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Abstract

We study tournaments with many ex-ante asymmetric contestants,
whose valuations for the prize are independently distributed. First, we
characterize the equilibria in monotone strategies, second, we provide
sufficient conditions for the equilibrium uniqueness and, finally, we
reconcile the experimental evidence documenting the ‘workaholic’ be-
havior in contests with the related theory by introducing heterogeneity
among participants. It is a ‘weak’ participant that might become a
‘workaholic’ in an equilibrium, that is, his effort density might in-

crease at the highest valuation – weak, either because he is more risk
averse or because his rivals consider that it is very unlikely that he
has a high value for the prize. In contrast, effort densities are always
decreasing in case of symmetry with identically distributed values for
the prize and identical attitudes towards risk in case of CARA, as well
as in contests with only two participants. Moreover, we show that for
low valuations more risk averse agents are less likely to exert low ef-
fort than their ‘strong’ rivals, while those with dominated distribution
of the prize valuation are more likely to do so. An explicit solution
for the uniform distribution case with contestant-specific support is
provided as well.
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1 Introduction

It is hard to imagine an area of human activity that does not involve
contests. Students striving to be the best in their class, employees awaiting
promotion, sportsmen fighting for a gold medal, researchers competing for
grants, R&D firms racing to capture monopoly profits in their markets. In
most of the cases, losers suffer a loss associated with the invested effort and
this is the scenario we consider in this paper. Casual observation suggests
that often-times the potential participants can be roughly divided into two
main categories: those who invest a minimal effort, being rationally sceptical
about the possibility of winning, and the others – workaholics, as Schotter
and Muller (2003) call them – who fight with all their might to win a prize.
Experimental evidence supports this observation (Schotter and Muller 2003,
Noussair and Silver 2005), suggesting that relatively frequent are “low” and
“high” effort levels chosen by contestants, while the effort levels in-between
the two are picked less often. This finding might seem puzzling in the view
of the recent developments in the all-pay auction literature. In a model with
two contestants, as in Amann and Leininger (1996), equilibrium bid (effort)
density is decreasing, and the same is true in the model with symmetrically
distributed valuations for winning the prize, as in Gavious, Moldovanu, and
Sela (2002). We show that with more than two contestants whose valuations
are distributed differently, but independently, the observed phenomenon –
relatively intense effort exerted by contestants with high valuations, – can be
explained. Stronger yet, in our set-up equilibrium effort density might be
increasing at the top.

Interestingly, ex-ante asymmetry of the participants is a sensible descrip-
tion of many of the contests that we observe. In most of the environments
mentioned at the outset, for example, contestants have some information
about the ability of the others based on commonly observable characteristics,
such as general background, previous experience, gender, age, etc. Charac-
teristics differ across individuals, so, naturally, such environments are asym-
metric. Often not all the information needed to induce individual valuation is
publicly available. Thus, there is some residual uncertainty that contestants
might have about each other. In other words, conditional on observable
characteristics of an individual, her valuation is still non-deterministic in the
eyes of the others. In line with most of the literature on the subject, we
assume that contestants’ beliefs about the value associated with winning by
a particular individual can be reduced to a probability distribution, which
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is commonly shared by all. In other words, any two contestants share a
common prior about distribution of value for the prize held by any third
contestant.

We explore two possible interpretations of ex-ante comparative strengths
of contestants: their perceived desire to win and the degree of their risk
aversion; consequently, these are the two sources of heterogeneity in our
model.

In this paper we achieve two goals. First, we characterize equilibria of the
asymmetric contests with N contestants. Second, we show that introducing
asymmetry might qualitatively change the density of equilibrium effort lev-
els, in particular, a “weak” contestant facing “stronger” contestants might
very often either put in a negligible effort level, or – at the other extreme –
work extremely hard. This is in contrast with the symmetric model, which
generates a monotonically decreasing effort density.

Experiments with more than two contestants (Schotter and Muller 2003,
Noussair and Silver 2005) have shown that the empirical distribution of ef-
fort has its mode located near the lowest observed effort level and a local
mode near the highest observed effort level compatible with rational play.
Following, Schotter and Muller (2003), we call the former the drop-out effect
and the latter, the race-to-the-bottom effect.

A natural explanation for the drop-out and race-to-the-bottom effects is
risk-aversion. In a symmetric model, Fibich, Gavious, and Sela (2004) show
that a small increase in the risk-aversion parameter makes low valuations
contestants exert less effort and high valuation contestants exert more effort
in comparison with the risk-neutral benchmark. A small perturbation of the
risk-neutral model, however, does not change the qualitative features of the
equilibrium effort (bid) distribution: in particular, the distribution of effort
remains always decreasing for small values of the risk-aversion parameter. We
show that no matter how risk averse are the contestants, their equilibrium
effort density is decreasing if all of them have identical attitudes towards risk
with preferences represented by the constant absolute risk aversion function
(CARA).

In sum, risk-aversion per se, at least in the CARA case, is incapable of
explaining the local mode of high effort. Key ingredients to account for race-
to-the-bottom effect are the heterogeneity of the contestants (differences in
risk attitudes or in distributions of abilities/value for the prize) and there
being more than two contestants.

We show that the equilibrium distribution of effort in an asymmetric, but
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only two-contestant, contest is also decreasing. In accord with this finding is
the available experimental evidence by Kirchamp (2004) showing a negligible
race-to-the-bottom effect in two-player contests.

Related literature. Apart from the contributions mentioned above, we
will briefly mention some of the related others, clearly, not even attempting
to provide an adequate survey of the literature on tournaments and all-pay
auctions. Contests under complete information about individual valuations
with several participants were analyzed by Hillman and Riley (1989) and
Baye, Kovenock, and de Vries (1996): apart from knife-edge cases, the two
individuals with the highest values for the prize enter the competition, while
the rest drop out. Although the full information models might account for a
massive drop-out effect, it is hard to interpret the results as generating the
race-to-the-bottom effect. Besides, as follows from the examples mentioned
at the outset, it might be desirable – from a positive perspective – to leave
some uncertainty about rivals’ intentions in the model.

In all the literature known to the authors dealing with contests under
incomplete information, the contestants are either ex-ante identical, or there
are only two participants. The latter case with independent valuations was
studied by Amann and Leininger (1996), who, in particular, demonstrated
that distribution of effort of one of the contestants might have a mass point
at zero (provided the lowest possible valuation is zero), thus, generating a
drop-out effect. Lizzeri and Persico (1998) analyzed the two-person contest
with affiliated signals. The contests with ex-ante identical participants whose
valuations are affiliated were examined (in addition to the contributions men-
tioned earlier) by Krishna and Morgan (1997). The incomplete information
case with many symmetric participants independent signals was extended by
Gavious, Moldovanu, and Sela (2002) to allow for non-linear cost of effort,
and by Fibich, Gavious, and Sela (2004) to allow for a small degree of risk-
aversion. Notably, in the symmetric case it is possible as well to account for
the drop-out effect, as the equilibrium effort densities are infinitely high at
zero.

With the exception of the models that allow for affiliated signals (Krishna
and Morgan 1997, Lizzeri and Persico 1998) all the previous incomplete in-
formation all-pay auctions models are nested within our model. Moreover,
the mixed strategy equilibrium of the complete information models (Hillman
and Riley 1989, Baye, Kovenock, and de Vries 1996) can also be characterized
by our Proposition 2.

We present the model next, characterize the equilibrium in Section 2.1,
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providing sufficient conditions for its uniqueness in Section A.6, and formu-
late our main results in Section 3. Next, we solve for equilibrium in case the
values for winning are distributed uniformly with contestant-specific support
and provide some comparative statics for that case, see Section 4. The proofs
omitted in the text are in the Appendix.

2 The model

There are N ≥ 2 individuals competing for a prize. The prize is allocated
to the contestant who demonstrates the top performance or achieves the best
result. We assume that one’s performance fully reflects individual effort.
Simply put, effort is observable. The contestants have different values that
they associate with receiving the prize, or their desire to win. The payoff to
the winner, say, contestant k, who exerts costly effort b ≥ 0, is

uk (vk − b + w) ,

while the losers get uj(w − b), j 6= k, where w > 0 is the initial wealth
of a contestant, substantial enough, w > vi, so that a contestant is never
resource-constrained in choosing an effort (bid), the value of which is always
bounded by vi, her highest possible valuation of the prize. We assume the
contestants are weakly risk averse with ui : R → R+, twice differentiable,
strictly increasing and concave.

Before deciding on one’s effort, each contestant becomes aware of her
own desire to win, v, and, based on the observed characteristics a rival, i, she
forms a probabilistic prior with respect to the value, vi that the rival attaches
to winning, the value which is viewed as a random variable, Vi, by all the
contestants but i. Naturally, then, in the eyes of all contestants, values of the
rivals are distributed independently, but not necessarily identically, Vi ∼ Fi

on [v, vi].
We assume that each Fi is differentiable and that its derivative, the prob-

ability density function, fi, is continuous and is bounded away from zero for
all v ∈ [v, vi].

