it is now unordered, so h = f(t1; y1) ; (t2; y2) ; :::; (tn; yn)g :
Together this means that

� : ; ! �(�dN)

� : [Nk=1 (f1; ::; Tg � Y )! � f1; ::; Tg :

Note that sequential sampling is often not implementable as for instance it might

take time until outcomes are generated. However we will see that sometimes sequential

sampling outperforms simultaneous sampling.

In a more detailed description of the problem that involves treatments per se one

would also introduce an in�nite population, members referred to as subjects, and as-

sume that the decision maker has to recommend a treatment for each subject. In each

4The convention (f1; ::; Tg � [0; 1])0 = f;g is used.
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round of the testing phase, a subject would be drawn randomly and the treatment

is applied in a more medical sense to this subject. Di¤erent subjects react perhaps

di¤erently to the same treatment which then naturally generates a random outcome of

a test. As the population is in�nite and the testing phase is �nite, which treatments

are run on which subjects during the testing phase does not in�uence the aggregate

outcome for the population given the recommendation of the decision maker (unlike

what would happen if the population were �nite).

3 Risk and Uncertainty

We speak of a risky environment when P is known as compared to an uncertain envi-

ronment when P is unknown. We �rst make some assumptions on preferences of the

decision maker in risky environments and later extend these to uncertain environments.

Our decision maker has a complete strict preference ordering over the set of out-

comes Y and has a most preferred outcome yH and a least preferred outcome yL.

Preference satisfy the von Neumann Morgenstern (1945) axioms and hence there is a

utility function u : Y ! R such that the decision maker would recommend the treat-
ment that maximizes expected utility. Since u is uniquely determined up to an a¢ ne

linear transformation let u (yL) = 0 and u (yH) = 1: Consequently, we can assume

without loss of generality that elements of Y are payo¤s, that Y = [0; 1] and that the

decision maker aims to maximize expected payo¤s when P is known. Notice that this

does not mean that the decision maker is risk neutral in risky environments as payo¤s

are measured in terms of utility and not in monetary value. If Y = f0; 1g then we also
refer to payo¤ 1 as a success and 0 as a failure, a binary valued P will then also be

called binomial.

Let � (i; P ) denote the expected payo¤ generated by choosing treatment i so

� (i; P ) =

Z
y2[0;1]T

yidP (y) =

Z 1

0

yidPi (yi) :

A decision maker who knows P will recommend a treatment belonging to argmaxi � (i; P ).

Treatments in argmaxi � (i; P ) are called best (given P ).

A decision maker who knows P does not have to test treatments as he or she

already knows which treatment(s) are best. However, as mentioned above, in the main

setting of the paper, P will not be known by the decision maker. Regardless of the
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knowledge of the decision maker, P describes the true environment. Best treatments

remain de�ned as above, the decision maker simply does not know which treatment is

best when he or she does not know P . For later analysis we need to understand how

each strategy performs as the decision maker might have some conjecture about which

environments he or she may be facing (more on this later).

Let pi (�; P ) denote the probability of recommending treatment i given strategy �

when facing distribution P:5 Let � (�; P ) denote the expected payo¤ of the recommen-

dation induced by using strategy � when facing distribution P where expectations are

calculated based on the distribution P ex-ante before entering the test phase, so

� (�; P ) =
TX
i=1

pi (�; P )� (i; P ) :

Notice that payo¤s realized during the testing phase do not directly in�uence the

value of recommending treatment i that is given by � (i; P ) : Tests only possibly in-

�uence the recommendation indirectly as which treatment is recommended can (and

typically is expected to) in�uence the recommendation. Thus, in the end, the decision

maker only cares about � (�; P ).

4 On the Rationality of Taking Averages

Assume in the following that there are only two treatments, so T = 2:

Before we move to the analysis we add some informal discussion on a strategy that

appears natural. Assume for this that N is even. As N is even, the obvious candidate

for how to behave during the test phase is to test each treatment equally often (and

hence N=2 times, no real reason to choose a speci�c order). The obvious candidate

for the recommendation is to choose whichever treatment yielded the higher average

payo¤s during the testing phase and to choose each treatment with equal probability

if both treatments yielded the same average payo¤. Any rule that combines these two

candidates will be called an empirical success rule (Manski, 2004), representatives of

this class will be denoted by ��:67

5We refrain from presenting a formal expression for pi (�; P ) as it is too intricate to be insightful.

Explicit calculations in later examples will demonstrate better how pi (�; P ) is derived.
6There are many di¤erent empirical success rules according to the order of testing, e.g. �rst test

treatment 1 N=2 times and then test treatment 2 N=2 times, e.g. alternate between treatments

starting with a random treatment.
7The empirical success rule in Manski (2004) has a tie breaking rule when both treatments yield
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In the following we brie�y illustrate when this strategy may or may not be opti-

mal from the perspective of a rational decision maker. According to Savage (1951),

a rational (or Bayesian) decision maker is endowed with beliefs over the true P; be-

liefs are modelled by a prior Q over distributions P so Q 2 �
�
�
�
[0; 1]T

��
and the

decision maker chooses a best response given Q by selecting a strategy that solves

max�
R
� (�; P ) dQ (P ) :

Notice that it need not be rational to test each treatment equally often. Clearly,

if beliefs are such that the decision maker is only unsure about payo¤s generated by

treatment 1 then it is optimal to test treatment 1 for N times. Even if each treatment

is ex-ante believed to be equally likely to be the best treatment given the prior Q then

it is simple to construct beliefs under which the treatment tested next non-trivially

depends on the payo¤s that have been realized in earlier rounds of the testing phase.

Notice furthermore that it need not be rational to recommend the treatment that

yielded the higher average payo¤ even if each treatment was tested equally often.

Consider for instance a decision maker who believes the following: one treatment yields

payo¤ z for sure, the other is binomial with payo¤ 1 occurring with probability � where

� and z are known and 1 > � > z > 0 and each treatment is equally likely the binomial

one.8 After a single test the decision maker knows which treatment is best. Assume

never-the-less that the decision maker tests each treatment equally often as there is

yet no harm to this testing. However to then use average payo¤s to determine the

recommendation speci�es the worse treatment with probability at least (1� �)N=2 > 0.
This is clearly not rational as the decision maker knows which treatment is best after

the testing phase. We will return to this particular example later.

Of course, the empirical success rule is the natural choice when N is large. Due

to the law of large numbers it will select the best treatment with arbitrarily large

probability provided N is su¢ ciently large; it yields a consistent estimator for the best

treatment (a formal proof of this statement is given below). However the empirical

success rule need not make �sense�when N is small where we of course �rst have to

specify how to quantify �sensible�for a decision maker without a prior Q.

Of course the decision maker may have additional information about the treatments,

he or she could be rational. In this case we show below that our paper provides on

the side a tight upper bound on many tests a rational decision maker (endowed with a

same average payo¤.
8Formally, we refer to a decision maker endowed with the prior Q such that Q

�
P 1
�
= Q

�
P 2
�
= 1

2

where P 1 (z; 1) = 1� P 1 (z; 0) = � and P 2 (1; z) = 1� P 2 (0; z) = �:
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prior) needs for a given error.

5 The Binomial Average Rule for T=2

Next we introduce the strategy that we call the binomial average rule that will be

selected later as the �best� strategy when T = 2 and hence we have to spend some

time on explaining it in detail.

The binomial average rule will be described �rst for the case where N is an even

number. Test as follows. In the �rst round, select equally likely one of the two treat-

ments. Then continue to test the two treatments alternatingly until the test phase

is over. Let tk be the treatment tested in round k so tk+2 = tk for 1 � k � N � 2:
Transform any payo¤ realized during the test phase that belongs to (0; 1) into a payo¤

in f0; 1g by the following randomization. When observing payo¤ yk 2 (0; 1) in the
k-th round of the testing phase then with probability yk act as if payo¤ ~yk = 1 was

observed and with probability 1�yk act as if payo¤ ~yk = 0 was observed in that round
(~yk 2 f0; 1g denotes the value of the transformed payo¤ where ~yk = yk if yk 2 f0; 1g).
Given this transformation, it is as if only payo¤s in f0; 1g were realized in each round of
the test phase. After the test phase is over, recommend the treatment that yielded the

higher average number of successes after payo¤s were transformed, choose each treat-

ment equally likely if both treatments generated the same average number of successes.

Formally, treatment 1 is recommended with probability 1 if

2

N

X
k:tk=1

~yk >
2

N

X
k:tk=2

~yk;

with probability 1=2 if equality holds above and with probability 0 otherwise.

The binomial average rule speci�cally tests treatments in an alternating fashion

starting with a random treatment. This is not important for the performance of the

rule for given N . It only matters that each treatment is chosen equally often when N

is even. However, the alternating character allows the binomial average rule also to

have nice properties when N is unknown at the beginning of the test phase (see result

below).

