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Abstract

A learning rule is risk averse if, for all distributions, it is expected
to add more probability mass to an action that gives the expected
value of a distribution with certainty than to an action that gives
the distribution itself. We provide several characterizations of risk
averse learning rules. Our analysis reveals that the theory of risk
averse learning rules is isomorphic to the theory of risk averse expected
utility maximizers. We consider two additional properties of the risk
attitudes of a learning rule. We show that both are sufficient for a
learning rule to be risk averse and characterize the set of all learning
rules that satisfy the more stringent of these sufficient conditions.

1 Introduction

The literature on choice under uncertainty defines an individual as risk averse
if, for all distributions over monetary outcomes, the decision maker prefers
the action which gives the expected value of the distribution with certainty
to an action that gives the distribution itself.1 Consequently, the expected
utility maximizer assigns a higher (expected) utility to the action with the
former distribution. When can learning be said to be risk averse?
∗We are happy to acknowledge the comments of Joel Sobel on a previous version of

this paper.
1See, e.g., Mas-Colell, Whinston and Green (1995).
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We adopt the view, common in psychology, that learning consists of the
change in an individual’s behavior that occurs in response to some experi-
ence.2 The behavior of an individual is described by the probability with
which the individual chooses her alternative actions. We consider learning
rules in which the experience of the individual comprises of the action chosen
and the payoff it obtains. The agent is not assumed to know the probability
according to which any action gives different payoffs.

A natural notion of when a learning rule is risk averse is if, for all distrib-
utions over monetary outcomes, it adds more probability to an action which
gives the expected value of the distribution with certainty than to an action
that gives the distribution itself. Given that both choices and payoffs are
random it does not seem possible for any learning rule to satisfy this notion
with probability 1. To define the risk attitude of a learning rule we shall
consider the expected change in behavior it implies. By considering the
expected change in probability, the uncertainty in the direction of learning
resulting from both payoffs and behavior being stochastic is integrated out.

Specifically, we call a learning rule risk averse if, for all distributions
of payoffs, the learning rule is expected to add more probability mass to an
action that gives the expected value of a distribution with certainty than to an
action that gives the distribution itself. Furthermore, we require the above
to hold regardless of the distributions over payoffs obtained from the other
actions. Formally, the definition of when a learning rule is risk averse replaces
the greater expected utility of the action that gives the expected value (rather
than the distribution itself), that describes a risk averse expected utility
maximizer, with being expected to add greater probability mass to the action
that gives the expected value (rather than the distribution itself).

To illustrate that the definition of risk averse learning rules allows us
to develop a theory that is analogous to the expected utility theory of risk
we introduce definitions of the certainty equivalent of a learning rule and
the risk premium of a learning rule. These definitions also replace the
preference functional of expected utility theory with the functional describing
the expected movement of probability mass. Roughly speaking, the certainty
equivalent of a learning rule for a distribution asks how much an action would
have to pay with certainty for it to result in the same expected movement of

2A similar approach is adopted in Börgers, Morales and Sarin (2004).
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probability mass as the action which gives the distribution, when all other
things between the two environments are held constant. The risk premium
of a learning rule for a distribution is the difference between the expected
value of the distribution and the amount of money that an action would have
to offer with certainty for the expected movements to coincide.

Our first result shows that a learning rule is risk averse if and only if the
manner in which it updates the probability of the chosen action is a concave
function of the payoff it receives. The proof of the result reveals that when
comparing the expected movement of probability mass on an action with
two alternative possible distributions we do not need to be concerned about
the distributions of the other actions. This feature allows us to develop a
theory of the risk attitudes of learning rules that is isomorphic to that of the
risk attitudes of expected utility maximizers. In particular, we show that
a learning rule is risk averse if and only if the certainty equivalent of the
learning rule is no greater than the expected value of the distribution, for all
distributions. Furthermore, we show that risk aversion of a learning rule is
equivalent to the risk premium of the learning rule being non-negative for all
distributions.

Next, we provide a result of when one learning rule is more risk averse
than another that is parallel to the well known results of Arrow (1971) and
Pratt (1964). Here we introduce the coefficient of absolute risk aversion
of a learning rule which is defined analogously to the Arrow-Pratt measure
of absolute risk aversion. We also show that one distribution second order
stochastically dominates another if and only if all risk averse learning rules are
expected to add more probability mass to the former. This result parallels
the well known result of Rothschild and Stiglitz (1970).

The notion of risk aversion of a learning rule we formalize in this pa-
per allows us to develop a theory of the risk attitudes of learning rules that
parallels the development of the expected utility theory of risk. However,
in contrast to decision theory in which the agent selects an action based on
the knowledge of the distributions of payoffs each action generates, a learn-
ing rule “selects” a probability distribution on the set of actions given the
behavior today, the action chosen and payoff received. This probability dis-
tribution on actions generates a (compound) distribution over payoffs which
is a weighted average of the payoff distribution of each of the actions. We
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could hence ask whether the learning rule is such that expected behavior
tomorrow generates a distribution of payoffs tomorrow which second order
stochastically dominates that of today. We call a learning rule that satisfies
this property in a specific class of environments super risk averse. We also
investigate a related property that requires that the learning rule is expected
to add probability mass on the set of actions whose distributions second or-
der stochastically dominate those of all other actions. We call the set of
learning rules which satisfy this property monotonically risk averse.

We provide some necessary and some sufficient conditions for a learning
rule to be super risk averse. We show that every super risk averse learning
rule is risk averse. Our proof reveals that a necessary condition for super
risk averse rules, that may not be shared by risk averse learning rules, is
that they are not expected to move probability mass on any action when all
of them give the same distribution of payoffs. A sufficient condition for a
learning rule to be super risk averse is that it is monotonically risk averse.
A characterization of monotonically risk averse learning rules is provided.