1

To choose the optimal level of effort, or, simply, a bid, b, any contestant
i has to maximize the payoff that will result from placing that bid,

Πi(b|vi) = Wi (b; b−i) ui (vi − b + w) + (1 − Wi (b; b−i))ui (w − b) , (1)

1We will consider examples in which the latter assumption is relaxed, but will maintain
it for the rest of the analysis.
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where Wi (·) is the probability of winning, which, in particular, is driven by
the effort levels chosen by the others, that is, their strategies.

A strategy for individual i is a Lebesgue–measurable function that maps
valuations into effort levels, bi : [v, vi] → R+. Athey (2001)’s results imply
existence of a Bayes-Nash equilibrium in non-decreasing strategies. Thus, we
restrict attention to equilibria in which contestants with higher valuations for
the prize expend (weakly) higher effort, or, simply, bid higher. Moreover, if a
contestant bids above zero, her strategy is strictly increasing in a Bayes-Nash
equilibrium in non-decreasing strategies, as follows from Lemma (16) in the
Appendix. This observation enables us to formulate inverse bid functions
that associate bid b with the valuation of the contestant who places that
bid. Clearly, in an asymmetric environment these functions might vary by
contestant.

Let the generalized inverse bid functions be defined as follows:

φi(b) = max (v, sup {v : bi(v) ≤ b}) , i = 1, . . . , N.

The generalized inverse bid satisfy the following properties: it agrees with
the inverse bid b−1

i whenever the latter is well defined; it is continuous2; and
it is differentiable almost everywhere since it is a bounded non-decreasing
function. Finally given these functions we can determine,

Fi(φi(b)) = Gi(b) ≡ Prob [bi(Vi) ≤ b] ,

the probability that contestant i bids at or below b. Then the probability
of winning by contestant i who bids b can be expressed as the product of
cumulative distributions of equilibrium bids,

Wi (b) ≡
∏

j 6=i

Gj(b).

2.1 Equilibrium

Fix the bidding behavior of all the contestants but i. To maximize her
payoff (1) , contestant i with valuation vi should choose b ≤ vi to equate the
marginal benefit from bidding b and the marginal cost (if such value b exists),

MBi (b) = MCi (b) , (2)

MBi (b) ≡ [ui(vi − b + w) − ui(w − b)] W ′
i (b)

MCi (b) ≡ u′
i(w − b) (1 − Wi (b)) + u′

i(vi − b + w)Wi (b)

2Lemma 17 in the Appendix, section A.3.
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where the marginal probability of winning is

W ′
i (b) =

∑

j 6=i

∏

k 6=i,j

Gk(b)gj(b).

Remark 1 Since contestants are weakly risk-averse, MBi (b) − MCi (b) is
strictly increasing in vi, for b > 0. In other words, Πi(b|vi) satisfies the strict
single-crossing property.

If the marginal benefit is below marginal cost for any choice of b ∈ (0, vi],
then contestant i with valuation vi should drop out, or choose bi (vi) = 0.

To derive the characterization of equilibrium, therefore, we need to iden-
tify the “active participants.” For this, given effort level b > 0 we define an
equilibrium set of contestants who choose this effort for some realizations of
their valuations for the prize,

J (b) = {j ∈ {1, .., N} |∃vj ∈ [v, vj] : bj (vj) = b} .

It is important to keep in mind that, in contrast with the symmetric model,
this set might not include all the contestants for some b > 0; in other words, it
might happen in an equilibrium that the contestants choose different bidding
intervals. It not hard to see, however, that for any bid b in the support
of equilibrium bids there should be at least two contestants who, for some
realization of their valuations, choose to bid b, in other words the set J (b)
always contains at least two elements. Naturally, if contestant j never exerts
as high an effort as some b > 0, so that her highest equilibrium bid, bj, is
strictly below b, then Gj (b) = 1.

If satisfied with equality, the system of the first order conditions (2) can
be re-arranged in the following form,

∑

j 6=i

gj (b)

Gj(b)
= Si (b) , i ∈ J (b) ; (3)

where gj(b) ≡ fj(φj(b))φ
′
j(b) is the probability density function of the bids

placed by contestant i and

Si (b) ≡
MCi (b)

Wi (b) (ui(vi − b + w) − ui(w − b))
> 0. (4)

Also, in an equilibrium it has to be the case that if contestant i with
valuation vi exerts effort b, then vi = φi (b) .
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By inspecting the first order conditions (3) , one can easily notice that
the right hand side, Si (b) , does not involve effort density functions for any
contestant, so the system of equations (3) is linear in gi (b) for any b > 0.
The following proposition provides a solution to the system in terms of bid
densities. These conditions are necessarily satisfied in an equilibrium.

Proposition 2 For almost all3 b > 0, the system of first order conditions
(3) can be represented as

gi (b) =

{

Gi(b)
(K(b)−1)

(

∑

j∈J(b)\{i} Sj (b) − (K(b) − 2)Si (b)
)

, i ∈ J (b)

0, otherwise
(5)

where K(b) = #J (b) is the number of contestants with a type who bids b.

This representation of the necessary conditions simplifies the problem of
finding an equilibrium in an asymmetric environment. Indeed, the derivative
of the inverse bid density, φ

′

i (b) = gi(b)
fi(φi(b))

of contestant i (when it exists)

is expressed in terms of own and rivals’ inverse bid densities, φj (b) , that
determine the corresponding terms Sj (b). Notice the term

∆Si (b) ≡
∑

j∈J(b)\{i}

Sj (b) − (K(b) − 2)Si (b)

is negative only if MCi (b) > MBi (b) , so that it is not optimal for contestant
of type vi to offer that bid. Moreover, as noticed before, K (b) ≥ 2. Thus,
the density is well defined.

Observe that necessary conditions (5) do not assure that bid functions
bi (vi) are continuous in an equilibrium. In the Appendix, section A.4, we pro-
vide a set of sufficient conditions for the continuity of equilibrium strategies
in case contestants have linear utility functions, maintaining the assumption
that their values can be drawn from different distributions. Along with the
continuity, conditions (5) coupled with the condition bi (vi) = bi fully deter-
mine a unique solution, see argument in the Appendix, section A.6. Clearly,
in those cases, necessary conditions (5) fully characterize the equilibrium.

Characterization of the equilibrium enables us to formulate the following
important properties of the contestants’ behavior at the lower bound of their
valuations.

3More exactly, (5) holds for all b > 0 where the inverse bid functions are differentiable
and the set of active contestants, J(b), is constant in some neighborhood of b.
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Proposition 3 All contestants choose zero as their lowest bid, bi(v) = 0 for
all i. Moreover, if v > 0 and bi(v) > 0 for some v then either

1. Gi(0) = 0 and limbց0 gi(b) = +∞ for all i or

2. Gk (0) = 0 for some k and Gj (0) > 0 for all j 6= k.

Proposition 3 says that only two scenarios are possible. Either a con-
testant is infinitely more likely to drop-out than to exert any given positive
effort level, though drop-out does not occur with positive probability, or ex-
actly N − 1 contestants drop-out (for some range of low valuations) in an
equilibrium. The proposition requires a contestant to participate actively,
i.e., bid a positive amount, for at least some valuations for the prize.

This finding suggests robustness of the result by Amann and Leininger
(1996) demonstrating possibility of drop-out behavior in the model with two
contestants. Also, drop-out behavior happens with positive probability un-
der complete information (Baye, Kovenock, and de Vries 1996). In those
equilibria, contestant j may never exert effort in (0, ej) while exerting zero
effort and an effort above ej with positive probability. Note that in that case
an equilibrium strategy is a map from the values to a distribution over the
set of bids and for the bids belonging to the support of a contestant’s mixed
strategy, condition (2) should be satisfied (with the probability of winning
re-defined correspondingly). However, as the first-order conditions of contes-
tant i may not hold with equality in a neighborhood of zero, which is the
lowest equilibrium bid, the proof of Proposition 3 can not be employed.4

The system (5) can be solved for equilibrium inverse bids. In general,
only numerical solutions can be obtained. Nevertheless, we derive closed-
form solutions for the case in which valuations are distributed uniformly
with the contestant-specific support, see Section 4. Moreover, we can use
the sign of the expression ∆Si (b) to construct an indicator of individual
participation. This enables us to derive the results in Section 3.1, describing
sufficient conditions for a complete drop-out of some contestants. Finally,
and – most importantly – characterization (5) provides a way to demonstrate
our main results resting on the shape of the effort density, in particular, the
sign of its derivative at the top bid. We identify cases in which that sign
is positive, that is, some of the contestants intensify their efforts provided
their valuation is close enough to the top, thus providing a rationalization for

4Under incomplete information, ∂
∂b

Π(b|φi(b)) = 0 for all b ≥ 0.
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the phenomena demonstrated experimentally by Schotter and Muller (2003)
and Noussair and Silver (2005), – the phenomena that can not be explained
either within a model with symmetric distributions of individual valuations,
or with two contestants only.

3 Empirical Predictions

3.1 Participation in Asymmetric Contests

It is known that either in symmetric or two-contestant asymmetric en-
vironments, the highest ability type of any contestant exerts the highest
equilibrium level of effort. In contrast, asymmetric environments with more
than two contestants may give rise to a complete drop-out behavior, that is,
in equilibrium a contestant exerts zero effort regardless of his valuation. If
contestants are risk-neutral, personal valuation attached to the prize can be
alternatively viewed as a reciprocal of one’s cost of effort, or just as individual
ability.