The binomial average
1

# fk : tk = ig
X
k:tk=i

~yk



11

is an unbiased estimator of the mean or expected value � (i; P ) of treatment i. So

just like the empirical success rule, the binomial average rule estimates the expected

payo¤ of each treatment and then selects the treatment with the higher estimate. In

the special case in which P is binomial, the binomial average rule and the empirical

success rule coincide. This will no longer be true in the case where N is odd which we

consider next.

The binomial average rule is de�ned for N odd as it is when N is even except for

the following adjustment of the recommendation to correct for the unbalanced sample.

Follow the recommendation based on the sample of the �rst N � 1 rounds of the test
phase if some treatment is recommended with probability 1 and hence there is no tie

of the binomial averages. Otherwise, recommend the treatment tested in round N if

and only if it yielded a transformed payo¤ ~yN equal to 1. Hence, if there is a tie up to

round N � 1 and the treatment tested in round N yields a transformed payo¤ equal

to 0 then recommend the treatment not tested in the last round. Formally, treatment

1 is recommended with probability 1 if

2

N � 1
X

k<N :tk=1

~yk >
2

N � 1
X

k<N :tk=2

~yk

or
2

N � 1
X

k<N :tk=1

~yk =
2

N � 1
X

k<N :tk=2

~yk and tN = 1 and ~yN = 1

or
2

N � 1
X

k<N :tk=1

~yk =
2

N � 1
X

k<N :tk=2

~yk and tN = 2 and ~yN = 0;

and with probability 0 otherwise.

We would like to point out two di¤erences to the behavior under an even sample

due to this special treatment of the last test when N is odd. (i) The recommendation

after an odd sample is always deterministic; one of the two treatments is recommended

with probability 1: In other words, the binomial average rule is a singleton rule when

N is odd but not when N is even. (ii) The binomial average rule and the empirical

success rule no longer coincide when P is binomial and N is odd. E.g. assume that

N = 3 and that the test phase yielded history ((1; 1) ; (2; 1) ; (1; 1)) : Then the empirical

success rule recommends each treatment equally likely while the binomial average rule

recommends treatment 1 with probability 1.

As in the case of N even, when N is odd then the order of tests does not in�uence

the performance of the rule as long as (a) a �ip of a fair coin determines which of the

two treatments is tested once more than the other, and (b) a random observation of
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Table 1: Probability of recommending treatment 1 as function of number of tests.
N 0 1 2 3 4

p1
1
2

1
2
+ 1

2
(�1 � �2) p1 (1)

1
2
+ 1

2
(2� �1 � �2 + 2�1�2) (�1 � �2) p1 (3)

the treatment tested more often is used to break ties analogously to how this is done

above.

Notice that the binomial average rule can also be described as a rule for simultaneous

random sampling. In this alternative setting the only adjustment is that there is no

longer an alteration between treatment testing.

There is an alternative method for intuitively deriving the recommendation under

the binomial average rule that applies regardless of whether N is odd or even. The

underlying interpretation will be important to understand later results. The idea is

to assume that the decision maker believes for any test that yields payo¤ y that the

treatment not tested would have yielded payo¤ 1� y and to recommend the treatment
that yields the higher binomial average based on these beliefs, choosing each treat-

ment equally likely when there is a tie. Formally, treatment 1 is recommended with

probability 1 (with probability 1=2) if

1

N

 X
k:tk=1

~yk +
X
k:tk=2

(1� ~yk)
!
> (=)

1

N

 X
k:tk=1

(1� ~yk) +
X
k:tk=2

~yk

!

and hence if X
k:tk=1

~yk +
X
k:tk=2

(1� ~yk) > (=)
N

2
(1)

which is equivalent to the separate formulae given above for N even and N odd. Notice

that (1) is also useful for saving on the number tests, namely if X
k�M :tk=1

~yk +
X

k�M :tk=2

(1� ~yk)
!
> N=2

holds for some M < N then treatment 1 can be recommended after M tests without

running the remaining N �M tests.

We show the probability of choosing treatment 1 using the binomial average rule

and facing a binomial distribution for small values of N in Table 1, setting p1 (N) =

p1 (�
�; P;N) and �i = � (i; P ) for i 2 f1; 2g :
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The fact that performance in any even period in the above table is the same as in the

preceding odd period is a more general phenomenon (see part (i) below). Of course, a

tie between the binomial average of each treatment does not help in selecting a speci�c

treatment and ties occur more likely when N is even. However, the fact that the last

test in an even number of tests has no impact on the expected recommendation is never-

the-less somewhat surprising. Notice that expectation refers here and throughout the

paper to ex-ante calculations made before running the �rst test assuming a speci�c P .

Proposition 1 Assume that �� is the binomial average rule and N = 2n is even.

Then

(i) pi (��; P; 2n� 1) = pi (��; P; 2n) and � (��; P; 2n� 1) = � (��; P; 2n) ;
(ii) � (j; P ) > � (i; P ) implies pj (��; P; 2n+ 1) > pj (��; P; 2n) and � (��; P; 2n+ 1) >

� (��; P; 2n)

Part (ii) shows that the binomial average rule increases �performance�as the sample

size grows. In a later result (Proposition 4) this will be complemented with an e¢ ciency

type result:

lim
N!1

� (��; P;N) = max f� (i; P ) ; � (j; P )g :

Proof. Recall that N = 2n is assumed to be even. Fix some distribution P: As we

are interested in pi; given the de�nition of the binomial average rule, we can assume

without loss of generality that P is binomial. The proof is purely combinatorial.

It is simpler for the argument if we act as if any payo¤ y generated choosing treat-

ment 2 during the test phase was really payo¤ 1 � y generated by treatment 1: With
this transformation, the binomial average rule recommends treatment 2 with certainty

if strictly less than half the tests yielded payo¤ 1 and recommends both treatments

equally likely if half the tests yielded payo¤ 1:

We now proceed to prove part (i) by showing pi (��; P;N � 1) = pi (��; P;N) which
immediately implies � (��; P;N � 1) = � (��; P;N) :
Consider the recommendation after N � 1 tests as if generated by running N tests

and ignoring the outcome of the test in round N: We focus on the situations in which

the recommendations after N � 1 tests and after N tests di¤er. It is easily veri�ed

that, given the recommendation after N tests, the recommendation after N � 1 tests
would have been di¤erent if and only if half of the N tests yielded payo¤ 1 (and hence

each treatment is recommended equally likely after the N tests). If the last test yielded

payo¤ 0 (payo¤ 1) then the recommendation after N � 1 tests is treatment 1 (treat-
ment 2) with certainty. Symmetry of the binomial average rule shows that among all
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realizations in which half of the N tests yield payo¤ 1; the ex-ante probability that the

last test yields payo¤ 1 equals 1=2: Thus, the two possible changes in recommendation

cancel each other and we obtain the same expected recommendation when performing

N tests as when running N � 1 tests which was the statement to be proven.
We now prove part (ii). Assume � (i; P ) < � (j; P ). Consider the recommendation

based on the even number of N samples. Then the recommendation can only change

after an additional sample (drawn using the binomial rule) if there was a tie in the

empirical success of transformed payo¤s of each treatment after N samples. So we

can limit our attention to an event of such a tie. Due to the symmetry of the bino-

mial average rule, the expected payo¤ of the recommended treatment after N samples

conditional on such a tie equals

1

2
� (1; P ) +

1

2
� (2; P ) : (2)

Given the event of such a tie assume that treatment i is tested in round N + 1: Then

the probability that treatment i is recommended after N + 1 samples equals � (i; P ) ;

so the expected payo¤ of the recommended treatment equals

� (i; P )2 + (1� � (i; P ))� (j; P ) :

As it is equally likely that a tie occurs and treatment j is tested in round N + 1; the

overall e¤ect conditional on a tie equals

1

2

�
� (1; P )2 + (1� � (1; P ))� (2; P )

�
+
1

2

�
� (2; P )2 + (1� � (2; P ))� (1; P )

�
=

1

2
� (1; P ) +

1

2
� (2; P ) +

1

2
(� (1; P )� � (2; P ))2 :

Thus, if �N is the probability that a tie occurs after N samples, then

� (��; P;N + 1)� � (��; P;N) = 1

2
(� (1; P )� � (2; P ))2 �N

which completes the proof of part (ii).

6 Minimax Regret with 2 Treatments

We now move to the main objective of the paper, to analyze which strategy the decision

maker should select when P is unknown. First we have to postulate how to deal with

the environment being uncertain.



