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Abstract

This paper studies many-to-one matching such as matching between students and colleges,

interns and hospitals, and workers and firms. A major question that arises in such settings is

the stability of matchings. A matching is stable if no agent or pair of agents can profitably

deviate. The paper provides a novel sufficient and, in a certain sense, necessary condition

for stability that may be used even when there are complementarities and peer effects. The

condition is particularly suited to study settings in which agents are unable to enter binding

agreements. In these settings, the agents are matched and then their payoffs are determined

via mechanisms such as various games, bargaining, and sharing rules. A stable matching

exists for all preference profiles induced by the mechanisms if, and only if, the preferences are

pairwise aligned. Agents’ preferences are pairwise aligned if any two agents in the intersection

of any two coalitions prefer the same one of the two coalitions. For example, a stable matching

exists if agents’ payoffs are determined after the matching in Nash bargaining.
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1. Introduction

This paper studies many-to-one matching such as matching between students and

colleges, interns and hospitals, and workers and firms.1 An agent on one side, say a

firm, can hire as many workers as it needs, and an agent on the other side, a worker,

can be employed by one firm only or remain unemployed. In this way, the agents form

coalitions. The class of feasible coalitions is exogenously given. An unemployed worker

is considered a coalition. All other coalitions consist of a firm and its workforce.

Gale and Shapley (1962) raised the question of stability of such matchings.2 Each

agent has preferences over the coalitions that contain this agent. A matching is stable

if (i) no worker prefers to be unemployed rather than to work for the matched firm, (ii)

no firm wants to keep some positions vacant rather than filling them with a group of

matched workers, and (iii) no worker-firm pair that is presently unmatched prefers to

match.

The most general known sufficient conditions for stability are substitutability con-

ditions, which are derived from the Kelso and Crawford (1982) gross-substitutes con-

dition.3 In a formulation of Roth and Sotomayor (1990), the substitutability condition

is as follows: if a firm wants to employ a worker w from a large pool of workers, then

the firm wants to employ w from any smaller pool containing w. Kelso and Crawford

(1982) show that if firms’ preferences satisfy the substitutability condition and there are

no peer effects – that is, workers’ preferences depend only on the firm they apply to and

not on who their peers will be – then there exists a stable many-to-one matching.

There are matching settings that do not satisfy the standard assumptions of sub-

stitutability and lack of peer effects. The substitutability condition fails if there are

1The college admission problem was introduced by Gale and Shapley (1962). A recent example
from the realm of education is the design of a new high school admissions system in New York City,
which allows both schools and students to influence the matching (Abdulkadiroğlu, Pathak, and Roth
2005). Medical labor markets are studied for example in Roth (1984), Roth (1991), Roth and Peranson
(1999), Niederle and Roth (2004), and McKinney, Niederle, and Roth (forthcoming). Roth (2002)
provides a survey. Roth and Sotomayor (1990) is a classic survey of theory, empirical evidence, and
design applications of the many-to-one matching models satisfying the above assumption.

2Starting with the work of Roth (1984) on US matching between interns and hospitals, substantial
empirical evidence links the lack of stability in matching with market failures. The evidence is surveyed
in Roth and Sotomayor (1990) and Roth (2002).

3Cf. Roth and Sotomayor (1990), Echenique and Oviedo (2004b), Hatfield and Milgrom (2005), and
Ostrovsky (2005). Roth (1985)’s responsiveness condition is also a variant of substitutability.
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non-trivial complementarities between workers. It also fails when there are fixed costs.

The complementarities are non-trivial if, for example, a firm’s production process is

profitable only when adequately staffed. For instance, a biotech firm may not open a

new R&D lab if it is unable to hire experts in all complementary areas required for the

lab’s work. Substitutability fails for firms with fixed costs if their operations must be of

some minimal size to ensure profitability. Peer effects are present if workers care about

interactions in the workplace or if the identity of other workers non-trivially influences

workloads or other day-to-day bargaining between workers.

This paper provides a novel sufficient and, in a certain sense, necessary condition for

stability that may be used to analyze settings with complementarities and peer effects

such as those mentioned above. The paper also shows that the condition is satisfied

in several settings of economic importance that have not previously been recognized as

admitting stable matchings.

The main component of the proposed condition is the pairwise alignment of prefer-

ences. Agents’ preferences are pairwise aligned if any two agents in the intersection of

any two coalitions prefer the same one of the two coalitions. For instance, a firm and

a worker either both prefer to form a firm-and-one-employee coalition or both prefer a

larger coalition that includes the firm, the worker, and some other workers.

The sufficient and, in a certain sense, necessary condition is developed in three

stages, from specific to more general environments. Stage 1 (Section 2) presents an

example of matching with payoffs determined by Nash bargaining. Stage 2 (Section 4)

generalizes this example by replacing Nash bargaining with a broad class of mechanisms.

This intermediate stage is of independent interest as directly applicable to a range of

matching situations in which agents are unable to enter binding agreements. Stage 3

(Section 5) addresses the general problem with agents’ preferences as primitives.

The setting of Stage 1 (Section 2) is as follows. There are two dates. On date 1,

firms and workers match, that is, form coalitions. On this date, firms and workers cannot

enter binding employment contracts. In effect, on date 1, the agents’ preferences over

coalitions result from the agents’ expectations of the payoffs that will be determined

on date 2. On date 2, each coalition creates a value and its members divide the value

according to the Nash bargaining solution. This bargaining determines the agents’

payoffs. Since each preference profile induced by Nash bargaining is pairwise aligned,

the pairwise alignment condition is embedded in this setting.

Stage 1 (Section 2) shows that there is a stable matching in this setting.4 This

4In this and other settings discussed, there exists a matching that is group stable and not only
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stage also proves a stronger property of this matching setting, namely the existence

of a metaranking. A metaranking is a transitive relation on all coalitions; its defining

property is that, restricted to coalitions containing an agent, the transitive relation

agrees with preferences of this agent.5

Stage 2 (Section 4) discusses matching when payoffs are determined by mechanisms.

This setting preserves the timing and other elements of the setting from Stage 1, except

that Nash bargaining is replaced by a mechanism from a broad class of games, bargaining

protocols, and sharing rules. As in the setting of Stage 1, each coalition has a value.

The mechanism takes the values of coalitions, that is the value function, and generates

agents’ payoffs and preferences over coalitions.

Stage 2 (Section 4) establishes a sufficient and, in a certain sense, necessary condition

for stability. It is sufficient for the existence of a stable matching that agents’ preferences

are pairwise aligned for all value functions. It is necessary for the existence of a stable

matching for all value functions that agents’ preferences are pairwise aligned.

Stage 3 (Section 5) addresses the general problem with agents’ preferences as prim-

itives. At this stage, in contrast to Stage 2, there are no mechanisms. The sufficient

condition imposes pairwise alignment on agents’ preferences from a rich domain of pref-

erence profiles as it is not sufficient for stability to impose pairwise alignment on a

single preference profile.6 An example of a matching situation with pairwise-aligned

preferences and no stable matching is included in Section 4 to explain why we need

mechanisms.7

In the general preference framework of Stage 3 (Section 5), the pairwise alignment

remains a necessary condition for the existence of stable matchings for all preference

profiles from large domains of profiles.

The sufficiency and necessity results proved in this paper allow one to determine

which sharing rules and games induce the existence of stable matchings. For instance,

stable. A matching is group stable if no worker prefers to be unemployed rather than to work for the
matched firm, and no firm may replace some (or no) workers, with some (or no) additional workers so
that the firm and all the additional workers strictly increase their payoffs.

5The idea of metarankings was introduced by Farrell and Scotchmer (1988). See the following
discussion of literature.

6Section 5 also discusses the sufficient condition in a form in which the condition does not refer to
a rich domain of preference profiles.

7As a heuristic argument consider the roommate problem, in which agents match in pairs, and any
two agents may form a pair. Preferences are always pairwise aligned, but the existence of a stable
matching is not assured.
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Section 6 determines the class of linear sharing rules and the class of welfare maximiza-

tion mechanisms that induce the existence of stable matchings. Section 6 also shows

that there is always a stable matching if agents’ preferences are induced by Tullock’s

(1980) rent-seeking game.

The idea of using pairwise alignment to study stability seems to be new. As dis-

cussed above, the paper proves that the pairwise alignment is related to the idea of

a metaranking introduced by Farrell and Scotchmer (1988).8 Farrell and Scotchmer

primarily study the formation of partnerships. They show that the one-sided core is

non-empty in a coalition formation game followed by an equal division of value. Baner-

jee, Konishi, and Sönmez (2001) relax the Farrell and Scotchmer metaranking property9

and notice that the equal division may be replaced by some other linear sharing rules

in Farrell and Scotchmer’s analysis. Echenique and Yenmez (2005) use metarankings

to analyze the one-sided core of many-to-one matching. They construct an algorithm

that finds matchings in the one-sided core if they exist. This algorithm does not rely on

either substitutability or the lack of peer effects.10 They also verify that their algorithm

efficiently finds matchings in the one-sided core if the Banerjee, Konishi, and Sönmez

(2001) metaranking-type property is satisfied.

As a companion paper, Pycia (2005) studies the relation among pairwise alignment,

metarankings, and coalition formation. The results on stability presented here are inde-

pendent of the results of the companion paper because this paper studies many-to-one

matching, while the companion paper studies one-sided coalition formation. The two

papers employ independent solution concepts. This paper studies stability, while the

companion paper studies the one-sided core.11 The papers provide pairwise-alignment-

based sufficient and necessary conditions for stability, and non-emptiness of the one-sided

core, respectively. The conditions, however, are different.

8If a metaranking exists, then preferences are pairwise aligned. The converse implication is true in
the special case studied in Section 4 but not in the general setting of Section 5.

9The relaxed metaranking property, called the top coalition property, says that each subgroup of
agents contains a coalition that is weakly preferred by all its members to any other coalition of agents
in the subgroup.

10Echenique and Oviedo (2004a) construct an algorithm that finds group stable matchings in many-
to-one settings if they exist and if there are no peer effects.

11The main difference between these two concepts is that stability presumes that a firm can sever
or establish a match with a worker without taking into account the preferences of other workers the
firm matches with. The one-sided core presumes that the workers have veto power over the actions of
the firm. Consequently, a many-to-one matching in the one-sided core need not be stable, and a stable
matching need not belong to the one-sided core. For details, see the discussion in Section 3.
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The paper proceeds as follows. Section 2 presents the Nash bargaining example.

Section 3 introduces the model. Section 4 presents the theory of stability in matching

with mechanisms. Section 5 presents the preference formulation of the results. Section

6 presents new settings in which stable matchings exist. The last section concludes.

2. Matching and Nash Bargaining – an Example

Let us consider the following many-to-one matching situation. On date 1, firms

and workers match, that is, form coalitions. On this date, firms and workers cannot

enter binding employment contracts. In effect, on date 1, the agents’ preferences over

coalitions reflect the agents’ expectations of the payoffs that will be determined on date

2. On date 2, each resultant coalition, C, creates value v (C) ≥ 0, and its members divide

v (C) according to the Nash bargaining solution. That is, each agent i is endowed with

an increasing and concave utility function Ui, and agents’ payoffs si maximize

max
si≥0,i∈C

∏
i∈C

(Ui (si)− Ui (0))

subject to ∑
i∈C

si ≤ v (C) .

Thus, agents’ preferences over coalitions are induced by Nash bargaining.

Recall that a matching is stable if no worker prefers to be unemployed rather than

to work for the matched firm, no firm wants to lay off any group of its workers, and no

worker-firm pair that is presently unmatched would prefer to match.12

Theorem 2.1. If preferences during matching are induced by Nash bargaining, then

there exists a stable matching.

