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Abstract

This paper studies repeated games with public signals, symmetric bounded
recall and pure strategies. Examples of equilibria for such games are provided
and the convergence of the set of equilibrium payoffs is studied as the size of the
recall increases. Convergence to the set of equilibria of the infinitely repeated
game does not hold in general but for particular signals and games. The dif-
ference between private and public strategies is relevant and the corresponding
sets of equilibria behave differently.

Key words: folk theorem, de Bruijn sequence, imperfect monitoring, uniform
equilibrium.
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1 Introduction

Repeated games with complete information are known to have multiple equilibria.
The prominent result in this direction is the folk theorem which asserts that in games
with perfect monitoring and perfectly rational players, every feasible and individually
rational payoff can be sustained by an equilibrium of the repeated game. A more
realistic model to study involves games with imperfect monitoring, where players
observe imperfectly other players’ actions, and bounded rationality, where players
have limited information processing abilities. Typically these two problems have
been studied separately in the literature. A notable exception is a recent paper by
Cole and Kocherlakota (2005).

The literature on games with imperfect monitoring seeks to characterize the set of
equilibrium payoffs (see e.g., Lehrer (1988, 1992a,b), Abreu et al. (1990), Fudenberg
and Levine (1994), Tomala (1998), Renault and Tomala (2004)), and the literature
on games with bounded rationality examines whether equilibrium payoffs of the un-
restricted repeated game can be approximated by equilibrium payoffs of the repeated
game with bounded rationality (see e.g., Rubinstein (1986), Abreu and Rubinstein
(1988), Kalai and Stanford (1988), Lehrer (1988, 1994) Ben-Porath (1990, 1993),
Sabourian (1998), Neyman (1998), Bavly and Neyman (2005)).

The aim of the present paper is to blend these two approaches. The question
addressed here is the following. In games with imperfect monitoring, does the set of
equilibrium payoffs of the game with bounded recall converge to the set of equilibrium
payoffs of the unrestricted repeated game? This paper considers a model of repeated
games with public signals and pure strategies for which a characterization of the
set of equilibrium payoffs is available (Tomala (1998)). Players will be restricted to
strategies with bounded recall, the size of the recall being the same for each player
(see Sabourian (1998), who uses a similar model with perfect monitoring and proves
a Folk theorem-like result).

A similar approach can be found in Cole and Kocherlakota (2005). It must be
remarked that the model studied in this paper differs from the one studied by Cole
and Kocherlakota (2005), who consider players with unbounded recall and equilib-
ria implemented by strategies that depend only on the most recent k observations.
Furthermore they use mixed strategies and a randomizing device.

In this paper only pure strategies will be considered. The type of results obtained
here are a general study of public and private equilibria in games with imperfect
monitoring and bounded recall. It will be shown that the set of public equilibria with
bounded recall is a subset of the set of public equilibria with unbounded recall, but in
general no convergence of these sets is guaranteed as the size of recall diverges. The
set of private equilibria with bounded recall has even worse properties, in that it is
not even a subset of the set of private equilibria with unbounded recall.

The example that will be examined more extensively in the paper refers to a
minority game. It will be proved that for this game convergence of the set of public
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equilibria actually holds. This class of games originates from an idea of Arthur (1994,
1999), and has been studied in several articles in the physics literature (see, e.g.,
the recent books by Challet et al. (2005) and Coolen (2005), and references therein).
This literature looks at the behavior of agents with bounded recall and bounded
rationality, hence it neglect the strategic aspects of interaction. A strategic analysis
of these games with infinite recall can be found in Renault et al. (2005). Analyzing this
game under bounded recall brings this paper closer to the original spirit of physicists.

The paper is organized as follows. Section 2 describes the model. Section 3
examines the set of equilibrium payoffs for games with bounded recall and studies its
convergence as the recall size diverges. Section 4 deals with minority games. Section 5
considers games with bounded recall and trivial monitoring where the players differ
either in the size of recall or the cardinality of their action spaces. Finally Section 6
contains the proofs of the results.

2 The model

2.1 Description of the model

Consider a stage game
G = 〈N, (Ai)i∈N , (gi)i∈N〉. (2.1)

In this setting N is a set of players, for each i ∈ N , Ai is the set of actions available
to player i, A := ×i∈N Ai is the set of action profiles, and the map gi : A → R is
the payoff function for player i. Denote by g : A → RN the vector payoff function.
For every i ∈ N , put A−i = ×j∈N,j 6=i A

j, therefore a−i ∈ A−i will be a shortcut for
(aj : j 6= i) ∈ ×j∈N,j 6=i A

j. Consider then a set of signals U and a mapping ` : A → U .
In the whole paper the sets N, Ai, U are assumed nonempty and finite.

This game is repeated over time. At each round t = 1, 2, . . . , players choose
actions and if at ∈ A is the action profile at stage t, they observe a public signal
ut = `(at) before proceeding to the next stage. The set of histories of length t ≥ 0
for player i is Hi

t := (Ai × U)t, Hi
0 being a singleton, and Hi = ∪t≥0Hi

t is the set of
all histories for player i.

If all players perfectly observe, at the end of each stage, the actions played by
the other players, then U = A and ` is the identity mapping on A. If the players
observe no signal, then the function ` is constant. These two cases will be referred to
as perfect monitoring and trivial monitoring, respectively.

A strategy for player i is a mapping σi : Hi → Ai. The set of strategies for player
i is denoted by Σi, and similar conventions are adopted for actions: Σ = ×j∈N Σj,
Σ−i = ×j∈N,j 6=i Σ

j. A profile of strategies σ = (σi)i∈N generates a unique history
(at(σ), ut(σ))t≥1 ∈ (A× U)∞, where for each t, ut(σ) = `(at(σ)). In the whole paper
only pure strategies are considered.

Given a strategy profile σ, the average payoff for player i up to time T is γi
T (σ) =

1
T

∑T
t=1 gi(at(σ)), and γi(σ) = limT→∞ γi

T (σ), when the limit exists.
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Let Γ∞ be the infinitely repeated game. Next definition recalls the concept of
uniform equilibrium.

Definition 2.1. A strategy profile σ is a uniform equilibrium of Γ∞ if

(a) for all i ∈ N , γi(σ) exists.

(b) for all ε > 0 there exists T0 such that for all T ≥ T0, for all i ∈ N , for all τ i ∈ Σi,
γi

T (τ i, σ−i) ≤ γi
T (σ) + ε.

Denote by E∞ the set of uniform equilibrium payoffs of Γ∞, i.e., the set of vectors
(γi(σ))i∈N , where σ is a uniform equilibrium of Γ∞.

2.2 Public strategies

Definition 2.2. Let i ∈ N . The strategy σi ∈ Σi is called public if for all t ≥ 1, and
for all histories of length t, h = (ai

1, u1, . . . , a
i
t, ut) and h′ = (bi

1, v1, . . . , b
i
t, vt),

(∀s ∈ {1, . . . , t}, ui
s = vi

s) =⇒ σi(h) = σi(h′).

In words a public strategy depends only on public signals. The set of public
strategies of player i is denoted by Σ̂i. A strategy profile σ is a public equilibrium if
it is a uniform equilibrium and each player’s strategy is public. The corresponding
set of equilibrium payoffs is denoted by Ê∞. In the case of perfect monitoring, any
strategy is public, since the public history contains all the past.

In repeated games with unbounded recall, every pure strategy is equivalent to a
public strategy. Knowing her own strategy and the history of public signals, a player
can deduce the actions she played in the past (see e.g. Tomala (1998)). More precisely
the following lemma holds.

Lemma 2.3. For every σi ∈ Σi, there exists σ̂i ∈ Σ̂i such that for all τ−i ∈ Σ−i and
for each stage t

at(σ
i, τ−i) = at(σ̂

i, τ−i).

The proof is straightforward: the action played by sigma at the first stage depends
on σi only, therefore the action played at the second stage depends only on σi and on
the first public signal and so on, by induction.

Corollary 2.4. Ê∞ = E∞.

To emphasize the dependence on the player’s own past actions, a strategy that
is not public will be called private. As it will be seen in the sequel, in games with
bounded recall, considering public or private strategies makes a big difference.
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2.3 Bounded recall

Consider now players who recall only recent observations. Informally, a strategy has
recall k, if the player who uses it remembers only what happened on the k previous
stages, and plays in a stationary way, i.e., this player has no clock and relies on her
recall, but not on time. The formal definition is the following.

Definition 2.5. Given an integer k ∈ N, the strategy σi ∈ Σi has recall k if there
exists a mapping f : (Ai × U)k → Ai such that for all t > k and for all histories
h = (ai

1, u1, . . . , a
i
t, ut) ∈ Hi

t

σi(h) = f(ai
t−k+1, ut−k+1, . . . , a

i
t, ut).

By convention, a strategy that has recall 0 is a constant mapping on Hi.

Lehrer (1988, 1992a,b) and Bavly and Neyman (2005) use a somewhat different
definition in that for them, a bounded recall strategy is the choice of an initial recall
plus the mapping f . This implies that whenever the initial recall appears during the
course of the game, the player will play in the same way as at early stages. In the
definition given here, the player plays as she wishes before stage k and then uses the
stationary rule f . We believe that asymptotic results are unlikely to differ using one
or another definition, however for small values of k, the initialization phase might be
critical. Also note that Sabourian (1998) uses the same definition as the one given
above.