Our analysis of super risk averse and monotonically risk averse learning
rules extends the analysis provided by Börgers et al (2004) who study ab-
solutely expedient and monotone learning rules. A learning rule is absolutely
expedient if, whatever the environment, behavior tomorrow is expected to
have a higher expected payoff than today. A learning rule is monotone if
in every environment it is expected to add probability mass to the set of
expected payoff maximizing actions. Absolutely expedient and monotone
learning rules are risk-neutral as they cannot respond to differences in risk-
iness between two distributions. The necessary and sufficient conditions
derived by Börgers et al for absolutely expediency have analogues in our re-
sults on super risk averse learning rules. The relation is particularly clear
between monotone learning rules and monotonely risk averse learning rules.
Whereas monotone learning rules allow for affine transformations of payoffs
before applying the Cross (1973) learning rule, monotonely risk averse learn-
ing rules allow for concave transformations of payoffs before applying the
Cross learning rule.3

We conclude by discussing the risk attitudes of some well-known learning
rules. We show that the Cross (1973) learning rule is risk neutral (risk averse

3In each case the transformation of payoffs is allowed to depend on the action that was
chosen and the action whose probability is being updated.
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and risk seeking), super risk neutral and monotonely risk neutral. The Roth-
Erev (1995) learning rule is risk averse, super risk averse and monotonely
risk averse. Lastly, we also study the risk attitudes of the stochastic payoff
assessment rule of Fudenberg and Levine (1998).

There are some papers that investigate how learning rules respond to
risk. March (1996) and Burgos (2002) investigate these properties for spe-
cific learning rules by way of simulations. Both consider an environment in
which the decision maker has two actions, one of which gives the expected
value of the other (risky) action with certainty. As in our paper, the learning
rules they consider update behavior using only the information on the payoff
obtained from the chosen action. For the specific rules they consider, they
show that they all choose the safe action more frequently over time. Della
Vigna and Li Calzi (2001) analytically study the long term properties of a
learning rule that supposes the agent maximizes the probability of getting a
payoff above an aspiration level. The aspiration level is adjusted in the direc-
tion of the experienced payoff. They show that this learning rule converges
to make risk neutral choices in the long run provided that the distribution
of rewards from an action are symmetric.4

This paper is structured as follows. In the next section we introduce
the framework for the analysis. Section 3 provides several characteriza-
tions of risk averse learning rules. It also gives results that develop the
relation between the risk attitudes of learning rules with those of expected
utility maximizers. Section 4 studies super risk averse learning rules and
monotonely risk averse learning rules. Section 5 discusses the risk attitudes
of some well known rules. Section 6 concludes.

2 Framework

Let A be the finite set of actions available to the decision maker. Action
a ∈ A gives payoffs according to the distribution function Fa.5 We shall
refer to F = (Fa)a∈A as the environment the individual faces and we assume
that it does not change from one period to the next. The agent knows the

4From an evolutionary viewpoint, Robson (1996) shows that risk neutral behavior is
selected, if the environment is fixed.

5Hence, each action a can be viewed as a lottery.
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set of actions A but not the distributions F . The decision maker is assumed
to know the finite upper and lower bounds on the set of possible payoffs
X = [xmin, xmax]. We shall think of payoffs as monetary magnitudes.

The behavior of the individual is described by the probability with which
she chooses each action. Let behavior today be given by the mixed action
vector σ ∈ ∆ (A), where ∆ (A) denotes the set of all probability distributions
over A. We assume that there is a strictly positive probability that each
action is chosen today.

Taking the behavior of the agent today as given, a learning rule L specifies
the behavior of the agent tomorrow given the action a ∈ A she chooses and
the monetary payoff x ∈ X she obtains today. Hence, L : A×X → ∆ (A).
The learning rule should be interpreted as a “reduced form” of the true
learning rule. The true learning rule may, for example, specify how the
decision maker updates her beliefs about the payoff distributions in response
to her observations and how these beliefs are translated into behavior. If
one combines the two steps of belief adjustment and behavior change we get
a learning rule as we define.6

Let L(a0,x) (a) denote the probability with which a is chosen in the next
period if a0 was chosen today and a payoff of x was received. We assume
that L(a,x) (a) is a strictly increasing function of x for all a. For a given
learning rule L and environment F , the expected movement of probability
mass on action a is f (a) =

P
a0∈A σa0

R
L(a0,x) (a) dFa0 (x)− σa.

Denote the expected payoff associated with Fa by πa. Let the distribu-
tions over payoffs of actions other than a be denoted by F−a. The definition
of when a learning rule is risk averse requires that if we replace the distrib-
ution Fa with another distribution F̃a which puts all probability on πa and
keep F−a fixed, then the learning rule would expect to add more probability
mass to a when it gives F̃a than when it gives Fa. This should be true for
all a, Fa and F−a.

More formally, we introduce a second associated environment F̃ =
³
F̃a, F̃−a

´
in which F̃−a = F−a. Hence, environment F̃ has the same set of actions as

6Notice that we do not restrict the state space of the learning rule to be the probability
simplex ∆ (A).
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environment F and the distribution over payoffs of all actions other than a
are as in F . Let f̃ (a) denote the expected movement of probability mass
on action a in the associated environment F̃ .

Definition 1 A learning rule L is risk averse if for all a and Fa, if F̃a places
all probability mass on πa then f̃ (a) ≥ f (a).

Risk seeking and risk neutral learning rules may be defined in the obvious
manner. As the analysis of such learning rules involves a straightforward
extension of the current paper we do not pursue it further in the sequel. Note
that risk aversion of the learning rule may be considered a “local” concept
as we have taken behavior today as given. Hence, it pertains only to the
current state of learning or behavior σ. We could also consider risk aversion
of a learning rule “in the large” by defining a learning rule to be globally risk
averse if it is risk averse at all states σ ∈ ∆ (A). This paper provides a first
step in the analysis of globally risk averse learning rules.