Proof. To construct a stable matching, let us first observe that Ui(si)−Ui(0)
U ′

i(si)
, called the

fear of ruin coefficient,13 is the same for every agent in a coalition that divides value in

Nash bargaining. Indeed, the Lagrange multiplier in the Nash bargaining maximization

equals the inverse of the fear of ruin,
U ′

i(si)

Ui(si)−Ui(0)
. Additionally, the larger the fear of ruin

12The formal definition is presented in Section 3.
13See Aumann and Kurz (1977a, 1977b) and Roth (1979).
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of an agent is, the more the agent gains in a given coalition. Thus, no agents would ever

want to change a coalition that maximizes their fear of ruin. Therefore, the coalition

with maximal fear of ruin may be treated as if its members did not participate in the

matching between the remaining agents. In this way, one can recursively construct a

stable matching. This completes the proof.14

The above proof may be separated into two steps. The first step constructs an index

on coalitions — the fear of ruin – such that all relevant agents compare two coalitions

by looking at this index only. The second step uses the index to recursively construct a

stable matching.

The idea for the second step comes from Farrell and Scotchmer (1988). They study

partnerships that share the surplus equally among their members. That is, if a partner-

ship of size #C creates value v (C), then each member obtains v(C)
#C

. They use the index
v(C)
#C

to recursively construct a partnership structure that belongs to the one-sided core.

Except for the difference in solution concepts, their use of the index v(C)
#C

is the same as

our use of the fear of ruin in the second step of the above proof.

The above two indices, the fear of ruin and v(C)
#C

, determine metarankings. A

metaranking is a transitive relation on all coalitions that, restricted to coalitions con-

taining any particular agent, agrees with preferences of this agent. As in the above

proof, if there is a metaranking, then there is a matching that is stable.

The existence of a metaranking is a strong and desirable property of a matching set-

ting. For instance, Proposition 4.11 in the appendix shows that if there is a metaranking,

14Three remarks about the Nash bargaining example might be of interest. The above argument, with
a small modification, may be used to show that a stable matching exists when preferences come from
an asymmetric Nash bargaining where agent i has bargaining power λi and the division of value v (C)
in coalition C maximizes

∏
i∈C (Ui (si)− Ui (0))λi over si ≥ 0, i ∈ C, subject to

∑
i∈C si ≤ v (C). In

this extension, the bargaining powers λi are agent-specific but are not coalition-specific.
Furthermore, the above argument shows that the matching is group stable and not only stable. A

formal definition definition of group stability is given in Section 3. Informally, a matching is group
stable if no worker prefers to be unemployed rather than to work for the matched firm, and no firm
may fire some (or no) workers, and employ some (or no) additional workers so that the firm and all the
additional workers strictly increase their payoffs.

Finally, the values v (C) may either accrue to the entire coalition or be composed of parts that accrue
to individual members. In the latter case, the existence of a stable matching relies on the assumptions
that agents’ utilities are quasi-linear in a numeraire, and that, after the coalitions are determined, the
agents can contract. Then, v (C) is the sum of values that accrue to members in an optimal contract.
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then group stable matchings are obtained as Strong Nash Equilibria15 of a broad class

of non-cooperative matching games.

Despite the attractiveness of the existence of metarankings as a property of matching

situations, it is difficult to use metarankings as a sufficient condition for stability. To

use metarankings to verify stability requires one to construct an index – such as the fear

of ruin index above – for each matching setting.

Sections 4 and 5 solve this problem by connecting the existence of metarankings

with the pairwise alignment, which is readily verifiable in a variety of settings.16 For

instance, in Nash bargaining, the pairwise alignment is an immediate consequence of

the Independence of Irrelevant Alternatives axiom.17

3. Model

A finite set of agents I is divided into two non-empty disjoint sets, I = F ∪W . We

will refer to agents from F as firms, and to agents from W as workers. Each worker

seeks a firm, and each firm f ∈ F seeks up to Mf workers, where Mf ≥ 1. A matching

is a function µ from F ∪W into subsets of F ∪W , such that

• µ (w) = {f} if the worker w is employed by the firm f , and µ (w) = {w} if w is

unemployed,

• µ (f) ⊂ W and the size #µ (f) ≤Mf for every firm f , and

• µ (w) = {f} iff w ∈ µ (f), for every worker w and firm f .

Let us use the term coalition to refer to a firm f and all workers matched to f in some

matching, or to refer to an unemployed worker. Thus, a coalition may consist of a firm

f and any subset of workers S ⊆ W of size #S ≤ Mf (including S = ∅) or of an

unemployed worker. Let us denote the set of all coalitions by C. Thus,

C = {{f} ∪ S : f ∈ F, S ⊆ W,#S ≤Mf} ∪ {{w} : w ∈ W} .
15Cf. Aumann (1959), Rubinstein (1980). We may alternatively use the solution concept of Coalition-

Proof Nash Equilibrium of Bernheim, Peleg, Whinston (1987).
16Section 5 also defines relaxed metarankings and study their connection to stability and pairwise

alignment. Relaxed metarankings, unlike metarankings, always exist in one-to-one matching.
17Cf. Harsanyi (1959).
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Note that there is a one-to-one correspondence between matchings and partitions of I

into coalitions. In particular, in any matching each agent is associated with exactly one

coalition.

Each agent i ∈ I has a preference relation -i over all coalitions that contain i. The

profile of preferences (-i)i∈I is denoted by -I . This formulation embodies the standard

assumption that each agent’s preferences between two matchings are fully determined

by members of the coalitions containing this agent in the two matchings.

We are interested in the existence of stable matchings in the above environment.

The role of stability – most notably in preventing the unravelling of markets – has been

elucidated in the empirical work started by Roth (1984). In the following definitions

of stability and group stability, Cµ (i) denotes the coalition containing an agent i in

matching µ. Specifically, the coalition containing a firm f is Cµ (f) = {f} ∪ µ (f) , and

the coalition containing a worker w is Cµ (w) = µ (w) ∪ µ (µ (w)).

Definition 3.1 (Stability).18 A matching µ is blocked by a firm f if there exists a

subset of workers S  µ (f) such that {f} ∪ S �f C
µ (f).

A matching µ is blocked by a worker w if {w} �w C
µ (w).

A matching µ is blocked by firm f and worker w /∈ µ (f) if there exists S ⊆ µ (f)

such that

• # ({w} ∪ S) ≤Mf ,

• {f} ∪ {w} ∪ S �f C
µ (f) , and

• {f} ∪ {w} ∪ S �w C
µ (w) .

A matching is stable if it is not blocked by any individual agent or any worker-firm

pair.

Definition 3.2 (Group Stability).19 A matching µ is blocked by a group of

workers and firms if there exists another matching µ′ and a group A consisting of multiple

workers and/or firms, such that for all workers w in A and for all firms f in A,

• µ′ (w) ∈ A (i.e., every student in A is matched to a college in A);

18Cf. Roth and Sotomayor (1990) Definition 5.3.
19Cf. Roth and Sotomayor (1990) Definition 5.4.
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• Cµ′ (w) �w Cµ (w) (i.e., every student in A prefers the new matching to the old

one);

• ω ∈ µ′ (f) implies ω ∈ A ∪ µ (f) (i.e., every firm in A is matched to new workers

only from A, although it may continue to be matched to some of its “old” workers

from µ (f)); and

• Cµ′ (f) �f C
µ (f) (i.e., every firm in A prefers its new set of workers to its old

one).

A matching is group stable if it is not blocked by any group of agents.

The stability concepts presuppose that a match is between a worker and a firm.

Both the firm and the worker can unilaterally sever the match, and together they can

establish the match irrespective of other agents’ preferences. In particular, even though

the worker and the firm are members of a coalition composed of the firm and all its

employees, other coalition members – i.e., other workers – have no veto power over the

creation or severance of the firm-worker match. This lack of workers’ veto power is a

major difference between the stability in two-sided matching and the one-sided core in

coalition formation. A matching µ is in the one-sided core if there is no coalition A such

that A �a C
µ (a) for each a ∈ A. A stable matching need not belong to the one-sided

core, and a matching in the one-sided core need not be stable. Group stability is a

stronger property than both stability and the non-emptiness of the one-sided core.20

4. Mechanisms and Stability of Matching

The basic structure of the matching problems studied in this section is similar to

the Nash bargaining example discussed in Section 2. The structure is as follows. There

are two dates. On date 1, firms and workers match, that is, form coalitions. On this

20The following example illustrates the difference. There is one firm f and two workers w1 and w2.
The firm would most like to hire both workers. A second best option for the firm would be to hire w1,
the more productive worker, only. The third best would be to hire w2 only. The productive worker, w1,
does not like to work with w2, and so w1’s preferences are {f, w1} �w1 {w1} �w1 {f, w1, w2}. Worker
w2 wants to work for firm f irrespective of whether w1 is working there, too. The matching in which
worker w1 works for firm f , and worker w2 is unemployed, is in the one-sided core. This matching,
however, is not stable. In fact, in this example, there is no stable matching.
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date, firms and workers cannot enter binding employment contracts. Consequently, the

agents form their preferences by foreseeing what will happen on date 2. On date 2, each

resultant coalition C realizes a payoff profile from the set of feasible payoffs{
(ui)i∈C ∈ R

#C
+ :

∑
i∈C

ui ≤ v (C)

}
,

where v (C) is the value of coalition C and v : C → R+ is the value function. We

allow the payoffs ui to represent expected payoffs from lotteries over a larger space of

outcomes. Coalition C realizes a feasible payoff profile by playing some game, following

some bargaining protocol, or using some sharing rule. For instance, in the example of

Section 2, the payoff profile was chosen via Nash bargaining. Other examples – such as

Tullock’s (1980) rent-seeking game or linear sharing rules – are discussed in Section 6.

A post-matching mechanism (or, mechanism) is a game or a choice rule that players

use to decide which profile of payoffs will be realized. The following definition of a post-

matching mechanism identifies each such game or rule with resulting agents’ payoffs

because ultimately the stability properties of any matching problem are determined by

these payoffs alone.

Definition 4.1 (Mechanism). A post-matching mechanism is a function G that

for every coalition C and value v (C) determines nonnegative payoffs G (i, C, v (C)) for

all members i ∈ C so that ∑
i∈C

G (i, C, v (C)) ≤ v (C) .

For example, an equal division rule operating on a coalition C with value v (C)

produces payoffs G (i, C, v (C)) = v(C)
#C

.

This section discusses mechanisms that do not discriminate against any worker w in

any coalition C in the sense defined below. For the sake of the definition, let us denote

the set of payoffs that agent i may receive in coalition C for various values v (C) by

U (i, C) = {G (i, C, v (C)) : v (C) ≥ 0} .

Using this notation, we may state the following

Definition 4.2 (Non-discrimination). A post-matching mechanism is non-discriminatory

if for any worker w, and coalitions C,C ′ 3 w the sets of payoffs are equal U (i, C) =

U (i, C ′).
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All above-mentioned mechanisms – Nash bargaining, equal division, the Tullock

rent-seeking – are non-discriminatory.21

We are further assuming that the mechanism is monotonic and continuous, i.e., an

increase in the value of a coalition continuously improves the payoffs of all agents in the

coalition.

Definition 4.3 (Monotonicity and Continuity). A mechanism is monotonic if

for any agent i and coalition C 3 i the payoff G (i, C, ṽ) is increasing in ṽ ≥ 0. A

mechanism is continuous if G (i, C, ṽ) is continuous in ṽ ≥ 0.

All above-mentioned mechanisms are monotonic and continuous. Any monotonic

mechanism that produces Pareto optimal payoffs22 is continuous.

This section provides a sufficient and necessary condition for the existence of stable

matchings for all preference profiles induced by a non-discriminating and monotonic

mechanism. These conditions build on the notion of pairwise aligned preferences. Recall

that preferences are pairwise aligned if all agents in an intersection of two coalitions

prefer the same coalition of the two.

Definition 4.4 (Pairwise Alignment). Preferences are pairwise aligned if for all

i, j ∈ I and coalitions C,C ′ 3 i, j, we have

C -i C
′ ⇐⇒ C -j C

′.

In particular, then C ∼i C
′ iff C ∼j C

′, and C �i C
′ iff C �j C

′. Preferences

generated by Nash bargaining in the setting of Section 2 are pairwise aligned.

The sufficient and necessary condition for stability is given by the following.