The set of strategies for player i that have recall k is denoted by Σi
k and Σk :=

×i∈N Σi
k. Since the game is finite, for each σ ∈ Σk, the sequence at(σ) is periodic,

which implies the existence of γi(σ). The normal form game Γk = 〈N, (Σi
k), (γ

i)〉 is
thus well defined and the set of Nash equilibrium payoffs of Γk in pure strategies is
denoted by Ek.

Let Σ̂i
k = Σ̂i ∩Σi

k be the set of public strategies with recall k, Γ̂k = 〈N, (Σ̂i
k), (γ

i)〉
be the public-strategy game with recall k, and Êk be the set of its (pure) Nash
equilibrium payoffs.

Remark 2.6. In games with bounded recall, considering public strategies is a true
restriction. From Lemma 2.3, every pure strategy σi is equivalent to a public strategy
σ̂i but the bounded recall property is not preserved. It might be that σi has recall k
but σ̂i does not. For example, consider trivial monitoring (the mapping ` is constant).
Given any recall k, there is only one history of public signals, thus a public strategy
with bounded recall is a constant strategy. By contrast, a private strategy (of recall 1)
can simply alternate between two actions. The equivalent public strategy alternates
between the two actions according to time and thus is not a public strategy with
bounded recall according to Definition 2.5.

Remark 2.7. In the game with recall 0, strategies are constant and thus Ê0 = E0.
This set further coincides with the set of pure Nash equilibrium payoffs of the stage
game.
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3 Equilibrium payoffs with bounded recall

In this section properties of the sets Ek and Êk will be studied.
The following proposition holds.

Proposition 3.1. (a) If a strategy σ is an equilibrium of Γ̂k, then σ is a uniform

equilibrium of Γ̂∞. Thus, Êk ⊂ Ê∞.

(b) If a strategy σ is an equilibrium of Γ̂k, then σ is an equilibrium of Γk. Thus,

Êk ⊂ Ek.

(c) If a strategy σ is an equilibrium of Γ̂k, then σ is an equilibrium of Γ̂k+1. Thus,

Êk ⊂ Êk+1.

These properties are somehow expected from such a model and are proved by
arguments that are quite standard in the literature. As will be seen in the sequel of
the paper, these are about the most general properties one can get for these games.
In particular, the sequence Ek need neither be monotonic nor included in E∞.

3.1 Convergence of Êk

The aim of this section is to establish whether the monotonic sequence Êk converges
to E∞. Two remarkable cases are trivial monitoring, i.e. the mapping ` is constant
and perfect monitoring, i.e. the mapping ` is one-to-one.

3.1.1 Trivial monitoring

Convergence of Êk to E∞ does not hold in general as is easily seen by considering
trivial monitoring.

Proposition 3.2. If the mapping ` is constant then,

(a) the set E∞ is the convex hull of the set of Nash equilibrium payoffs of the one-shot
game, whereas,

(b) for each k, Êk is the set of Nash equilibrium payoffs of the one-shot game.

3.1.2 Perfect monitoring

As mentioned before, with perfect monitoring any strategy can be represented by a
public strategy, since the public history contains all the past. So Ek = Êk for each k.
The following example shows that even in this case, the convergence of (Êk)k to E∞
may fail to hold.

There are three players, N = {1, 2, 3}. Player 3 only has one action, player 1
chooses the line, player 2 chooses the column, and as usual the first (resp. second,
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resp. third) coordinate of the vector payoff corresponds to the first (resp. second,
resp. third) player.

L R
T π,−π, 1 −1, 1, 1
B 0, 0, 0 0, 0, 0

Proposition 3.3. (a) The payoff (0, 0, 1) ∈ E∞.

(b) The set Êk = Ek = {(0, 0, 0)}.

The idea of the proof is that to get (0, 0, 1) in equilibrium, player 1 plays T and
player 2 alternates L and R with the correct frequencies. Since π is irrational, these
frequencies must also be irrational but players with bounded recall eventually enter
a cycle on a finite number of actions, generating rational frequencies.

3.2 Study of Ek

As the previous example shows, (Ek)k may not converge to E∞, even in the case of
perfect monitoring.

It is plain that E0 ⊂ E∞ always holds and one may wonder if for k ≥ 1, Ek ⊂ E∞.
The following example shows that it is not always so. One may also wonder if limk Ek

(set as ∪K ∩k≥K Ek to avoid existence problems) is a subset of E∞. The answer is
negative: the following example shows a point in ∩kEk\E∞.

Consider the following two-player game, with A1 = {T, M, B1, B2}, A2 = {L, R}
and U = {u, v}. The payoffs and the public signals are indicated below.

L R
T 0, 0, 0, 0
M 2, 2 0, 3
B1 2, 1 0, 0
B2 2, 1 0, 0

payoffs

L R
T u u
M u u
B1 u v
B2 u v

signals

Proposition 3.4. In the above game, for each k ≥ 1, the payoff (2, 4/3) ∈ Ek, but
(2, 4/3) 6∈ E∞.

4 A minority game

This subsection describes a game, called minority game (MG), that serves as leading
example in the paper.

In this game three players have to choose simultaneously one of two rooms: L
(left) or R (right). For each profile of action a = (a1, a2, a3) ∈ {L, R}3, call minority
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room the less crowded room and majority room the most crowed room. Player i’s
payoff is then 1 if she chooses the minority room and 0 otherwise. Hence the payoff
matrix of the MG is as follows, where player 1 chooses the row, player 2 the column,
and player 3 the matrix.

L R
L 0, 0, 0 0, 1, 0
R 1, 0, 0 0, 0, 1

L

L R
L 0, 0, 1 1, 0, 0
R 0, 1, 0 0, 0, 0

R

The profile where one player chooses L and the two other players choose R is a
Nash equilibrium. All pure Nash equilibria of this game are obtained by permutation
of players and rooms. Denote by C be the convex hull of payoff vectors generated by
these equilibria. If e(i) ∈ R3 is the vector whose i-th component is 1 and the other
components are 0, then

C = conv {e(i) : i ∈ {1, 2, 3}} =

{
x ∈ [0, 1]3 :

3∑
i=1

xi = 1

}
.

It is worth noticing that this is also the set of Pareto-efficient payoffs in the game.
Consider now the repeated game where the majority room is publicly observed.

At each stage t = 1, 2, . . ., players choose their room and before stage t + 1, the
majority room is publicly announced: U = {L, R}, and

`(a) =

{
L if #{i : ai = L} ≥ 2,

R if #{i : ai = R} ≥ 2.

The following Folk-theorem-like result holds.

Proposition 4.1. In the minority game E∞ = C.

4.1 de Bruijn graphs

In order to prove the results that follow some combinatorial concepts will be needed.
An oriented graph Tk is considered, where each of the 2k nodes is labeled by a k-

letter word written with the alphabet {L, R}. For i ∈ {1, . . . , k} let xi ∈ {L, R}.
The word x = (x1, . . . , xk) precedes the word y = (y1, . . . , yk) if (x2, . . . , xk) =
(y1, . . . , yk−1). The word y succeeds x whenever x precedes y. Hence each node
(i. e. the word associated to it) precedes only two nodes. Such a graph is called de
Bruijn graph (see e. g. de Bruijn (1946) and Yoeli (1962) for some properties of these
graphs). The following figure shows a de Bruijn graph T3 based on sequences written
with the alphabet {L, R}.
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Figure 1. de Bruijn graph T3

A proof of the following result can be found in Yoeli (1962)(see Lempel (1971) for
a generalization to any finite alphabet).

Proposition 4.2. For every p in {1, . . . , 2k}, there exists in the de Bruijn graph Tk

a cycle with length p.

A public k-recall strategy profile in a minority game corresponds to a cycle in the
de Bruijn graph Tk, where each node in the cycle is assigned to one player or to none
of them. The idea is that once the players have a public recall that corresponds to
a node in the graph, they choose an action, whose consequence is that at most one
player gains 1. The node is then assigned to that player. Furthermore the actions of
the players at node x determine which of the two nodes that succeed x in the graph
is chosen. If node x is assigned to player i, this means that i is alone in a room,
therefore had she chosen the other room, she would have changed her payoff, but
not the signal. Therefore if y succeeds x in the cycle of a certain strategy, and x
is assigned to player i, then i cannot force the path to go to the other node z that
succeeds x. Any other player, different from i can change the signal in x. A strategy
is an equilibrium if there is no node in the cycle of this strategy where one of the
players can change the signal and force a different cycle that gives her a higher payoff.

4.2 Some bounded-recall equilibria

We describe now some public equilibrium payoffs.

Lemma 4.3. (a) For any k ≥ 0,
(

k
k+1

, 1
k+1

, 0
)
∈ Êk.

(b) For any k ≥ 2,
(

k−2
k

, 1
k
, 1

k

)
∈ Êk.

(c) For any k ≥ 2,
(

k−2
k

, 2
k
, 0
)
∈ Êk.
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As shown by the proofs of these results, properties of de Bruijn graphs are funda-
mental to determine bounded-recall equilibria in minority games. The constructions
will identify in the graphs cycles that represent the equilibrium play, and will cor-
rectly assign a player to each node. These partial results allow to describe completely
the set of public equilibrium payoffs for small values of k.

Proposition 4.4. (a) E0 = Ê0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

(b) E1 = Ê1 = Ê0 ∪
{(

1
2
, 1

2
, 0
)
,
(

1
2
, 0, 1

2

)
,
(
0, 1

2
, 1

2

)}
.

(c) Ê2 = Ê1 ∪
{(

1
3
, 2

3
, 0
)
,
(

1
3
, 0, 2

3

)
,
(
0, 1

3
, 2

3

)
,
(

2
3
, 1

3
, 0
)
,
(

2
3
, 0, 1

3

)
,
(
0, 2

3
, 1

3

)}
.