15

How to select a strategy �� if the policy maker does not have a prior? We may like

�� to generate a consistent estimator so

lim
N!1

Pr

�
tN (�

�) 2 argmax
i2T

� (i; P )

�
= 1

holds for all P where tN (�) denotes the random treatment recommended by strategy

� after a test phase of length N: We may like �� to be rational for some prior Q, a

property that is called admissible. This puts some discipline on �� and ensures that

selection is as close as possible to the rationality setting. Finally, we may like to

have some axiomatic foundations of the procedure for selecting a strategy. Selection

according to �minimax regret�will yield a strategy that satis�es these three properties.

The alternative of selecting according to maximin will be discussed later.

Regret r (�; P ) is de�ned as the di¤erence between the expected payo¤ of the best

treatment and the expected payo¤ realized by using strategy � when the environment

is given by P . This is what we refer to in the introduction as error. Formally

r (�; P ) = max
i2T

� (i; P )� � (�; P ) :

In this paper we search for a strategy �� that attains minimax regret, formally

�� 2 argmin
�

sup
P2�(Y T )

r (�; P )

and set r�N = inf� supP2�(Y T ) r (�; P ) : The underlying idea is that each strategy is

evaluated according to the maximum regret it creates among all possible distributions

P . According to our assumption, the only information the decision maker has about the

environment P is that P 2 �
�
Y T
�
: Strategies with lower maximal regret are preferred

and hence a strategy �� (if it exists) that yields the lowest maximum regret is most

preferred, in which case r�N = supP2�(Y T ) r (�
�; P ). Minimax regret was introduced

by Savage (1951) based on an interpretation of Wald (1950) for making decisions in

uncertain environments, an axiomatic framework underlying minimax regret is due to

Milnor (1954).910 Two papers (Manski, 2004, Stoye, 2005) speci�cally investigated

minimax regret in this setting, their results will be compared to ours later.
9The connection to the formal settings of Savage (1951) and Milnor (1954) are established by

identifying each P 2 �
�
Y T
�
with a state of the world.

10Two axioms underlying the axiomatization of Milnor (1954) are central: (i) independence of

irrelevant alternatives is relaxed; preferences are not allowed to change when adding an action that

does not change the best payo¤ in any of the states (ii) the independence axiom is strengthened by

replacing the constant lottery by one where payo¤s are only required to be constant across actions in

any given state.
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The nice thing about minimax regret is that it also yields information about how

large the error of a rational (or Bayesian) decision maker endowed with a prior �Q and

who hence chooses a best response ��
�
�Q
�
. Note �rst that a rational decision maker will

minimize expected regret as � 2 argmax� �
�
�; �Q

�
if and only if � 2 argmin� r

�
�; �Q

�
.

Given the saddle point characterization of Savage (1954) that will be used in the proof

below, provided there is a minimax regret strategy, then

r�N = inf
�

sup
P2�(Y T )

r (�; P ) = sup
Q2�(�(Y T ))

inf
�
r (�;Q) :

So r
�
��
�
�Q
�
; �Q
�
� r�N holds for all �Q which means that the expected error of a ra-

tional decision maker is bounded above by r�N : Later we will see via the saddle point

characterization that this bound is tight as it is attained for some prior �Q:

A key result of this paper is part (i) and (ii) of the following. Let B (j;m; z) =�
m
j

�
zj (1� z)m�j be the probability of drawing j successes among m independent

samples of a Binomial distribution with success probability z where j;m 2 N0 with
0 � j � m and z 2 [0; 1] :

Proposition 2 (i) The binomial average rule attains minimax regret. The empirical
success rule does not. The value r�N of minimax regret is given by

11

r�N = max
u2( 12 ;1)

0@(2u� 1) X
n<Nodd=2

B (n;Nodd; u)

1A : (3)

where Nodd = max fn 2 N s.t. n � N and (n+ 1) =2 2 Ng : r�N is the maximal regret

that can be generated if the decision maker instead has a prior.

(ii) If N is odd then any rule that attains minimax regret makes the same (deter-

ministic) recommendation as the binomial average rule.

(iii) Assume that P is restricted to be binomial. Then the binomial average rule

attains minimax regret. The empirical success rule attains minimax regret if and only

if N is even. The value of minimax regret equals r�N speci�ed in (3).

Notice that the binomial average rule has been constructed in way that the testing

procedure during the �rst n rounds of the testing phase does not depend on the size of

N provided N � n: Consequently, we can apply the binomial average rule even when
N is not known.

11The �rst order conditions are 2
P(N�1)=2

n=0

��
N
n

�
un (1� u)N�n

�
�

(2u� 1)N
�N�1
N�1
2

�
(u (1� u))

N�1
2 = 0.
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Corollary 1 The binomial average rule attains minimax regret if the sample size N
is randomly drawn from an unknown distribution.

On the other hand, if N is known then we can use Proposition 1 to save tests which

immediately implies that all subjects are be treated equally.

Corollary 2 If N is known then minimax regret can be attained with an odd number

of tests followed by some treatment recommended with probability one.

Proof. (of Proposition 2) Ever since Savage (1954, Theorem 1, p. 186), minimax regret
is best calculated by �nding an equilibrium (or saddle point) of the following simulta-

neous move zero sum game between the decision maker and nature. Pure strategies of

the decision maker are given by deterministic strategies �d de�ned above. The set of

environments �
�
Y T
�
is the set of pure strategies of nature. Both parties may choose

mixed strategies so the decision maker chooses strategy � and nature chooses a prior

Q: The payo¤ of the decision maker equals r (�;Q) while that of nature is de�ned as

�r (�;Q) : Here

r (�;Q) :=

Z
r (�; P ) dQ (P ) =

Z
max
i
� (i; P ) dQ (P )� � (�;Q) :

Given this equation, the decision maker minimizes regret given Q if and only if she

chooses a best response to Q, i.e. maximizes expected payo¤s � (�;Q) over all �: We

will �nd a prior Q� such that (��; Q�) is an equilibrium of this game. Thus, �� will be

admissible. Moreover, given that this is a saddle point, Q� 2 argmaxQ inf� r (�; P ).
So Q� is also called a worst case prior as it is the prior under which the best response

is furthest away from the benchmark of an omniscient decision maker who chooses the

best treatment in each environment.

We will show that (��; Q�) is an equilibrium of this game where Q� is de�ned as

follows. Let

u� 2 arg max
u2( 12 ;1)

24(2u� 1)
0@ X
n<N=2

B (n;N; u) +
1

2
B (N=2; N; u) 1fN eveng

1A35 (4)

where some u� 2
�
1
2
; 1
�
clearly exists as the expression in the bracket is continu-

ous and bounded in u. The fact that u� 2
�
1
2
; 1
�
exists follows as the value of the

bracket is generally non negative while for u� 2
�
1
2
; 1
	
it equals 0: Let P 1 be the
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binomial distribution such that P 1 ((1; 0)) = 1 � P 1 ((0; 1)) = u�. Let P 2 be the bi-

nomial distribution such that emerges when swapping labels of treatments in P 1, so

P 2 ((0; 1)) = 1� P 2 ((1; 0)) = u�: Let Q� be such that Q� (P 1) = Q� (P 2) = 1
2
:

First we show that �� is a best response to Q�: Neither P 1 nor P 2 puts weight on

events in f(0; 0) ; (1; 1)g so each treatment yields the same information when facing Q�.
So we can act as if only treatment 1 is tested. Given the symmetry of Q� it is clear

that the recommendation by �� given the information from the test phase is a best

response. In fact it is the unique best response unless treatment 1 yielded the same

number of successes as failures.

Now we show that Q� maximizes regret given ��: Given the de�nition of �� we can

restrict attention to binomial P: In the following we show for P such that � (1; P ) �
� (2; P ) is constant that p2 (��; P ) is maximized if and only if � (1; P ) + � (2; P ) = 1.

Given Proposition 1 we can restrict attention to the case where N is even. To

simplify notation, let x = � (1; P ), y = � (2; P ) ; n = N=2 and p2 = p2 (��; P ) :We will

show that d
dx
p2 +

d
dy
p2 � 0 if and only if x+ y > 1.

Concerning the de�nition of B (j;m; x) ; if j < 0 or j > m then set B (j;m; x) = 0:

Treatment 2 is recommended is recommended with probability 1
2
if both treatments

yielded the same number of successes in the test phase and is recommended with

certainty if it yields strictly more successes than treatment 1 in the test phase. So

p2 =
1

2

nX
k=0

B (k; n; y)B (k; n; x) +
nX
k=1

B (k; n; y)
k�1X
j=0

B (j; n; x)

Using the fact that

d

dz
B (j;m; z) = m (B (j � 1;m� 1; z)�B (j;m� 1; z))

we obtain after some intermediary steps involving rearranging terms that

1

n

�
d

dx
p2 +

d

dy
p2

�
=
1

2
(x� y)

n�1X
k=0

n

�
n� 1
k

�2
xk (1� x)n�k�1 yk (1� y)n�k�1

�
1

k + 1
� 1

n� k

�
:

Collecting terms k and n� k � 1 for k < (n� 1) =2 then yields

1

n

�
d

dx
p2 +

d

dy
p2

�
=

X
k<(n�1)=2

n

�
n� 1
k

�2 (xy)k [(1� x) (1� y)]n�k�1

� (xy)n�k�1 [(1� x) (1� y)]k

!�
1

k + 1
� 1

n� k

�
where the statement to be proven then follows from the fact that

(xy)k [(1� x) (1� y)]n�k�1

(xy)n�k�1 [(1� x) (1� y)]k
=

�
(1� x) (1� y)

xy

�n�2k�1
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is strictly decreasing in x, taking the value 1 if and only if x = 1� y which is what we
wanted to show.