Theorem 4.5 (Sufficiency and Necessity). Suppose that there are at least two

firms and that all firms are able to employ at least two workers. A non-discriminatory,

monotonic, and continuous post-matching mechanism induces pairwise-aligned prefer-

ence profiles if, and only if, there is a stable matching for each induced preference profile.

21A mechanism that chooses payoffs (ui)i∈C that maximize a welfare functional
∑

i∈C Wi (ui) is non-
discriminatory if the welfare components Wi satisfy an Inada type condition W ′

i (u) → 0 as u →∞. If
this condition fails, the welfare maximization mechanism may be discriminatory, for instance, if W ′

1 (u)
and W ′

2 (u) tend to 0 as u →∞ but W ′
3 (u) > 1 for all u.

22Given the set of feasible payoffs, the payoffs are Pareto optimal if
∑

i∈C G (i, C, ṽ) = ṽ.
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Moreover, if the mechanism generates pairwise-aligned preferences, then there is a group

stable matching for each induced preference profile.

We first prove the sufficiency part, then comment on the proof of the necessity part,

and end this section with a discussion of which assumptions may be dropped and which

assumptions may be relaxed.

The proof of the sufficiency part is in two steps. The first step shows that under

the assumptions of the theorem there is a metaranking. The second step is identical

to the second step in the proof of Theorem 2.1, and hence is skipped. Recall that a

metaranking is defined as follows.

Definition 4.6 (Metaranking). A metaranking is a transitive relation 4 on all

coalitions such that for any i ∈ I and C,C ′ 3 i,

C -i C
′ ⇐⇒ C 4 C ′.

Two examples of metarankings determined by indices were discussed in Section 2:

the fear of ruin coefficient in a matching followed by Nash bargaining and the per-head

value of a coalition in a matching followed by equal division of value. The appendix

discusses non-cooperative implementation of matching when there is a metaranking.

We reduced the proof of the sufficiency part of Theorem 4.5 to the following.

Proposition 4.7 (Existence of a Metaranking). Suppose that all firms are able

to employ at least two workers. If a non-discriminatory and monotonic post-matching

mechanism induces pairwise-aligned preference profiles, then for each induced preference

profile there is a metaranking.

Proof. Because of monotonicity, G (a, C, v′ (C)) = G (a, C, v (C)) impliesG (b, C, v′ (C)) =

G (b, C, v (C)) for any values v (C) , v′ (C). Thus, we can define the payoff translation

functions tCb,a : U (a, C) → U (a, C) for each coalition C and agents a, b ∈ C by the

condition

tCb,a (G (a, C, ṽ)) = G (b, C, ṽ) , ṽ ≥ 0.

The non-discrimination implies that U (a, C) = U (a, C ′) for C,C ′ 3 a, and the pairwise

alignment guarantees that tCb,a = tC
′

b,a. Since there is a firm able to employ two workers,

so tb,a is defined whenever at least one of the agents a and b is a worker.

13



Choose an arbitrary reference worker w∗ and fix the value function v : C → R+.

Because of the non-discrimination assumption, tw∗,a (G (a, C, v (C))) is well defined for

any agent a and coalition C 3 a even when w∗ /∈ C. By pairwise consistency,

tw∗,a (G (a, C, v (C))) = tw∗,a′ (G (a′, C, v (C)))

for any different a, a′ ∈ C. Indeed, if w∗ ∈ C then the claim follows straightforwardly

from the pairwise consistency. If w∗ /∈ C, then first consider the case when a is a firm

and a′ is a worker. Then a is able to employ two workers and {a, a′, w∗} is a coalition.

By the non-discrimination, there is a value function v′ : C → R+ such that

G (a′, C, v′ (C)) = G (a′, {a, a′, w∗} , v′ ({a, a′, w∗})) , and

v′ (C) = v (C) .

Then, the pairwise alignment implies that also

G (a, C, v′ (C)) = G (a, {a, a′, w∗} , v′ ({a, a′, w∗})) .

Since w∗ ∈ {a, a′, w∗}, we have

tw∗,a (G (a, C, v (C))) = tw∗,a (G (a, C, v′ (C)))

= tw∗,a (G (a, {a, a′, w∗} , v′ ({a, a′, w∗})))
= tw∗,a′ (G (a′, {a, a′, w∗} , v′ ({a′, a′, w∗})))
= tw∗,a′ (G (a′, C, v′ (C)))

= tw∗,a′ (G (a′, C, v (C))) .

In the remaining case, both a and a′ are workers. Then C contains also a firm f , and

by the preceding argument

tw∗,a (G (a, C, v (C))) = tw∗,f (G (f, C, v (C))) = tw∗,a′ (G (a′, C, v (C))) .

Consequently,

χ (C) = tw∗,a (G (a, C, V (C)))

does not depend on a if C is fixed. Monotonicity of the mechanism implies that χ (C)

determines a metaranking. This completes the proof.

The necessity part of Theorem 4.5 will be proved when we prove a stronger Theorem

5.12. The proof is in the appendix to Section 5, and makes two steps. A first step
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considers certain configurations of coalitions C1,2, C2,3, C3,1 such that there is an agent

ai ∈ Ci−1,i ∩ Ci,i+1 for i = 1, ..., 3 (we adopt the convention that subscripts are modulo

3 that is Ci,i+1 = C3,1 if i = 3 and Ci−1,i = C3,1 if i = 1). In these configurations, if

C1,2 ∼a2 C2,3 and C2,3 ∼a3 C3,1 then C1,2 ∼a1 C3,1. The second steps shows then this

property implies pairwise alignment.23

Let us finish this section with the discussion of assumptions. First notice, that for

monotonic non-discriminatory mechanisms the pairwise alignment assumption may be

relaxed.

Lemma 4.9. If a non-discriminatory monotonic mechanism induces preferences

such that

C ∼i C
′ ⇐⇒ C ∼j C

′

for all i, j ∈ C,C ′ ∈ C, then preferences generated by the mechanism are pairwise

aligned.

Proof. Fix i, j ∈ I and C,C ′ 3 i, j. It is enough to consider the case i 6= j and

C 6= C ′. Assume that the value function v is such that C -i C
′ in the induced preference

profile -I . Use the non-discrimination to find a value v′ (C) such that C ∼′
i C

′ in the

induced preference profile -′
I . Then, v′ (C) ≥ v (C) and C ∼′

j C
′. The monotonicity of

the mechanism implies that C -j C
′. This completes the proof.

The pairwise alignment assumption may also be relaxed in other ways. Consider

for example the asymmetric Nash bargaining model presented in Section 2. When the

bargaining power of a worker becomes 0, this worker becomes a wage taker indifferent

to all employment options, and a stable matching still exists.24

23The necessity part of Theorem 4.5 provides some guidance for a social planner that wants to ensure
the existence of a stable matching, intervenes to influence the game or rule that dictates the division
of value, and does not know the set of payoffs that coalitions are able to create. Cf. Roth (1984)
and other papers on the matching in medical labor markets cited in the introduction. These authors
provide empirical evidence that lack of stability is related to the unravelling of markets. They also
discuss efforts of medical associations to design the matching environment in such a way as to ensure
stability.

24In fact, if there is a metaranking in a matching problem, and the preferences are modified so
that some agents become indifferent between some of the coalitions and their outside option, then the
modified problem still admits a stable matching.
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The assumptions about the mechanism may be considerably relaxed. Before dis-

cussing how they are relaxed in Section 5, let us notice that even for the sufficiency

part, it is not enough to assume that a single preference profile is pairwise aligned. The

following situation illustrates the problem.

Example 4.10. There are three workers w1, w2, w3 and three firms f1,2, f2,3, f3,1.

Let us adopt the convention that the subscripts are modulo 3, that is, wi+1 = w1 if

i = 3. Assume that only three firm-worker coalitions {fi,i+1, wi, wi+1}, i = 1, 2, 3, create

positive payoffs for their members. Let the payoffs in coalition {fi,i+1, wi, wi+1} be such

that wi obtains 2 and wi+1 obtains 1.

In this example, the resultant preferences of agents are pairwise aligned. At the

same time, there is no group stable matching. There are stable matchings given by the

partitions {{fi,i+1, wi, wi+1} , {fi+1,i+2} , {fi+2,i} , {wi+2}}, i = 1, 2, 3. It is easy to modify

the example so that there is no stable matching. It is enough to assume that agents’

payoffs in coalitions {fi+1,i+2, wi+2} are negligible, but positive.

The next section relaxes Theorems 4.5 and Proposition 4.7 in several ways.

First, the monotonicity and continuity assumptions, as well as the assumption that

there are at least two firms, are not needed in the sufficiency part of Theorem 4.5 and

Proposition 4.7 (cf. Theorems 5.2 and 5.10).

Second, the result may be presented in terms of preference profiles without reference

to a post-matching mechanism. Section 5 replaces the presence of a non-discriminatory

mechanism with another, substantially weaker but more technical, condition that the

preference profile belongs to a rich domain of pairwise-aligned profiles. Each domain

of preference profiles generated by a non-discriminatory mechanism is rich; there are,

however, rich domains that cannot be rationalized as coming from a non-discriminatory

mechanism. Notice that, stated directly in terms of preference profiles, the results

of Section 5 may be more readily applied to settings where agents’ preferences are

determined before the matching by institutional constraints.

Third, the sufficient conditions for stability in Section 5 are applicable also to settings

that do not admit a metaranking.

Fourth, Section 5 removes the restriction that all firms are able to employ at least

two workers. Theorem 5.8 replaces this restriction with a weak assumption on one-

worker firms, that is, firms that can employ at most one worker. As a consequence, the

sufficient condition of Theorem 5.8 is satisfied, for instance, in the Gale and Shapley

(1962) marriage markets.
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5. Preference Formulation of Stability Conditions

This section presents sufficient and necessary conditions for stability in a preference

formulation. Unlike the results of Section 4, the stronger results of this section do not

rely on the preferences being induced by a post-matching mechanism. As such, they are

more directly applicable to the college admission problem.

Recall that Example 4.10 shows that the pairwise alignment of preference alone does

not guarantee that a stable matching exists. As is shown in the present section, it is

enough to assume pairwise consistency on the preference profile in question, and on some

related profiles. In Section 4, the domain of profiles generated by a mechanism played

this role. In the present section we will assume the existence of these other profiles

directly — by imposing a pairwise alignment restriction on a domain of preference

profiles.

To introduce our results, let us consider a simple matching problem with payoffs

determined in Nash bargaining. Suppose that two firms f1, f2 and two workers w1, w2

match on date 1. On this date, they are not able to commit to terms of employment.

On date 2, each coalition creates a value and divides it according to the Nash bargaining

solution. As we know from Theorem 2.1, a stable matching exists in this setting.

Let us consider a heuristic for an alternative proof of Theorem 2.1. This proof, while

more complex than the proof offered in Section 2, introduces the ideas used in the proofs

of the stronger counterparts of Theorem 4.5 discussed in the present section.

If a stable matching does not exist, then there would be a cycle of coalitions such that

each coalition contains an agent who strictly prefers the next coalition in the cycle. For

example, worker w1 would prefer {f2, w1, w2} to {f1, w1}, firm f1 would prefer {f1, w1}
to {f1, w2}, and worker w2 would prefer {f1, w2} to {f2, w1, w2}.

To show that this cannot happen, let us consider an auxiliary matching situation

between firms f1, f2 and workers w1, w2 in which (i) the agents still divide the values

according to the Nash bargaining solution, (ii) the values created by all coalitions except

for C = {f1, w1, w2} are the same as in the original matching situation, and (iii) the value

created by coalition C is such that worker w2 is indifferent between C and {f2, w1, w2}.
In this auxiliary situation, the preferences of agents between coalitions from the above

cycle are unchanged. The preferences are pairwise aligned because they are induced by

Nash bargaining. Because of the pairwise alignment of preferences between w2 and w1,

worker w1 would be indifferent between C and {f2, w1, w2}, and hence w1 would prefer

C to {f1, w1}. Again, because of the pairwise alignment of preferences between w1 and
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f1, firm f1 would prefer C to {f1, w1}, and hence to {f1, w2}. Firm f1’s strict preference

for C over {f1, w2} would contradict the pairwise alignment of preferences of f1 and w2

over coalitions C and {f1, w2}.
This contradiction proves that the cycle we started with cannot occur in the auxiliary

situation, and hence it cannot occur in our example. So far, we have analyzed an

illustrative cycle. To complete the proof and conclude that a stable matching exists,

we need to show that there are no other cycles. The argument that there are no other

cycles builds on the above analysis and is further developed following the statement of

Theorem 5.2, and is completed in the appendix.