The following proposition states that if all the contestants are risk-neutral
and are likely to have high abilities; if among them there is a contestant i
whose highest possible ability is substantially below the average; and if any
highest-ability rival exerts the highest equilibrium effort level, then contes-
tant i should not participate in the contest at all, no matter how able he is
(or how much he desires the prize).

Proposition 4 Assume that contestants are risk-neutral. If

1. For all j, Fj first-order stochastically dominates U [0, vj];

2. There is an i such that the inequality v−1
i >

P
j 6=i v−1

j

N−2
holds;

3. For all j 6= i, φj(b) = vj;

Then bi(v) = 0 for all v ∈ [v, vi].

This proposition can be also used for cases in which some of the N − 1
never bid. In this case N has to be replaced with the number of active
contestants. In other words, the proposition can be applied to rule out par-
ticipation of several contestants in a consecutive manner.
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Proposition 4 has the following partial converse, which provides condi-
tions for participation. It establishes that common support for individual
abilities implies common bidding interval in an equilibrium, provided that
(1) one of the contestants, who share the same support, places the high-
est equilibrium bid when she has the highest possible ability; and (2) their
equilibrium strategies are continuous.

Proposition 5 Assume that the contestants are risk-neutral and assume val-
uations of contestants i and j have common support, that is, vi = vj. If
bi(vi) = b, then bj(vj) = b.

3.2 Main Results: Distribution of Bids under Asym-

metry

In the introduction we mentioned that the two-contestant model and the
symmetric model with many contestants, that were analyzed in the previous
literature, can be tackled within the current framework. Let us start with
these cases to assert that neither of them can generate workaholic behavior.
Indeed, the effort density is monotonically decreasing for each contestant
under symmetry or if there are two players only, simply meaning that higher
efforts are chosen less frequently by all participants.

Proposition 6 Assume that contestants are risk-neutral and at least one
of the following conditions is satisfied: (1) the distribution of abilities is
the same for all contestants (symmetric model); (2) there are only two con-
testants. Then, the equilibrium bid probability density function of any con-
testant is non-increasing.

We can even strengthen the previous finding by allowing the agents to be
risk averse. Provided the distribution of valuations is the same for all and
their risk attitudes are the same as well (and satisfy CARA), higher efforts
are still more rare in equilibrium, thus, eliminating the second “mode” of
the distribution of bids discussed in the experimental literature. The same
result is true in the presence of only two contestants with potentially different
coefficients of risk aversion.

Proposition 7 Assume contestants’ utility functions exhibit constant ab-
solute risk aversion and the ex-ante distribution of valuations is the same
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for all. Also, assume that at least one of the following conditions is satisfied:
(1) the risk-aversion parameter is the same for all contestants; (2) there are
only two contestants. Then, the equilibrium bid probability density function
of any contestant is non-increasing.

In contrast, in the presence of asymmetry competition for the prize might
become fierce. We start with the risk-neutral case in which distributions of
abilities differ across contestants, e.g., some might be perceived as “strong”
opponents, while the others are viewed as “weak”. Interestingly enough, it
is the “weak” contestant – the rivals of whom dismiss almost completely the
possibility of her having a high value for the prize, or of her being of the
top ability, – it is she who might race to the bottom. The ex-ante weak
contestant will do so, provided her ability is, in fact, very high, or close
to be the highest – exactly the case almost entirely “overlooked” by her
opponents. Provided they are competing mainly among themselves, almost
ignoring their weak rival (when placing high bids), it is in the interest of that
weak contestant to exert high effort as the chance of winning from doing
so for her is sufficiently high. Of course, the rivals are fully aware of the
equilibrium strategy of the weak contestant, but in their eyes the likelihood
of their opponent being very able and aggressive is sufficiently small, thus,
for each of the strong contestants, standing against other strong rivals is
relatively more important, and they, indeed, almost ignore the presence of
the weak. That is the core intuition behind the following proposition.

Proposition 8 Assume contestants are risk-neutral, there are more than
two contestants and, at least two of them have distinct distributions of abil-
ities. Then, a contestant’s effort density function may be increasing at high
effort levels.

In the section that immediately follows we illustrate this proposition with
an example and plot the equilibrium effort density of the weak contestant,
which in that case is, indeed, bimodal.

Next result demonstrates that if the contestants differ by their attitudes
towards risk, similar conclusion can be obtained. Here a weak contestant, –
in this case the contestant who is more risk averse – faces stronger rivals, who
are, say, risk-neutral. In this case, we show that the weaker one intensifies
her effort at higher valuations.
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Proposition 9 Assume contestants’ utility functions exhibit constant ab-
solute risk aversion and the ex-ante distribution of valuations is the same
for all. Also assume there are more than two contestants and, at least two
of them have distinct risk-aversion parameters. Then, a contestant’s effort
density function may be increasing at high effort levels.

Interestingly, if we look at a general case with risk-averse (not necessarily
CARA) contestants, the ‘weak’ agent is always more likely to choose high
effort levels.

Proposition 10 Assume contestant i is more risk averse than contestant
j and the highest equilibrium effort level of all contestants is b. Then there
exists δ > 0 such that for all 0 < ε < δ, Gi

(

b − ε
)

< Gj

(

b − ε
)

. Moreover,
Gi (ε) < Gj (ε) provided that5 Gi(0) = Gj(0) = 0.

Proposition 10 also says that the more risk-averse agent is less likely to
exert low effort levels, that is, for the tails of the effort distribution, the more
risk-averse agent is more aggressive than the less risk-averse agent.

So far, the behavior of the ‘weak’ agent at the high tail of the effort distri-
bution does not depend on wether the source of asymmetry is the difference
in risk-attitudes or if it is the difference in distributions of valuations. For
the lower tail of the effort distribution, however, the nature of the hetero-
geneity matters and this is the main contrast between Proposition 10 and
Proposition 11, which follows below.

Before comparing Propositions 10 and 11, let’s define formally what
means for a contestant to be ‘weak’ when agents are asymmetric with respect
the distribution of valuations: For any two distributions of abilities/valuations,
Fj and Fi distributed in the same support [v, v], we say that Fj strictly first-
order stochastic dominates Fi – equivalently, Fj ≻ Fi, when for all v ∈ (v, v),
we have that Fi(v) < Fi(v). As before, for risk-neutral contestants, when
Fj ≻ Fi, we refer to i and j as respectively the weak and the strong con-
testants.

5The condition Gi(0) = Gj(0) = 0 holds true, for example, whenever agents’ strategies
are continuous and, for any agent, there is another agent who has identical risk preferences,
that is, for any k there is l such that uk(·) = ul(·). Notice that this example allows for i

and j to have different preferences.
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Proposition 11 Assume agents are risk-neutral. If the distributions Fi and
Fj have the same support [v, v], Fj ≻ Fi, and fi(v) < fj(v) holds 6 then
Gj ≻ Gi.

Here, the probability that the weak contestant exerts effort above than
b is less than the probability that a strong contestant exerts effort above b.
In contrast to Proposition 10, the weak contestant’s probability of drop-out
(effort levels close to zero) is greater than the strong contestant’s drop-out
probability.

It is important to remember that although the weak contestant is more
likely to exert high effort at the top, that is, his effort density is increasing, it
is still below the (possibly decreasing) effort density of a strong contestant.
The next section illustrates this implication of Proposition 11.

3.2.1 Increasing Bid Densities: An Example

We want to demonstrate an example of an environment in which the
effort density of some contestants is increasing for high abilities, which can
not happen in a symmetric environment, or in a two-contestant contest.

Consider the following specification. Abilities are distributed on the unit
interval, [0, 1]. contestant 1’s ability is distributed according to

F1(φ1) = 2φ1 − φ2
1 (6)

and the ability of contestant j ∈ {1, 2} follows an uniform distribution, that
is

Fj(φj) = φj. (7)

We define the auxiliary function Q : [0, 1] −→ [0, 1] by

Q (v) =
1

v2

e2

e2/v
. (8)

The function Q is a bijection because, Q(0) = 0, Q(1) = 1 and Q′ > 0. Hence,
its inverse Q−1 exists and, it is differentiable in (0, 1]. In the Appendix, we
prove:

6Notice that Fj ≻ Fi implies the weak inequality fi(v) ≤ fj(v), the strict inequality is
needed only to simplify the proof.
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Proposition 12 The strategies b1(v) =
32 − 8x − 4x2 − x3

32

exp
(

4(x−1)
x

)

x3
and

bj(v) = b1(Q
−1(v)), j ∈ {2, 3} are a Bayes–Nash equilibrium for the contest

game.

The effort density of contestant 1 is,

g1 (b) = f1 (φ1(b)) φ′
1(b) =

f1 (φ1(b))

b′1(φ1(b))
=

φ1(b)
5

2
exp

(

4

φ1(b)
− 4

)

,

which is increasing for high effort levels: its derivative,

g′
1 (b) = φ′

1(b)
φ1(b)

4

2
exp

(

4

φ1(b)
− 4

)[

5 −
4

φ1(b)

]

,

evaluated in a neighborhood of b is positive, since φ′
1 > 0 and φ1(b) = 1.

Since contestants 2 and 3 have identical valuations distributions and their
equilibrium strategies are also identical, without any loss of generality we
shall, hereafter, refer to contestant 2 only instead of contestants 2 and 3.