Since the binomial average rule is symmetric, maximal regret is attained for some

binomial P � such that � (1; P �) > � (2; P �) where

r (��; P �) = (� (1; P �)� � (2; P �)) p2 (��; P �) :

Our result above shows that � (1; P �) + � (2; P �) = 1 and hence

r (��; P �) = (2� (1; P �)� 1) p2 (��; P �)

which equals the expression in the brackets in (4). Given the de�nition u� and Q� it

follows that Q� maximizes regret given ��: This proves part (i).

Part (ii) follows from the fact that the best response is unique when N is odd.

Concerning part (iii) assume that P is restricted to be binomial. The �if�statement

follows from the above together with the fact that the binomial average rule and the

empirical success rule coincide. Assume N is odd. Then the empirical success rule

�� does not achieve minimax regret as it is not a best response against Q�: To see

this, consider the event in which both treatments yield payo¤ 1 up to round N � 1
and the treatment chosen in round N yields payo¤ 0: Then the empirical success rule

recommends each treatment equally likely while the best response is to recommend the

treatment not chosen in the �nal round.

In the following we illustrate why the binomial average rule does not yield the only

possible recommendation when N is even. Assume that N is even and that outcomes

are binary valued. Only an odd number of tests is needed. So the decision maker can

also attain minimax regret when N is even by applying the binomial average rule but

simply ignoring the last test. So this is a rule based on an equal number of tests of

each treatment that attains minimax regret but that makes a di¤erent recommendation

than the binomial average rule.

We present some properties of r�N : Using the central limit theorem to approximate

r�N given in (3) one easily derives its rate of convergence when N is large. Combining

this with Proposition 1 shows the following.

Proposition 3 r�N�1 = r
�
N > r

�
N+1 when N is even (N � 2) and r�N � 0:17p

N
when N is

large.12

120:17 is the solution z to 2
R �z
�1

1p
2�
e�

1
2x

2

dx = z
q

2
� e

�z2=2 rounded to four digits after the comma.
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6.1 Foregone Payo¤s

In the proof of Proposition 2 we found that there is a worst case prior Q� that

puts weight only on binomial distributions P in which � (1; P ) + � (2; P ) = 1 so

P (f(0; 0) ; (1; 1)g) = 0: When faced with a worst case prior, it is as if the decision

maker observes in each round of the test phase the payo¤ that the treatment not

tested would have achieved. Payo¤s realized by treatments not chosen are called fore-

gone payo¤s. So it is as if the decision maker can observe foregone payo¤s when facing

a worst case prior. Consider now a decision maker who always observes foregone payo¤s

during the test phase, hence tries both treatments on the same subject in each round.

Thus, there is nothing to decide on during the test phase (as both treatments are

tested simultaneously), the only question is what to recommend given the N random

observations of both outcomes.

Since there is no harm to also observing foregone payo¤s, minimax regret is weakly

smaller when a decision maker can observe foregone payo¤s than when he or she cannot

(as in the main model of this paper). On the other hand, when faced with the worst

case prior Q� de�ned in the proof of Proposition 2, there is no advantage in observing

the payo¤ of each treatment in each test. Thus, the maximal regret among the recom-

mendations based on foregone payo¤s is at least as large as the maximal regret under

the binomial average rule. Combining these two observations we obtain in terms of

minimax regret that there is no need to (or �sense� in) observing the payo¤ of each

treatment in each test.

Corollary 3 Assume that the decision maker observes the outcome of each treatment
in each round of test phase. Then the recommendation of the binomial average rule

(evaluated by disregarding this additional information) attains minimax regret.

6.2 Literature

We brie�y comment on the literature. Stoye (2005) is interested in recommendations

when each treatment is tested equally often. For T = 2, P binomial, N even and a

given random sample of N=2 observations of each treatment, Stoye (2005, Proposition

1) shows that the recommendation of the empirical success rule attains minimax re-

gret and claims that the value of minimax regret is given by (3). Given our results

above, this statement is also true if P is not restricted to the binomial case and can

more generally realize payo¤s in [0; 1]. Stoye (2005, Proposition 4 (i)) also derives the
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recommendation under minimax regret based on a single test of each treatment (so

N = 2) for the more general case of payo¤s in [0; 1] : Given our results we provide the

minimax regret recommendation whenever it is exogenously given that each treatment

has to be tested equally often. Moreover, since sampling is part of the decision we �nd

that sampling each treatment equally often when N is even is su¢ cient to minimize

maximum regret.

6.3 The Value of Minimax Regret for Small Samples

We illustrate the value of minimax regret for small values of N by a cross in Figure 1

below. Figure 2 shows
p
Nr�N for some odd N:

0.1

0.2

0.3

0.4

r*

0 2 4 6 8 10 12 14 16 18 20 N

Figure 1: Value of minimax regret r�N (box) and lower

bound on maximal regret under emprical success rule

(cross) as function of sample size N:
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0.1
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Figure 2: Plot of
p
Nr�N with limit value 0:17 as N !1
added as dotted line.

The numerical values are given in the following table, we include the �rst value of N for

which minimax regret is below 5%; 4%; 3%; 2:5%; 2% and 1%. In particular, observe

the following.

Remark 1 11 tests yield a maximal regret (or error) of 0:0495:

It turns out that r�N � 0:17p
N+0:8

is a very good approximation when N is a small odd

number, we provide the values in the table below.
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N 0 1 3 5 7 9 11 13

r�N 0:5 0:125 0:087 0:0706 0:0609 0:0543 0:0495 0:0458p
Nr�N 0 0:125 0:151 0:158 0:161 0:163 0:164 0:165
0:17p
N+0:8

= 0:127 0:0872 0:0706 0:0609 0:0543 0:0495 0:0458

N 15 17 19 25 29 33 39

r�N 0:0428 0:0403 0:0382 0:0335 0:0311 0:0292 0:0269p
Nr�N 0:1657 0:1662 0:1665 0:1674 0:1677 0:168 0:1683
0:17p
N+0:8

0:0428 0:0403 0:0382 0:0335 0:0311 0:0292 0:0269

N 47 73 99 199 289 1
r�N 0:0246 0:0198 0:017 0:012 0:00998 0p
Nr�N 0:1686 0:169 0:1693 0:1695 0:1697 0:17
0:17p
N+0:8

0:0246 0:0198 0:017 0:012 0:00999 0

6.4 Empirical Success

We would like to show how much worse the empirical success (or empirical success) rule

�� performs in terms of maximal regret when N is small and payo¤s belong to [0; 1].

We do not attempt the demanding task of calculating the precise value of maximal

regret under the empirical success rule. Instead we provide a lower bound for �rN =

supP2�(Y T ) r (��; P ) :

To obtain a lower bound, let P = Px;z 2 �
�
[0; 1]2

�
be such that treatment 1 yields

the value z for sure while treatment 2 is binomial with success probability given by x,

x; z 2 [0; 1] : If N is even, n = N=2 and 1
n
x > z > 0 then it is easily veri�ed that

r (��; Px;z) = (x� z) (1� x)n

�rN � sup
x;z:x>nz>0

r (��; Px;z) =
nn

(1 + n)1+n
: (5)

If instead N = 2n + 1 for some n 2 N and sampling alternates as under the binomial
average rule then

r (��; Px;z) =
1

2
(x� z)

�
(1� x)n+1 + (1� x)n

�
�rN � sup

x;z:2x>Nz>0
r (��; Px;z) =

1

2 + n

�
n

2 + n

�n
2

: (6)

We add the values given in (5) and (6) for N � 10 to Figure 1, these values remain

above r�N for N < 20: However, this is no longer true for N = 20 when the lower bound
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equals 0:035 while r�20 = 0:0382. This clearly shows that our lower bound is not tight

for all N .

6.5 Large Sample Behavior

In the following we show formally what happens when samples are large. Both the

binomial average rule �� and the empirical success rule �� recommend the best treat-

ment with arbitrary high probability provided that the sample is su¢ ciently large. In

other words, both rules generate consistent estimators. The bounds necessary for this

statement to be true can be chosen uniform provided that the absolute di¤erence in

performance of the two treatments is bounded below. For the formal statement, let

tN (�; P ) be the random variable that speci�es the treatment recommended by strategy

� given N and P:

Proposition 4 For any " > 0 there exists N0 such that for any N > N0 and any P

with j� (1; P )� � (2; P )j � " we have

Pr
�
tN (��; P ) = tN (��; P ) = max f� (1; P ) ; � (2; P )g jP

�
> 1� " and rN (��; P ) � ":

The additional statement that regret is uniformly bounded above is easily veri�ed.