The contrast between when a learning rule is risk averse and when an
expected utility maximizer is risk averse is instructive. In expected utility
theory an individual is called risk averse if for all distributions Fa the indi-
vidual prefers F̃a to Fa. Hence, the von Neumann-Morgenstern utilities v
satisfy

v
³
F̃a

´
=

Z
u (x) dF̃a (x) ≥

Z
u (x) dFa (x) = v (Fa)

where u (·) is often referred to as the Bernoulli utility function. A learning
rule is called risk averse if for all actions a and distributions Fa the learning
rule is expected to add more probability mass to an action that gives πa with
probability one than to an action that gives Fa regardless of the distributions
F−a. Hence, risk aversion in the theory of learning requires that

f̃ (a) =
X
a0∈A

σa0

Z
L(a0,x) (a) dF̃a0 (x)−σa ≥

X
a0∈A

σa0

Z
L(a0,x) (a) dFa0 (x)−σa = f (a)

Whereas v (.) in expected utility theory depends only on the payoff distrib-
ution of a single action, f (.) in learning theory depends on the distribution
of the entire vector of distributions.
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3 Risk Averse Learning Rules

In this section we state our results regarding risk averse learning rules and
their relationship with results concerning risk averse expected utility maxi-
mizers. The following definition provides some useful terminology.

Definition 2 A learning rule L is own-concave if for all a, L(a,x) (a) is a
concave function of x.

A learning rule tells us how the probability of each action a0 ∈ A is
updated upon choosing any action a and receiving a payoff x. Own-concavity
of a learning rule places a restriction only on the manner in which the updated
probability of action a depends upon x given that a is chosen. The following
result characterizes risk averse learning rules and shows that they are own-
concave.

Proposition 1 A learning rule L is risk averse if and only if it is own-
concave.

Proof. We begin by proving that every own-concave learning rule is risk
averse. Consider any own-concave learning rule L and environment F =
(Fa,F−a). Construct the associated environment F̃ in which F̃a places all
probability mass on πa (and F−a = F̃−a). By Jensen’s inequality

L(a,πa) (a) ≥
Z
L(a,x) (a) dFa (x)

⇐⇒ Z
L(a,x) (a) dF̃a (x) ≥

Z
L(a,x) (a) dFa (x)

⇐⇒
σa

Z
L(a,x) (a) dF̃a (x) ≥ σa

Z
L(a,x) (a) dFa (x)

⇐⇒
σa

Z
L(a,x) (a) dF̃a (x) +

X
a0 6=a

σa0

Z
L(a0,x) (a) dF̃a0 (x)− σa

≥ σa

Z
L(a,x) (a) dFa (x) +

X
a0 6=a

σa0

Z
L(a0,x) (a) dFa0 (x)− σa
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⇐⇒
f̃ (a) ≥ f (a)

Hence, the learning rule is risk averse.

We now turn to prove that every risk averse learning rule L is own-
concave. We argue by contradiction. Suppose L is risk averse but that it
is not own-concave. Because L is not own-concave there exists an action a,
payoffs x0, x00 ∈ [xmin, xmax] and λ ∈ (0, 1) such that

L(a,λx0+(1−λ)x00) (a) < λL(a,x0) (a) + (1− λ)L(a,x00) (a)

Now consider an environment F in which Fa gives x0 with probability λ
and x00 with probability (1− λ) and the distributions of the other actions
are given by F−a. Consider the associated environment F̃ in which F̃a gives
πa = λx0 + (1− λ) x00 with probability one. Hence,Z

L(a,x) (a) dF̃a (x) = L(a,πa) (a)

< λL(a,x0) (a) + (1− λ)L(a,x00) (a)

=

Z
L(a,x) (a) dFa (x)

which implies f̃ (a) < f (a) by the argument above. Hence, the rule in not
risk averse as we had assumed and we obtain a contradiction.

Proposition 1 shows that the own-concavity of a learning rule in learning
theory plays an analogous role as the concavity of the Bernoulli utility func-
tion in expected utility theory. In the latter theory the curvature properties
of a Bernoulli utility function explains the individuals attitudes towards risk.
In the theory of learning, the manner in which the learning rule updates the
probability of the chosen action in response to the payoff it obtains explains
how learning responds to risk. Notice that we did not use the assumption
that L(a,x) (a) is an increasing function of x for all a in the proof.

The proof reveals that for any action a the distributions of actions a0 6=
a do not play any role when we compare f̃ (a) and f (a). This has the
consequence that the theory of risk averse learning rules is isomorphic to
the theory of risk averse expected utility maximizers. To illustrate how
such a theory can be developed we now introduce definitions of the certainty
equivalent of a learning rule L and of the risk premium of a learning rule.
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Recall that in expected utility theory, the certainty equivalent of a dis-
tribution for an individual is the amount of money that another distribution
would have to offer with certainty for the individual to be indifferent between
the two distributions. The definition of the certainty equivalent of a learning
rule, intuitively, asks how much F̃a would have to pay with certainty for it
to result in the same expected movement of probability mass as Fa, when all
other things between the two environments are held constant.

In expected utility theory, the risk premium of a distribution Fa is the
difference between πa and the amount of money that F̃a would have to offer
with certainty for the individual to be indifferent between the two. We define
the risk premium of a learning rule for a distribution Fa as the difference
between πa and the amount of money that F̃a would have to offer with
certainty for f̃ (a) and f (a) to coincide.