The role of Nash bargaining in the above heuristic argument is to ensure that there

is an auxiliary situation in which the preferences are pairwise aligned, worker w2 is

indifferent between C and {f2, w1, w2}, and preferences between coalitions other than C

are inherited from the original preference profile. Nash bargaining may be replaced in

the above example by any other non-discriminatory post-matching mechanism. Thus,

the argument whose main thrust is presented above may be used to prove the sufficiency

part of Theorem 4.5 even if we drop the monotonicity and continuity assumptions.

In fact, the above heuristic argument requires only that the preference profile whose

stability we analyze is embedded in a domain of pairwise-aligned profiles that is rich

in the following sense. For any preference profile in the domain, any worker, and any

two coalitions (of size 3 or more) containing the worker, there exists a profile in the

domain in which the worker is indifferent between the two coalitions and, save for one

coalition, agents’ preferences over coalitions are intact. More informally, the rich domain

of preference profiles allows us to make any worker indifferent between two coalitions

(of size 3 or more), while keeping preferences between all but one coalition intact.

Definition 5.1 (Rich Domain). A domain of preference profiles R is rich if for

any worker w ∈ W , coalitions C,C ′ 3 w such that #C,#C ′ ≥ 3, and any -I∈ R,

there exists a profile -′
I∈ R such that C ∼′

w C
′ and all agents’ -′

I preferences between

coalitions other than C are the same as in -I .

A domain of all preference profiles that might be generated in the Nash bargaining

of Section 2 for different value functions v : C → R+ is rich. Any non-discriminatory

mechanism induces a rich domain of preference profiles when applied to different config-

urations of coalitions’ payoff profile sets.25 The domain of all profiles in any matching

problem is also rich.

25Denoting by ui (C) agent i utility from joining coalition C, and by uI the profile of utilities of
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The main result of the paper is that if a preference profile belongs to a rich domain

of pairwise-aligned profiles, then there exists a stable matching. This result contains

Theorem 4.5.

Theorem 5.2 (Sufficiency). Suppose that all firms are able to employ at least

two workers. If a preference profile -I belongs to a rich domain of pairwise aligned

preference profiles, then -I admits a matching that is stable and group stable.

A heuristic argument for why we may expect Theorem 5.2 to be true was presented

at the beginning of this section. Let us develop it here. The proof of the theorem has two

main steps. The first step shows that there are no cycles of coalitions C1,2, C2,3, ..., Cm,1

for some m ≥ 2 such that

(a) There exists ai ∈ Ci−1,i ∩ Ci,i+1 for i = 1, ...,m and Ci−1,i -ai
Ci,i+1.

(b) For at least one i the preference is strict Ci−1,i ≺ai
Ci,i+1 and at least one of

Ci−1,i, Ci,i+1 has three or more members.

Let us refer to such cycles as blocking cycles. The second step shows that if there are

no blocking cycles then there exists a group stable matching. Let us first discuss, the

more difficult first step, and then the easier second step.

A blocking cycle cannot have length 2. Indeed, C2,1 -a1 C1,2 -a2 C2,1 and the

pairwise alignment imply that C2,1 ∼a1 C1,2 ∼a2 C2,1. A blocking cycle cannot have

length 3 when one of the agents a1, a2, a3 is a firm. Indeed, assume that there is a cycle

C3,1 -a1 C1,2 -a2 C2,3 -a3 C3,1

and C3,1 has three or more members. If two or three of the agents a1, a2, a3 are firms,

then this is the same firm, and one can use the transitivity of this firm’s preferences and

pairwise alignment of preference to show that all agents are indifferent on the cycle. If

exactly one of the agents a1, a2, a3 is a firm, then there is a coalition C = {a1, a2, a3}
and we may use a slightly modified argument from the opening of this section.

agents i ∈ I, we may express a utility counterpart of the rich domain condition as follows. For any
worker w ∈ W , coalitions C,C ′ 3 i, and any utility profile uI there exists utility profile u′

I such that
u′

w (C) = u′
w (C ′) and u′

j

(
C̃

)
= uj

(
C̃

)
for all j ∈ I and coalitions C̃ 6= C. A natural question one

may ask is whether on any rich domain of preference profiles one may impute utilities so that the above
utility counterpart of richness is satisfied. In general, the answer is no. A counterexample is presented
in the appendix.
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If C is different from the coalitions C3,1, C1,2, C2,3, then there exists a pairwise-aligned

preference profile -′
I∈ R such that

C ∼′
a3
C3,1

and

C3,1 -′
a1
C1,2 -′

a2
C2,3 -′

a3
C3,1

with indifference if there was an -I indifference in the cycle. A repeated application of

the pairwise-alignment property of -′
I , shows that

• a1 is -′
I indifferent between C and C3,1, and thus prefers C to C1,2;

• a2 prefers C to C1,2, and thus to C2,3; and

• a3 prefers C to C2,3, and thus to C3,1.

None of the preferences on the cycle may be strict, as otherwise a3 would strictly prefer

C to C3,1, contrary to a3’s indifference between these two coalitions.

If C equals one of the coalitions C3,1, C1,2, C2,3, then we can repeat the above argu-

ment without the need to refer to the rich domain.

To show that there are no other blocking cycles requires overcoming some obstacles.

The main obstacle is the lack of a single coalition containing all agents a1, ..., am. In fact,

such a coalition does not exist if two of the agents are firms. Even when the cycle has

length 3 and all agents a1, a2, a3 are workers, there may not exist a coalition containing

all three agents if all firms are able to employ at most two workers. How to overcome

this obstacle is shown in the proof presented in the appendix.26

The second step in the proof of Theorem 5.2 is easier. It requires us to show that the

lack of blocking cycles is a sufficient condition for stability. One could show it directly.

Let us take, however, a longer route, in order to re-express this sufficient condition in a

more informative way, and highlight the connection with the existence of metarankings.

First let us define.

Definition 5.3 (Relaxed Metaranking). A relaxed metaranking is a transitive

relation 4 on all coalitions such that

26Theorem 5.2 is proved as a corollary of more general Theorem 5.8, which relaxes the assumption
that all firms are able to employ at least two workers. The proof of Theorem 5.8 is in the appendix.
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(1) For each agent i ∈ I, and coalitions C,C ′ 3 i,

C -i C
′ implies C 4 C ′.

(2) For each agent i ∈ I, and coalitions C,C ′ 3 i such that at least one of C,C ′ has

three or more members,

C 4 C ′ implies C -i C
′.

Each metaranking is also a relaxed metaranking. An identity relation on coalitions

in the marriage problem is a relaxed metaranking for any profile of agents’ preferences.

Roughly speaking, a relaxed metaranking has two properties: (i) the coalitions higher

in the ranking are preferred to the coalitions lower in the ranking by all relevant agents,

and (ii) if two coalitions share the same level in the ranking, then either all relevant

agents are indifferent between them, or both coalitions have at most two members.

Lemma 5.4. There exists a relaxed metaranking if and only if there are no blocking

cycles.

Proof. (=⇒) For an indirect proof, consider coalitions C12, C23..., Cm1 such that

ai ∈ Ci−1,i ∩ Ci,i+1, i ∈ {1, ...,m}, satisfy conditions (a) and (b) of the definition of a

blocking cycle. By symmetry, we can assume that # (Cm,1) ≥ 3 and Cm,1 ≺a1 C1,2.

Then C1,2 4 C2,3, C2,3 4 C3,4, etc., and by transitivity C1,2 4 Cm,1. Thus C1,2 -a1 Cm,1,

contradicting Cm,1 ≺a1 C1,2.

(⇐=) Define relation 4 so that C 4 C ′ whenever there exists a sequence of coalitions

Ci,i+1 ∈ C such that

• C = C1,2,

• C ′ = Cm,m+1, and

• there is an agent ai ∈ Ci−1,i ∩ Ci,i+1 such that Ci−1,i ≺ai
Ci,i+1.

Then 4 is transitive. It remains to verify conditions (1) and (2). To prove (1) take

C1,2 = C, C2,3 = C ′ and a1 = i. To prove (2), assume that C or C ′ has three or more

members, that i ∈ C ∩ C ′, and that C 4 C ′. Now, if C �i C
′, then there would exist a

blocking cycle; hence C -i C
′. This completes the proof.
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Given the equivalence between the lack of blocking cycles and the existence of relaxed

metarankings, to complete the second step in the proof of Theorem 5.2 it is enough to

show the following.

Proposition 5.5 (Sufficiency). If there exists a relaxed metaranking, then there

is a group stable matching.

Proof. The theorem is true if I contains only one agent. Let us assume that the

theorem is true on any subset of I to prove the general case by induction.

Let 4 be the relaxed metaranking. Consider the family of coalitions

Cmax = {C : there does not exist coalition C ′ such that C ≺ C ′} ,

which is non-empty since there is only a finite number of coalitions and 4 is transitive.

If there is C0 ∈ Cmax such that # (C0) ≥ 3, then notice that C0 %i C for any i ∈ C0

and C 3 i. By the inductive assumption, there exists a partition {C1, ..., Ck} that

corresponds to a group stable matching on I − C0. Then {C0, C1, ..., Ck} is a partition

of I that determines a group stable matching.

In the remaining case, all C ∈ Cmax have two or fewer members. Consider a one-

to-one matching between firms from F and workers from W with preferences inherited

from -I . By Gale and Shapley’s (1962) result, there exists a group stable matching in

this new problem; let

Q = {C ′
1, ..., C

′
K}

be a partition of I that corresponds to such group stable matching. We can assume

that C ′
1, ..., C

′
k ∈ Cmax and C ′

k+1, ..., C
′
K /∈ Cmax for some k ≥ 0. Notice that for any

C ′ ∈ Cmax, any agent i ∈ C ′ strictly prefers C ′ to any C /∈ Cmax containing i. Indeed, if

C ′ -i C then C ′ 4 C and hence C ∈ Cmax. Thus, k ≥ 1.

By the inductive assumption, there is a group stable many-to-one matching on I −
C ′

1 − ...− C ′
k. Let

{C ′′
1 , ...., C

′′
m}

be the corresponding partition of I − C ′
1 − ...− C ′

k.

Now, it is enough to notice that C ′
1, ..., C

′
k, C

′′
1 , ..., C

′′
m is a group stable many-to-one

matching on I. Indeed, if it is not group stable then there would exist a blocking group

A that includes an agent a ∈ C ′
i for some i ∈ {1, ..., k}. Agent i would prefer a coalition

C to C ′
i. There would be two options. If C ∈ Cmax, then matching Q would not be group

stable, contrary to its construction. If C /∈ Cmax, then C ′
i �a C (by the same argument
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that we used above to show that k ≥ 1). This strict preference would contradict the

assumption that C ′
i -a C. This completes the proof.27

Theorem 5.2 presumed that each firm is able to employ at least two agents. If

there are firms that cannot employ more than one worker, then the pairwise alignment

condition is no longer sufficient for stability,28 as the following example demonstrates.

Example 5.6. Let F = {f1, f2} and W = {w1, w2}. Let the firms’ employment

capacities equal Mf1 = 1 and Mf2 = 2. Let the preference profile -I be such that

{f1, w1} �w1 {f2, w1, w2} �w1 {f2, w1} �w1 {w1} ,
{f2, w1, w2} �w2 {f1, w2} �w2 {f2, w2} �w2 {w2} ,

{f1, w2} �f1 {f1, w1} �f1 {f1} , and

{f2, w1, w2} �f2 {f2, w2} �w2 {f2, w1} �w2 {f2} .