Proposition 4.5. E2 differs from Ê2 since
(

1
3
, 1

3
, 1

3

)
∈ E2 \ Ê2.

Note that for k ≤ 2, all public equilibrium payoffs are on the boundary of the
triangle C. A direct consequence of Lemma 4.3 is that

(
1
3
, 1

3
, 1

3

)
∈ Ê3, so when the

recall is k ≥ 3 there exists a public equilibrium payoff in the interior C.

4.3 Convergence of Êk for the minority game

When the minority game is repeated with public monitoring of the majority room,
then convergence holds.

Theorem 4.6. In the repeated minority game where the public signal is given by the
majority room,

lim
k→+∞

Êk = E∞ = C.

The construction, like standard Folk-theorems, uses a main path and punishments.
Players agree on a cycle over the set of stage-Nash equilibria leading approximately
to the target payoff. Since only stage-equilibria are played, a deviation that does
not modify the signals is not profitable. When players see unexpected signals, they
punish the deviator by staying for a long time in the same room they were in at the
deviation stage. The punishment is effective since only a player who gets a zero payoff
(i.e., is not alone in a room) can modify the signal. Before the deviation signal leaves
the public recall, players re-write it in the recall. Two players can do so by playing
the same action thus controlling the public signal. The detailed construction is given
in Section 6.

Remark 4.7. Theorem 4.6 easily extends to a 2n + 1-player minority game (each
player has to choose between L and R and receives a payoff of 1 if she is in the
minority room and zero otherwise). However, the proof heavily relies on the specific

properties of the game and signal function. Since convergence of Êk to E∞ is not
always guaranteed, a challenging and open problem is to characterize limk Êk.
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4.4 Private equilibria and minority game

While for the minority game with public monitoring of the majority room, the set of
public equilibrium payoffs (Êk)k monotonically converges to E∞, not much is known
about the behavior of Ek. Monotonicity of this sequence or convergence of Ek to E∞
are still open problems. The following proposition shows that for some k, Ek is not a
subset of E∞.

Proposition 4.8. In the minority game with public monitoring of the majority room,
(3/7, 3/7, 0) ∈ E3 and thus E3 6⊂ E∞.

This proposition is proved by constructing explicitly an equilibrium σ = (σ1, σ2, σ3)
of Γ3 with payoff (3/7, 3/7, 0). The proof is quite lengthy and involved and seems to
indicate that more general results in this direction are quite hard to obtain.

5 A guessing game

This section considers a game where player 1 wants to guess the action of player 2 in
a repeated game with trivial monitoring. Player 1’s payoffs are given by:

L R
T 1 0
B 0 1

and player’s 2 payoffs are always 0. This ensures that equilibrium exists in pure strate-
gies, an alternative way is to consider the zero-sum game and look at the min2 max1

value.
Under trivial monitoring if both players have the same recall, then Ek = E∞ =

(1, 0): in zero-sum terminology, the min2 max1 of the game is 1. In fact, a strategy
σ2 of player 2 is just a cyclic sequence of L and R, and player 1 needs only to play a
sequence σ1 that mimics σ2 with T replacing L and B replacing R.

The aim of this section is to show how giving a bit more complexity to player 2
dramatically affects equilibrium payoffs, or equivalently decreases the min2 max1 of
the game. This is in contrast with usual results on zero-sum games with bounded
complexity (Lehrer (1988), Ben-Porath (1993)) where players of approximately the
same complexity, more or less guarantee the value of the game. This contrast is
essentially due to the use of pure strategies.

Two variations of the above game will be examined. In Subsection 5.1, both
players have the same recall, but the actions available to player 2 are duplicated. This
may be viewed as follows: in the above game player 2 is allowed to choose, in addition
to her action, a letter from the alphabet {1, 2} and write it down on a notepad without
affecting the payoffs whatsoever. In the repeated game with unbounded recall and
pure strategies, allowing a player to write notes does not enlarge her strategy set, but
it certainly does in the bounded recall case. The game studied in subsection 5.1 can
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thus be viewed as a modification of the one-shot guessing game or as a modification
of the set of strategies available in the repeated game.

In subsection 5.2, player 2 is be given an extra bit of recall with respect to player 1.
Since monitoring is trivial, the sequences of actions played by the players evolve

independently. Consider one player with trivial monitoring, two actions, L and R,
and bounded recall k. Using a private strategy with recall k leads this player to play
a periodic sequence of L and R which corresponds to a cycle in the de Bruijn graph
Tk. By Proposition 4.2, its period can be any integer between 1 and 2k. When the
period is exactly 2k the sequence is called a de Bruijn sequence of recall k.

5.1 Player 2 has same the recall but more actions than player 1

Consider the following two-player game, where: A1 = {T, B}, A2 = {L1, L2, R1, R2},
monitoring is trivial, player 2 has payoff 0 and and the payoffs for player 1 are given
by:

L1 L2 R1 R2

T 1 1 0 0
B 0 0 1 1

Proposition 5.1. In the above game

(a) E∞ = {(1, 0)} = E0,

(b) for k ≥ 1, (1/2, 0) ∈ Ek.

The idea of the proof is the following: the most complex sequence player 1 can
predict (or play) is a de Bruijn sequence of recall k on {L, R}. Using the labels of
her actions L1, L2, player 2 can follow a more complicated pattern, namely, cyclically
play one after another a deBruijn sequence of recall k on {L1, L2} and a de Bruijn
sequence of recall k on {R1, R2}. Hence player 1 cannot guess correctly this sequence
more than half of the time.

5.2 Player 2 has as many actions but larger recall than player 1

Consider the game with trivial monitoring where player 2 has payoff 0 and the payoffs
for player 1 are given by:

L R
T 1 0
B 0 1

Assume that player 1 has recall k and that player 2 has recall k′. How well can
player 1 guess the actions of player 2? The worst equilibrium payoff for player 1 is
given by

vk,k′ := min
σ2∈Σ2

k′

max
σ1∈Σ1

k

γ1(σ1, σ2).
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It is plain that vk,k′ is non-decreasing in k and non-increasing in k′, and 1
2
≤ vk,k′ ≤ 1.

If k ≥ k′, player 1 will be able to mimic the sequence played by player 2, hence
vk,k′ = 1. Focus now on k′ = k + 1, and define

f(k) := vk,k+1 = min
σ2∈Σ2

k+1

max
σ1∈Σ1

k

γ1(σ1, σ2).

Piccione and Rubinstein (2003, Section 5, Footnote 5) noticed that if player 2
plays a de Bruijn sequence of recall k + 1, then player 1 with recall k must “have a
frequency of mistakes of at least 1/(2(k + 1)).” This implies that

f(k) ≤ 1− 1

2(k + 1)
.

Notice that in the definition of f(k) player 2 may use any strategy with recall k + 1,
not necessarily de Bruijn sequence of recall k + 1.

Lemma 5.2. f(0) = f(1) = 1/2, and f(2) = 4/7.

Given the above lemma, intuition would lead to conjecture that f is non-increasing,
and that (f(k))k converges to a limit, that would represent the asymptotic advantage
for player 2 to possess a recall strictly larger than the recall of player 1. The following
proposition disproves this intuition.

Proposition 5.3.
lim
k→∞

f(k) = 1/2.

The proof uses some arithmetic results. Since there exists a prime number p,
2k < p < 2k+1 and a cycle of length p in Tk+1, player 2 chooses in the de Bruijn
graph with recall k + 1 a cycle of length p. For every sequence chosen by player 1 of
period q ≤ 2k, gcd(p, q)=1 so the period of the joint sequence of actions is pq which is
large with respect to q. This implies that player 1 cannot coordinate too often with
player 2.

6 Proofs

Section 3. Equilibrium payoffs with bounded recall

Proof of Proposition 3.1. (a) This kind of result is common in the literature on
games with bounded complexity (see e.g., Neyman (1998), Ben-Porath (1993),
Lehrer (1988, 1994)) and relies on a usual dynamic programming argument.

Let σ be an equilibrium of Γ̂k. For each player i, finding a best-reply in Σi to
σ−i amounts to solve a dynamic programming problem, where the state space
is Uk, the set of public histories of length k, the action space is Ai, the payoff

14



in state h = (u1, . . . , uk), given action ai is gi(ai, σ−i(h)), and the new state
is (u2, . . . , uk, `(a

i, σ−i(h))). It is well known (see Blackwell (1962)) that there
exists a stationary optimal strategy. Thus, the best reply of player i to a profile
of public strategies with recall k is a public strategy with recall k (see Abreu
and Rubinstein (1988, Lemma 1)). Therefore, σ is a uniform equilibrium of Γ∞.

(b) This follows directly from the previous point. The game Γ̂k is a subgame of Γk

in the sense that the set of strategies of each player in Γ̂k is a subset of the set
of strategies of this player in Γk. Let then σ be a strategy profile in Γ̂k, if σ is
not an equilibrium of Γk, then a player i has a profitable deviation in Σi

k ⊂ Σi,
thus σ is not a uniform equilibrium contradicting the previous point.

(c) The argument is similar to the one used for point (b), Γ̂k is a subgame of Γ̂k+1:
any strategy with recall k can be played in the game with recall k + 1. So,
if a strategy profile σ in Γ̂k is not an equilibrium of Γ̂k+1, then some player i
has a profitable deviation in Σ̂i

k+1 ⊂ Σi, thus σ is not a uniform equilibrium
contradicting point (a).