Definition 3 The certainty equivalent of a learning rule L for action a with
distribution Fa is the payoff ca (Fa) that action a in environment F̃ would
have to pay with certainty for f̃ (a) = f (a). The risk premium of an action
a with distribution Fa is the amount of money ra (Fa) such that if a in F̃
offers πa − ra (Fa) with certainty then f̃ (a) = f (a).

Proposition 2 A learning rule L is risk averse ⇐⇒ ca (Fa) ≤ πa for all
actions a and distributions Fa ⇐⇒ ra (Fa) ≥ 0 for all actions a and distrib-
utions Fa.

Proof. Suppose L is risk averse. Consider any environment F in which a
has a distribution Fa and the associated environment F̃ in which a has the
degenerate distribution F̃a that places all probability on the payoff πa. All
other aspects of the two environments are identical. Then,

f̃ (a) ≥ f (a)
⇐⇒ Z

L(a,x) (a) dF̃a (x) ≥
Z
L(a,x) (a) dFa (x)

⇐⇒
L(a,πa) (a) ≥ L(a,ca(Fa)) (a)
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⇐⇒
πa ≥ ca (Fa)

as we assumed that L(a,x) (a) is strictly increasing in x.

The equivalence of the last statement in the Proposition and the others
follows immediately from the fact that ra (Fa) = πa − ca (Fa).
The following example illustrates some aspects of the above definitions

and results.

Example 1 Square-root-Cross Learning Rule

L(a,x) (a) = σa + (1− σa)
√
x

L(a,x) (a
0) = σa0 − σa0

√
x ∀a0 6= a

where x ∈ [0, 1]. This learning rule is own-concave and hence by Proposition
1 is risk averse. To illustrate the notion of certainty equivalence consider an
environment F = (Fa, Fa0) = {(.09, .25; .5, .5) , (.36; 1)}. That is, a gives .09
with probability .5 and .25 with probability .5 and a0 gives .36 with probability
1. Furthermore, suppose σ = (σa,σa0) = (.5, .5). Then, it is easy to show
that f (a) = −.05. The certainty equivalent of Fa is ca (Fa) = .16, whereas
the expected payoff of Fa is πa = .17. Hence, the risk premium of Fa is
ra (Fa) = .01.

To further develop the analogy between risk averse learning rules and
risk averse expected utility maximizers consider the case when L(a,x) (a) is
a twice differentiable function of x. We may then adapt the well known
Arrow-Pratt measure of absolute risk aversion to find an easy measure of
the risk aversion of a learning rule. Specifically, we define the coefficient of
absolute risk aversion of a learning rule L for action a as

arLa (x) = −∂2L(a,x) (a) /∂x2/∂L(a,x) (a) /∂x
For the above example we find that arLa (x) = 1/ (2x) for all a.

We may now turn to consider when to call one learning rule more risk
averse than another. We follow Pratt (1964) closely in this regard who
defines the more risk averse relation in terms of the risk premiums. For
any two learning rules L and L0 denote their risk premiums by rLa (Fa) and
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rL0a (Fa), respectively. We follow the same notational convention when we
refer to the certainty equivalents of two learning rules.

Definition 4 A learning rule L is more risk averse than another L0 if for
all distributions Fa we have that rLa (Fa) ≥ rL0a (Fa) for all a.

The following Proposition gives us four different ways of saying when a
learning rule is more risk averse than another.

Proposition 3 Suppose L(a,x) (a) is twice differentiable for all a. Then, the
following statements are equivalent:

1. rLa (Fa) ≥ rL0a (Fa) for all a and Fa
2. cLa (Fa) ≤ cL0a (Fa) for all a and Fa

3. There exist concave functions βa such that, L(a,x) (a) = βa

³
L0(a,x) (a)

´
for all a.

4. arLa ≥ arL0a for all a and x.

Proof. This involves a straightforward application of the result of Pratt
(1964, Theorem 1).

Expected utility theory provides an attractive way of saying when one
distribution is more risky than another. Specifically, it describes a distri-
bution Fa as more risky than another F̃a if both have the same means and
every risk averse person prefers F̃a to Fa (see, e.g., Rothschild and Stiglitz
(1970)). In this case it is usually said that F̃a second order stochastically
dominates (sosd) Fa. Our next result provides an analogous result from the
viewpoint of the theory of risk averse learning rules. Specifically, it shows
that a distribution F̃a sosd Fa if and only if every risk averse learning rule
is expected to add more probability mass to the action that gives F̃a than
to an action which gives Fa, when other aspects of the environment are held
fixed.
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Proposition 4 F̃a second order stochastically dominates Fa if and only if
f̃ (a) ≥ f (a) for all a for every risk averse learning rule.

Proof. f̃ (a) ≥ f (a)
⇐⇒R
L(a,x) (a) dF̃a (x) ≥

R
L(a,x) (a) dFa (x) for every own-concave L

⇐⇒
F̃a second order stochastically dominates Fa.

It may be observed that risk aversion of a learning rule does not require
the learning rule to map points in the simplex into itself. Imposing the
requirement that probabilities of all actions must sum to one provides the
obvious restrictions when there are only two actions. However, few restric-
tions are imposed when there are three or more actions. The properties we
discuss in the next section provides such restrictions.

4 Two Sufficient Conditions

Our definition of when to call a learning rule risk averse was inspired by
standard decision theory. This had the consequence that we were able
to uncover results for risk averse learning rules analogous to the well known
results for risk averse expected utility maximizers. Learning, however, differs
in many respects from choice. Important among these is that behavior
in learning models is described as stochastic which results in a probability
distribution being “selected” whereas in choice theory behavior is assumed
to be deterministic and a single action is chosen.