Observe that the function Q maps that type of contestant 1 to the type
of contestant 2 who bids the same amount, that is, φj2(b) = Q(φ1(b)). is
Thus, the effort density of contestant 2 is,

g2(b) = f2 (φ2(b)) φ′
2(b) = Q′(φ1(b))φ

′
1(b)

We use a parametric plot, [x(v), y(v)] = [b1(v), g1(b1(v))], to display the
graph of the effort density of contestant 1 without solving explicitly for φ1(b).
In the same manner, we plot the density effort for contestants 2. Whereas the
density of contestant 1 increases for high effort levels corresponding to high
abilities realizations, the density of contestants 2 is decreasing. Also for high
effort levels, the density of contestant 1 is below the density of contestant 2,
which is depicted by the dotted line in Figure 1.
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Figure 1: Effort densities, g1(b) and g2(b), evaluated at high bids.

To illustrate Proposition 11 we display the cumulative effort densities and
show that G1 ≺ G2. The CDF of contestant 2 is depicted by the dotted line
in Figure 2.
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Figure 2: Effort CDFs, G1(b) and G2(b).

4 The Uniform Model

In this section we use the characterization of equilibrium derived in the
first section to explicitly solve for equilibrium in a model where individual
abilities are drawn from uniform distributions, Fi ∼ U [0, αi] for i = 1, . . . , N .

Albeit the distribution of abilities in the uniform model fails to satisfy
the assumptions of Proposition 20, we prove in the Appendix the following
result.

Proposition 13 Equilibrium bids are continuous in the uniform model.

Without any loss of generality, we assume that α1 ≥ α2 ≥ . . . ≥ αN and

introduce the auxiliary notation, κi ≡
P

j 6=i α−1
j −(N−2)α−1

iP
j 6=1 α−1

j −(N−2)α−1
1

.
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When all the other contestants always participate, a necessary and suffi-
cient condition for contestant i to always participate is κi > 0, which always
holds when contestants are not too asymmetric, because it is equivalent to:

∑

j 6=i α
−1
j

N − 2
> α−1

i . (9)

Also, in the case where all the others always participate, Proposition 4 implies
that if (9) is violated, no type of contestant i participates. These results also
carry to the more general case when just a subset of contestants participate.
In the uniform model, either a contestant always participates or, he never
participates. The set of active contestants is characterized by the following
proposition:

Proposition 14 Contestants i = 1, 2, . . . , K∗ always participate, while con-
testants i > K∗ do not participate. The number of active contestants is

K∗ = arg minK {κ(K) : κ(K) > 0}, where κ(K) ≡
PK−1

j=1 α−1
j −(K−2)α−1

KPK
j=2 α−1

j −(K−2)α−1
1

.

4.1 The Equilibrium

For simplicity, we compute explicitly the equilibrium profile of strategies
when all contestants participate, that is (9) holds for all i = 1, . . . , N . The
characterization of the equilibrium in the general case is almost identical as
in the case when all contestants participate, however additional notation is
required.

Proposition 15 The unique equilibrium strategy profile is given by

bi(v) =
N − 1
∑N

j=1 α−1
j

[

v

αi

]

1 + κ

κi for i = 1, . . . , N.

The lowest and highest equilibrium effort levels are b = 0 and b =
N−1PN
j=1 α−1

i

. The CDF of contestant i’s effort is,

Gi(b) =

[

∑N
j=1 α−1

j

N − 1
b

]

κi
1+κ

, (10)
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which is decreasing in αi since κi is increasing in αi and also
PN

j=1 α−1
j

N−1
b < 1

for any b ∈ [0, b]. Although in the uniform model the support of valuations
is not identical as required by Proposition 11, also here – a strong agent is
more likely to choose high effort levels than a weak one.

The interim and expected aggregate effort levels are:

R(v1, ..., vN) =
N − 1
∑

α−1
j

N
∑

i=1

[

vi

αi

]
1+κ
κi

and R(α1, ..., αN ) =
N − 1
∑

α−1
j

N
∑

i=1

∑

α−1
j − (N − 1)α−1

i

2
∑

α−1
j − (N − 1)α−1

i

.

Contestant i’s interim and expected payoffs are,

Πi(vi) =

[

αi −
N − 1
∑

α−1
j

]

[

vi

αi

]
1+κ
κi

, and Πi =

[

αi −
N − 1
∑

α−1
j

]

∑

α−1
j − (N − 1)α−1

i

2
∑

α−1
j − (N − 1)α−1

i

.

(11)

We also obtain the following comparative statics results. When i becomes
more likely to have a high ability (put simply, αi increases) and all the other
contestants remain active, i’s payoff increases. It may happen that, as αi

increases, ‘weak’ contestants drop out – in this instance, i’s payoff increases
continuously; however, it is not differentiable. We also show that i’s payoff
is decreasing in αj. All the proofs for these results are in the Appendix.

Figure 3 below illustrates the comparative statics results. It depicts the
contestants’ payoffs for N = 3, α1 = 6 and α2 = 3 as α3 increases. As in
Proposition 4, for low values of α3 contestant 3 drops-out and so her payoff
is zero. As α3 increases, contestant 3 starts participating and her payoff
increases. When α3 becomes sufficiently high, contestant 2, who is more
likely to have low valuations, drops-out.
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Figure 3: The contestants’ payoffs as functions of α3

5 Conclusions

Having characterized equilibrium in contests with many contestants, we
have shown that “weak contestants” might bid very aggressively provided
their valuation for winning is close to the top.

Indeed, if all contestants are risk neutral and if all of them, except one,
believe that their weak rival (‘underdog’) is very unlikely to have a high
valuation for the prize or be of a high ability, their equilibrium behavior
will be almost unaffected by the presence of the underdog, at least at the top
valuations, that is, they will compete mainly against each other. However, in
case the underdog does have a high ability, he has a decent chance of winning
by exerting high effort, and so he does, in equilibrium. Ironically, it is the
pessimistic belief about the abilities of this contestant, the belief shared by
his rivals, that endow the high ability underdog with informational rent that
makes the race to the bottom worthwhile.

We also show that a sufficiently risk averse (CARA) contestant facing
enough risk neutral rivals will bid aggressively at the top and, as in the
previous case, her bid density will be increasing at the top valuations.

Having suggested a possible explanation of the past experimental evi-
dence, our results offer directions for future experimental investigations.
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A Appendix

A.1 The System of First Order Conditions

Again, the bidding strategies of the contestants are denoted by bi :
[v, vi] → R+. For every bid b ≥ 0 denote the set of active contestants at
b, that is, contestants that choose this bid for some of their type realizations:

J (b) = {j ∈ {1, .., N} |∃vj ∈ [v, vi] : bj (vj) = b} ,

and write K(b) = #J(b) for the cardinality of J , the number of active con-
testants at b. Also consider the set of bids where the number of active
contestants does not change,

B =

{

b ∈ R++ :
∂

∂b
K(b) = 0

}

.

Proof of Proposition 2. Consider contestant i ∈ {1, .., N} . Fix the strate-
gies of other contestants, thereby determining set J (b) \{i} for any b. If at
some given b > 0 condition

[ui(vi − b + w) − ui(w − b)]
∑

j∈J(b)\{i}

∏

k 6=i,j

Gk(b)gj(b)+

− [u′
i(vi − b + w) − u′

i(w − b)]
∏

j∈J(b)\{i}

Gj(b) − u′
i(w − b) ≤ 0, i ∈ J(b) (12)

is satisfied with equality, then let bi (vi) = b. Otherwise, bi (vi) = 0.
As we restrict attention to non-decreasing strategies, the highest bid of

contestant i is the optimal bid for the highest type of that contestant, bi (vi) =
bi. In addition, there are at least two contestants, k, l whose highest types
place the highest equilibrium bid, bk = bl = maxi∈{1,..,N}

{

bi

}

. Then for any

b ∈ (0, bk], K(b) ≥ 2.
Secondly, for b ∈ bi([v, vi])\ {0}, the system (12) is satisfied as equality.

Rewrite it as
∑

j 6=i

gj(b)

Gj(b)
= Si (b) ,

23



for i ∈
{

j ∈ {1, .., N} |bi > 0
}

. Recall,

Si (b) ≡
Wi (b) u′

i(vi − b + w) + (1 − Wi (b)) u′
i(w − b)

Wi (b) (ui(vi − b + w) − ui(w − b))
> 0,

Wi (b) =
∏

j 6=i

Gj(b).

The system of equations is linear in
gj(b)

Gj(b)
that allows us to solve it as follows:

(

gj(b)

Gj(b)

)

i∈J(b)

= M−1 (Si (b))i∈J(b) , (13)

where M =











0 1 · · · 1
1 0 · · · 1
...

...
...

...
1 . . . 1 0











, (14)

Note that the inverse of the K by K matrix M , with K ≥ 2 is

1

K − 1











− (K − 2) 1 · · · 1
1 − (K − 2) · · · 1
...

...
...

...
1 . . . 1 − (K − 2)











.

Therefore, gi (b) = Gi(b)
(K(b)−1)

(

∑

j∈J(b)\{i} Sj (b) − (K(b) − 2)Si (b)
)

for b ∈ B.