Proof of Proposition 3.2. In the game with unbounded recall, players may get the
convex hull of E0 by playing stage-Nash equilibria with the appropriate frequencies.
Since monitoring is trivial, deviations go unnoticed, thus, at equilibrium, stage-Nash
are played at (almost) all stages. Of course, this convexification of E0 cannot be
obtained by stationary strategies.

When signals are constant, for each k there is a unique public history of length
k. Therefore Γ̂k is the game where each player is restricted to always play the same
action. This game is thus identical (in strategies and payoffs) to the one-shot game.

Proof of Proposition 3.3. (a) Note that (0, 0, 1) ∈ E∞ by the classical folk theorem.
This payoff is feasible by a sequence of action profiles where player 1 plays T at
each stage and player 2 alternates between L and R with respective frequencies(

1
1+π

, π
1+π

)
. Player 1 punishes deviations from player 2 by playing B and player 2

punishes by playing R.

(b) Consider now bounded recall strategies. Take k in N and (x, y, z) in Ek (= Êk).
Since the play induced by a pure strategy profile with bounded recall is periodic,
the average frequencies λ1, λ2, λ3, λ4 of the pure action profiles (respectively of
(T, L), (T, R), (B, L), (B, R)) are non-negative rational numbers, summing up
to one. We have:

x = λ1π − λ2,

y = −λ1π + λ2,

z = λ1 + λ2.

15



By individual rationality x ≥ 0 and y ≥ 0, so λ1π = λ2. Since π is irrational,
this implies λ1 = λ2 = 0. So (x, y, z) = (0, 0, 0). Since (0, 0, 0) is an equilibrium
payoff, one obtains Ek = {(0, 0, 0)} for each k.

Proof of Proposition 3.4. Consider a pure equilibrium of the repeated game with un-
bounded recall. If at some stage (M, L) is played, then player 2 may play R at
this stage and get a payoff of 3 instead of 2, without any further consequence be-
cause the signal induced by (M, R) is the same as the signal induced by (M, L).
Thus, in equilibrium, (M, L) cannot be played with positive frequency, and therefore
E∞ ⊂ {(x, y) ∈ R2, x + y ≤ 3}.

Fix a positive integer k and define σ = (σ1, σ2) ∈ Σk as follows.

• σ2 plays L at each stage whatever happens.

• σ1 plays B1 at stage 1, and is defined via a main phase and a transition phase.
After stage 1, player 1 using σ1 says that she is in the main phase if and only if
(all public signals in her recall equal u, and the last action played by player 1
is not T ). If this condition is not satisfied, then player 1 says that she is in the
transition phase.

– In the transition phase, player 1 plays B1 if her last k actions all equal T ,
and plays T otherwise.

– In the main phase, player 1 induces the following periodic sequence of
actions

B1B1 . . . B1︸ ︷︷ ︸
ktimes

B2B2 . . . B2︸ ︷︷ ︸
ktimes

MM . . . M︸ ︷︷ ︸
ktimes

B1B1 . . . B1︸ ︷︷ ︸
ktimes

B2B2 . . . B2︸ ︷︷ ︸
ktimes

MM . . . M︸ ︷︷ ︸
ktimes

. . .

That is, player 1 plays B2 (resp. M , resp. B1) if her last k actions are all
B1 (resp. B2, resp. M), and repeats her last action otherwise.

This ends the definition of σ.

Under σ, the play remains forever in the main phase, inducing the payoff

1

3
g(B1, L) +

1

3
g(B2, L) +

1

3
g(M, L) =

1

3
(2, 1) +

1

3
(2, 1) +

1

3
(2, 2) =

(
2,

4

3

)
.

It is now necessary to check that σ is an equilibrium of Γk.
The strategy σ1 is obviously a best response against σ2 because the maximal payoff

for player 1 is 2. Let now τ 2 be any strategy of player 2 with recall k and assume that
γ2(σ1, τ 2) > 1. There must exist some first stage t̄ where player 1 plays M . Then
necessarily the following happened:

stage → t̄− 2k . . . t̄− (k + 1) t̄− k . . . t̄− 1 t̄
action P1 B1 . . . B1 B2 . . . B2 M

public signal u . . . u u . . . u

16



This implies that player 2 has played L and the signal was u at every stage t̄ −
2k,. . . ,t̄− 1. Since 2k > k and τ 2 has recall k, player 2 using τ 2 will play L at every
stage t ≥ t̄ − 2k. So γ2(σ1, τ 2) = 4/3 = γ2(σ). Consequently σ2 is a best response
against σ1 in the game with private strategies and recall 3, and (2, 4/3) ∈ Ek. Hence
(2, 4/3) ∈ ∩k≥1Ek\E∞.

Section 4. A minority game

Proof of Proposition 4.1. This follows directly from the characterization given in Tomala
(1998, Theorem 5.1, page 104), , but a simple direct proof will be provided. First
note that, since C is the convex hull of Nash equilibrium payoffs of the one-shot game,
then C ⊂ E∞. Given any point x in C, one can find a sequence of Nash equilibria
(at)t of the minority game, such that the average payoff vector along this sequence
converges to x. Then, the strategy profile such that for each player i and stage t,
player i plays ai

t at stage t, irrespective of the history, is clearly a uniform equilibrium
with payoff x.

To get the converse, note that there are two types of action profiles: either two
players are in the same room and the profile is an equilibrium of the MG, or the
three players are in the same room. In the latter case, each player has a profitable
deviation (she prefers to switch room) and further this deviation does not change the
majority room, i.e., the public signal. If at a strategy profile the three players are
in the same room on a non-negligible set of stages, then player 1 can switch rooms
at these stages. This increases her payoff at these stages without affecting public
signals, hence without affecting the behavior of the other players. Such a strategy
profile cannot be a uniform equilibrium and therefore E∞ ⊂ C.

Consider a minority game with recall k, and its associated de Bruijn graph Tk.
Call m-cycle a cycle of length m, call stable the cycles where all the nodes have
the same number of L’s, and call main all the stable cycles containing the strings
L · · ·LR · · ·R or R · · ·RL · · ·L. There are k − 1 main k-cycles and 2 main 1-cycles.

Proof of Lemma 4.3. (a) Consider the (k + 1)-cycle that contains R · · ·R and all
the nodes of the main k-cycle that contains R · · ·RL. In equilibrium, players
cycle on this (k+1)-cycle and elsewhere they go to this cycle as fast as possible.

Assign node R · · ·R to player 2 and all the other nodes in the graph to player 1.

Player 1 can deviate only on R · · ·R, and she has no incentive to do it, because
that would induce a cycle on the node RRR, that is assigned to player 2. Player
2 can deviate anywhere else, but she has no incentive to do it, since she cannot
find a cycle that contains R · · ·R and is shorter than the equilibrium cycle.

Player 3 can always deviate, but, since she would get a zero payoff anyway, she
has no incentive to deviate.

The following figure shows the above equilibrium for k = 3.
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Figure 2. Equilibrium with 3-recall and payoff
(

3
4
, 1

4
, 0
)

(b) In each of the main cycles assign node R · · ·RL · · ·L and L · · ·L to player 2,
nodes L · · ·LR · · ·R and R · · ·R to player 3, and the other nodes to player 1. In
equilibrium players cycle on the main k-cycles and elsewhere they move to them
fast. Player 1 has no incentive to deviate on the nodes assigned to 2 (or 3),
because she would move to another node of 2 (or 3), and she would increase the
distance to a node that is assigned to herself. For instance, if k = 3, deviating in
LLL (RRR) would bring back to LLL (RRR), and hence increase the distance
to the next 1-node, deviating in LLR (RRL) would increase the distance to the
next 1-node from 1 to at least 3, deviating in RLL (LRR) would increase the
distance to the next 1-node from 2 to at least 3.

Given the disposition on the main cycles of the nodes assigned to her, on the
nodes assigned to 1 or 3, player 2 cannot find a shorter cycle that could induce
her to deviate. The same is true for player 3.
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Figure 3. Equilibrium with 3-recall and payoff
(
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)
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(c) As above. Just assign to player 2 the nodes that were assigned to 3, and repeat
the argument.
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Figure 4. Equilibrium with 3-recall and payoff
(

1
3
, 2

3
, 0
)

Proof of Proposition 4.4. (a) The only possible Nash equilibria of both E0 and Ê0

are repetitions of the same Nash equilibrium of the stage game.

(b) By Proposition 3.1, Ê0 ⊂ Ê1. Furthermore by Lemma 4.3(c) the payoffs(
1
2
, 1

2
, 0
)
,
(

1
2
, 0, 1

2

)
,
(
0, 1

2
, 1

2

)
∈ Ê1. No other equilibrium payoff can be obtained

with recall 1, since the maximal length of a cycle in the de Bruijn graph T1 is
2.

(c) By Proposition 3.1, Ê1 ⊂ Ê2. Furthermore by Lemma 4.3(c) the payoffs(
1
3
, 2

3
, 0
)
,
(

1
3
, 0, 2

3

)
,
(
0, 1

3
, 2

3

)
,
(

2
3
, 1

3
, 0
)
,
(

2
3
, 0, 1

3

)
,
(
0, 2

3
, 1

3

)
∈ Ê2.

No other equilibrium payoff can be obtained with recall 2.