Corollary 4 The recommended treatment under the binomial average rule is a uni-
formly consistent estimator.

We do not provide a formal proof as it is an immediate consequence of the law of

large numbers and the fact that the possible variance of P is bounded above.

7 Maximin and T=2

Depending on the discipline there is an alternative popular method for selecting choices

without priors: maximin. We brie�y demonstrate why this alternative does not make

sense in our setting.

According to maximin, the performance of a strategy is measured by the minimal

payo¤ it achieves among all feasible environments, and then the strategy that achieves

the largest minimum is selected. This procedure was introduced by Wald (1950) and

was �rst axiomatized by Milnor (1954). Formally, �̂ attains maximin if

�̂ 2 argmax
�
inf
P
� (�; P ) :
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It is straightforward to show in our setting that any strategy attains maximin. Minimal

payo¤s for any strategy � are generated by the trivial binomial distribution P that

satis�es � (i; P ) = 0 for all i: Consequently, all strategies are equally good in terms of

their minimal payo¤. In particular, the strategy that only tests treatment 1 in the test

phase and then recommends treatment 1 regardless of the outcomes in the test phase

attains maximin.

Proposition 5 Any strategy attains maximin. In particular, a strategy that attains
maximin need not generate a recommendation that is a consistent estimator of the best

treatment.

This result is analogous to the �nding of Manski (2005) for the case of a single

unknown treatment (see also below) that the unknown treatment is never recommended

under maximin regardless of how large the sample is.

8 Covariates and T=2

In the following we enrich the setting with two treatments and include covariates (or

attributes) as in Manski (2004, Section 3). A covariate is an observable characteristic

of a subject and treatments can be recommended depending on the value of this covari-

ate. In addition, the decision maker may sample among subjects with some speci�ed

covariate, in the formal model below the decision maker has to specify for each test

which speci�c covariate it should be tested on.

We adapt our previous notation and formalism to this setting. Let X be a non-

empty �nite set of covariates (or attributes) with typical element �:Our previous setting

will be embedded as the special case where jXj = 1: The distribution of covariates is
known to the decision maker where p� denotes the probability that a random subject

has covariate � where each covariate is assumed by a strictly positive fraction so p� >

0 and
P

�2X p� = 1: To keep notation simple, we assume that the set of possible

outcomes Y is the same for each covariate and later we discuss how matters change if

di¤erent covariates are known to yield di¤erent outcomes. The outcome realized by a

treatment now also depends on the covariate so P 2 �
�
(Y 2)

X
�
with P (�) (y) being

the probability that outcome yi results assigning treatment i to the class of subjects
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with covariate � for each i 2 f1; 2g.13 Let

� (�; i; P ) =

Z
yidP (�) (y)

be the expected payo¤ of treatment i for covariate �. Consequently, there is a best

treatment for each covariate where a best treatment for one covariate may not be best

for a di¤erent covariate.

Again we have to di¤erentiate between sequential and simultaneous experimenta-

tion.

8.1 Simultaneous Experimentation

In the following we consider the setting in which the covariate and treatment tested

next may not depend on previous outcomes. So the decision maker predetermines

the number n�;t of tests of treatment t to be run on covariate �. The complete de-

scription will be denoted by n so n = (n�;t)�2X;t2f1;::;2g : Let �dN denote the set of

such assignments so �dN is a subset of �(N0 � f1; 2g)X such that n 2 �dN impliesP
�2X

P2
i=1 n�;i = N: Of course assignment can be random so � 2 �(�dN) will denote

the distribution. In addition the decision maker has to make a recommendation �� (n)

for each covariate � separately given the number of tests n�1 and n�2 run with each

treatment. �� is formally de�ned in Section 2, taking n�1 + n�2 as sample size. We

denote the strategy by (�; �) where � = (�� (n))�;n : If � puts all weight on a single

element n then we speak of strati�ed random sampling (Manski, 2004).

We will apply a variant of the binomial rule. Accordingly, the decision maker ran-

domly chooses how many tests to run on each covariate and then follows the binomial

rule to execute how many treatments and how to recommend. Let M be the set of

all m 2 NjXj0 such that
P
m� = N: Let �� (m) be the binomial average rule applied

independently to each covariate separately where covariate � is tested m� times. So

�� (m) is the description of the binomial average rule applied to a sample of size m�:

Random assignment of tests means that the decision maker may choose � 2 �M: So
this yields a rule we denote by �� (�) that of course can be formally embedded in the

above notation (�; �) :

Proposition 6 There exists �� 2 �M such that �� (��) attains minimax regret.

13We use
�
Y T
�X

instead of Y X�T as the former is more useful for proofs.
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Proof. We will �rst construct a speci�c zero sum game between the decision maker

and nature, show than an equilibrium exists and later show that its equilibrium is a

saddle point of the zero game related to minimax regret.

M will be the set of pure strategies of the decision maker.

Let P 1u and P
2
u be such that

u = P 1u ((1; 0)) = 1� P 1u ((0; 1)) = P 2u ((0; 1)) = 1� P 1u ((1; 0)) :

Let Qu 2 �
�
f0; 1g2

�
be such that Qu (P 1u ) = Qu (P

2
u ) =

1
2
: Given v 2

�
1
2
; 1
�X
let Q̂v

be the prior that is independent across variables where the marginal
�
Q̂v

�
�
on the

covariate � is set equal to Qv� : The set of pure strategies of nature will be
�
1
2
; 1
�X
:

The game is set up as a zero sum game where the payo¤ of nature is given by

r
�
(m; �� (m)) ; Q̂v

�
:

As argued using Glicksburg (1952) in similar games above, this game has a saddle

point (��; ��) where �� 2 �M and �� 2 �
��

1
2
; 1
�X�

: As behavior of the decision

maker when recommending for � only depends on outcomes in � we can assume that

�� 2 ��2X�
�
1
2
; 1
�
:

Now consider the game associated to minimax regret where the decision maker

chooses � and nature chooses Q: In the following we will show that
�
�� (��) ; Q̂v�

�
is a

saddle point and hence that �� (��) attains minimax regret. We build on the properties

of the binomial rule established in the proof of Proposition 2.

First consider the decision maker. Notice that for any given m�; �� (m�) is a best

response to Qv�� as Qv�� is symmetric. Hence �� (�
�) minimizes regret given Q̂v� :

Now consider nature. Due to independent behavior under �� (��) across covariates

we can restrict ourselves to covariate � and to only binary outcomes. In the following

we will show that
n
argmaxP r

�
�; �� (��)� ; P

�o
\ fP s.t. � (1; P ) + � (2; P ) = 1g 6= ;

where r
�
�; �� (��)� ; P

�
= maxi2f1;2g � (�; i; P )��

�
�; �� (��)� ; P

�
. Note that r

�
�; �� (��)� ;

�P
�
=P

m �
� (m) r

�
�; �� (m�) ; �P

�
. In our proof of Proposition 2 we showed that r (�; �� (m) ; P )

can be increased for each m by replacing �P with ~P such that �
�
1; ~P

�
� �

�
2; ~P

�
=

�
�
1; �P

�
� �

�
2; �P

�
and �

�
1; �P

�
+ �

�
2; �P

�
= 1: Thus r

�
�; �� (��)� ; P

�
can be maxi-

mized by some P with � (1; P ) + � (2; P ) = 1: Given our the description of the game

presented at the beginning of this proof, we obtain that r
�
�; �� (��)� ; P

�
is maximized

by Qv�� which completes the proof.

We immediately extend a result of Manski (2004) shown for su¢ ciently large N to

all N � 1, namely that treatment choice can be conditioned on each covariate.
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Corollary 5 For all N , minimax regret can be attained by ignoring outcomes realized
during testing on covariates �0 6= � when recommending a treatment for covariate �.

Given our proof of Proposition 6, it follows immediately that the value of minimax

regret is given by

min
�2�M

sup fr (�� (�) ; P ) s.t. � (1; P�) + � (2; P�) = 1 for all �g (7)

which is bounded above by
P
p�r

�
m�
as

sup fr (�� (m) ; P ) s.t. � (1; P�) + � (2; P�) = 1 for all �g =
X

p�r
�
m�
:

Thus minm2M
P
p�r

�
m�
can be used as an upper bound on the value of minimax regret,

a very useful result that has already been shown by Stoye (2005) for a more general

setting and then used for binomial distributions.