A.2 Monotonicity Of Equilibrium Bid Functions

Let b a Nash equilibrium profile in non-decreasing strategies. For any
Borel set A ⊂ R, define µGi

(A) = Pr[bi(Vi) ∈ A] and µWi
(A) = Pr[maxj 6=i bj(Vj) ∈

A] =
∏

j 6=i Gj(A).
That is, µGi

(respectively µWi
) is the measure associated to the cumulative

probability distribution function, Gi (respectively Wi).

Lemma 16 The measure µGi
has no atoms at b > b.
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Proof. If positive mass of types of contestant i bids b then limeրb Wj (b) <
Wj (b) < Wj (b + δ) for any δ > 0 because of the tie braking rule – when a tie
happens, the object is randomly allocated, with equal probabilities, among
all contestants who exert the highest effort level. As a result, the left and
right derivatives ‘explode’, that is, W ′

j − (b) = W ′
j + (b) = +∞. Therefore,

the type of, say contestant j, who bids b in equilibrium will be strictly better
of by raising its bid marginally above b. The marginal cost of raising the bid,
MC(b) = u′

j(w − b) (1 − Wj (b)) + u′
j(vj − b + w)Wj (b) increases discontin-

uously, yet it remains bounded while the marginal benefit of increasing the
bid is unbounded, MB(b) = [uj(vj − b + w) − uj(w − b)] W ′

j (b) .
As a result of the above lemma, when v > φi(0), bids must be strictly

increasing and so the inverse bid functions are strictly increasing.

A.3 Continuity of The Generalized Inverse Bids

Lemma 17 For any contestant i, φi is continuous.

Proof. If φi were discontinuous at b > b then Gi would have an atom at b
contradicting Lemma 16. Hence, we must establish that φ is right continuous
at b. Suppose that φi fails to be right continuous at any b – that is, there is
a δ > 0 such that φi(b) < φi(b)+ δ < φi(b+ ε) for any ε > 0. In other words,
type φi(b) + δ bids strictly above b and strictly below b + ε for any ε > 0,
which is a contradiction.

A.4 Continuity of Equilibrium Strategies

In this section we offer sufficient conditions for the continuity of equilib-
rium strategies in case contestants have linear utility functions, maintaining
the assumption that their values can be drawn from different distributions.
For risk-neutral environments, we can interpret vi both as i’s ability, or the
inverse of the cost of effort, and as her value of winning.

We will start with a lemma implying that the probability of winning for
each contestant can not be constant over any open interval included in his
equilibrium bidding range.

Lemma 18 The support of µWi
has no gaps.

Proof. If there exist: α < β, 0 < ε < α−β
4

such that α − ε ∈ supp(µWi
),

β+ε ∈ supp(µWi
) and (α, β)

⋂

supp(µWi
) = ∅ then contestant i will not place
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any bid in (α, β). As a result, (α, β)
⋂

supp(µWj
) = ∅ and, also contestant

j, where j 6= i, will not bid in (α, β). In sum, no contestants will bid in the
interval (α, β). Consider the type vj who bids above and closest to β (if this
type is not well defined, consider any type who bids arbitrarily close to β).
This type has strict incentives to bid below β.

A gap in the support of µGi
corresponds to a jump in the equilibrium

bidding strategy of contestant i. For the two-contestant case, µGi
≡ µWj

for
j 6= i. Therefore, for N = 2, the above lemma implies that the equilibrium
bids are continuous. For N ≥ 3 however, the above reasoning does not rule
out gaps in the support of Gi.

Proposition 19 Let all N contestants be ex-ante identical, with their abil-
ities being independently and identically distributed, then equilibrium strate-
gies are continuous.

Proof. Assume that a symmetric equilibrium equilibrium strategy b(·) is
discontinuous at some valuation v∗. Define e = limvրv∗ and e = limvցv∗ . In
this equilibrium, no contestant exerts effort in the non-empty, open interval
(e, e). Hence, the winning probability of any contestant, W (·), is constant
within this interval and that contradicts Lemma 18

Next, we adapt an argument of Lebrun (1999) to derive a sufficient con-
dition for the continuity of equilibrium strategies.

Proposition 20 Assume the contestants are risk neutral. Equilibrium strate-
gies are continuous at v and if either:

1. for all contestants,
Fi(v)

v
is strictly decreasing in v; or

2. for all contestants,
Fi(v)

v
is strictly increasing;

then equilibrium strategies are continuous.

Proof. We shall write Wi(b) = µWi
((−∞, b]) and Gi(b) = µGi

((−∞, b]).
In words, Wi(b) is the probability that contestant i wins when she bids b
and Gi(b) is the probability that she bids at or bellow b, that is Wi(b) =
∏

j 6=i Gj(b) and Gj(b) = Fj(φj(b)).
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Lemma 21 Lebrun (1999) If bids have discontinuities then the there is a
minimal interval (β, β) with the property that for contestant, say i, limvրvi

bi(v) =

β < β = limvցvi
bi(v), and contestants j 6= i either bid continuously in the

interval or they do not bid in it.

Proof. Assume that contestant i’s bid function jumps at vi: b+
i = limvցvi

bi(v)
, b−i = limφiրvi

bi(v) and b−i < b+
i . Notice that the type vi must be indifferent

between bidding b−i and b+
i :

vi Wi(b
−
i ) − b−i = vi Wi(b

+
i ) − b+

i =⇒ △Wi =
△ b

vi

, (15)

Since both b−i and b+
i are best responses, for any b ∈

(

b−i , b+
i

)

:

vi Wi(b
−
i ) − b−i ≥ vi Wi(b) − b =⇒ Wi(b) − Wi(b

−
i ) ≤

b − b−i
vi

(16)

vi Wi(b
+
i ) − b+

i ≥ vi Wi(b) − b =⇒ Wi(b
+
i ) − Wi(b) ≥

b+
i − b

vi

(17)

The probability Wi(b) − Wi(b
−
i ) corresponds to the event that all con-

testants other than i bid in the interval (b−i , b]. Analogously, Wj(b)−Wj(b
−
i )

corresponds to the event that all contestants other than j bid in the interval
(b−i , b], however since i does bid in the range (b−i , b+

i ), Wj(b)−Wj(b
−
i ) corre-

sponds to the event that all contestants other than j and i bid in the interval
(b−i , b]. Clearly then, the inequality Wi(b) −Wi(b

−
i ) ≥ Wj(b) −Wj(b

−
i ) holds

true. And as a result,

Wj(b) − Wj(b
−
i ) ≤

b − b−i
vi

(18)

If there is at least one bid b ∈
(

b−i , b+
i

)

such that b is the best response
for some type of contestant j, say vj:

vj Wj(b
−
i ) − b−i ≤ vj Wj(b) − b =⇒ Wj(b) − Wj(b

−
i ) ≥

b − b−i
vj

(19)

Combining the last two equations:

b − b−i
vi

≥ Wj(b) − Wj(b
−
i ) ≥

b − b−i
vj

, (20)

and therefore vi ≤ vj. Put simply, we proved an useful auxiliary result:
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Lemma 22 (Lebrun 1999) Whenever contestant j bids in the gap of i’s bids
then j’s valuation must be equal or higher than the valuation of i at which
i’s bid jumps.

If the bid function of j also jumps at vj, say from b−j to b+
j and there is an

overlap of gaps, (b−i , b+
i )
⋂

(b−j , b+
j ) 6= ∅, a variation of the above argument

shows that vj ≤ vi. Therefore, if such overlap existed, it must be vi = vj.
Let’s assume the existence of such overlap, which implies vi = vj. Without

loss of generality we take b−j ∈
(

b−i , b+
i

)

. In this case, since

b−j − b−i
vi

≥ Wi(b
−
j )−Wi(b

−
i ) ≥ Wj(b

−
j )−Wj(b

−
i ) ≥

b−j − b−i
vj

=
b−j − b−i

vi

, (21)

we must also have that Wi(b
−
j ) − Wi(b

−
i ) = Wj(b

−
j ) − Wj(b

−
i ), which implies

that contestant j also does not bid in (b−i , b−j ). It follows then that b−j is
an isolated point in the support of the bid distribution of j, Gj. And this
implies that a positive mass of types of j bid b−j but that contradicts the fact
Gj is non atomic.

In sum, since gaps of bids don’t overlap. Two gaps are either disjoint or
ordered by inclusion. Therefore, there exists a minimal gap that does not
contains any other gap.

Denote the minimal gap by
(

β, β
)

, and let J be the set of active con-

testants who bid continuously in the range
(

β, β
)

. While, contestants {1, . . . , N} \J

do not bid in the range
(

β, β
)

.

Lemma 23 For any i, the function Wi is differentiable almost everywhere
and for all b ∈

[

β, β
]

, the right and left derivatives, W ′
i +(b) and W ′

i−(b),
exist.