There does not exist a stable matching, the main reason being that

{f1, w1} �w1 {f2, w1, w2} �w2 {f1, w2} �f1 {f1, w1} .

On the other hand, -I is pairwise aligned. Moreover, the domain of all pairwise-aligned

preference profiles is rich.

Thus, in order to extend Theorem 5.2 to cases of many-to-one matching with one-

worker firms, i.e., firms with employment capacity Mf = 1, we need an additional

assumption. The assumption is based on the idea of a blocking one-worker firm, i.e., a

one-worker firm that belongs to a blocking-like cycle of three coalitions.

Definition 5.7 (Blocking One-Worker Firm). A firm f unable to employ more

than one worker is a blocking one-worker firm if there exist workers w,w′ ∈ W and a

coalition C 3 w,w′ such that

{f, w} %w C %w′ {f, w′} %f {f, w} ,
27In fact, this proof demonstrates that a slightly weaker condition is sufficient for group stability.

This condition says that in any subset of agents either there is a coalition that is weakly preferred by all
its members to all other coalitions in the subset, or there is a group of one- and two-member coalitions
that are weakly preferred by all its members to any coalition not in the group. This condition is weaker
than both the existence of a relaxed metaranking and the Banerjee, Konishi, and Sönmez (2001) top
coalition property mentioned in the introduction.

28One-to-one matching is an exception. If the matching is one-to-one then all profiles are pairwise
aligned and admit stable matchings.
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with one preference strict.

Using this notion we may state the following.

Theorem 5.8 (Sufficiency). If a preference profile belongs to a rich domain of

pairwise-aligned preference profiles and there are no blocking one-worker firms, then

there is a matching that is stable and group stable. Moreover, there exists a relaxed

metaranking.

This result contains Theorem 5.2 because in the latter there are no one-worker firms.

This strengthened result covers the Gale and Shapley marriage market in which all

preference profiles are pairwise aligned and no one-worker firm can be blocking because

there are no cycles of three coalitions. There are no cycles of three coalitions because

there are no firms able to employ two workers.

The heuristic for Theorem 5.8 is identical to the one for Theorem 5.2. The proof is

presented in the appendix.

Let us finish this section with two results connecting pairwise alignment, relaxed

metarankings, and metarankings. The first result is an observation that every preference

profile that admits a relaxed metaranking may be embedded in a rich domain of pairwise

aligned preference profiles.

Proposition 5.9. (a) If a preference profile admits a relaxed metaranking then it

is pairwise aligned and there are no blocking one-worker firms.

(b) The domain of profiles admitting a relaxed metaranking is rich.

The proof of (a) is straightforward. The proof of (b) is in the appendix.

The second result says when pairwise alignment on a domain of preferences implies

that there exists a metaranking.

Theorem 5.10 (Existence of a Metaranking). Suppose that there is a firm

able to employ two or more workers and that a domain of preference profiles R satisfies

the following condition. For any agent i ∈ I, coalitions C,C ′ 3 i, and any -I∈ R,

there exists a profile -′
I∈ R such that C ∼′

w C
′ and all agents’ -′

I-preferences between

coalitions other than C are the same as in -I . If preference profiles in domain R are

pairwise aligned and are such that there are no blocking one-worker firms, then each

preference profile in R admits a metaranking.

24



The proof relies on the same ideas as the proofs of Theorems 5.2 and 5.8, and is

presented in the appendix. It is easy to modify the proof of Proposition 5.9 to show

that the domain of preference profiles admitting a metaranking satisfies the domain

condition of Theorem 5.10.

Let us finish with a necessity counterpart of our results. The assumptions are for-

mulated using the following notion of a perturbation of preference profile that (i) keeps

all preferences between coalitions except for a reference coalition C, and (ii) perturbs

agents’ preferences over C in a co-monotonic way.

Definition 5.11 (Monotonic C-Perturbation). Given a coalition C, we say that

a preference profile -′
I is a monotonic C-perturbation of a profile -I if:

• For any agent j ∈ I and coalitions C1, C2 6= C containing j we have

C1 -′
j C2 ⇐⇒ C1 -j C2.

• If there is i ∈ C and C ′′ 3 i such that C %i C
′′ and C ≺′

i C
′′, then for any j ∈ I

and C ′ 3 j, if C -j C
′, then C ≺′

j C
′.

• If there is i ∈ C and C ′ 3 i such that C -i C
′ and C �′

i C
′, then for any j ∈ I

and C ′ 3 j, if C %j C
′ then C �′

j C
′.

For instance, if a preference profile belongs to the domain of preferences generated

by a monotonic non-discriminatory mechanism, then the domain also contains its mono-

tonic C-perturbations.

Theorem 5.12 (Necessity). Suppose that either there are at least two firms able

to employ two or more workers each, or that there are no such firms. Suppose also that

a domain of preferences R satisfies the following conditions:

(1) For any agent i ∈ I, coalitions C,C ′ 3 i such that #C ′ ≥ 3, and any -I∈ R, there

exists a monotonic C-perturbation -′
I∈ R such that C ∼′

i C
′.

(2) For any agent i ∈ I, coalitions C,C ′ 3 i, and any -I∈ R, there exists a monotonic

C-perturbation -′
I∈ R such that C -′

i C
′.

(3) For any agent i ∈ I, coalitions C,C ′ 3 i, and any -I∈ R such that C ∼i C
′, there

exists a monotonic C-perturbation -′
I∈ R such that
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• C �′
i C

′.

• for any j ∈ C if C ′′ �j C then C ′′ �′
j C.

• for any j ∈ C if C ′′ ≺j C then C ′′ ≺′
j C.

Then, if all profiles from R admit a stable matching, then all profiles from R are pairwise

aligned and are such that there are no blocking one-worker firms.29

This theorem generalizes the necessity part of Theorem 4.5 and is proved in the

appendix. The two main steps of the proof are discussed in Section 4. The final step

makes use of the following.

Remark 5.13. As in Lemma 4.9, if a domain of preference profiles R satisfies (1),

and for all i, j ∈ C,C ′ ∈ C,

C ∼i C
′ ⇐⇒ C ∼j C

′,

then preferences in R are pairwise aligned.

The next section applies the theoretical results of the paper to some examples.

6. Applications and Examples

This section adds to the Nash bargaining example of Section 2 three further exam-

ples of settings in which our results on mechanisms of Section 4 are applicable. The

mechanisms considered are linear sharing rules, maximization of a welfare objective,

and Tullock’s (1980) rent-seeking game. The section also determines the class of non-

discriminatory, monotonic, and Pareto optimal mechanisms that induce pairwise aligned

profiles, and hence stable matchings.

We consider the setting of Section 4. Recall that there are two dates. On date 1,

firms and workers match but do not contract. Agents’ preferences are determined by

their payoffs on date 2. On date 2, each coalition C realizes a payoff profile from the

set of feasible payoffs {
(ui)i∈C ∈ R

#C
+ :

∑
i∈C

ui ≤ v (C)

}
,

29The domain of all preference profiles that admit a relaxed metaranking satisfies the assumptions
(1)-(3).
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where v (C) is the value of coalition C and v : C → R+ is the value function. We

allow the payoffs ui to represent expected payoffs from lotteries over a larger space of

outcomes. Coalition C realizes a payoff profile by playing some game, following some

bargaining protocol, or using some sharing rule.

Linear sharing rules. On date 2, agents divide the value using a coalition-specific

linear sharing rule. The share of agent i in the value created by coalition C is ki,C . This

agent obtains

ui = ki,Cv (C) .

The shares ki,C > 0 are coalition-specific,
∑

i∈C ki,C = 1, and ki,C do not depend on the

realization of v (C).

In this case, the pairwise-alignment requirement takes the following simple form.

Corollary 6.1 (Sufficiency). If agents divide the values using a linear sharing rule

with shares ki,C , then there exists a stable matching if

ki,C

kj,C

=
ki,C′

kj,C′

for all C,C ′ and i, j ∈ C ∩ C ′.30

This corollary is an immediate consequence of Theorem 4.5 because linear sharing

rules with ki,C > 0 are nondiscriminatory, monotonic, and continuous. This corollary

follows from Theorem 4.5 even if there are firms that can employ only one worker. We

need, then, to reinterpret each such firm as being able to employ two workers, but

generating the value 0 if employing two workers.31

The condition on shares is also necessary, in the following sense.

Corollary 6.2 (Necessity). Suppose that there are at least two firms able to

employ two or more workers each. If agents divide the values using a linear sharing rule

30Banarjee, Konishi, and Sönmez (2001) showed that this class of linear sharing rules leads to non-
empty one-sided core in coalition formation. Pycia (2005) constructs a slightly larger class of linear
sharing rules that guarantees non-emptiness of the one-sided core in coalition formation. Only the
linear sharing rules from this larger class guarantee that the one-sided core is non-empty for all value
functions v.

31By the remark following Lemma 4.9, we can also extend the result to allow for ki,C = 0.
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with shares ki,C , and there exists a stable matching for all value functions v : C → R+,

then
ki,C

kj,C

=
ki,C′

kj,C′

for all C,C ′ and i, j ∈ C ∩ C ′.

This corollary is an immediate consequence of Theorem 5.12.

Notice, that if agents’ utilities are Ui (s) = sλi , then the Nash bargaining will lead

to linear division of value, and the resultant sharing rule will satisfy the above condi-

tion. Corollary 6.2 implies a partial converse of this statement. If there are firms able

to employ two workers, and a profile of shares ki,C guarantees an existence of stable

matching for all v : C → R+ then the shares ki,C may be rationalized as coming from a

Nash bargaining.

Welfare maximization and Pareto optimal mechanisms. The agents are risk-

neutral. On date 2, the members of each formed coalition C choose a utility profile(
uC

i

)
i∈C

∈ R#C
+ that maximizes the Bergson-Samuelson separable welfare functional

max
(uC

i )
i∈C

∑
i∈C

Wi (ui) .

subject to
∑

i∈C ui ≤ v (C). The welfare components Wi, i ∈ I, are increasing and

concave. They are agent-specific, but not coalition-specific.

Lensberg’s (1987) results imply that payoffs
(
uC

i

)
i∈C

are pairwise aligned.32 Indeed,

χ (C) = W ′
i (ui), for some i ∈ C, determine a metaranking. Hence, we obtain the

following.

Corollary 6.3 (Sufficiency). If payoffs are determined by the maximization of a

Bergson-Samuelson separable welfare functional, then there is a stable matching.

Lensberg’s (1987) results also suggest that all Pareto optimal and continuous choice

rules that produce pairwise-aligned profiles may be interpreted as maximization of a

32Lensberg (1987) studies the consistency of solution concepts. Pairwise alignment of preference
profiles is related to the consistency requirement as, in many environments, a consistent solution concept
generates pairwise aligned preferences. The idea of consistency of solution concepts was introduced
by Harsanyi (1959) in his analysis of the independence of irrelevant alternatives in Nash bargaining.
Lensberg (1987,1988), Thomson (1988), Lensberg and Thomson (1989), Hart and Mas-Collel (1989),
and Young (1994) analyzed consistency in the context of Nash bargaining, welfare functions, Walrasian
trade, the Shapley value, and sharing rules. Thomson (2004) gives an up-to-date survey of these results.
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Bergson-Samuelson separable welfare functional. His results cannot be directly applied

in the present context, both because he considers a one-sided problem33 and because he

assumes pairwise alignment of preferences for a much larger space of applications of the

choice rule than is available in our context. The appendix provides a simple proof of

the following many-to-one result inspired by Lensberg (1987).

Proposition 6.4. Suppose that all firms are able to employ at least two workers.

Suppose also that a post-matching mechanism G is non-discriminatory and monotonic,

and the payoffs (G (i, C, v (C)))i∈C are Pareto optimal in

V (C) =

{
(ui)i∈C ∈ R

#C
+ :

∑
i∈C

ui ≤ v (C)

}
for all value functions v : C → R+. If the mechanism induces pairwise-aligned preference

profiles, then there exist increasing strictly concave differentiable functions Wi : Ui → R

for i ∈ I such that W ′
i (0) = +∞, and

(G (i, C, v (C)))i∈C = arg maxP
i∈C ui∈V (C)

∑
i∈C

Wi (ui) .