Notice that however that Stoye (2006, Proposition 6) also claims that the deci-

sion maker should completely separate the decision problem across covariates. This

would mean that Corollary 5 would be due to him and would imply that the bound

minm2M
P
p�r

�
m�
is tight. However this is not true, it is (7) that is tight. We give

some intuition using the interpretation of the solution to minimax regret via a game

between the decision maker and nature. If nature would know (by receiving additional

information) how many tests are run on each covariate then minm2M
P
p�r

�
m�
would

be a tight bound. For instance, it is as if nature knows how many tests are run if the

decision maker chooses a deterministic allocation of treatments to covariates during

testing as under strati�ed random sampling. In other words, this is the correct bound

if the decision maker is restricted to strati�ed random sampling. So Proposition 6

in Stoye (2005) is correct if one adds this restriction. We provide a counter example

to show that the minimax regret rule actually sometimes mixes and chooses a non

deterministic �. In this example we show how to apply the tight bound given in 7.

Assume N = 1; X = fa; bg and pa � 1
2
: Then using the formula in Table 1 we

obtain

r (�� (�) ; Qv) = pa (2va � 1)
�
�(1;0)

�
1

2
+
1

2
(1� 2va)

�
+ �(0;1)

1

2

�
+(1� pa) (2vb � 1)

�
�(1;0)

1

2
+ �(0;1)

�
1

2
+
1

2
(1� 2vb)

��
:

Finding a saddle point we formally obtain the following. If pa � 1
5
then �b = 1 and

consequently va = 1 and vb = 3
4
so r = par�0 + pbr

�
1 = pa

1
2
+ pb

1
8
: If 1

5
< pa � 1

2
then
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�b =
1
2

q
pb
pa
< 1, va = 1 and vb = 1

2

�
1 +

q
pa
pb

�
so that r = 1

2

p
papb < par

�
0 + pbr

�
1: This

is also very intuitive. When one covariate is too unlikely then it is never tested. Above

the threshold (here pa � 1
5
) the decision maker tests both covariates with positive

probability, increasing the probability of testing covariate a as pa increases until each

covariate is tested equally likely when pa = 1
2
: We illustrate minimax regret and the

bound given by the corollary in Figure 3.

0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0 0.1 0.2 0.3 0.4 0.5p_a

Figure 3: Minimax regret as a function of pa with

the upper bound from the Corollary given as dotted

line.

For larger sample sizes we expect the advantage of mixing over sample sizes to

be less dramatic as the above result seems to rest on the strong curvature of r�N for

small N: However it will generally not be a good idea to never test one covariate while

sampling some other one that is equally likely. We expand brie�y on this and investigate

when it is best to only sample covariate b and hence invoke strati�ed sampling when

X = fa; bg : First note that following Proposition 1, if N is even then both covariates

need to be tested in order to attain minimax regret regardless of how small or how large

pa is (provided pa 2 (0; 1)). Assume N is odd. If a is not tested under minimax regret

rule then r� = pa 12 + pbr
�
N . On the other hand, testing covariate a in a single test with

probability " will yield at most regret pa
�
(1� ") 1

2
+ "1

8

�
+ pb

�
(1� ") r�N + "r�N�1

�
:

This is because we act as if nature observes the testing of the decision maker which
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then of course increases regret. So if a is not tested then by taking derivatives with

respect to " we obtain pb
�
r�N�1 � r�N

�
� pa

�
1
2
� 1

8

�
or r�N�2 � r�N � 3

8
pa
1�pa : So for

instance if a is not tested and N = 11 then pa � 0:0127:

In the following we brie�y investigate how one should assign tests to covariates in

order to minimize the bound under the strati�ed random sampling provided above (see

Stoye, 2005). Consider the case of X = fa; bg. First we assume that N is su¢ ciently

large so that we can replace r�N be 0:17p
N
: Then �i = ni=N be the proportion of tests

assigned to covariate i (so �a + �b = 1) where we ignore integer constraints. Let r�p be

the value of minimax regret under covariate distribution p: Then

r�p � pa
0:17p
�aN

+ pb
0:17p
�bN

=
0:17p
N

�
pa

1p
�a
+ pb

1p
�b

�
:

The expression on the right hand side is minimized when

pa =
(�a)

3
2

(�a)
3
2 + (�b)

3
2

(8)

and hence

r�p �
0:17

p
N
�
(�a)

3
2 + (�b)

3
2

� (9)

where �a = �a (pa) is the solution to (8). We plot (8) in Figure 4.
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0.1 0.2 0.3 0.4 0.5p_a

Figure 4: Asymptotically optimal frequency of testing

covariate a as a function of the frequency of covariate a:
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How many tests can be saved asymptotically by running them optimally as com-

pared to sampling randomly? In order to guarantee regret to be below the value r�N
achieved without covariates, our results above say that you have to multiply the number

of tests by 1=
�
(�a)

3
2 + (�b)

3
2

�2
where �a = �a (pa) is the solution to (9). We compare

this to the factor
�p
pa +

p
pb
�2
that emerges asymptotically from sampling covariates

at random in Figure 5. The di¤erence is maximally 0:097 when pa � 0:05: So up to

10% tests can be saved asymptotically when going from random sampling to optimal

sampling.

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5p

Figure 5: Impact factor due to assignment of

asymptotically best covariates as function of

frequency of covariate a (dotted shows the

analogous expression when covariates are tested at

random).

We brie�y mention an important extension. What should the decision maker do if

he or she does not know the distribution of covariates? Let us assume that (p�)� is added

to the quanti�er maximizing regret, so (p�)� is chosen by nature. Disregarding integer

constraints, if the decision maker tests each covariate equally often then minimax regret

is given by r�N=jXj: If the decision maker decides to deterministically allocate tests to

covariates (so �� (m) = 1 for some m) then this bound cannot be improved on.
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Corollary 6 If p� is not known by the decision maker then minimax regret is bounded
above by r�bN=jXjc:

In particular, we can ensure an error of 5% with 11 � jXj samples.

The above results indicate that performance is worse the more covariates there are.

However this need not be true if di¤erent covariates yield di¤erent outcome ranges. We

can only brie�y comment on the possible results one can obtain when outcome ranges

are covariate speci�c.

Let Y� be the set of outcomes that can be realized by some treatment on covariate

�: Assume that the decision maker has a single preference order over [�2XY�: Continue
as in the setting above, in particular assuming that Y� has a most preferred outcome

y�H and a least preferred outcome y
�
L. Normalize utility u in the same way as above, the

least preferred outcome in [�2XY� is assigned value 0 and the most preferred is assigned
value 1: Now binomial distributions on covariates assign only probabilities to the best

outcome y�H and worst outcome y
�
L in Y�: Consequently, to apply the binomial average

rule, payo¤s realized are transformed relative to these covariate speci�c best and worst

outcomes. However, in order to maintain comparability of outcomes across covariates,

the payo¤s achieved on each covariate have to be scaled down using the range of utilities

achievable by the covariate speci�c outcomes. It is su¢ cient to make the following

adjustment. In all formulae above, replace � (�; i; P ) by
�
u
�
y�H

�
� u

�
y�L

��
�� (�; i; P ) :

This works because regret is based on di¤erences only so we need not control for the

di¤erences in u
�
y�L

�
across �. This covariate speci�c transformation of payo¤s can

have a substantial impact. For instance, regret with four covariates that each can

yield the same outcomes is bounded in Corollary 6 above by r�N=4: Now assume for

illustration that it is known that the range of each covariate in terms of utility is half

of the total range, so u
�
y�H

�
� u

�
y�L

�
= 1

2
for all � 2 X: Then invoking Corollary 6

but adjusting for the smaller outcome range of each covariate we obtain that minimax

regret is bounded above by 1
2
r�N=4 which is approximately equal to r

�
N when N is large.

8.2 Sequential Sampling

Consider now brie�y the more general setting of sequential sampling. We would like

to point out that simultaneous sampling is not executed when sequential sampling is

available and N � 5 � jXj. We do not need to add formal arguments as intuition is
simple.
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Consider a decision maker using a minimax regret strategy that we can assume

can be represented by �� (��) given Proposition 6. Draw �m using �� and start testing

the covariate �0 that is tested most often under �m. This covariate will be tested at

least 5 times. As mentioned in Section 5, it is not necessary to run all tests to obtain

the recommendation. Particularly, if in the �rst
�
m�0=2

�
+ 1 tests treatment 1 yielded

only successes and treatment 2 only failures then treatment 1 will be recommended

to covariate �0 regardless of future outcomes. Thus one can use the remaining m�0 ���
m�0=2

�
+ 1
�
tests to gather more information about some other covariate. Since at

least 2 tests are reallocated to a di¤erent covariate, maximal regret decreases strictly.

Hence the minimax regret rule will never be based on simultaneous sampling when

N � 5 � jXj.