Proof. We have that: Wi =
∏

j 6=i Fj(φj(b)) and for all j, φj is differentiable
almost everywhere and, Fj is differentiable. Hence, Wi is differentiable almost
everywhere. A lemma of Tsirelson (2000) establishes that 1

Wi
is convex in

(

β, β
)

and therefore its right and left derivatives always exist in
(

β, β
)

. By
the chain rule, the right and left derivative of Wi always exist since, the
reciprocal is a smooth function in R\ {0}.
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For b ∈
(

β, β
)

where Wi is differentiable, we have that:

W ′
i (b) =

∑

j 6=i

gj(b)
∏

k 6=i,j

Gk(b) =
∑

j∈J\{i}

gj(b)
∏

k 6=i,j

Gk(b) =

=
∑

j∈J\{i}

fj(φj(b))φ
′
j(b)

∏

k 6=i,j

Fk(φk(b)) =

=
∑

j∈J\{i}

∑

k∈J(b)\{j}
Fk(φk(b))

φk(b)
− (K(b) − 2)

Fj(φj(b))

φj(b)

(K(b) − 1)Fi(φi(b))
=

=

∑

j∈J(b)
Fj(φj(b))

φj(b)

(K(b) − 1)Fi(φi(b))
if i /∈ J and (22)

=
1

φi(b)
if i ∈ J .

The passage from the second to the third line in (22) follows from the char-
acterization in (2).

Assume that the minimal gap corresponds to the jump of contestant i’s
bid at vi. Optimality requires that:

W ′
i +(β) ≤

1

vi

≤ W ′
i−(β) (23)

and so,
∑

j∈J

Fj(φj(β))

φj

(

β
) ≤ (K(b) − 1)

Fi

vi

≤
∑

j∈J

Fj(φj(β))

φj

(

β
) (24)

Since i /∈ J , Fi(φ(b)) is constant for bids in
[

β, β
]

.

Notice that equation (24) can not hold true if
Fj(y)

y
is strictly decreasing

in v for all j. In contrast, when
Fj(y)

y
is strictly decreasing, equation (24)

hold true and moreover, the winning probability Wi is convex in
(

β, β
)

and
in this instance, the existence of gaps can not be ruled out by this result.

We re-write equation (24) as,

∑

j∈J

Fj(φj(β))

φj

(

β
) − (K(b) − 1)

Fi

vi

≤ 0 ≤
∑

j∈J

Fj(φj(β))

φj

(

β
) − (K(b) − 1)

Fi

vi

, (25)

When β > 0 then the left-had size inequality in (25) must be binding. The
left-hand side is always non-positive. If it were negative, contestant i would
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not bid below β because by continuity,
∑

j∈J

Fj(φj(β))

φj(β)
− (K(b) − 1)Fi

vi
< 0

implies
∑

j∈J

Fj(φj(β−ε))

φj(β−ε)
− (K(b)−1)

Fi(φi(β−ε))

φi(β−ε)
and so, φ′

i(β−ε) < 0 for some

ε > 0.
Moreover, it can not be the case that, β = 0. As the next section shows,

in equilibrium, any contestant with the lowest valuation does not bid above
zero and so, we have that vi > v. If it were the case that β = 0, by Lemma

22, for any 0 < b < β and contestant j ∈ J(b), φj(b) > vi which can not hold.
Because, it would imply limbց0φj(b) = v ≥ vi, which contradicts vi > v.

Also, the left-hand size inequality in (25) is always binds. Since the
bidding function of any contestant j who bids in the gap ( j ∈ J(β) is
continuous at β, j’s marginal probability of winning must be also continuous
at β since, Wj(b)

′ = 1
φj(b)

.

The marginal winning probability is given by

W ′
j(b) =

∑

l 6=j
l∈J(b)

gl(b)
∏

k 6=l
k 6=j

Gk(b),

and since gi(b) = 0 for b ∈
(

β, β
)

and Wj is continuous at β it follows that
the density of bids of contestant i must also be zero at the upper boundary
of the gap, gi(β) = 0. This is equivalent to the right-hand inequality in (25)
being satisfied as equality.

Since both inequalities in (25) are binding, when all
Fj(v)

v
are non-

increasing (or if all ratios are non-decreasing), then
Fj(φj(b))

φj(b)
must be constant

for all b ∈ (β, β) and j ∈ J(b).

A.5 The Lowest Equilibrium Bid

Lemma 24 For all i = 1, . . . , N , bi(v) = 0.

Proof. Assume that for bi(v) = β > 0. Since the equilibrium is monotone,
the probability contestant j 6= i wins by bidding at or below β is zero. As
a result, either bj(v) = 0 or bj(v) ≥ β. In sum, Gj(β) = Gj(0) for j 6= i
(Gi(β) = Pr[bi(V ) < β] since Gi is non-atomic). Now, if Gj(β) = Gj(0) > 0,
for all j 6= i, then Wi(β − ε) = Wi(β) for some ε > 0. Therefore, bidding
β − ε yields a higher payoff than bidding β. On the other hand, when
Gj(β) = Gj(0) = 0, for some j, then Wi(β) = 0 and so, bidding zero yields
a higher payoff than bidding β.
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A.6 Uniqueness

Let φ(b) = (φ1(b), . . . , φ2(b)) and write,

Si(b, φ) ≡
u′

i(w − b)
(

1 −
∏

j 6=i Fj(φj)
)

+ u′
i(φi − b + w)

(

∏

j 6=i Fj(φj)
)

∏

j 6=i Fj(φj) (ui(φi − b + w) − ui(w − b))
.

Proposition 25 Assume that: for all i, bi is continuous, fi is continuous
and uniformly bounded above zero in its support, [v, v]; then, the system of
differential equations,

∂

∂b
φi =

∏

j 6=i Fj(φj)

fi(φi)

[

∑

j 6=i

Sj(b, φ) − (N − 2)Si(b, φ)

]

, i = 1, . . . , N ,

has a unique solution that satisfies the terminal condition, φ(b) = (v, . . . , v).

Proof. There is a neighborhood of
(

b, φ(b)
)

such that the system satisfies
the Lipschitz condition because, for all i: fi is continuous and bounded away
from zero and; Si is continuous in (b, φ) and bounded in a small neighborhood
of
(

b, φ(b)
)

. Consequently, the solution φ(b) is locally (restricted to this
neighborhood) unique.

Furthermore, as long as φi(b) > v for all i, there is a neighborhood of
(b, φ(b)) where the Lipschitz condition is satisfied. Therefore, φ(b) can be
further extended by continuity, in a unique way, from b to b where, b is
defined as the largest b < b such that there is at least one contestant, say k,
such that φk(b) = v. Lemma 24 above establishes that b = 0 and that allow us
to pin-down the value of b using the condition, φk(0) = v. It is important to
notice that there is no guarantee that the above unique solution corresponds
to an equilibrium. For example, it is conceivable that φ′(b) < 0 for some b
and i. One needs to prove that all contestants are active in order to show that
the above solution corresponds to an equilibrium, that is, J(b) = {1, . . . , N}
for any b ∈ (0, b). Indeed, since for any contestant i, vi = v, Proposition
5 implies that bi(v) = b. In addition, since strategies are continuous (by
assumption) and strictly increasing, for any b ∈∈ (0, b) and any i, there is v
such that bi(v) = b.

A.7 No Atoms at Zero

Proof of Proposition 3. First, the lowest effort should be zero by the
Lemma 24. Since the winning probabilities might be zero at b = 0, the effort
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densities may ‘explode’ at the lowest effort level. Clearly, there should be
at least one contestant that does not choose b = 0 with a strictly positive
probability. Call this contestant k. Consider a pair of contestants i, j who are
different from k. For these contestants the winning probability approaches
zero as b → 0 in the presence of contestant k. By definition of winning
probability, we have the following identity Wi(b)Gi(b) = Wj(b)Gj(b), so

lim
bց0

Gj(b)

Gi(b)
= lim

bց0

Wi(b)

Wj(b)
= lim

bց0

W ′
i (b)

W ′
j(b)

where the last equality follows from the L’Hôpital’s Rule. Using the first
order conditions (2)

lim
bց0

W ′
i (b)

W ′
j(b)

=
u′

i(w)

ui(φi(0) + w) − ui(w)

uj(φj (0) + w) − uj(w)

u′
j(w)

< ∞,

since φi and φj are right continuous, φi ≥ v, φj ≥ v and, v > 0 by assumption.
As a result,

lim
bց0

Gj(b)

Gi(b)
=

u′
i(w)

ui(φi(0) + w) − ui(w)

uj(φj (0) + w) − uj(w)

u′
j(w)

< ∞. (26)

It follows that only two scenarios are possible. First, i and j start bidding
at zero, so that Gi (0) = Gj (0) = 0. Second, for both Gi (0) > 0, Gj (0) > 0,
so that both bid distributions have an atom at zero. As our choice of i and
j not k was arbitrary, either N − 1 contestants choose zero bid with positive
probability or none of them does.

A.8 Participation Results

Proof of Proposition 4. In the case where the contestants are risk neutral
the system of first order conditions admits the following solution for almost
all b ∈

⋂N
i=1 bi([v, vi])

gi (b) =

∑

k 6=i
Gk(b)
φk(b)

− (N − 2)Gi(b)
φi(b)

(N − 1)
∏

j 6=i Gj (b)
, (27)

indeed, in this case Si (b) = 1
vi

Q
j 6=i Gj(b)

.
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As Fj first-order stochastically dominates U [0, vj] for all j, it follows

that

P
j 6=i

Fj(φj)

φj

N−2
<
P

j 6=i v−1
j

N−2
, which implies that

∑

j 6=i
Gj(b)

φj(b)
< (N − 2) 1

vi
, and,

therefore, the highest ability type of contestant i will not bid b > 0 since his
first-order condition is negative, so bi(vi) = 0. Moreover, since the equilib-
rium is monotone, bi(v) = 0 for all v.
Proof of Proposition 5. If bj(vj) = β < b and bi(vi) = b then, by revealed
preferences, it must be that vjWj(β) − bj(vj) ≥ vj − b = vi − b > viWi(β) −
bj(vj) > viWj(β)−bj(vj) = vjWj(β)−bj(vj) since Wj(bj(vj)) 1 = Wi(β)Gi(β)
. A contradiction.