First it will be proved that
(

1
3
, 1

3
, 1

3

)
6∈ Ê2. In fact the maximal length of a

cycle in the de Bruijn graph T2 is 4. Hence, in order to obtain such a payoff
in equilibrium, the players would have to cycle on a 3-cycle of T2, and each
node should be assigned to a different player. There are only two such cycles.
Take for instance the cycle LL → LR → RL, and assume that these nodes are
assigned to players 1, 2, and 3, respectively. Then player 2 will want to deviate
in RL, and player 3 will want to deviate in LR. An analogous argument can
be used for the cycle LR → RR → RL.
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Figure 5. de Bruijn graph T2

Consider the only 4-cycle in the graph T2, namely, LL → LR → RR →
RL. This graph cannot give a payoff

(
1
2
, 1

4
, 1

4

)
or its permutation. In fact if

(i1, i2, i3, i4) denotes the strategy that assigns LL to player i1, LR to player i2,
etc., then none of the configuration that give a payoff

(
1
2
, 1

4
, 1

4

)
is an equilibrium:

– (1, 1, 2, 3) is not an equilibrium, since player 3 would deviate in LR,

– (1, 1, 3, 2) is not an equilibrium, since player 2 would deviate in LR,

– (1, 2, 1, 3) is not an equilibrium, since player 3 would deviate in LR, and
player 2 would deviate in RL,

– (1, 3, 1, 2) is not an equilibrium, since player 2 would deviate in LR, and
player 3 would deviate in RL,

– (1, 2, 3, 1) is not an equilibrium, since player 1 would deviate in LR,

– (1, 3, 2, 1) is not an equilibrium, since player 1 would deviate in LR.

Proof of Proposition 4.5. First remark that with private strategies player i can cycle
on RLL by using a strategy that relies on her own actions only. Therefore consider
the strategy profile obtained by cycling:

R L L
L R L
L L R

where the i-th row indicates the strategy of the i-th player. This is clearly an equi-
librium of Γ2, since it is a repetition of one-stage Nash equilibria, and its payoff
is
(

1
3
, 1

3
, 1

3

)
. Furthermore since the strategy of each player is based on her own ac-

tions, a deviation of one player does not change the actions of the other players. By
Proposition 4.4(c) the payoff

(
1
3
, 1

3
, 1

3

)
is not in Ê2.
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Proof of Theorem 4.6. Let m ≥ 2 be an integer and let Cm be the set of vectors of
x ∈ C with rational components of the form xi = mi/m with mi ≥ 2 integers. Then
Cm converges to C as m goes to infinity i.e. supx∈C infy∈Cm ‖x− y‖ goes to 0 as m
goes to infinity. Therefore Theorem 4.6 follows from Lemma 6.1 below.

Lemma 6.1. For every integers m ≥ 2 and K ≥ 2m, Cm ⊂ Êk for k = Km.

The following terminology will be used in the proof of Lemma 6.1. Call word any
finite sequence of signals. Given two words u = (u1, . . . , up) and v = (v1, . . . , vq),
denote by uv the concatenated word uv = (u1, . . . , up, v1, . . . , vq). A word of length k
is called a public recall. Given a public recall M , a word u of length l ≤ k is called a
sub-word of M if there exist two words v, w such that M = vuw. The word consisting
of L . . . L, q times is denoted Lq. If u is a sub-word of M , define the position of u in
M as the rank of the first letter of u. For instance, if M begins with u, then u has
position 1; if M ends with u, then u has position k − l + 1.

Proof of Lemma 6.1. Let m ≥ 2 be an integer and x ∈ Cm. The aim is to construct
a strategy profile σ with payoff x which is an equilibrium of Γ̂k for k = Km, with
K ≥ 2m. The strategy construction is in a folk-theorem spirit. First the right
payoff is obtained by playing an adapted main path. In case of detected deviation,
punishments have to be performed. Because of finite recall, the evidence that a
deviation occurred may disappear from the recall. To get a deviating player to be
punished forever, players are asked to rewrite periodically a word in the public recall,
indicating that a deviation has occurred and which actions should be used to punish.
This construction relies heavily on properties of the minority game and the minority
room as a signal. The following properties will be used extensively.

• A player who is in the minority room at some stage cannot change the signal at
that stage. This implies that a player who gets a payoff of 1 at a given stage has
no incentive to deviate at that stage since it can only decrease the stage-payoff
and has no impact whatsoever on the future.

• The main path is be constructed so that at each stage a Nash equilibrium of the
one-shot game is played. Thus at each stage there is one player in the minority
room and the other two players are in the majority room, both receiving a payoff
of zero. If the signal changes, that means that one of the two players in the
majority room deviated, but the public signal does not tell who did. A simple
way to punish the deviating player without knowing her identity is to apply the
following policy: “If I see a wrong signal at stage t, then I remain in the room
where I was at stage t.” This insures that the deviating player, who was in the
majority room when the deviation was detected, remains in the majority room
as long as the punishment phase lasts.

• Any payoff vector can be obtained by two actions profiles giving different public
signals (just exchange L and R).
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• Two players can write any word in the public recall, whatever the behavior of
the third player is.

Pick now a point x = (xi)i ∈ Cm. Then x =
∑

i x
ie(i), where for each i ∈ N ,

xi = mi/m, with mi ≥ 2, so xi ≥ 2/m. Let H = (a∗1, . . . , a
∗
m) ∈ Am be a sequence of

action profiles of length m such that

1. the average payoff along H is

x =
1

m

m∑
t=1

g(a∗t ),

2. the public history (`(a∗1), . . . , `(a
∗
m)) associated to H is L . . . L, m times.

Such a sequence exists, it suffices to play a sequence of Nash equilibria of the MG
such that player i gains 1 exactly mi times and the majority room is always L. For
each room r ∈ {L, R}, let r̄ be the other room, and, if a is an action profile, let
ā be the action profile where every player has switched room. Let H̄ ∈ Am be the
sequence obtained from H by switching rooms: H̄ = (ā∗1, . . . , ā

∗
m). The main path

will be the periodic repetition of the sequence HH̄. Here is how to construct a profile
of strategies of recall k that generates this periodic sequence of action profiles.

Let W := Lm be the word induced by H. A word w is a sub-word of W if w = Lq

with 0 ≤ q ≤ m. If a periodic repetition of HH̄ is played, at each stage the public
recall ends by a word of the type W̄w or Ww̄ with w sub-word of W (possibly of
length 0). Call such words end-words. An end-word writes either LmRq or RmLq,
0 ≤ q < m. The aim is to play a periodic repetition of HH̄. In order to do that, at
each stage knowledge of the end-word is sufficient to know what action profile should
be played at the next stage. Thus, letting E be the set of end-words, there exists
a mapping f which maps E to pure Nash equilibria of the MG and such that for
each end-word e, f(e) = (f i(e))i∈N is the action profile that follows e in the periodic
repetition of HH̄.

Consider now deviations. After each end-word e, f(e) should be played. On the
main path f(e) induces a winning player i(e) and a signal r(e). If r̄(e) is observed,
then some player j 6= i(e) has deviated. Let us call deviation-word, a word of the type
er̄(e): a deviation word writes either LmRqL or RmLqR, 0 ≤ q < m. If a deviation-
word er̄(e) appears in the recall, the strategy prescribes to keep on playing f(e) as
long as the position of er̄(e) is greater than 2m. During this punishing phase, the
signal is completely controlled by the punished player, this player could then write in
the recall another deviation-word e′r̄(e′). To prevent other end-words to appear in
the recall, if Lm−1 (resp. Rm−1) appears, all players must play R (resp. L). Finally,
when the position of er̄(e) becomes less than or equal to 2m, the players must rewrite
this word in the recall by all playing the same actions for an appropriate number of
times.

The exact definition of the strategy profile σ is given now.
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• Initialization. At each stage t ≤ k, each player plays L. At each stage t > k,
apply the following points.

• Main path. If the recall contains no deviation-word and ends by the end-word
e, each player i plays f i(e).

• Early punishments.

– If the recall contains a deviation-word er̄(e) whose position is greater than
2m, and if the recall does not end by Lm−1 or by Rm−1, then each player
i plays f i(e).

– If the recall contains a deviation-word er̄(e) whose position is greater than
2m, and if the recall ends by Lm−1, then each player i plays R.

– If the recall contains a deviation-word er̄(e) whose position is greater than
2m, and if the recall ends by Rm−1, then each player i plays L.

• Late punishments. If the recall contains a deviation word er̄(e) = LmRqL
with 0 ≤ q < m, let p be its position.

– If m < p ≤ 2m, then each player i plays L.

– If m− q < p ≤ m, then each player i plays R.

– If p = m− q, then each player i plays L.

• Other memories. For all other memories, each player plays L.

It remains to prove that the above-defined strategy profile σ has payoff x and is
an equilibrium of Γ̂k.

If all players play this strategy, the public recall after stage k is Lk, thus it ends by
an end-word e. The next action profile is then f(e) and the public recall still ends by
an end-word so the strategy uses f again. By construction of f , this strategy profile
generates the periodic repetition of HH̄ and the payoff is indeed x.

Suppose that player i deviates. If the deviation never changes the signals, then
player i changes action only at stages where she was in the minority room. Therefore
she loses payoff at these stages and does not affect the behavior of other players. Such
a deviation is thus not profitable.

Suppose now that player i changes the signal at some stage, therefore i is in the
majority room at this stage. This generates a deviation-word er̄(e). As long as the
position of er̄(e) is greater than 2m, the other players play f(e) so player i receives a
payoff of zero, except if she generates words of the type Lm−1 or Rm−1. In such cases,
the other players will play both R or both L. Such situations appear at most every
m stages. So, the only opportunities to player i to gain a payoff of 1 are when other
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players rewrite the deviations word (at most 2m stages), and once every m stages for
k − 2m stages. The average payoff for player i is thus no more than

2m + k−2m
m

k
=

2m + K − 2

km

≤ 2

k
+

1

m
≤ xi,

since xi ≥ 2/m, and K ≥ 2m.