For learning rules we may, hence, consider alternative ideas of when to
call them risk averse. In this section, we introduce two such properties (in
Definition 5 and Definition 6, respectively). Both pay particular attention to
the fact that the individual learner will be choosing a probability distribution
in the next period. The first property looks at the entire (expected) behav-
ior tomorrow but restricts attention to a subset of environments. Roughly
speaking, a learning rule will be called super risk averse if in every environ-
ment that is completely ordered by the sosd relation7 the expected behavior

7An environment F is completely ordered by the sosd relation if for all Fa, Fa0 ∈ F
either Fa sosd Fa0 or Fa0 sosd Fa or both. In the last case, we have Fa = Fa0 .
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tomorrow is such that the distribution over payoffs the individual faces to-
morrow second order stochastically dominates the distribution of today.

Definition 5 A learning rule L is super risk averse if in every environment
that is completely ordered by the sosd relation we have that

P
a (σa + f (a))Fa

sosd
P

a σaFa.

Even though the definition of super risk aversion calls for improved per-
formance only on environments which are completely ordered by the sosd
relation, this property imposes a lot of structure on the learning rule (see
Lemma 2 and Proposition 5, below). If we required that

P
a (σa + f (a))Fa

sosd
P

a σaFa in every environment then it can be shown that, in environ-
ments with only two actions, the only learning rules which satisfy this con-
dition are the unbiased rules studied by Börgers et al (2004).89 Restricting
the set of environments on which the improvement is required leads us to
identify a larger class of learning rules.

Our next result shows that every super risk averse learning rule is risk
averse. The proof of the result reveals that super risk averse learning rules
have the property that if all actions have the same distribution of payoffs
then there is no expected movement in probability mass on any action. This
is shown in Lemma 1 of the proof. A second lemma then characterizes all
learning rules that satisfy this property.

Proposition 5 Every super risk averse learning rule L is a risk averse learn-
ing rule.

The following two Lemmas help us in proving the result. Let A∗ denote
the set of actions that second order stochastically dominate all other actions.
That is, A∗ = {a : Fa sosd Fa0 for all a0 ∈ A}. Clearly, if A∗ = A we have
that Fa = Fa0 for all a, a0 ∈ A.

8Unbiased rules are those which exhibit zero expected movement in probability mass
when all actions have the same expected payoffs. Such rules satisfy Definition 5 in a
trivial manner because the expected distribution tomorrow is the same as today.

9It can also be shown that the only learning rules which are continuous in x for all a, a0 ∈
A and satisfy

P
a (σa + f (a))Fa sosd

P
a σaFa in every environment are the unbiased

learning rules.
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Lemma 1 If the learning rule L is super risk averse then in every environ-
ment with A∗ = A we have that f (a) = 0 for all a.

Proof. The proof is by contradiction. Suppose L is super risk averse but
that there exist an environment F with A∗ = A and f (a) > 0 for some a.
To begin with consider the case in which Fa places strictly positive weight
in the interior of [xmin, xmax]. We now construct the associated environment
F̃ in which F̃a is a mean preserving spread of Fa and F̃a0 = Fa0 for all
a0 6= a. Specifically, suppose that F̃a is obtained by taking out ε probability
uniformly10 from [xmin, xmax] and placing (πa − xmin) ε/ (xmax − xmin) on xmax
and (xmax − πa) ε/ (xmax − xmin) on xmin. By construction, the F̃a0 sosd F̃a
for all a0 6= a. Since f̃ (a) is continuous in ε, there exists a small enough
ε such that f̃ (a) > 0. This contradicts that L is super risk averse. Next
consider the case in which Fa places all probability mass on xmax. In this case,
all distributions Fa0 must also place all probability mass on xmax. Consider
another environment F̂ in which each action a ∈ A assigns probability (1− ε)
to xmax and ε to y ∈ (xmin, xmax). Now consider an environment F̃ in
which all actions except a have the same payoff distributions as in F̂ and
a removes probability ε from y and assigns ε/2 to y − δ and ε/2 to y + δ
where 0 < δ < min {xmax − y, y}. By construction, the distribution of a
in F̃ is a mean preserving spread of the distribution of a in F̂ . As f̃ (a)
is continuous in ε there is a small enough ε such that f̃ (a) > 0. This
contradicts the assumption that L is super risk averse. The argument for
the case in which Fa places all probability mass on xmin is analogous. The
last case we need to consider is one in which Fa places all probability mass
on xmin and xmax with strictly positive weight on each. In this case, πa ∈
(xmin, xmax). Now consider an environment F̂ in which each a ∈ A has ε
probability taken away proportionally from each of the extreme points and
this is placed on πa. Now consider an environment F̃ in which all actions
except a have the same payoff distributions as in F̂ and the distribution of
a removes probability ε from πa and assigns ε/2 to πa + δ and ε/2 to πa − δ
for some δ ∈ (0,min {πa, (xmax − πa)}). By construction, the distribution
of a in F̃ is a mean preserving spread of the distribution of a in F̂ . Since
f (a) > 0 by hypothesis, and because f̃ (a) is continuous in ε we have that
for small ε, f̃ (a) > 0. This contradicts the assumption that L is super risk
averse.
10By which we mean that for every interval D contained in [xmin, xmax], the probability

that F̃a places on D is (1− ε) that which Fa places on D.
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Lemma 2 A learning rule L has f (a) = 0 for all a whenever A = A∗ if and
only if there exist functions uaa0 (x) such that for all a, a0 ∈ A and all x ∈ X
and σ ∈ int (∆ (A))

L(a,x) (a) = σa + (1− σa)uaa (x)

L(a0,x) (a) = σa − σaua0a (x) ∀a0 6= a
uaa (x) =

X
a0

σa0ua0a (x)

Proof. To show sufficiency suppose that A = A∗ and hence Fa = Fa0 for all
a, a0 ∈ A. Then

f (a) = σa

µ
σa + (1− σa)

Z
uaa (x) dFa (x)

¶
+
X
a0 6=a

σa0

µ
σa − σa

Z
ua0a (x) dFa0 (x)

¶
− σa

= σa

ÃZ
uaa (x) dFa (x)−

X
a0

σa0

Z
ua0a (x) dFa0 (x)

!