A.9 Proofs of the Main Results

A.9.1 Ex-ante Asymmetry

Proof of Propositions 6 and 8.

Assume all contestants are bidding in the same interval.
When all the contestants have identical distributions, equation (27) reads:

g (b) =

G(b)
φ(b)

(N − 1)G (b)N−1
=

1

(N − 1)φ (b) G (b)N−2
.

Note that both φ and G are increasing in b, so g must be decreasing in b.
Allowing for different distributions and setting N = 2, equation (27) give

us,

gi (b) =

Gj(b)

φj(b)

Gj (b)
=

1

φj (b)
,

so the density for i = 1, 2 is decreasing as well. This completes the proof of
Proposition (6) . Next,

g′
i (b) =

∑

k 6=i gk(b)
φk(b)−Gk(b)/fk(φk(b))

(φk(b))2
− (N − 2)gi(b)

φi(b)−Gi(b)/fi(φi(b))

(φi(b))
2

(N − 1)
∏

j 6=i Gj (b)

−

∑

k 6=i
Gk(b)
φk(b)

− (N − 2)Gi(b)
φi(b)

(N − 1)
(

∏

j 6=i Gj (b)
)2

∑

j 6=i

∏

k 6=i,j

Gk(b)gj(b).
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Then

g′
i

(

b
)

=
1

N − 1

(

∑

k 6=i

gk(b)
v − 1/fk (v)

v2 − (N − 2)gi(b)
v − 1/fi (v)

v2

)

−
1

N − 1

1

v

∑

j 6=i

gj(b)

Also,

gj(b) =
1

(N − 1)v
, for all j,

so

g′
i

(

b
)

=
1

(N − 1)2v2

(

∑

k 6=i

(v − 1/fk (v)) − (N − 2) (v − 1/fi (v)) − (N − 1) v

)

=
1

(N − 1)2v2

(

N − 2

fi (v)
−
∑

k 6=i

1

fk (v)
− (N − 2)v

)

(28)

which is positive if fi(φ) is sufficiently small (relative to fk(φ)).
Proof of Proposition 11.

1. Assume that Gi and Gj cross or are tangent at some point in the interior
of support of equilibrium effort levels, b∗ ∈ (0, b). In this case, it follows
that Gi(b

∗) = Gj(b
∗) together with Fj ≻ Fi imply that φi(b

∗) < φj(b
∗).

Moreover, from Gi(b
∗) = Gj(b

∗), φi(b
∗) < φj(b

∗), and the characteriza-
tion of the effort densities (27), it follows that gi(b

∗) < gj(b
∗). In sum,

Gi and Gj can not be tangent at any b ∈ (0, b) and moreover, if Gi and
Gj cross then Gj must intersect Gi from below.

2. At the boundaries of the support of the equilibrium effort levels, 0
and b, the distributions of effort may be tangent. In particular, a
direct inspection of (27) reveals that the they are tangent at b, that
is, Gi(b) = Gj(b) = 1 and gi(b) = gj(b), where b = bi(v) = bj(v) as
established by Proposition 5. These equalities and the expression for
the derivative of the effort density, (5), yield g′

i(b) ≥ g′
j(b), if and only

if, fi(v) ≤ fj(v). But, Fj ≻ Fi implies fi(v) ≤ fj(v). Moreover, by
assumption fi(v) < fj(v) and therefore g′

i(b) > g′
j(b). As a result, there

is an δ > 0 such that for any ε < δ, gi(b − ε) < gj(b − ε). This last
result implies that Gi(b − ε) > Gj(b − ε). Put simply, also at the top
b, Gj must intersect Gi from below.
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The conclusions of 1 and 2 above imply that Gi and Gj can never intersect
in the interior of the support and, Gi is always above Gj.

A.9.2 Different Attitudes Towards Risk

Proof of Propositions 7 and 9. In the model with CARA agents, ui(x) =

−
exp(−ρix)

ρi

. To avoid cumbersome notation, we present the proof for the

case in which all the agents bid in the same interval. For this environment,
(4) becomes,

Si (b) =
u′

i(w − b) (1 − Wi (b)) + u′
i(vi − b + w)Wi (b)

Wi (b) (ui(vi − b + w) − ui(w − b))

=
ρi

Wi (b)

(

1

(1 − e−ρiφi(b))
− Wi (b)

)

, (29)

so, by proposition 2,

gi (b) =
Gi(b)

N − 1

(

∑

j 6=i

Sj (b) − (N − 2) Si (b)

)

=

=
Gi(b)

(N − 1)

{

∑

j 6=i

ρj

Wj (b)

(

1

1 − exp (−φjρj)
− Wj (b)

)

(30)

− (N − 2)
ρi

Wi (b)

(

1

1 − exp (−φiρi)
− Wi (b)

)}

When N = 2, this reduces to:

gj (b) =
ρi

1 − exp(−ρiφi(b))
− ρiGj (b) , i 6= j (31)

Since both φ(·) and Gj(·) are increasing in b, it follows that gj is decreasing
in b. This proves half of Proposition 7.

When agents are symmetric with respect to risk aversion parameter, that
is, when ρi = ρ for all i ∈ {1, .., N}, then in a symmetric equilibrium, inverse
bids are the same, φi = φ, and so is the effort density, gi = g for all i ∈
{1, .., N} . Then (30) reduces to:

g (b) =
ρ

[1 − exp(−ρφ(b))] (N − 1)GN−2 (b)
−

ρG (b)

N − 1
. (32)
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Once more, since both φ(·) and G(·) are increasing in b, it follows that g is
decreasing in b. This concludes the proof of Proposition 7.

To prove Proposition 9 we present conditions under which the density of
effort is increasing in a neighborhood of the highest equilibrium effort. For
than note that by (29)

S ′
i (b) = −

ρi

Wi (b)
2

∂Wi(b)
∂b

1 − 1
exp(ρiφi(b))

−
ρ2

i

Wi (b)

∂φi(b)
∂b

exp (ρiφi (b))
(

1 − 1
exp(ρiφi(b))

)2 .

Given the definition of the winning probability of contestant i and (33),

W ′
i

(

b
)

=
∑

j 6=i

∏

k 6=i,j

Gk

(

b
)

gj

(

b
)

=

=
∑

j 6=i

gj

(

b
)

= Si

(

b
)

.

Also, by definition of gi, we have ∂φi(b)
∂b

=
gi(b)
f(φ)

, therefore,

S ′
i

(

b
)

= −
(

exp
(

ρiφ
))

S2
i

(

1 +
gi

(

b
)

f
(

φ
)

)

using the identity,
1

1 − ρi

Si(b)+ρi

= exp
(

ρiφ
)

,

we have

S ′
i

(

b
)

= −

(

1 +
gi

(

b
)

f
(

φ
)

)

(

Si

(

b
)

+ ρi

)

Si

(

b
)

.

By first order conditions (3) ,

∑

j 6=i

g′
j

(

b
)

= S ′
i

(

b
)

+

(

∑

j 6=i

gj

(

b
)

)2

= Si

(

b
)2

−

(

1 +
gi

(

b
)

f
(

b
)

)

(

Si

(

b
)

+ ρi

)

Si

(

b
)

= −Si

(

b
)

(

gi

(

b
)

f
(

b
)

(

Si

(

b
)

+ ρi

)

+ ρi

)
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It follows that

(N − 1) g′
2

(

b
)

= −S1

(

b
)

(

g1

(

b
)

f
(

b
)

(

S1

(

b
)

+ ρ1

)

+ ρ1

)

< 0

(N − 2) g′
2

(

b
)

+ g′
1

(

b
)

= −S2

(

b
)

(

g2

(

b
)

f
(

b
)

(

S2

(

b
)

+ ρ2

)

+ ρ2

)

Therefore,

g′
1

(

b
)

= −S2

(

b
)

(

g2

(

b
)

f
(

φ
)

(

S2

(

b
)

+ ρ2

)

+ ρ2

)

+
(N − 2)

(N − 1)
S1

(

b
)

(

g1

(

b
)

f
(

φ
)

(

S1

(

b
)

+ ρ1

)

+ ρ1

)

Note that if ρ2 = 0, then S2

(

b
)

= limρi→0
ρi exp(−ρiφ)

1 − exp(−ρiφ)
= 1

φ
, also g2

(

b
)

=

S1(b)
(N−1)

, so

g′
1

(

b
) (N − 1)

(N − 2)
= S1

(

b
)

(

S1

(

b
) g1

(

b
)

f
(

φ
) + ρ1

(

g1

(

b
)

f
(

φ
) + 1

)

−
1

φ
2
(N − 2)

)

,

which is positive, provided N is large enough or ρ1 is sufficiently big. Note
also, that the latter does not prevent the first contestant from participating,
as his effort density at the top is still positive (recall Si

(

b
)

is decreasing in
ρi)

g1

(

b
)

= S2

(

b
)

−
(N − 2)

(N − 1)
S1

(

b
)

≥
S2

(

b
)

(N − 1)
=

1

φ (N − 1)
≥ 0,

which is consistent with him bidding at the top. This concludes the proof.