Proof of Proposition 4.8. We construct an equilibrium σ = (σ1, σ2, σ3) of Γ3 with
payoff (3/7, 3/7, 0). Given strategies of recall 3, the action played by a player at some
stage depends only on her last 3 actions and on the last 3 public signals. The last
3 ∧ t actions or signals at time t will be called available.

The profile σ is defined as follows:

(a) If at least one available public signal is R, then σ recommends to each player to
switch room, i.e. to play L if she played R at the previous stage, and vice-versa.

(b) Assume now that all available public signals are L.

(b1) Regarding the first three stages, as long as the public signal is L, σ recommends
to play as follows:

stage → 1 2 3
P1 L L R
P2 R L L
P3 L R L

For example, the symbol R in line P3 means that at stage 2, σ3 asks player 3
to play R if the public signal of stage 1 was L.

(b2) At every stage t ≥ 3, if the last 3 public signals are L, each player i ∈ {1, 2, 3}
plays the action f i(ai

t−3, a
i
t−2, a

i
t−1) ∈ {L, R} where ai

t′ denotes the action played
by player i at stage t′ and the functions f 1, f 2, f 3 are described below.

last own actions P1 P2 P3
LLL R R L
LLR R L L
LRL L R L
LRR L L L
RLL L L L
RLR L R L
RRL R L L
RRR L L L

Figure 6
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At the intersection of column P2 and line RLL, the symbol L means that
f 2(RLL) = L, i.e., at any stage t ≥ 3, if the last 3 public signals were L, and
the last actions played by player 2 were R (at stage t − 3), L (at stage t − 2),
and L (at stage t− 1), then player 2 following σ2 should play L. This ends the
definition of σ.

The proof is complete once Lemma 6.2 below is proved.

Lemma 6.2. (a) The payoff induced by σ is (3/7, 3/7, 0).

(b) The strategy σ is an equilibrium of Γ3.

Proof. (a) Assume that σ is played. The induced play can be represented as follows.

stage → 1 2 3 4 5 6 7 8 9 10 11 12 13
action P1 L L ©R ©R L ©R L L L ©R ©R L ©R . . .
action P2 ©R L L L ©R L ©R ©R L L L ©R L . . .
action P3 L ©R L L L L L L L L L L L . . .

public signal L L L L L L L L L L L L L . . .

Figure 7

The action of a player in the minority room, if any, is emphasized with a circle.
The public signal is L at every stage, the induced play eventually has period
7 (one can see a period from stage 3 to stage 9), and the induced payoff is
(3/7,3/7,0).

(b) This part is a direct consequence of the next three lemmata, where the best
reply condition is checked for every player.

Lemma 6.3. In Γ3, σ3 is a best reply against σ−3.

Proof. Let τ 3 be any strategy of player 3 in Σ3
3. It is necessary to prove that

γ3(τ 3, σ−3) ≤ γ3(σ) = 0. Assume in the sequel that (τ 3, σ−3) is played, and dis-
tinguish two cases.

Case 1. Assume that the sequence of public signals never contains the symbol R.
Then the sequence of actions played by players 1 and 2 is the same as in Figure 7. So
at the stages 3,4,5,6, player 3 is playing L (otherwise the public signal will be R at
some stage). Since τ 3 has recall 3, it implies that player 3 will play L at every stage
t ≥ 3. Since L is at each stage the majority room, γ3(τ 3, σ−3) = 0.

Case 2. Assume that at some stage the public signal is R. Consider the first stage t̄
where this happens. Up to stage t̄, the actions played by player 1 and 2 correspond to
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Figure 7, so at stage t̄ it is not possible that both players 1 and 2 play R. Consequently,
at stage t̄: either (players 1 and 3 play R and player 2 plays L), or (players 2 and
3 play R and player 1 plays L). Recall now that σ1 and σ2 ask players 1 and 2 to
change rooms whenever one of the available signals is R.

As long as one of the available public signals is R, players 1 and 2 will exchange
rooms at each stage and, since players 1 and 2 are not in the same room, the payoff
for player 3 will be zero. So to get out of this punishment phase, player 3 has to
play three consecutive times L in order to induce three consecutive signals L. So it is
possible to assume w.l.o.g. that there exists a stage t where the situation is as follows:

stage → t t + 1 t + 2 t + 3
action P1 L R L L(a)

action P2 R L R R(b)

action P3 L L L
public signal L L L

or

stage → t t + 1 t + 2 t + 3
action P1 R L R L(c)

action P2 L R L R(d)

action P3 L L L
public signal L L L

Figure 8

(a) because f 1(L, R, L) = L (see Figure 6),
(b) because f 2(R,L, R) = R,
(c) because f 1(R, L, R) = L,
(d) because f 2(L, R, L) = R.

If player 3 plays R at stage t + 3, then at this stage (players 1 and 3 play R and
player 2 plays L) or (players 2 and 3 play R and player 1 plays L), and player 3 does
not get out of the punishment phase where players 1 and 2 exchange rooms at each
stage, and player 3’s payoff is zero at each stage.

So let us assume that player 3 plays L at stage t + 3. But since τ 3 has recall 3,
player 3 will continue to play L as long as the public signal is L. The situation at the
end of stage t + 2 is similar to the situation at the end of stage 7 (left table) or stage
6 (right table) of Figure 8, and from this stage on player 3 will be in the majority
room (the L room) hence will also have payoff zero. So γ3(τ 3, σ−3) = 0.

Lemma 6.4. In Γ3, σ1 is a best reply against σ−1.

Proof. Let τ 1 be a strategy profile of player 1 in Σ1
3. It is necessary to to prove that

γ1(τ 1, σ−1) ≤ γ1(σ) = 3/7. Assume that (τ 1, σ−1) is played. Two cases are possible.

Case 1. Assume that at each stage the public signal is L. Then the situation is as
follows:

stage → 1 2 3 4 5 6 7 8 9 10 11
action P1 L L X Y L Z L L
action P2 ©R L L L ©R L ©R ©R L L L
action P3 L ©R L L L L L L L L L . . .

public signal L L L L L L L L L L L . . .
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with X, Y , Z in {L, R}.
If (X, Y ) = (L, L), then player 1 only plays L since σ1 has recall 3. And

γ1(τ 1, σ−1) = 0 ≤ 3/7. So it is possible to assume w.l.o.g. that (X, Y ) 6= (L, L).
The same argument shows that Z = R.

If (X, Y ) = (L, R), then the actions played by player 1 are LLLRLRLL, which is
are achievable with recall 3: since signals are L at each stage, player 1 relies on her
actions only. If (X, Y ) = (R,L), then player 1 plays LLR LLR LLR LLR. . . . But
then at some stage the public signal will be R, yielding a contradiction.

The last case to consider is (X, Y ) = (R,R). In such a case:

stage → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
action P1 L L ©R ©R L ©R L L T U
action P2 ©R L L L ©R L ©R ©R L L L ©R L ©R ©R L
action P3 L ©R L L L L L L L L L L L L L L . . .

public signal L L L L L L L L L L L L L L L L . . .

If T = R, then player 1 plays the following sequence with period 6: LLRRLR
LLRRLR LLRRLR. . . . Since player 2 plays a sequence with period 7 and gcd(6, 7) =
1, at some stage the signal will be R, yielding a contradiction. So T = L, and
necessarily U = R. This is exactly in the case of Figure 7, and γ1(τ 1, σ−1) = 3/7.

Case 2. Assume that there exists some stage where the public signal is R. It is possible
to proceed as in the proof of Lemma 6.3 (Case 2). Since f 2(L, R, L) = f 2(R,L, R) = R
and f 3(L, R, L) = f 3(R,L, R) = L, also in this case γ1(τ 1, σ−1) ≤ 3/7.

Lemma 6.5. In Γ3, σ2 is a best reply against σ−2.

Proof. Let τ 2 in Σ2
3 be a strategy of player 2. It is necessary to show that γ2(τ 2, σ−2) ≤

3/7 = γ2(σ). Assume for the sake of contradiction that γ2(τ 2, σ−2) > 3/7.

Claim. It cannot happen that at some stage, both players 1 and 3 play R.
Assume on the contrary that there exists a first stage t̄ where both player 1 and

player 3 play R. Necessarily t̄ ≥ 3 and since player 3 plays R at t̄, t̄ cannot be the
first stage where the signal is R. So there exists some stage t̂ < t̄ such that the signal
at stage t̂ is R, and the signal at every stage t, t̂ < t < t̄ is L.

Since player 3 plays R at t̄, then t̄ ≤ t̂+3. By definition of t̄, at stage t̂: the signal
is R, either player 1 or player 3 play L, and player 2 plays R. So after stage t̂, players
1 and 3 start to exchange rooms and this contradicts the fact that both player 1 and
player 3 play R at t̄.

Two cases, and several sub-cases are possible.

Case 1. Assume that eventually the sequence of signals only contains L. There exists
t̄ with ut(τ

2, σ−2) = L for all t ≥ t̄.
Then for each stage t ≥ t̄ + 3, player 3 will play L (see Figure 6), and given the

definition of f 1, player 1 will eventually play the following sequence with period 7:
LLLRRLR LLLRRLR LLLRRLR. . .
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Since it was assumed that γ2(τ 2, σ−2) > 3/7, there must exist 7 consecutive stages
among which player 2 is in the minority room for at least 4 stages. Since the majority
room should be L at each large enough stage, the sequence played by player 2 in this
case should also have period 7 (prime number). One checks easily that there must
exist t ≥ t̄ such that the play is:

stage → t +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13
action P1 L L L ©R ©R L ©R L L L ©R ©R L ©R
action P2 ©R ©R ©R L L ©R L ©R ©R ©R L L ©R L
action P3 L L L L L L L L L L L L L L

public signal L L L L L L L L L L L L L L

The point is that, if the majority room is L at each stage, then τ 2 plays the periodic
sequence RRRLLRL RRRLLRL RRRLLRL . . . . This sequence will be denoted by
ω in the sequel.