This proposition,34 implies the following.

Corollary 6.5 (Necessity). Suppose that there are at least two firms and that

all firms are able to employ at least two workers. Suppose also that a post-matching

mechanism G is non-discriminatory and monotonic, and the payoffs (G (i, C, v (C)))i∈C

are Pareto optimal in

V (C) =

{
(ui)i∈C ∈ R

#C
+ :

∑
i∈C

ui ≤ v (C)

}
for all value functions v : C → R+. If the mechanism induces preference profiles that ad-

mit stable matchings, then there exist increasing strictly concave differentiable functions

Wi : Ui → R for i ∈ I such that W ′
i (0) = +∞, and

(G (i, C, v (C)))i∈C = arg maxP
i∈C ui∈V (C)

∑
i∈C

Wi (ui) .

33For instance, Lensberg assumes that any collection of agents can form a coalition, while in many-
to-one matching two firms cannot form a coalition.

34Both in Proposition 6.4 and Corollary 6.5, it is enough to assume that agents’ payoff are Pareto
optimal in a subset V ′ (C) of the quasi-linear set V (C) as long as the Pareto frontier of each V ′ (C) is
continuous in the value v (C).
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Rent-seeking. On date 2, agents in each formed coalition C = {a1, ..., ak} engage

in Tullock’s (1980) rent-seeking game over a prize v (C). Each ai ∈ C will be able to

lobby at cost ci to capture the prize v (C) with probability ci

c1+...+ck
. Thus, if agents

expand resources c1, ..., ck then agent ai obtains in expectation

ci
c1 + ...+ ck

v (C)− ci.

The agents play the Nash equilibrium of this rent-seeking game; every agent lobbies at

cost k−1
k2 v (C) and has expected payoff v(C)

k2 . Theorem 4.5 applies and there is a stable

matching in any matching problem with payoffs determined by the Tullock rent-seeking.

7. Conclusion

This paper proposes a novel sufficient condition for stability of matchings that may

be used to study matching with complementarities and peer effects. The main com-

ponent of this condition is the pairwise alignment of preferences. The condition is

particularly useful in the study of stability of matchings when preferences are induced

by post-matching mechanisms. There exist stable and group stable matchings if a

non-discriminatory mechanism generates pairwise aligned preferences. For monotonic,

continuous, and non-discriminatory mechanisms, pairwise alignment is also a necessary

condition for stability.

The sufficiency and necessity results allow one to determine which sharing rules or

games induce the existence of stable matchings. There is always a stable matching

if agents’ preferences are induced by Nash bargaining or Tullock’s (1980) rent-seeking

game. The paper also applies the sufficiency and necessity results to (i) determine the

class of linear sharing rules that always induce agents’ preferences such that a stable

matching exists, and (ii) determine the class of monotonic, non-discriminatory, Pareto

optimal mechanisms – such as welfare maximization – that induce the existence of stable

matchings.

A natural direction to extend the results of the present paper would be to generalize

them to the Hatfield and Milgrom (2005) model of matching with contracts. This

model incorporates as special cases the college admission setting, in which agents have
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preferences over coalitions, the setting in which wages are determined during matching,

and the ascending package auctions. Under certain conditions,35 such an extension of

the results of the present paper is possible if there are two categories of workers. The

first category encompasses the workers, such as crucial researchers in a biotech R&D lab,

with whom it is not possible to write contracts because of the inherent complexity of

the relationship with these workers and incompleteness of the contractual environment.

These workers might provide complementary inputs to the firm production process.

The second category includes workers, such as lab assistants, with whom the firm may

contract but whose inputs are substitutable.
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Appendices to Sections 4, 5, and 6

Appendix to Section 4. A Result on Non-Cooperative Implementation

The following results show that if there is a metaranking then the non-cooperative

implementations of matching will result in a group stable matching.36 Recall that in a

game a profile of players’ strategies σ is in a Strong Nash Equilibrium if there does not

exist a subset of players that can improve the payoffs of all its members by a coordinated

deviation, while players not in the subset continue to play strategies from σ.37

Proposition 4.11. Consider a non-cooperative game between workers and firms

that has the following properties

(a) the game ends with a matching µ,

(b) the payoff of each agent i is determined by the coalition Cµ (i) that the agent

belongs to in the matching, and

36There is substantial empirical evidence that stability of matching is related to well functioning
matching markets. The group stability by itself, however, is not a strategic concept. Roth and So-
tomayor (1990) survey the theoretical results about manipulation of the matching process via misrep-
resentation of preferences. Sönmez (1997,1999) illustrates the theoretical problems with agents’ trying
to manipulate the matching process via capacity restrictions or pre-arranged matches.

37Cf. Aumann (1959), Rubinstein (1980). We may alternatively use the solution concept of Coalition-
Proof Nash Equilibrium of Bernheim, Peleg, Whinston (1987).
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(c) for each coalition C, there is a profile of strategies of agents in C such that

Cµ (i) = C for all i ∈ C, irrespective of strategies of agents not in C.

If agents’ payoffs are such that there exists a metaranking of coalitions, then there

is a Strong Nash Equilibrium of this game, all strong perfect equilibria correspond to

group stable matchings, and any group stable matching corresponds to a strong perfect

equilibrium.

An example of a game satisfying conditions (a)-(c) is the Gale and Shapley (1962)

deferred acceptance algorithm. Another example is a game in which each worker applies

for one or no jobs, and then each firm selects its workforce from among its applicants.

Proof. The proof or Theorem 2.138 shows that there is a group stable matching.

Let us first show that any group stable matching is implementable as a Strong Nash

Equilibrium of the game, and then show that each Strong Nash Equilibrium results in

a group stable matching.

Consider a group stable matching. Let {C1, ..., Ck} be the corresponding coalition

structure. One of the coalitions, Ci1 , is a maximal coalition in the metaranking, another

coalition, Ci2 , is a maximal coalition among coalitions of agents from W ∪F −Ci1 , and

we can recursively find coalitions Ci3 , ..., Cik in this way. By (c), there is a profile of

strategies of agents from Ci that enforces the formation of Ci. These profiles are in a

Strong Nash Equilibrium.

For the remaining implication, consider a Strong Nash Equilibrium and the resulting

matching with corresponding coalition structure {C1, ..., Ck}. Notice that there is a

coalition Ci1 that is maximal in the metaranking. Indeed, otherwise the assumption (c)

would imply that the members of Ci1 would have a coordinated profitable deviation in

the game. Recursively, we can find a coalition Ci2 that is maximal among coalitions of

agents from W ∪ F − C1, and so on. An inspection of these coalitions show that the

matching is group stable. This completes the proof.

Appendix to Section 5.

A counterexample showing that the class of rich domains is larger than

its utility counterpart (cf. the footnote to the definition of the rich domain).

38The claim is also proved in a stronger form of Proposition 5.5.
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Let ui (C) denotes agent i’s utility from joining coalition C, and uI the profile of

utilities of agents i ∈ I. We may express a utility counterpart of the rich domain

condition as follows.

For any w ∈ W , C,C ′ ∈ Ci, #C,#C ′ ≥ 3, and any uI ∈ P there exists u′I ∈ P such

that

• u′i (C) = u′i (C
′) .

• u′j

(
C̃

)
= uj

(
C̃

)
for all j ∈ I and C̃ ∈ C − {C}.

The following counterexample will show that there are rich domains of preference

profiles that are not representable by ordinary utilities that satisfy the above utility

counterpart of richness.

Consider a firm f and three workers w1, w2, w3. Let P be a domain of preference

profiles consisting of the following three subdomains.

• The first subdomain of profiles contains all profiles -1
I with the following properties

{f, w1, w3} ∼1
w1
{f, w1, w2} ,

{f, w1, w2} �1
w2
{f, w2, w3} ,

{f, w2, w3} �1
w3
{f, w1, w3} .

• The second subdomain of profiles contains all profiles -2
I with the following prop-

erties

{f, w1, w3} �2
w1
{f, w1, w2} ,

{f, w1, w2} ∼2
w2
{f, w2, w3} ,

{f, w2, w3} �2
w3
{f, w1, w3} .

• The third subdomain of profiles contains all profiles -3
I with the following prop-

erties

{f, w1, w3} �3
w1
{f, w1, w2} ,

{f, w1, w2} �3
w2
{f, w2, w3} ,

{f, w2, w3} ∼3
w3
{f, w1, w3} .
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This domain of preference profiles is rich and it is not possible to represent the

preferences by ordinary utilities that satisfy the utility counterpart of richness. Indeed,

assume that each profile in P is represented by a utility profile uI and that the resultant

domain of utility profiles satisfies the above utility counterpart of richness. Take a

utility profile u1
I representing a preference profile from the first subdomain with minimal

u1
w1

({f, w1, w3}). Find a utility profile u2
I identical with u1

I except on {f, w1, w2} and

such that u2
w2

({f, w1, w2}) = u2
w2

({f, w2, w3}). Then, find a profile u3
I identical with u2

I

except on {f, w2, w3} and such that u3
w3

({f, w2, w3}) = u3
w3

({f, w1, w3}). Finally, notice

that there cannot exist a profile u4
I identical with u3

I except on {f, w1, w3} and such that

u4
w1

({f, w1, w3}) = u4
w1

({f, w1, w2}). Indeed, such a profile would have to represent a

preference profile from the first subdomain. However,

u4
w1

({f, w1, w3}) = u4
w1

({f, w1, w2}) = u3
w1

({f, w1, w2}) < u3
w1

({f, w1, w3})
= u2

w1
({f, w1, w3}) = u1

w1
({f, w1, w3})

contradicting the selection of u1
I so that u1

w1
({f, w1, w3}) is minimal. This completes

the proof.

Proof of Theorem 5.2. This theorem follows from Theorem 5.8 proved next.

A lemma for the proof of Theorem 5.8. Let us precede the proof of Theorem

5.8 with a preparatory lemma.

Lemma 5.8.1. Let the profile -I belong to a rich domain R of pairwise-aligned

preference profiles. Assume that there are no blocking one-worker firms. Then there are

no cycles of three coalitions C1,2, C2,3, C3,1 ∈ C such that

(a) there is an agent ai ∈ Ci−1,i ∩ Ci,i+1,

(b) C3,1 %a3 C2,3 %a2 C1,2 %a1 C3,1 with at least one strict preference .

Proof. For an indirect proof, assume that there are coalitions C1,2, C2,3, C3,1 ∈ C such

that

(a) there is an agent ai ∈ Ci−1,i ∩ Ci,i+1,

(b) C3,1 %a3 C2,3 %a2 C1,2 %a1 C3,1 with at least one strict preference.

Consider the following four cases

Case 1: a1, a2, a3 ∈ F . Then a1 = a2 = a3 is a firm whose preferences are circular.

Case 2: a1, a2 ∈ F, a3 ∈ W . Then a1 = a2 and we can shorten the cycle to m = 2,

and use the argument from the discussion in Section 5.
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Case 3: a3 ∈ F, a1, a2 ∈ W . The case of firm a3 able to employ two workers was

discussed in Section 5. If a3 is able to employ at most one worker, then C3,1 = {a1, a3}
and C2,3 = {a2, a3} and the result follows from the lack of blocking one-worker firms.

(Notabene, this is the only place in the proof that uses the lack of blocking one-worker

firms).

Case 4: a1, a2, a3 ∈ W . Then, either ai = ai+1 for some i = 1, 2, 3 and the pairwise

alignment directly proves the claim, or all ai are different and each Ck,k+1 has three

members and contains a firm able to employ two workers. Take a firm f0 ∈ F able to

employ two workers; then {a1, f0, a2} , {a2, f0, a3} , {a3, f0, a1} ∈ C.