= σa

ÃX
a0

σa0

Z
ua0a (x) dFa (x)−

X
a0

σa0

Z
ua0a (x) dFa0 (x)

!
= 0

To show necessity consider an environment in which A = A∗ and Fa places
all probability mass on x ∈ [xmin, xmax]. Hence, all Fa0 place all probability
mass on x and

f (a) = σaL(a,x) (a) +
X
a0 6=a

σa0L(a0,x) (a)− σa = 0

Define,

uaa (x) ≡
¡
L(a,x) (a)− σa

¢
/ (1− σa)

ua0a (x) ≡
¡
σa − L(a0,x) (a)

¢
/σa

Then,

f (a) = σa (σa + (1− σa)uaa (x)) +
X
a0 6=a

σa0 (σa − σaua0a (x))− σa = 0

⇐⇒
σa

Ã
uaa (x)−

X
a0

σa0ua0a (x)

!
= 0
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⇐⇒
uaa (x) =

X
a0

σa0ua0a (x)

which gives us the result.

Remark 1 Note that for all the rules satisfying Lemma 1 and Lemma 2,

f (a) = σa

ÃX
a0

σa0

µZ
ua0a (x) dFa (x)−

Z
ua0a (x) dFa0 (x)

¶!

Proof. To complete the proof of Proposition 5, consider any two payoff
x0, x00 ∈ [xmin, xmax] with x0 6= x00 and any λ ∈ (0, 1). Let x ≡ λx0+(1− λ)x00.
Consider an environment in which Fa gives x with probability 1 and all other
actions a0 6= a give x0 with λ probability and x00 with (1− λ) probability.
Clearly, A∗ = {a} and

f (a) = σa

ÃX
a0 6=a

σa0 (ua0a (x)− λua0a (x
0)− (1− λ)ua0a (x

00))

!
= σa (1− σa) (uaa (x)− (λuaa (x0) + (1− λ)uaa (x

00)))

Super risk aversion requires that f (a) ≥ 0 which requires that

uaa (x) ≥ λuaa (x
0) + (1− λ)uaa (x

00)

Hence, uaa must be concave.

The property referred to in Lemma 1 is similar to the unbiasedness prop-
erty studied in Börgers et al (2004). Whereas unbiased requires zero ex-
pected motion when all actions have the same expected payoffs, the property
in Lemma 1 requires zero expected movement when all actions have the same
distribution of payoffs. Clearly, a larger set of learning rules satisfy the prop-
erty in Lemma 1. Börgers et al characterize all unbiased learning rules and
show that all absolutely expedient rules are unbiased. In contrast, Lemma
2 characterizes all learning rules that satisfy f (a) = 0 for all a when all
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actions have the same distribution and Lemma 1 shows that all super risk
averse learning rules satisfy this property.11

Our next definition introduces a property of learning rules related to risk
aversion and super risk aversion of learning rules. In contrast to the latter
it looks at expected behavior only with regard to the (expected) probability
with which the best actions (in a sosd sense) are chosen. Specifically, a
learning rule is said to be monotonically risk averse if it is expected to increase
probability on the best actions (in a sosd sense). For any subset Â ⊂ A, let
f
³
Â
´
≡ Σa∈Âf (a).

Definition 6 A learning rule L is monotonically risk averse if in all envi-
ronments we have that f (A∗) ≥ 0.

The next result characterizes the set of monotonically risk averse learning
rules.

Proposition 6 A learning rule L is monotonically risk averse if and only if
there exist functions uaa0 (x) such that for all a, a0 ∈ A and all x ∈ X and
σ ∈ int (∆ (A))

L(a,x) (a) = σa + (1− σa)uaa (x)

L(a0,x) (a) = σa − σaua0a (x) ∀a0 6= a
uaa (x) =

X
a0

σa0ua0a (x)

and ua0a (x) are concave functions for all a0 6= a.

Proof. Sufficiency:
11Note that absolute expediency requires the expected movement of probability mass to

satisfy a strict inequality whereas super risk aversion only requires the expected movement
to satisfy a weak inequality. Our choice of a weak inequality allows us to develop a theory
of risk averse learning rules that is isomorphic to the theory of risk averse expected utility
maximizers.
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Suppose A∗ 6= A and A∗ 6= ∅, otherwise f (A∗) = 0 immediately. Let
a ∈ A∗. We know that (see Remark 1)

f (a) = σa

ÃX
a0

σa0

µZ
ua0a (x) dFa (x)−

Z
ua0a (x) dFa0 (x)

¶!

= σa

ÃX
a0 /∈A∗

σa0

µZ
ua0a (x) dFa (x)−

Z
ua0a (x) dFa0 (x)

¶!
because Fa = Fa0 for all a, a0 ∈ A∗. Since Fa sosd Fa0 for all a0 /∈ A∗, each
term in the sum is non-negative. Therefore, f (a) ≥ 0 for all a ∈ A∗ and,
hence, f (A∗) ≥ 0.
Necessity:
It is easily checked that if L is a monotonically risk averse learning rule

then in every environment with A∗ = A we have that f (a) = 0 for all a.
To see this we need only see that the argument given in Lemma 1 applies
when we replace super risk averse with monotonically risk averse. Hence,
the conditions derived in Lemma 2 need to be satisfied. Hence, we only
need to show that ua0a (x) are concave functions for all a0 6= a. We argue by
contradiction. Suppose there exist a0 and a , with a0 6= a, for which ua0a (x)
is not concave. This implies there exist payoffs x0 and x00 and some λ ∈ (0, 1)
for which

ua0a (x) < λua0a (x
0) + (1− λ)ua0a (x

00)

where x ≡ λx0 + (1− λ)x00. Now consider an environment F in which Fa
gives x with certainty, Fa0 gives x0 with probability λ and x00 with probability
(1− λ). All other actions a00, if any, give x with probability (1− ε), x0 with
probability ελ, and x00 with probability ε (1− λ), where ε ∈ (0, 1). Clearly,
A∗ = {a}, and using the expression for f (a) provided in Remark 1 we have
f (a) = σa{σa0 (ua0a (x)− [λua0a (x0) + (1− λ)ua0a (x