Proof of Proposition 10.

1. To prove the first assertion, which echoes Fibich, Gavious, and Sela
(2004), let us evaluate the necessary conditions (5) b = b, noting that
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Wi

(

b
)

= 1 for all i,

gi(b) =
1

N − 1

[

∑

j 6=i

Sj

(

b
)

− (N − 2)Si

(

b
)

]

(33)

Si

(

b
)

=
u

′

i

(

v − b + w
)

ui

(

v − b + w
)

− ui

(

w − b
) (34)

Without loss of generality we can normalize the utility functions of i
and j such that u

′

i

(

v − b + w
)

= u
′

j

(

v − b + w
)

and ui

(

v − b + w
)

=

uj

(

v − b + w
)

. As i is more risk averse than j, ui is a concave trans-
formation of uj, so after the transformation ui (x) ≤ uj (x) for any x,
in particular, ui

(

w − b
)

< uj

(

w − b
)

. It follows that Si

(

b
)

< Sj

(

b
)

,

so gi(b) > gj(b), as required.

2. By (26),

lim
bց0

Gj(b)

Gi(b)
=

u′
i(w)

ui(v + w) − ui(w)

uj(v + w) − uj(w)

u′
j(w)

Normalizing the Bernoulli functions, again, such that u′
i(w) = u′

j(w)
and ui(w) = uj(w), and given that i is more risk averse, ui(v + w) ≤

uj(v + w), so limbց0
Gj(b)

Gi(b)
≥ 1, as required.

A.10 Derivation of Examples

Sketch of the Proof of Proposition 12. It suffices to establish that the
inverse bid functions satisfy the following system of differential equations:

φ′
1(b) =

φ1(b)

(2 − 2φ1(b))φ2(b)2

φ′
2(b) =

2 − φ1(b)

φ1(b)φ2(b)

It is easy to show that using the identities Q(φ1(b)) = φ2(b) and bj(φj(b)) = b,
j = 1, 2. The complete proof is available on request.
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A.10.1 Continuity of bidding function for the Uniform Model

Proof of Proposition 13. As in the proof of Proposition 20, consider a
minimal gap where contestant i bids discontinuously. From (24), we have that
∑

j∈J α−1
j = (K − 1)α−1

i , where K is the number of active contestants in the
minimal gap. The first-order condition of contestant i implies that φ′

i(b) = 0
for b ∈ (β−ε, β)∪ (β, β +ε), for some ε > 0. This is so because, in this range
of bids on a neighborhood of the exterior boundary of the minimal gap, the
number of active contestants is K +1, and so K(b)−2 = K +1−2 = K −1.
But φ′

i = 0 on a neighborhood of the exterior boundary of the minimal gap
contradicts that φi is strictly increasing in this neighborhood.

A.10.2 Participation Results for the Uniform Model

Proof of Proposition 14. We want to establish, for the uniform model,
that:

1. if bi(αi) > 0 then bi(αi) = b;

2. if bi(αi) = b and aj ≥ ai then bj(αj) > 0;

3. either bi(v) > 0 for all v > 0 or bi ≡ 0.

Assume that 1 does not hold. Let i ∈ I ≡ arg max
{

bi(αi) : bi(αi) < b
}

.

Let J denote the subset of contestants who bid in
(

bi(αi), b
]

and K = #J
the number of such contestants. By (22), for any bid b in this interval,

i’s marginal probability of winning is:
P

j∈J α−1
j

K−1
. Furthermore, for it to be

optimal that i does not bid in the interval, it must be that,

∑

j∈J

α−1
j < (K − 1)α−1

i for all i ∈ I. (35)

Some additional notation is required: let i∗ ∈ arg min {αi : i ∈ I} and L =
#I. The previous equation implies

∑

j 6=i∗

j∈J∪I

α−1
j < (K + L − 2)α−1

i∗ ⇔ φi∗(bi(αi) − ε) < 0, for some ε > 0, (36)

which contradicts that bids are non-decreasing.
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Part 2 follows immediately from a revealed preference argument: If bi(αi) >
bj(αj) = 0 then j’s payoff is zero while i’s payoff is positive. Nevertheless
since αj ≥ αi, contestant i can guarantee a positive payoff by bidding bi(αi).

Assume that part 3 does not hold. Therefore, it must be that there is a
v∗ > 0 such that bi(v) = 0 for v < v∗ and bi(v) > 0 for v > v∗. In other
words, 1 > Gi(0) > 0 or equivalently,

lim
bց0

φi(b) = v∗ > 0.

From the system of first-order conditions, the following relation can be ob-
tained:

∀i, j ∈ J(b),
φ′

i(b)

φi(b)
= Cij

φ′
j(b)

φj(b)
,

where Cij > 0 is a constant. The solution to the system of ordinary differen-
tial equations with initial condition

(

φj(b
)

= (αj)j∈J(b) is unique. Integrating
the above equation yields,

log(φi(b)) = Cij log(φj(b)) + C,

where C is a constant. Hence, limbց0 φj(b) = 0 if and only if limbց0 φi(b) = 0.
In sum, whenever one of the active contestants bids zero with positive proba-
bility, all the other contestants bid zero with positive probability. Therefore,
Wi(0) > 0 and contestant i with valuation v∗

i > 0 would obtain a positive
payoff by biding ε > 0.

A.10.3 Aggregate Effort and Payoffs in the Uniform Model

The aggregated effort (revenue) is simply,

R(φ1, ..., φN ) =
N
∑

i=1

bi(φi) =
N − 1
∑

α−1
j

N
∑

i=1

[

φi

αi

]
1+κ
κi

and so, the expected aggregated effort level is:

R(α1, ..., αN ) =
N − 1
∑

α−1
j

N
∑

i=1

κi

κi + κ + 1
=

N − 1
∑

α−1
j

N
∑

i=1

∑

j 6=i α
−1
j − (N − 2)α−1

i

2
∑

j 6=i α
−1
j − (N − 3)α−1

i

(37)
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Contestant i’s interim payoff is,

Πi(φi) = φi

∏

j 6=i

Gj(bi(φi)) − b(φi) = φi

∏

j 6=i

[

φi

αi

]

κj

κi

−
N − 1
∑

α−1
j

[

φi

αi

]
1+κ
κi

=

=

[

αi −
N − 1
∑

α−1
j

]

[

φi

αi

]
1+κ
κi

,

and consequently, i’s expected payoff is

Πi =

[

αi −
N − 1
∑

α−1
j

]

κi

κi + κ + 1
=

[

αi −
N − 1
∑

α−1
j

]

∑

α−1
j − (N − 1)α−1

i

2
∑

α−1
j − (N − 1)α−1

i

.

A.10.4 Comparative Statics for the Uniform model

Proposition 26 If κi > 0 then
∂

∂αi

Πi > 0 and
∂

∂αj

Πi < 0.

Proof.

∂

∂αi

log (Πi(α)) =

=

{

αi

∑

j 6=i

α−1
j

[

4 + 5αi

∑

j 6=i

α−1
j − N + 2α2

i (
∑

j 6=i

α−1
j )2

]

+

(

αi

∑

j 6=i

α−1
j − N + 2

)2(

2αi

∑

j 6=i

α−1
j − N + 3

)







/
{

αi

(

αi

∑

j 6=i

α−1
j − N + 2

)(

2αi

∑

j 6=i

α−1
j − N + 3

)(

1 + αi

∑

j 6=i

α−1
j

)}

(38)

As long as κi > 0, both, the denominator and the numerator of (38) are
positive.

∂

∂αj
log (Πi(α)) =

∂

∂αj

∑

j 6=i

α−1
j ×

×
αi

[

N − (N − 2)2 + 3(N − 1)αi
∑

j 6=i α
−1
j

]

(

αi
∑

j 6=i α
−1
j − N + 2

)(

2αi
∑

j 6=i α
−1
j − N + 3

)(

1 + αi
∑

j 6=i α
−1
j

)
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Proposition 27 At the values of αi where ‘weak’ contestants drop out, the
marginal return of increasing αi decreases discontinuously.

Proof. Let α = (αj)
N
j=1 be such that all contestants are participating and

consider the critical α∗
i =

1

(N − 2)α−1
N −

∑

j 6=i,N α−1
j

. If αi is increased but

kept below α∗
i , all contestants still participate. But if αi increases above α∗

i ,
contestant N drops out. contestant N bids zero in equilibrium. The payoff
of contestant i is not differentiable at α∗

i . More exactly,

0 <
∂+

∂αj
log (Πi(α)) −

∂−

∂αj
log (Πi(α)) =

=
(N − 2)

[

3αi
∑

j 6=i α
−1
j − (N − 5)

]

αi(N − 1)
[

αi
∑

j 6=i α
−1
j − (N − 3)

] [

2αi
∑

j 6=i α
−1
j − (N − 4)

] (

αi
∑

j 6=i α
−1
j + 1

) .
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