If C1,2 = {a1, f0, a2} then

C1,2 ∼a1 {a1, f0, a2} ;

if C1,2 6= {a2, f0, a3} then use the rich domain assumption to find -I such that the above

indifference is true and all preferences not involving {a2, f0, a3} are preserved. Abusing

notation, we will continue to denote the new preference profile by -I . Similarly, if

C1,2 = {a2, f0, a3} then

C1,2 ∼a2 {a2, f0, a3} ;

if C1,2 6= {a2, f0, a3} then use the rich domain assumption to find -I such that the

above indifference is true and all preferences not involving {a2, f0, a3} are preserved. If

{a2, f0, a3} �f0 {a1, f0, a2}, then

C1,2 ∼a1 {a1, f0, a2} �f0 {a2, f0, a3} ∼a2 C1,2

contrary to what we proved in Case 3. Thus

{a2, f0, a3} ∼f0 {a1, f0, a2} .

Now, if C2,3 = {a3, f0, a1} then

C2,3 ∼a3 {a3, f0, a1} ;

if C2,3 6= {a3, f0, a1} then use the rich domain assumption to find -I such that the

above indifference is true and all preferences not involving {a3, f0, a1} are preserved.

Then C2,3 �a2 C1,2 ∼a2 {a2, f0, a3} and

{a2, f0, a3} ≺f0 {a3, f0, a1} .
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Finally, on C3,1, {a3, f0} , {a1, f0} we have

C3,1 %a3 C2,3 ∼a3 {a3, f0, a1} �f0 {a2, f0, a3} ∼f0 {a1, f0, a2}
∼a1 C1,2 %a1 C3,1,

contrary to what we proved in Case 3. This completes the proof.

Proof of Theorems 5.8. For an indirect proof, assume that -I does not admit a

stable matching. In particular, a relaxed metaranking does not exist. By Lemma 5.4,

the lack of a relaxed metaranking means that there exists a blocking cycle of coalitions

C12, C23..., Cm1 ∈ C for some m ≥ 2 such that

(a) There exists ai ∈ Ci−1,i ∩ Ci,i+1 for i = 1, ...,m and Ci−1,i -ai
Ci,i+1.

(b) For at least one i the preference is strict Ci−1,i ≺ai
Ci,i+1 and at least one of

Ci−1,i, Ci,i+1 has three or more members.

We will proceed by induction. Notice that the case m = 2 follows directly from the

pairwise alignment, and the case m = 3 follows from Lemma 5.8.1. For an inductive

step, fix m ≥ 4, and assume that there are no blocking cycles of strictly fewer than m

coalitions.

Step 1. First let us demonstrate that there exists k such that

• Ck,k+1 has three or more members, and

• ak+1, ak+3 or ak,ak−2 are workers.

To prove this claim take Ci,i+1 with three or more members and consider two cases.

Case 1: either ai or ai+1 is a worker or both are. By symmetry we can assume that

ai+1 is a worker. If ai+3 is also a worker then the claim is proved, so assume

that ai+3 is a firm. If ai+2 or ai+4 is a firm, then it is the same firm as ai+3.

Then however, there would exist a blocking cycle of m − 1 coalitions, either

C1,2, ..., Ci+1,i+2, Ci+3,i+4, ..., Cm,1 or C1,2, ..., Ci+3,i+3, Ci+4,i+5, ..., Cm,1, contrary to

the inductive assumption. So, assume that both ai+2 and ai+4 are workers. If

ai+1 = ai+2 then again there would be a blocking cycle of m−1 coalitions contrary

to the inductive assumption. Finally, if ai+1 6= ai+2 then Ci+1,i+2 contains two

workers and hence #Ci+1,i+2 ≥ 3, ai+2 and ai+4 are workers, and hence the claim

is true.
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Case 2: both ai and ai+1 are firms. Then in fact ai = ai+1. Look at ai−1 and ai+2. If

one of them is a firm, then it is the same firm as ai = ai+1, and we could shorten

the cycle, contrary to the inductive assumption. So, assume that ai−1 and ai+2 are

workers. Notice that ai is able to employ two workers because #Ci,i+1 ≥ 3 and

consider two subcases depending on whether {ai−1, ai, ai+2} is identical to one of

Cj,j+1.

• If {ai−1, ai, ai+2} = Cj,j+1, then either at least one agent aj,aj+1 is a worker, and

we can reduce the problem to Case 1, or both aj and aj+1 are firms. If aj and

aj+1 are firms then aj = aj+1 = ai, and hence we can without loss of generality

assume that Ci,i+1 = {ai−1, ai, ai+2}. The pairwise alignment then implies that

Ci−1,i -ai−1
Ci,i+1 or Ci−1,i ≺ai−1

Ci,i+1 depending on whether Ci−1,i ≺ai
Ci,i+1.

Thus, we can substitute ai−1 for ai to form the blocking cycle

Cm,1 -a1 C1,2 -a2 ... -ai−1
Ci−1,i -ai−1

Ci,i+1 -ai+1
... -am Cm,1

with at least one strict preference, and reduce the problem to Case 1.

• If {ai−1, ai, ai+2} 6= Cj,j+1 for all j = 1, ...,m, then we can use the rich domain

assumption to find a preference profile such that {ai−1, ai, ai+2} ∼ai
Ci,i+1 and all

preferences on the blocking cycle are preserved. Since ai = ai+1, we can replace

Ci,i+1 with {ai−1, ai, ai+2}, and argue as above. This completes the proof of the

claim.

In view of the above claim, and the symmetry of the problem, we can assume that

a1 and a3 are workers and Cm,1 has three or more members. Set C = {a1, a3, f} where

f is a firm that can employ two workers (such a firm exists if there exists a blocking

cycle).

Step 2. First consider the case when C = Ci,i+1, for some i = 1, ...,m. Look at

C1,2, C2,3, C and conclude from Lemma 5.8.1 that either C1,2 ≺a1 C, or C2,3 �a3 C, or

C ∼a1 C1,2 ∼a2 C2,3 ∼a3 C.

• If C = Ci,i+1 and C1,2 ≺a1 C then i 6= 1 and the shorter cycle

Ci,i+1 -ai+1
Ci+1,i+2 -ai+2

... -am Cm,1 ≺a1 Ci,i+1

satisfies (a) and (b) because Cm,1 -a1 C1,2 ≺a1 C = Ci,i+1 and # (C) ≥ 3. This is

impossible, however, by the inductive assumption.

40



• If C = Ci,i+1 and C2,3 �a3 C then i 6= 2 and the shorter cycle

Ci,i+1 ≺a3 C3,4 -a4 ... -ai
Ci,i+1

satisfies (a) and (b) because C ≺a3 C2,3 -a3 C3,4 and # (C) ≥ 3. Again, this is

impossible by the inductive assumption.

• If C ∼a1 C1,2 ∼a2 C2,3 ∼a3 C then the cycle C,C3,4..., Cm,1 is blocking contrary to

the inductive assumption.

Step 3. Finally consider the case C 6= Ci,i+1 for all i. Because # (Cm,1) ≥ 3, we

can use the rich domain assumption to find a pairwise-aligned preference profile -I such

that there are no blocking one-worker firms, and all preferences along the blocking cycle

are preserved and C ∼a1 Cm,1. Abusing notation let us refer to the new profile as -I .

Consider two subcases depending on preference of a3 between C and C2,3.

• If C ≺a3 C2,3, then consider the collection of m−1 coalitions C,C3,4, C4,5, ..., Cm,1.

This is a blocking cycle of length m−1 because C ≺a3 C2,3 -a3 C3,4 and # (C) ≥ 3.

• If C %a3 C2,3, then consider the collection of three coalitions C1,2, C2,3, C. Since

C ∼a1 Cm,1, we have C -a1 C1,2. Thus the collection C1, C2, C satisfies

C -a1 C1,2 -a2 C2,3 -a3 C.

By Lemma 5.8.1 all agents are then indifferent. But then C,C3,4..., Cm,1 is a

blocking cycle of m − 1 coalitions, contrary to the inductive assumption. This

completes the proof.

Proof of Proposition 5.9(b). It is enough to show that for any w ∈ W and any

C,C ′ 3 w such that #C,#C ′ ≥ 3; if a profile -I admits a relaxed metaranking then

there exists a profile -′
I that admits a relaxed metaranking, agrees with -I except for

coalition C, and satisfies C ∼′
w C

′. Denote by 4 the relaxed metaranking of -I and fix

C,C ′ and w. Consider -′
I that agrees with -I except for coalition C. Furthermore, for

any j ∈ C and any coalition C ′′ 3 j, set C -j C
′′ iff C ′ 4 C ′′ and C ′′ -j C iff C ′′ 4 C ′.

Now, consider the candidate relaxed metaranking 4′ identical to 4 except on C, and

such that C 4′ C ′′ iff C ′ 4′ C ′′, and C ′ 4′ C iff C ′′ 4′ C ′.

41



Notice that 4′ is transitive. To verify that 4′ is indeed a relaxed metaranking, it

is enough to verify conditions (1) and (2) defining the relaxed metaranking in case of

comparisons of C and some other coalition C ′′.

Condition (1) is satisfied because C -′
i C

′′ means that C ′ 4 C ′′, and hence C ′ 4′ C ′′.

A similar argument works for C ′′ -′
i C.

Condition (2) is satisfied for C, irrespective of whether C or C ′′ has three or more

members. Indeed, if C 4′ C ′′ and the claim of the implication is false, that is, C �′
j C

′′,

then C ′ � C ′′; and thus C �′ C ′′, which would be a contradiction. A similar argument

works for C ′′ 4′ C. This completes the proof.

A lemma for the proof of Theorem 5.10. Let us precede the proof of Theorem

5.10 with a preparatory lemma.

Lemma 5.10.1. Fix preference profile -I . If there are no cycles of coalitions

C12, C23..., Cm1 ∈ C for any m ≥ 2 such that

(a) there exists ai ∈ Ci−1,i ∩ Ci,i+1 for i = 1, ...,m and Ci−1,i -ai
Ci,i+1,

(b) at least one preference is strict Ci−1,i ≺ai
Ci,i+1,

then -I admits a metaranking.

Proof. Define relation 4 so that C 4 C ′ whenever there exists a sequence of coalitions

Ci,i+1 ∈ C ′ such that

* C = C1,2,

* C ′ = Cm,m+1,

* there is an agent ai ∈ Ci−1,i ∩ Ci,i+1 such that Ci−1,i ≺ai
Ci,i+1.

This is a transitive relation on coalitions, and it is straightforward to verify that this

relation is a metaranking. This completes the proof.

Proof of Theorem 5.10. For an indirect proof, assume that -I does not admit

a metaranking. By Lemma 5.10.1 this means that there exists a cycle of coalitions

C12, C23..., Cm,1 ∈ C for some m ≥ 2 such that

(a) There exists ai ∈ Ci−1,i ∩ Ci,i+1 for i = 1, ...,m and Ci−1,i -ai
Ci,i+1.

(b) At least one preference is strict Ci−1,i ≺ai
Ci,i+1.
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We will proceed by induction. The case m = 2 follows directly from the pairwise

alignment. The case m = 3 was proved in Lemma 5.8.1. For an inductive step fix m ≥ 4

and assume that the claim is true for all collections of strictly fewer than m coalitions.

As a preparatory step, let us demonstrate that there exists ak and ak+2 that are

both workers. Indeed, first notice that if both ai and ai+1 are firms, then ai = ai+1 and

we can shorten the cycle and invoke the inductive assumption to find a contradiction.

Hence, there exists ai who is a worker. If now ai+2 is a firm, then both ai+1 and ai+3

are workers, or we can shorten the cycle and invoke the inductive assumption. Without

loss of generality assume that a1 and a3 are workers. Take a firm f able to employ two

or more workers, and set C = {a1, a3, f}.
First, consider the case when C = Ci,i+1, for some i ∈ {1, ...,m}. Look at C1,2, C2,3, C

and conclude from Lemma 5.8.1 that either C1,2 ≺a1 C, or C2,3 �a3 C, or C ∼a1 C1,2 ∼a2

C2,3 ∼a3 C.