00)])

+Σa00 6=a,a0σa00 (ua00a (x)− [(1− ε)ua00a (x) + ελua00a (x
0) + ε (1− λ)ua00a (x

00)])}
= σa{σa0 (ua0a (x)− [λua0a (x0) + (1− λ)ua0a (x

00)])

+εΣa00 6=a,a0σa00 (ua00a (x)− [λua00a (x0) + (1− λ)ua00a (x
00)])}

The term ua0a (x) − [λua0a (x0) + (1− λ)ua0a (x
00)] in the last expression is

negative because of our working hypothesis. Therefore, for small enough ε,
we have f (a) = f (A∗) < 0. This contradicts our hypothesis that L was a
monotonically risk averse learning rule.
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Remark 2 Monotonic risk aversion does not imply any meaningful restric-
tions in environments in which A∗ is empty. In such environments it may
seem desirable that the subset of actions whose distributions are not second
order stochastically dominated by any others are expected to have probability
mass added to them. Formally, let Â = {a ∈ A : {a0 ∈ A : Fa0 6= Fa and Fa0 sosd Fa} = ∅}.
Note that Â is always non-empty and Â = A∗ whenever A∗ 6= ∅. It is
easily seen that every monotonically risk averse learning rule that satisfies
ua0a = uaa0 for all a, a0 ∈ A has f

³
Â
´
≥ 0.

Observe that every monotonically risk averse learning rule is risk averse
because uaa (x) is just a weighted average of concave functions and so it
must be concave. It can also be shown that every monotonically risk averse
learning rule is super risk averse. A formal proof of this is contained in the
Appendix. The monotone learning rules studied by Börgers et al (2004) are
related. Their notion requires that probability mass be expected to strictly
increase on the set of expected payoff maximizing actions in all environments
in which this is possible. Our proof that monotonely risk averse learning
rules are super risk averse closely follows the proof of Börgers et al that shows
that monotone learning rules are absolutely expedient.

5 Examples

Several learning rules have been considered in the literature. In this section
we discuss the risk attitudes of the Cross (1973) and the Roth and Erev
(1995) learning rules. We also discuss the risk attitudes of a learning rule
derived from the work of Fudenberg and Levine (1998).

The Cross learning rule is given by the following equations:

L(a,x) (a) = σa + (1− σa)x

L(a0,x) (a) = σa − σax ∀a0 6= a

where x ∈ [0, 1]. As L(a,x) (a) is a linear function of x this rule is both risk
averse and risk seeking and hence is risk neutral. It is equally easily seen
that the Cross learning rule is monotonically risk neutral and hence it is also
super risk neutral.
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The Roth and Erev learning rule describes an agent by a vector v ∈ R|A|++.
The vector v describes the decision makers “propensity” to choose any of her
|A| actions. Given v, the agents behavior is given by σa = va/Σa0va0 for all
a. If the agent plays a and receives a payoff of x then she adds x to her
propensity to play a, leaving all other propensities unchanged. Hence, the
Roth and Erev learning rule is given by

Lv(a,x) (a) = σa +
1P

a0 va0 + x
(1− σa)x

Lv(a00,x) (a) = σa − 1P
a0 va0 + x

σax ∀a00 6= a

where x ∈ [0, xmax]. It is easily shown that Lv(a,x) (a) is a concave function
of x and that the coefficient of absolute risk aversion for the Roth and Erev
learning rule is positive and hence this rule is risk averse. It is similarly easy
to see that this learning rule is monotonically risk averse and hence is also
super risk averse and satisfies the condition in Lemma 1. Note that this
rule satisfies none of the properties studied by Börgers et al (2004) who have
shown that this rule is neither monotone, absolutely expedient or unbiased.

Another learning rule in which agents only respond to payoff information
from the chosen action has been studied by Fudenberg and Levine (1998,
section 4.8.4). The agent is described by the |A| × 2 matrix (y,κ) where κa
denotes the number of times action a was chosen in the past, κ = (κa)a∈A,
and y = (ya)a∈A gives the vector of attractions. The next period attraction
of an action that was chosen today is its current attraction plus (x− ya) /κa.
The attractions of unchosen actions are not updated. The learning rule is
specified as

Ly,κ(a,x) (a) =
eya+(x−ya)/κa

eya+(x−ya)/κa +
P

a0 6=a e
ya0

Ly,κ(a0,x) (a) =
eya

eya0+(x−ya0)/κa0 +
P

a00 6=a0 e
ya00

∀a0 6= a

It is easily seen that this rule is risk averse if L(a,x) (a) ≥ 1/2 and is risk-
seeking otherwise. Equivalently, the learning rule is risk averse (at σ) if
x ≥ ya + κa [ln (1− σa)− lnσa]. However, this rule is not super-risk averse
(or seeking) as it fails to satisfy the condition in Lemma 1.12

12The analysis of the risk attitudes of several other learning rules (e.g. minimal infor-
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6 Conclusion

The expected movement of a learning rule has been studied on many previous
occasions. Finding the long term properties of a learning rule typically
involves studying the expected movement. As is well known under conditions
of slow learning the actual movement of a learning rule closely approximate
the expected movement.13 Combining properties of the expected movement
and of the speed of learning inform us about the long term properties of
learning rules. Recently, Börgers et al (2004) have investigated short term
properties of learning rules that also pertain to its expected movement. The
properties they study relate to expected payoffs.14

In this paper we have shown that defining the risk attitudes of a learning
rule in terms of how its expected movement responds to alternative distri-
butions allows us to develop a theory of the risk attitudes of learning rules
that is isomorphic to the well known theory of the risk attitudes of expected
utility maximizers. This reveals a close relation between the expected utility
theory of risk and the risk attitudes of learning rules and allows learning the-
ory to draw upon the many results available for risk averse expected utility
maximizers.