9 Finitely Many Unknown Treatments

Consider now the general setting with T treatments with uncertain outcomes. We gen-

eralize the binomial average rule in the obvious way by invoking pairwise comparisons.

While we conjecture that it attains minimax regret under simultaneous experiments,

due to the increased complexity we are unable to prove this conjecture. Thus, for com-

pleteness we �rst ensure existence and later use the binomial average rule to provide

an upper bound on minimax regret.

Proposition 7 Under either simultaneous or sequential testing there is a strategy that
attains minimax regret and that �rst randomly transforms payo¤s obtained during the

testing phase into binary values as under the binomial average rule before it then con-

ditions the recommendation on these binary values.

Proof. We only sketch the proof as it is very simple. As in the proof of Proposition
2, all we have to do is to establish existence of a saddle point in the �ctitious zero

sum game between the decision maker and nature. We �rst consider only binomial

environments. So the pure strategy of nature is to choose P 2 �
�
f0; 1gT

�
. The

decision maker chooses a deterministic strategy that only evaluates histories in which

all outcomes are binary. Nature aims to maximize expected regret while the decision

maker aims to minimize expected regret.

We establish existence of an equilibrium. The set of pure strategies of the decision

maker is �nite. While the set of pure strategies for nature is in�nite, it is convex
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and compact if we consider the topology induced by considering the weights on the

corners f0; 1gT : Furthermore, regret is continuous in P . Following Glicksburg (1952) a
saddle point exists. Precisely, �rst associate each rule � with a pure strategy, observe

that sets of pure strategies are compact and convex and that payo¤s are continuous

to obtain existence. Then note for the decision maker that the equilibrium mixed

strategy which is a mixture over rules can actually be identi�ed with a rule itself given

the representation of rules as behavior strategies.

Now consider such a strategy that attains minimax regret when facing only binomial

P: Extend it to a general strategy by �rst transforming payo¤s randomly into binary

ones as done under the binomial average rule. Given the linearity of this transformation,

the expected payo¤ attained by this strategy when facing any general P 0 is the same

as the expected payo¤ it achieves when facing the binomial P that satis�es � (i; P ) =

� (i; P 0) for all i: Thus, maximal regret under this strategy is attained under some

binomial P: Consequently, this strategy also attains minimax regret when facing any

P 0:

9.1 Binomial Average Rule for Many Treatments

In the following we generalize the binomial average rule to more than two treatments.

One obvious way of extending the binomial rule to more than two treatments is to

compare success pairwise. This easily generates a well de�ned recommendation when

N is a multiple of T as in this case each treatment can be tested N=T times. However

we want to have a rule for general sample sizes which is constructed as follows.

The binomial average rule de�ned for an arbitrary number of treatments is de�ned

as follows for sequential randomized experiments. Randomly select an ordering or

permutation of the treatments where each permutation is selected equally likely. Let

� 2 f1; ::; Tgf1;::;Tg be such that �o is the treatment assigned to the o-th element of the
order. Test treatments in this order until the test phase is over and N tests have been

run. So test treatment �1+((k�1)modT ) in round k. Then transform payo¤s achieved

in each round of the test phase randomly into a binary payo¤ as done for the case of

T = 2: Let ni be the number of tests run on treatment i: Search for a treatment i such

that X
k:tk=i

~yk +
X
k:tk=j

(1� ~yk) �
1

2
(ni + nj) holds for all j 6= i: (10)

Below we show that such an i exists. If there are several treatments that have this
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property then randomize among them with equal probability. More formally, let

A � f1; ::; Tg be the set of treatments for which (10). Then recommend i 2 A with
probability 1= jAj :
Notice that the above description is also easily adapted to the setting of simulta-

neous experiments. Notice also that the above algorithm reduces to comparing the

binomial average realized by each treatment when N is a multiple of T:

We show that the algorithm described above yields a well de�ned recommendation

in � f1; ::; Tg : This follows once we show that the following preference ordering % on
f1; ::; Tg is complete and transitive. Accordingly,

i % j if either j = i or if
X
k:tk=i

~yk +
X
k:tk=j

(1� ~yk) �
1

2
(ni + nj) :

Clearly this preference ordering is complete. We easily verify that it is also transitive.

Consider i; j; k 2 f1; ::; Tg such that jfi; j; lgj = 3: Assume that i % j and j % l: Then X
k:tk=i

~yk +
X
k:tk=j

(1� ~yk)
!
+

 X
k:tk=j

~yk +
X
k:tk=l

(1� ~yk)
!
� 1

2
(ni + nj) +

1

2
(nj + nl)

which implies X
k:tk=i

~yk +
X
k:tk=l

(1� ~yk) �
1

2
(ni + nl)

and hence i % l:

Notice that the above rule sometimes recommends a random treatment. In the

following we show that the binomial average rule can be slightly adjusted to yield a

singleton rule at not cost to its behavior in terms of regret. Notice that if i; j 2 A then
ni = nj: Now we learned for the setting of T = 2 that we can ensure a deterministic

recommendation by avoiding sampling the same number of times. Similarly we can

do here by comparing two treatments going back to the last round in which there was

a di¤erent number of observations. More formally, let ni (m) be the number of times

that treatment i is sampled up to and including the m-th round of the test phase. Let

m�
ij = max fm � N : ni (m) 6= nj (m)g : Then de�ne

i �s j if
X

k�m�
ij :tk=i

~yk +
X

k�m�
ij :tk=j

(1� ~yk) >
1

2

�
ni
�
m�
ij

�
+ nj

�
m�
ij

��
:

By construction we obtain that �s induces a complete strict preference ordering. We
verify transitivity. Given the transitivity of % all we have to do is to consider the case
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where ni = nj = nk:We show that there is a unique selected treatment among i; j; and

k: Assume that treatment k was tested last. If ~y = 1 then k �s i and k �s j which
means that k is selected. If instead ~y = 0 then i �s k and j �s k and either i or j is
selected. We summarize.

Remark 2 The binomial average rule can be adjusted to yield a singleton rule that
yields the same expected payo¤.

9.1.1 Simultaneous Randomized Experiments

Consider the setting in which tests are predetermined. We derive the following upper

bound on regret under the binomial average rule which is hence an upper bound on

the value of minimax regret.

Proposition 8

sup
P
r (��; P ) � (T � 1)

 �
T�N modT

2

��
T
2

� r�2bN=T c�1 +

 
1�

�
T�N modT

2

��
T
2

� !
r�2bN=T c+1

!
:

Given that the value of minimax regret is generally non increasing, the bound

can also be replaced by the simpler expression (T � 1) r�2bN=T c�1. When N is large,

using our result on the convergence rate of r�N (see Proposition 3), either r
�

2N

T (T�1)2
or

(T � 1)
q

T
2
r�N can be used as an approximate bound. In particular this means that

the rate of convergence does not depend on the number of treatments but that going

from T = 2 to T = 3 treatments, the number of tests has to be multiplied by T (T�1)2
2

to guarantee the same error.

Proof. We derive an upper bound on r (��; P �) where P � 2 argmaxP r (��; P ) : Since
the binomial average rule is symmetric in the sense that it does not depend on labelling

of treatments, we can assume that � (1; P �) = maxi f� (i; P �)g : So

r (��; P �) = � (1; P �)�
TX
i=1

pi (��; P
�; N)� (i; P �) =

X
i6=1

pi (��; P
�; N) (� (1; P �)� � (i; P �)) :

Let ��ij be the recommendation made under the same testing procedure but where

instead the decision maker chooses only between treatment i and j using the recom-

mendation of the original binomial average rule for T = 2 applied to the observations

of tests on treatments i and j: Notice that under the testing procedure for T > 2 two

events may only occur. Either treatment i and treatment j were tested equally often
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or one of the two was tested once more often than the other where each treatment is

equally likely to be the one tested more often.