If C = Ci,i+1 and C1,2 ≺a1 C then i 6= 1 and then the shorter cycle

Ci,i+1 -ai+1
Ci+1,i+2 -ai+2

... -am Cm,1 ≺a1 Ci,i+1

satisfies conditions (a) and (b) contrary to the inductive assumption. If C = Ci,i+1 and

C2,3 �a3 C then i 6= 2 and the shorter cycle

Ci,i+1 ≺a3 C3,4 -a4 ... -ai
Ci,i+1

satisfies conditions (a) and (b) contrary to the inductive assumption. Finally, if C ∼a1

C1,2 ∼a2 C2,3 ∼a3 C then the shorter cycle C,C3,4..., Cm,1 satisfies conditions (a)-(b),

contrary to the inductive assumption.

Finally, consider the remaining case C 6= Ci,i+1 for all i. Use the assumption on

the domain from the theorem to find a pairwise aligned profile -I such that there are

no blocking one-worker firms, and C ∼a1 Cm,1 and all preferences along the cycle are

preserved. Let us refer to the new profile as -I . Consider two cases depending on the

preference of a3 between C and C2,3.

If C ≺a3 C2,3, then the collection of m − 1 coalitions C,C3,4, C4,5, ..., Cm,1 satisfies

(a)-(b) since C ≺a3 C2,3 -a3 C3,4, and we can invoke the inductive assumption.

If C %a3 C2,3, then consider the collection of three coalitions C1,2, C2,3, C. Since

C ∼a1 Cm,1, we have C -a1 C1,2. Thus the collection C1, C2, C satisfies

C -a1 C1,2 -a2 C2,3 -a3 C.
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By Lemma 5.8.1 all agents are then indifferent. But then C,C3,4..., Cm,1 satisfies (a)

and (b) and consists of m − 1 coalitions, contrary to the inductive assumption. This

completes the proof.

Lemmas for the proof of Theorem 5.12. Let us precede the proof of Theorem

5.12 with two lemmas.

Lemma 5.12.1. Assume that a domain R of preference profiles satisfies the condi-

tions (2)-(3) of Theorem 5.12 and that all profiles in R admit stable matchings. Assume

that C1,2, ..., C3,1, a1, ..., a3 are such that {ai} ⊆ Ci−1,i ∩Ci,i+1 (all subscripts modulo 3),

and that

(a) if ai ∈ W then {ai} = Ci−1,i ∩ Ci,i+1, and

(b) if ai ∈ F then Ci,i+1 = {ai} ∪ S ∪ {ai+1} for some S ⊂ Ci−1,i.

Then, if C3,1 ∼a1 C1,2, and C1,2 ∼a2 C2,3, then C2,3 %a3 C3,1.

Proof. For an indirect proof assume that there exists a cycle C1,2, ..., C3,1 that satisfies

(a), (b), and C3,1 ∼a1 C1,2, C1,2 ∼a2 C2,3, and C2,3 ≺a3 C3,1.

Use (3) with C = C2,3 and i = a2 to find a preference profile -I∈ R such that

C3,1 ∼a1 C1,2, C1,2 ≺a2 C2,3, and C2,3 ≺a3 C3,1 (we continue to denote the new profile

by the same symbol). Then, use (3) with C = C1,2 and i = a1 to find -I such that

C3,1 ≺a1 C1,2, C1,2 ≺a2 C2,3, and C2,3 ≺a3 C3,1.

Then, for all i ∈ C1,2 ∪ ... ∪ C3,1, and C 3 i different from C1,2, C2,3, C3,1, use (2) to

find -i∈ R such that C -i Ck,k+1 for k = 1, ..., 3. Use (3) to find -I∈ R such that

C ≺i Ck,k+1 for k = 1, ..., 3 and all i ∈ I, and C 3 i different from C1,2, C2,3, C3,1.

Recursively for i = 1, 2, 3, use (2) to modify the preference profile – while preserving

all the above mentioned strict preferences – so that there exists a sequence of subsets

C1
i,i+1 ⊂ C2

i,i+1 ⊂ ... ⊂ Cmi
i,i+1 = Ci,i+1

for some mi ∈ {1, 2, ...} such that

• C1
i,i+1 = {fi} for some fi ∈ F,

• Ck+1
i,i+1 = Ck

i,i+1 ∪
{
ak

i

}
for some ak

i ∈ W ,

• ami
i = ai, a

mi−1
i = ai+1,
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• Ck
i,i+1 -fi

Ck+1
i,i+1, and

• C -a C
k
i,i+1 for any a ∈ Ck

i,i+1 and C 3 a different from Ck+1
i,i+1, ..., C

mi−1
i,i+1 , C1,2, C2,3, C3,1,

Cm1
1,2 , ..., C

mi−1

i−1,i .

Use (3) to modify the preferences and strengthen the last two of the above properties:

• Ck
i,i+1 ≺fi

Ck+1
i,i+1, and

• C ≺a C
k
i,i+1 for any a ∈ Ck

i,i+1 and C 3 a different from Ck+1
i,i+1, ..., C

mi−1
i,i+1 , C1,2, C2,3, C3,1,

Cm1
1,2 , ..., C

mi−1

i−1,i ,

while maintaining the preferences C3,1 ≺a1 C1,2 ≺a2 C2,3 ≺a3 C3,1,and C ≺a Ci,i+1for all

a ∈ C ∩ Ci,i+1.

The resultant profile of preferences does not admit a stable matching. This completes

the proof.

Lemma 5.12.2. Suppose that there are at least two firms able to employ two or

more workers each. Let R be a rich domain of preference profiles. Assume that each

profile -I∈ R satisfies the claim of Lemma 5.12.1: for every cycle C1,2, ..., C3,1, a1, ..., a3

such that {ai} ⊆ Ci−1,i ∩ Ci,i+1 and the conditions (a) and (b) are true we have

C3,1 ∼a1 C1,2, and C1,2 ∼a2 C2,3 imply C2,3 %a3 C3,1.

Then, if A,B ∈ C, B ⊂ A, # (A−B) = 1, and a, b ∈ B, then A ∼a B implies A ∼b B.

Proof. Take A,B ∈ C such that B ⊂ A, # (A−B) = 1, and take a, b ∈ B. If a = b

then the claim is true. If a 6= b, then #B ≥ 2 and #A ≥ 3. Moreover, then A ∩ B
contains a firm that can hire two or more workers. Consider three cases.

Case 1: a, b ∈ W .

There are at least two firms, so there exists c ∈ F − A − B. Consider the cycle

A, {b, c} , {a, c}. Change -I so that {a, c} ∼a A and {b, c} ∼b A while preferences

between coalitions different than {b, c} , {a, c} are preserved. Let us denote the new

profile by -I . Then, Lemma 5.12.1 implies that {a, c} ∼c {b, c}. If B ∼a A then B ∼a

{a, c}, and Lemma 5.12.1 applied to the cycle B, {a, c} , {b, c} implies that B ∼b {b, c}.
Hence, B ∼b A.

Case 2: a ∈ F, b ∈ W .
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Take c ∈ A − B ⊂ W and f ∈ F2 − {a}; f exists since there are at least two firms

able to employ two or more workers each. Let

C = A− {b} = B − {b} ∪ {c}

and

C ′ = {b, c, f} .

We will repeat the Case 1 argument with some modifications. Note that C∩C ′ = {c} and

A∩C ′ = {b} , so condition (a) is satisfied for the cycle C,C ′, A and all its permutations.

Moreover, firm a ∈ A ∩ C, and both A− C and C − A are singletons or empty. Hence

also condition (b) is satisfied. Similar relations are true for the cycle C,C ′, B and all

its permutations. Thus, the claim of Lemma 5.12.1 is satisfied for cycles C,C ′, A and

C,C ′, B.

Using the rich domain assumption, we can find a preference profile that preserves

preferences between coalitions other than C ′ and such that

C ′ ∼b A.

Using the rich domain assumption again, we can find a profile that preserves preferences

between coalitions other than C and such that

C ∼c C
′.

Now, Lemma 5.12.1 implies that C ∼a A.

Since A ∼a B was preserved in the above changes of the preference profile, we have

B ∼a C.

Furthermore, c is indifferent between C and C ′. Thus, Lemma 5.12.1 applied to B,C,C ′

gives

C ′ ∼b B.

Since b was also shown to be indifferent between C ′ and A, we have B ∼b A as required.

Case 3: a ∈ W, b ∈ F .

After renaming the agents, we can assume that a ∈ F, b ∈ W and A ∼b B, and use

virtually the same argument as in Case 2. This completes the proof.

Proof of Theorem 5.12. If there are no firms able to employ two or more workers

each, then all preference profiles are consistent and there are no blocking one-worker

firms.
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If there are at least two firms able to employ two or more workers each, then apply

Lemmas 5.12.1 and 5.12.2 to show that for all i, j ∈ C,C ′ ∈ C, all profiles satisfy the

condition

C ∼i C
′ =⇒ C ∼j C

′.

Remark 5.13 then shows that all profiles are pairwise aligned. The lack of blocking

one-worker firms follows directly from Lemma 5.12.1. This completes the proof.

Appendix to Section 6

Proof Proposition 6.4. The proof of Proposition 4.7 for monotonic mechanisms,

presented in Section 4, constructs the payoff translation functions tb,a : Ua → Ub for any

agents a, b such that one of them is a worker. Recall that for each coalition C 3 a, b, we

have

tb,a (G (a, C, V )) = G (b, C, V ) .

By the monotonicity of mechanism G, functions tb,a are strictly increasing. Since G

generates Pareto optimal profiles, functions tb,a are continuous.

Choose an arbitrary reference worker w∗, notice that 0 ∈ Uw∗ , and define

ψa (u) = f (tw∗,a (u)) , a ∈ I

where f : Uw∗ → R is decreasing, f (s) → +∞ as s → 0+, and such that all ψa are

right hand side integrable at 0. Notice that there exists a function f that satisfies these

conditions. Indeed, there is a finite number k of functions tw∗,a which are all continuous,

increasing, and have value 0 at 0. Take

tmin = min
a
{tw∗,a}

and notice that it is also continuous and increasing, and has value 0 at 0. The functions

ψa are integrable if f ◦ smin is. This will be so if, for example,

f (t) =

[
1

(smin)−1 (t)

]2

.

Moreover, f is decreasing (since smin is increasing), and f (s) → +∞ as s→ 0+ (because

smin (t) → 0 as t→ 0). Notice that ψa are positive and strictly decreasing and define,

Wa (s) =

∫ u

0

ψa (τ) dτ.
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Now, Wa are concave and increasing.

It remains to be shown that the solution to

maxP
a∈C ũa∈V

∑
a∈C

Wa (ũa) =
∑
a∈C

∫ ũa

0

ψa (τ) dτ

coincides with G (a, C, V ). Concavity of the problem implies that there is a solution.

Since the slope at 0 for each
∫ ũa

0
ψa (τ) dτ is infinite, so the solution is internal. The

differentiability of the objective function implies that the internal solution is given by

the first order Lagrange conditions

ψa (ũa) = λ

and the possibility constraint (ũa) |a∈C ∈ V . The first order condition can be rewritten

as

tw∗,a (ũa) = f−1 (λ)

or

ũa = ta,w∗
(
f−1 (λ)

)
.

If there is no worker in C, then C = {f} for some f ∈ F and the claim we are proving

is true. Otherwise, fix a worker w ∈ C and notice that for agents a ∈ C

G (a, C, V ) = ta,w (G (a, C, V ))

Lemma 5.8.1 from the appendix to section 5 shows that

ta,w∗ ◦ tw∗,w = ta,w.

Hence,

G (a, C, V ) = ta,w∗ (tw∗,w (G (a, C, V ))) = ta,w∗ (x)

for some x ∈ R.

This equation, the analogous equation for ũa above, the monotonicity of ta,w∗ , the

Pareto optimality of the mechanism, and the possibility constraint (ũa) |a∈C ∈ V imply

that

ũa = G (a, C, V ) .

This completes the proof.
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