Risk averse learning rules need not satisfy what may be considered an
elementary consistency condition: That the learning rule not be expected
to move probability mass when all actions have the same distribution of
payoffs. We characterize all learning rules that satisfy this property. The
two sufficient conditions we provide for a learning rule to be risk averse satisfy
this property. Lastly, we have provided necessary and sufficient conditions
for a learning rule to satisfy one of those sufficient conditions.

The risk attitudes of agents differ from situation to situation. For ex-
ample, they tend to insure their houses while still buying lotteries. If such
behavior is learnt it could be the case that the agents use different learning
rules in different circumstances. Empirical work is needed to assess if this is,

mation versions of Camerer and Ho (1999) and Rustichini (1999)), which use a logistic
transform of the attractions to obtain the probabilities with which each action is chosen,
is closely related.
13See, for example, Börgers and Sarin (1997).
14All the learning rules they study are, implicitly, risk neutral. Section 4 of our paper

extends their results to allow learning rules to respond to risk.
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in fact, the case. Our characterizations of learning rules that have different
risk attitudes should facilitate this enterprise. Experimental work could also
be conducted to determine the risk attitudes of the learning rules people use.

APPENDIX

In this Appendix we prove that every monotonely risk averse learning
rule is super risk averse. Suppose L is a monotonely risk averse learning
rule and consider an environment F that is completely ordered by the sosd
relation. The set F can be partitioned so that F = ∪m

i=1
Fi, where all the

distributions in Fi are the same and there are m distinct distributions in F ,
i.e. there are m elements in this partition. The proof is by induction on m.

Let w be any concave function and let

g =
X
Fa∈F

(σa + f (a))

Z
w (x) dFa (x)−

X
Fa∈F

σa

Z
w (x) dFa (x)

We need to show that g ≥ 0 for all m. Suppose m = 1. Then, A = A∗

and hence g = 0. Now suppose g ≥ 0 for m = b − 1 and consider an
environment with m = b. Let A∗∗ = {a : Fa0 sosd Fa for all a0 ∈ A}. That
is, A∗∗ is the set of least preferred actions for any risk averse agent. Let π∗∗a =R
w (x) dFa (x) for all a ∈ A∗∗. Let A∗∗∗ = {a : Fa0 sosd Fa for all a0 /∈ A∗∗}.

That is, A∗∗∗ is the set of second least preferred actions for any risk averse
agent. Let π∗∗∗a =

R
w (x) dFa (x) for all a ∈ A∗∗∗. Observe that k ≡

π∗∗∗ − π∗∗ ≥ 0.
Now consider another environment F̃ in which the distribution of lotter-

ies in A∗∗ is changed to the distribution of lotteries in A∗∗∗ (and all other
distributions are as in F ). By the inductive hypothesis we know that g̃ ≥ 0
and hence showing g − g̃ ≥ 0 completes the proof.

g − g̃ =
X
a/∈A∗∗

f (a)πa +
X
a∈A∗∗

f (a)π∗∗a −
"X
a/∈A∗∗

f̃ (a)πa +
X
a∈A∗∗

f̃ (a) (π∗∗a + k)

#
=

X
a/∈A∗∗

³
f (a)− f̃ (a)

´
πa +

X
a∈A∗∗

³
f (a)− f̃ (a)

´
π∗∗a −

X
a∈A∗∗

f̃ (a) k (1)
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From Remark 1, we know that for all a /∈ A∗∗ we have

f (a)− f̃ (a) = σa
X
a0∈A

σa0

·Z
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
= σa

X
a0∈A∗∗

σa0

·Z
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
−σa

X
a0 /∈A∗∗

σa0

·Z
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
= σa

X
a0∈A∗∗

σa0

·Z
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
(2)

Note that each term in the square brackets is non-negative since F̃a0 sosd Fa0
for all a0 ∈ A∗∗. Since,Pa∈A f (a) =

P
a∈A f̃ (a) = 0 we getX

a∈A∗∗

³
f (a)− f̃ (a)

´
= −

X
a/∈A∗∗

³
f (a)− f̃ (a)

´
= −

X
a/∈A∗∗

X
a0∈A∗∗

σaσa0

·
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
Using this and (2) in (1) we obtain

g − g̃ =
X
a/∈A∗∗

X
a0∈A∗∗

σaσa0

·
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
πa

−
X
a/∈A∗∗

X
a0∈A∗∗

σaσa0

·
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
π∗∗a −

X
a∈A∗∗

f̃ (a) k

=
X
a/∈A∗∗

X
a0∈A∗∗

σaσa0

·
ua0a (x) dF̃a0 (x)−

Z
ua0a (x) dFa0 (x)

¸
(πa − π∗∗a )− k

X
a∈A∗∗

f̃ (a)

The first term on the RHS is non-negative because πa ≥ π∗∗a for all a and the
term in the squared brackets is also non-negative as explained above. The
second term non-negative because f̃ (a) ≤ 0 for all a ∈ A∗∗. It follows from
Remark 1 and the concavity of ua0a (x) and the fact that Fa0 sosd Fa for all
a0 ∈ A and a ∈ A∗∗. It follows that g − g̃ ≥ 0.
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