If N is multiple of T so N modT = 0 then each is tested N=T times. If instead

N modT > 0 then treatment i is either tested bN=T c or bN=T c+1 times where bxc =
max fx0 2 N0 such that x0 � xg : Let ~ni and ~nj be the random variables describing how
often treatments i and j were tested. Then

Pr (~ni = ~nj = bN=T c) =

�
T�N modT

2

��
T
2

�
Pr (~ni = ~nj = bN=T c+ 1) =

�
N modT

2

��
T
2

�
Pr (~ni 6= ~nj) =

(T �N modT ) (N modT )�
T
2

�
where

�
m2

m1

�
:= 0 if m2 < m1:

If treatment i is recommended by �� then it is also recommended by ��1i; hence

pi (��; P
�; N) � pi (��1i; P �; N) :

In the following we will put a bound on

pi (��1i; P
�; N) (� (1; P �)� � (i; P �)) :

Assume that both treatments were tested bN=T c times. Then under ��1i it is as if the
original binomial rule for two treatments was applied to a sample of size 2 bN=T c :
Thus,

pi (��1i; P
�; N) (� (1; P �)� � (i; P �)) = pi (��; P �; 2 bN=T c) (� (1; P �)� � (i; P �)) � r�2bN=T c:

Using such arguments it follows that

pi (��1i; P
�) (� (1; P �)� � (i; P �))

�
�
T�N modT

2

��
T
2

� r�2bN=T c +
(T �N modT ) (N modT )�

T
2

� r�2bN=T c+1 +

�
N modT

2

��
T
2

� r�2bN=T c+2

=

�
T�N modT

2

��
T
2

� r�2bN=T c�1 +

 
1�

�
T�N modT

2

��
T
2

� !
r�2bN=T c+1

and hence

r (��; P �) � (T � 1)
 �

T�N modT
2

��
T
2

� r�2bN=T c�1 +

 
1�

�
T�N modT

2

��
T
2

� !
r�2bN=T c+1

!
:
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Consider T = 3: For N = 3 we �nd supP r (��; P ) = �20
81
+ 14

81

p
7 � 0:21 and the

upper bound equal to 2r�1 =
1
4
: For N = 6 we �nd the corresponding values 0:134 and

0:174; for N = 9 we �nd 0:109 and 0:141: Our results on the convergence rate of r�N
would indicate a drop in regret of 1p

2
� 0:707 between N = 3n and N = 3 (n+ 1)

for n large which should be compared to 0:134
0:21

� 0:638 for N = 3 to N = 6 and to
0:109
0:134

� 0:813 for N = 6 to N = 9: The comparison between T = 2 and T = 3 above

hints that the factor 2
T (T�1)2 can be multiplied to the number of tests to translate regret

for T = 2 to T = 3: Note that 2
3�22 � 9 = 1:5 where r1 = 0:125:

9.1.2 Sequential Randomized Experiments

Unlike the case of two treatments it seems that sequential testing can outperform

simultaneous testing when T = 3. In the following we illustrate for the case of T =

N = 3 that the binomial average (or empirical success) rule can be outperformed by

appropriate sequential sampling when P is binomial.

Assume T = N = 3 and consider only binomial P . Consider the empirical success

rule �� de�ned analogously as under the setting of two treatments.14 In the appendix

we verify the following. The recommendation of the empirical success rule achieves

minimax regret conditional on testing each treatment. However it does not achieve

minimax regret when the sample is endogenous as we �nd an alternative strategy that

yields lower maximal regret. While the empirical success rule �� yields supP r (��; P ) =

�20
81
+ 14
81

p
7 � 0:21, the alternative strategy �̂ reduces maximal regret to supP r (�̂; P ) =

11
64
� 0:172: The strategy �̂ starts by testing a random treatment but then continues by

testing any treatment that yielded a success again. Treatments not tested are assigned

payo¤ 0: Recommendation is like under the empirical success rule.

10 One Known Treatment

Consider the situation in which the mean of one of the treatments is known. As this is

an important case in particular for applications we brie�y comment on what insights

our analysis provides. When T = 2 then one might imagine the unknown treatment to

14Test each treatment once, then recommend the treatment with the most successes and randomize

equally when there are ties.
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be an innovation. Generally the case of a known treatment can also be interpreted as

an outside option or default that one can follow should the unknown treatments not

be su¢ ciently successful. Our analysis is easily extended to this setting and we present

two results: (i) existence of minimax regret strategy and (ii) a uniform upper bound

on the value of minimax regret.

Consider the same basic setting with T � 2 as above except that we now assume
that � (1; P ) is known. Formally the strategies do not change. Of course, any strategy

that attains minimax regret will not test the known treatment.

We immediately obtain existence. The statement of Proposition 7 holds for this

setting too, the proof is analogous.

Consider the special case of T = 2. Then we can in fact construct a strategy that

attains minimax regret. Of course only treatment 2 will be tested. So the objective

is to determine which treatment should be recommended based on N independent

tests of treatment 2: However, no new rule or analysis is necessary as we can build on

existing results obtained for binomial P: For the case of P binomial, Manski (2005)

derived the formula to determine a minimax regret strategy numerically, Stoye (2005)

speci�es an equation that implicitly de�nes the minimax regret strategy. With our

trick of transforming general payo¤s from [0; 1] into binary outcomes in f0; 1g it follows
immediately that the results of Manski (2005) and Stoye (2005) can be applied to the

setting of general payo¤s. Simply apply their cuto¤ rules to the binomial average of

the tests of the unknown treatment 2 to obtain a rule that attains minimax regret.

When T > 2 then we do not know of a rule that attains minimax regret. One might

of course conjecture that binomial averages are used to compare the two unknown

treatments.

Of course one can always apply the binomial rule when one treatment is known

by acting as if there are only unknown treatments but instead of testing the unknown

treatment, acting as if � (1; P ) was observed whenever it was tested. Without integer

constraints this means that we �ctitiously add N
T�1 tests to obtain a total sample

of T
T�1N observations. Respecting integer constraints we can use a sample N 0 = N +

bN= (T � 1)c in order to be sure that the random allocation of which treatments should
be tested more often is compatible with N: Combining this with 8 we obtain an upper

bound on minimax regret for the case where the mean of one treatment is known. Of

course the real value of minimax regret under one known treatment will depend on
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� (1; P ) and can substantially di¤er from this bound. For instance in the trivial cases

� (1; P ) 2 f0; 1g the value of minimax regret is 0 as a best treatment is known.

Proposition 9 The value of minimax regret under one known treatment and N sam-

ples is bounded above by the value of maximal regret achieved by the binomial average

rule under T unknown treatments and sample size N + bN= (T � 1)c. For large N this

means that the value of minimax regret under one known treatment is approximately

bounded above by r� 2N

(T�1)3
:
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A Three Treatments

The aim of this section is to show that the binomial average rule does not attain

minimax regret under sequential sampling when T = N = 3.

Consider P binomial and let x = � (1; P ) ; y = � (2; P ) and z = � (3; P ) :

Let �� be the empirical success rule generalized from the setting of T = 2.15 Then

p1 (��) = x (1� y) (1� z) + 1
2
x (y (1� z) + z (1� y))

+
1

3
(xyz + (1� x) (1� y) (1� z))

p2 (��) = y (1� x) (1� z) + 1
2
y (x (1� z) + z (1� x))

+
1

3
(xyz + (1� x) (1� y) (1� z))

p3 (��) = z (1� x) (1� y) + 1
2
z (x (1� y) + y (1� x))

+
1

3
(xyz + (1� x) (1� y) (1� z))

and

r (��) = x� (p1x+ p2y + p3z) if x = max fx; y; zg :

We �nd r (��; P ) is maximized for x = 1 and y = z = 4
3
� 1
3

p
7 and hence supP r (��; P ) =

�20
81
+ 14

81

p
7 � 0:21: Let P i be binomial such that P i ((1; 1; 1)) = 1�P i (ei) = 4

3
� 1

3

p
7

(� 0:45) and let �Q be such that �Q (P i) = 1
3
for i = 1; 2; 3 where ei is the unit vector on

treatment i: Then supP r (��; P ) = r
�
��; �Q

�
. While the recommendation of the binomial

average rule is a best response to this prior given the speci�cation of the testing we

demonstrate below that alternative testing improves performance.

Consider the following alternative strategy �̂. Select each treatment with equal

probability to be tested in the �rst round of the test phase and proceed as follows until

3 tests have been made. If a treatment yields a success then test it again, if it yields a

failure then test the treatment with the next higher index modulo 3. Treatments not

tested are associated with payo¤ 0: Recommend the treatment that yielded the highest

15Results also apply to general P 2 � [0; 1]T by �rst transforming payo¤ yk 2 [0; 1] into payo¤
~yk 2 f0; 1g as in the T = 2 setting and then continuing as if P were binomial.
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average payo¤, randomizing equally likely if there are ties. Then

p1 (�̂) =
1

3
x (x+ (1� x) (1� y)) + 1

3
(1� x) (1� y) (1� z)

+
1

3
z (1� z)x+ 1

3
(1� z)x+ 1

3
(1� y) (1� z)x

p2 (�̂) =
1

3
y (y + (1� y) (1� z)) + 1

3
(1� x) (1� y) (1� z)

+
1

3
x (1� x) y + 1

3
(1� x) y + 1

3
(1� z) (1� x) y

p3 (�̂) =
1

3
z (z + (1� z) (1� x)) + 1

3
(1� x) (1� y) (1� z)

+
1

3
y (1� y) z + 1

3
(1� y) z + 1

3
(1� x) (1� y) z

and r (�̂; P ) is maximized for x = 3
4
and y = z = 1

4
and hence supP r (�̂; P ) =

11
64
�

0:172:

We do not claim that �̂ attains minimax regret as it would be too tedious to verify

such a conjecture.