Subcase 1.a. Assume that all signals are L. Then the situation is as follows.

stage → 1 2 3 4
action P1 L L R R
action P2 X L L L
action P3 L R L L

public signal L L L L

It must be X = R otherwise player 2 only plays L and γ2(τ 2, σ−2) = 0. So player 2,
at stage 4, plays L after RLL. This is not compatible with the sequence ω.

Subcase 1.b. Assume that there exists a last stage t̄ where the public signal is R.
Since player 1 and player 3 never play R at the same time, two possibilities can occur
at stage t̄.

Subsubcase 1.b.1. If player 1 plays R at stage t̄, then

stage → t̄ +1 +2 +3 +4 +5 +6 +7
action P1 R L(a) R(a) L(a) L(b) L(c) R(d)

action P2 R L(e) L(e) L(e) X Y L(e)

action P3 L R(a) L(a) R(a) L L L L
public signal R L L L L L L L

(a) player 1 and player 3 change rooms after a public signal R,
(b) because f 1(L, R, L) = L,
(c) because f 1(R, L, L) = L,
(d) because f 1(L, L, L) = R,
(e) by assumption, the signal has to be L at every stage ≥ t̄ + 1.

If X = L, then player 2 will always play L and have a payoff of zero. So X = R.
Then Y = L because of the periodic sequence ω. But using ω again, at stage t̄ + 6
player 2 should play R, yielding a contradiction.
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Subsubcase 1.b.2. If player 3 plays R at stage t̄, then

stage → t̄ +1 +2 +3 +4 +5 +6 +7 +8 +9
action P1 L R L R L L L R R L
action P2 R L L L X Y Z L L
action P3 R L R L L L L L L

public signal R L L L L L L L L L

It must be that X = R, otherwise player 2 will always play L after t̄. The sequence
ω then gives Y = L, and Z = R. But by ω again at stage t̄ + 7, player 2 should play
R, yielding a contradiction.

Case 2. It remains to consider the case with an infinite number of stages where the
public signal is R.

Take any interval of stages {t1, . . . , t2}, where t1 < t2, ut1(τ
2, σ−2) = ut2(τ

2, σ−2) =
R, and for every t ∈ {t1 + 1, . . . , t2 − 1}, ut(τ

2, σ−2) = L. To conclude the proof, it is
sufficient to show that the average payoff of player 2 at the stages t1,. . . ,t2 − 1 is at
most 3/7.

Assume by contradiction that it is not the case, i.e., assume that the average
payoff of player 2 at the stages t1,. . . ,t2 − 1 is greater than 3/7. Since player 1 and
player 3 never play R at the same stage, at stage t1, either (players 1 and 2 play R,
player 3 plays L) or (players 3 and 2 play R, player 1 plays L). In each case, players
1 and 3 are going to exchange rooms at stages t1 + 1, t1 + 2, t1 + 3, so the payoff of
player 2 is zero at each stage t in {t1, t1 + 1, t1 + 2, t1 + 3}. It was assumed that the
average payoff of player 2 between stage t1 and stage t2 − 1 is greater than 3/7. This
implies that t2 ≥ t1 + 8. So the signal at the stages t1 + 1, . . . , t1 + 7 is L. Two cases
are possible.

Subcase 2.a. At stage t1, player 3 plays L.

stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 . . . t2
action P1 R L ©R L L L ©R ©R L . . . R
action P2 R L L L X Y L L Z . . . R
action P3 ©L ©R L ©R L L L L L . . . ©L

public signal R L L L L L L L L . . . R

By a standard argument X = R (otherwise player 2 plays only L and gets 0). If
Y = L, then, since player 2 has recall 3

t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 t2
P1 R L ©R L L L ©R ©R L ©R L L L ©R R L R
P2 R L L L ©R L L L ©R L L L ©R L L L R
P3 ©L ©R L ©R L L L L L L L L L L L L ©L

signal R L L L L L L L L L L L L L L L R
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Then t2 = t1 + 16, and the average payoff of player 2 is 3/16. So to conclude
subcase 2.a., it remains to consider the case when Y = R.

stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9
action P1 R L ©R L L L ©R ©R L R
action P2 R L L L ©R ©R L L Z T
action P3 ©L ©R L ©R L L L L L L

public signal R L L L L L L L L

Since player 2 has recall 3, then necessarily Z = L, T = R and t2 = t1 + 9. And
the average payoff of player 2 is at most 3/9.

Subcase 2.b. At stage t1, player 1 plays L.

stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10
action P1 ©L ©R L ©R L L L ©R ©R L(d) R(f)

action P2 R L L L ©R (a) Y Z L L(b)

action P3 R L ©R L L L L L L L(d) L(f)

public signal R L L L L L L L L(c) L(e)

(a) standard argument because player 2 has recall 3,
(b) the only possibility is L otherwise there is no chance for the average payoff of
player 2 to be greater than 3/7. Furthermore (b) implies (c), (c) implies (d), (d) implies
(e), and (e) implies (f).

Now, (Y, Z) = (L, L) is not possible because player 2 would play LLLL at stages
t1 + 5, t1 + 6, t1 + 7, t1 + 8. The case (Y, Z) = (L, R) also is not possible, because
player 2 would have to play the same action at both stages t1 + 6 and t1 + 8.

Assume that (Y, Z) = (R,L). Then

stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10
action P1 ©L ©R L ©R L L L ©R ©R L R
action P2 R L L L ©R ©R L L L ©R R
action P3 R L ©R L L L L L L L ©L

public signal R L L L L L L L L L R

Here t2 = t1 + 10. The average payoff for player 2 at the stages t1, t1 + 1,. . . , t2 − 1
is only 3/10. The last case to consider is (Y, Z) = (R,R).

stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10
action P1 ©L ©R L ©R L L L ©R ©R L R
action P2 R L L L ©R ©R ©R L L X ′ Y ′

action P3 R L ©R L L L L L L L L
public signal R L L L L L L L L L

Necessarily Y ′ = R, and t2 = t1 + 10. The average payoff for player 2 is then at most
4/10 (< 3/7).
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Section 5. A guessing game

Proof of Proposition 5.1. (a) Player 1 would like to play T when player 2 plays L1

or L2, and player 1 would like to play B when player 2 plays R1 or R2. So
player 1 would like to guess at each stage whether the action played by player 2
is of type L (i.e. L1 or L2) or is of type R (i.e. R1 or R2). If player 1 has
infinite recall, knowing the strategy of player 2 she can compute the next action
player 2 is going to play, so player 1 in best response will have a payoff of 1.
Hence E∞ = {(1, 0)} = E0.

(b) Assume now that both players use strategies with recall k, where k is a fixed
positive integer. It will be shown that (1/2, 0) ∈ Ek, i.e., that in the game with
recall k player 2 can force player 1’s payoff to be no more than 1/2.

More precisely a strategy σ2 ∈ Σ2
k will be constructed, such that for every

σ1 ∈ Σ1
k, γ1(σ1, σ2) = 1/2.

Consider the alphabet {L1, L2}, and a de Bruijn sequence Li(1) . . . Li(n) Li(1) . . . Li(n)

Li(1) . . . Li(n). . . of recall k, and call n = 2k it period (for every t, i(t) ∈ {1, 2}).
Such a sequence exists by Proposition 4.2. Now, Ri(1) . . . Ri(n) Ri(1) . . . Ri(n)

Ri(1) . . . Ri(n). . . is a de Bruijn sequence with recall k on the alphabet {R1, R2}.
The strategy σ2 is defined to play the following periodic sequence with period
2n = 2k+1

stage 1 2 . . . n n + 1 n + 2 . . . 2n 2n + 1 . . . 3n 3n + 1
action Li(1) Li(2) . . . Li(n) Ri(1) Ri(2) . . . Ri(n) Li(1) . . . Li(n) Ri(1)

Note that this sequence can be played with recall k. This ends the definition of
σ2.

Let now σ1 be any strategy with recall k for player 1. After a finite number of
stages, σ1 induces a periodic sequence of T and B with period q ≤ 2k. Write
q = 2αr, where α ∈ {0, . . . , k}, and r is an odd positive integer.

Assume that (σ1, σ2) is played. The joint period of the action profiles is then
2k+1r = q2k+1−α. Denote this period by p. Since k + 1 − α ≥ 1, then p ≥ 2q.
Fix a stage number t large enough that t− 1 is a multiple of 2n, and consider
the joint period {t, t + 1, . . . , t + p − 1}. During this period, player 2 plays n
actions of “type” L, then n actions of “type” R, then n actions of type L, and
so on. Denote by a0, a1,. . . , aq−1 the actions played by player 1 at the stages t,
t + 1,. . . , t + q− 1. During the period {t, t + 1, . . . , t + p− 1}, player 1 plays a0,
a1, . . . , aq−1, a0, a1,. . . , aq−1, . . . , a0, a1, . . . , aq−1.

Compute now the average payoff for player 1 in the period. Fix i in {0, . . . , q−1},
and consider the stages corresponding to i modulo q, i.e., consider the stages
t + i + lq, where l ∈ {0, . . . , 2k+1−α − 1}. It will be shown that among those
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stages, player 2 plays half of the time an action of type L and half of the times
an action of type R.

Denote by Z2n the ring of residue classes modulo 2n. For every l in {0, . . . , 2k+1−α−
1}, denote by xl ∈ Z2n the congruence class of i + lq modulo 2n. If xl ∈
{0, . . . , n − 1}, player 2 plays an action of type L at stage t + i + lq, and if
xl ∈ {n, . . . , 2n− 1}, player 2 plays an action of type R at stage t + i + lq.

The point is that

i + (l + 2k−α)q = i + lq + 2k−αq = i + lq + n2−αq = i + lq + nr.

Since r is odd, xl+2k−α = xl + n in Z2n. So (xl ∈ {0, . . . , n − 1}) if and only if
(xl+2k−α ∈ {n, . . . , 2n− 1}), and consequently

1

2k+1−α

∣∣{l ∈ {0, . . . , 2k+1−α − 1}, xl ∈ {0, . . . , n− 1}
}∣∣ = 1/2.

So for any value of ai, the average payoff of player 1 among the stages {t +
i + lq, l ∈ {0, . . . , 2k+1−α}} is 1/2. And thus γ1(σ1, σ2) = 1/2. Hence player 1
cannot do better than playing T at each stage.

Proof of Lemma 5.2. Start with the case k = 0. Player 2 with recall 1 can play the
following sequence with period 2: TL TL TL TL. . . , and player 1 with recall 0 cannot
guess player 2’s action more than half of the stages. This proves that f(0) = 1/2.

Consider now the case k = 1. Player 2 with recall 2 can play the following sequence
with period 4: LLRR LLRR LLRR LLRR . . . . Player 1 with recall 1 will eventually
play a constant sequence, or will alternate between L and R after each stage. In each
case, her payoff will be 1/2, so f(1) = 1/2.

Put now k = 2. It will first be shown that f(2) ≤ 4/7.
Let σ2 be the 3-recall strategy for player 2 that plays, starting from stage 1, the

periodic sequence LLLRRLR LLLRRLR LLLRRLR. . . . This sequence has period
7. Let now σ1 be any strategy with recall 2 for player 1. The strategy σ1 eventually
induces a periodic sequence of T and B with period q ≤ 4 = 22. Since 7 is a prime
number, gcd(7, q) = 1, and the joint period of the action profiles is the product 7q.
This implies that every action of player 1 corresponding to one stage in the period
of player 1, will face 4 times L and three times R during a joint period of length
7q. So player 1 cannot guess the action of player 2 more than 4 times out of 7, and
γ1(σ1, σ2) ≤ 4/7. So f(2) ≤ 4/7.

It will be proved now that f(2) ≥ 4/7. Assume that player 2 plays a strategy σ2

with recall 3, and assume for the sake of contradiction that γ1(σ1, σ2) < 4/7 for every
strategy σ1 in Σ1

2. Player 2 will eventually play a sequence of L and R with minimal
period p ≤ 8(= 23). If this sequence does not contain the same number of L and R,
then player 1 can have a payoff of at least 4/7, either by playing constantly L, or by

32



playing constantly R. This is a contradiction, so the sequence of player 2 contains the
same number of L and R, and p is even. It is easy to see that p = 2 is not possible,
so three possibilities are left: p = 4, p = 6 or p = 8.

The case p = 4 corresponds here to the sequence: LLRR LLRR LLRR. . . , but
then player 1 with recall 2 can guess at each stage the action of player 2. Hence
a contradiction. Assume now that p = 6. Enumerate each case for the period of
player 2, i.e., enumerate all periods of length 6 containing 3 L and 3 R. It is possible
to assume w.l.o.g. that the first element of the period is L. The periods of player 2 are
ordered lexicographically (with L preceding R). Ten cases are possible (how to select
2 stages among 5 for the last 2 L), even if some cases correspond to minimal periods
lower than 6. In each case a periodic sequence is mentioned that can be played by
player 1 with recall 2, and gives her a good payoff.

case number 1 2 3 4 5
period P2 LLLRRR LLRLRR LLRRLR LLRRRL LRLLRR

sequence P1 LRLRLR RLRLRL LRLRLR RLRLRL LRLRLR
payoff P1 4/6 4/6 4/6 4/6 4/6

case number 6 7 8 9 10
period P2 LRLRLR LRLRRL LRRLLR LRRLRL LRRRLL

sequence P1 LRLRLR LRLRLR LRLRLR RLRLRL LRLRLR
payoff P1 1 4/6 4/6 4/6 4/6

In each case, player 1 can have a payoff greater than 4/7.
The last case to consider is p = 8. Player 2 is playing a de Bruijn sequence

with recall 3. There are only two such sequences, and by symmetry between L
and R only the following sequence can be considered: RRRLRLLL RRRLRLLL
RRRLRLLL. . . . Assume that player 1 plays the following sequence with period 4:
RRLL RRLL RRLL. . . . Player 1’s payoff is here 6/8 = 3/4 > 4/7. Therefore
f(2) ≥ 4/7.

Proof of Proposition 5.3. Bertrand’s postulate, first proved by Chebyshev, states that
for every integer n ≥ 2, there exists a prime number p such that n < p < 2n (see e.g.,
Nagell (1964)).

Fix a positive integer k. By Bertrand’s postulate there exists a prime number p
such that 2k < p < 2k+1. By Proposition 4.2, one can construct a periodic sequence
of L’s and R’s with period p that can be played by player 2 having recall k + 1. This
defines σ2 in Σ2

k+1: play according to this sequence.
Denote by ω this sequence, and let L(ω) and R(ω) be the respective numbers of

L and R in a period of ω. Obviously L(ω)+R(ω) = p, and it can be assumed w.l.o.g.
that L(ω) ≥ R(ω).

Fix now σ1 ∈ Σ1
k. Player 1 using σ1 will eventually play a periodic sequence

of T and B with period q, and q ≤ 2k. Since p is prime, gcd(p, q) = 1, and this
implies that the joint period of the action profiles is the product pq. Within this joint
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period, every action corresponding to one stage in a period of player 1, will thus face
L(ω) times the action L of player 2 and R(ω) times the action R of player 2. So
γ1(σ1, σ2) ≤ L(ω)/p.

Recall that ω is a periodic sequence of L and R, with more L than R, and period
p. It will be necessary to look for an upper bound of L(ω)/p, or equivalently for a
lower bound of R(ω)/p = 1 − L(ω)/p. For i ≥ 1, denote by Ai ∈ {L, R} the action
played by player 2 at stage i. Then

ω = A1A2 . . . Ap A1A2 . . . Ap A1A2 . . . Ap . . .

with Ai+p = Ai, for each i ≥ 1.
For each i ≥ k+2, denote by Mi = (Ai−(k+1), Ai−k, . . . , Ai−1) the recall of player 2

before stage i, and denote by R(Mi) = |{j ∈ {i − (k + 1), . . . , i − 1}, Aj = R}| the
number of R appearing in the vector Mi. The sequence (Mi)i≥k+2 is periodic with
period p, and

1

p
R(ω) =

1

p
|{i ∈ {1, . . . , p}, Ai = R}| = 1

p

(
p+k+1∑
i=k+2

1

k + 1
R(Mi)

)
.

The point is that Mk+2, Mk+3, . . . ,Mp+k+1 are distinct elements of {L, R}k+1, and p
is large: p > 2k. So more than half of the elements of {L, R}k+1 are considered, and
a lower bound for the average number of R is needed.

• Imagine first that k is even: k = 2a, with a in N. Then exactly half of the
elements in {L, R}k+1 contain more L than R, and the worst case is obtained by
selecting the p elements with fewer R. It is certainly even worse if only the 2k = 22a

elements with less R than L are taken and the average on these elements is computed.

R(ω)

p
>

1

22a

a∑
l=0

l

2a + 1

(
2a + 1

l

)
=: F (a).

It is not difficult to compute F (a). Since

a∑
l=0

l

(
2a + 1

l

)
= (2a + 1)

a∑
l=1

(2a)!

(l − 1)! (2a + 1− l)!

= (2a + 1)
a∑

l=1

(
2a

l − 1

)

= (2a + 1)
a−1∑
l=0

(
2a

l

)
= (2a + 1)

(
22a−1 − 1

2

(
2a

a

))
,
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then

F (a) = 1/2− 1

22a+1

(
2a

a

)
.

In this case with even k,

γ1(σ1, σ2) < 1− F (a) = 1/2 +
1

22a+1

(
2a

a

)
.

So for every non negative integer a

1

2
≤ f(2a) ≤ 1

2
+

1

22a+1

(
2a

a

)
.

• Assume now that k = 2a + 1 is odd. Proceeding the same way,

R(ω)

p
>

1

22a+1(2a + 2)

(
a∑

l=0

l

(
2a + 2

l

)
+ 1/2(a + 1)

(
2a + 2

a + 1

))
,

and one can check that the RHS of this inequality is nothing but

1

2
+

1

22a+3

(
2a + 2

a + 1

)
− 1

22a+1

(
2a + 1

a + 1

)
.

Hence
1

2
≤ f(2a + 1) ≤ 1

2
+

1

22a+1

(
2a + 1

a + 1

)
.

The proof is concluded by noticing that both

1

22a

(
2a

a

)
and

1

22a+1

(
2a + 1

a + 1

)
go to zero as a goes to infinity. So

lim
k→∞

f(k) =
1

2
.
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