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Abstract

The popularity of the 99c/ reserve price in auctions held on the eBay
platform provides an interesting economic puzzle. That is, the seller’s
receipts are maximized using a 99c/ reserve price for many items. This
paper presents a model showing that when the seller cannot commit to a
reserve price, the best she can do is set the reserve low enough so as to be
non-binding and allow the price to be determined by the bidding.

1 Introduction
The growing literature on online auctions has generated several new ideas aid-
ing our understanding of how traditional markets work. This paper takes the
opposite approach, using an old idea to explain an interesting development in
the workings of online markets, in particular the popularity of the 99c/ reserve
price in eBay auctions. The 99c/ reserve is popular for one simple reason: it
works. The reason it works is something of a puzzle to eBay merchants. The
following excerpt, taken from an eBay message board, describes the nature of
the puzzle:

I have been in the practice of listing items for the least amount
of money I would be willing to sell them for. I figure my costs and
labor and go from there.
I discovered that another seller was selling items similar to mine

and starting them at 99 cents. I thought that this seller must be nuts
to sell stuff for 99 cents. I noticed that many of her bids went way
above what my similar items started at, where many of my items
started at the higher price just stagnated ending without bids.
I have been experimenting with this 99 cent auction thing I have

noticed that the bids do much better and go higher than what I
normally would have started them at. Sure, some sell for 99 cents
but the others that go higher balance it all out[.]
—Treasures_by_cynthia
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The puzzle, as identified by this retailer, is the following: Two identical items
are put up for auction at different times using different posted reserve prices, say
99c/ and $14 respectively. The sales mechanism is a second-price auction in both
cases.1 The auction with the 99c/ reserve ends with a price of $16 while the $14
reserve auction fails to generate any bids. This outcome is a puzzle to this and
other merchants as a bidder willing to pay $16 in a 99c/ reserve auction should
be willing to do so in a $14 reserve auction. Another retailer, after conducting a
number of experiments on the issue, advises that the best use of the 99c/ auction
is only when 99c/ is a small fraction of the item’s market value:

99 cent auctions are best for items with values (completed auc-
tion, or perceived value) of over $10.00, even better for items worth
over $20.00. It doesn’t work as well with items worth 5-6 dollars.
—Clact

Explanations for this puzzle abound on the message board. The most well-
thought-out rely on what could be deemed “behavioral" hypotheses. One mer-
chant claims that once the bidding begins, a consumer’s objective changes from
maximizing expected surplus to winning the auction with the highest probabil-
ity. Another identifies a "quasi-endowment" effect that does not allow a buyer
to let go of the object after being outbid by a competitor.
The logic of these behavioral hypotheses notwithstanding, the merchants

appear to be overlooking the dynamic effect inherent in what appears to be a
common practice. That is, when the item fails to sell at the $14 reserve price,
they simply “re-list” with a lower reserve. Anticipating this response, rational
consumers may wish to hold off bidding in the current auction and instead
wait for the next auction in which they may obtain the item at a lower price.
For instance, a potential buyer who values the item at $14 gains nothing by
winning the current auction at a price of $14, but earns positive surplus in the
following period should the item fail to sell presently. The seller, anticipating
this response, is then left with no choice but to start at the lower reserve. It is
this wait-and-see approach by buyers that accounts for the puzzle identified by
our seller Treasures_by_cynthia. Since the item will necessarily sell when the
reserve is 99c/, the buyer with a valuation of $14 can do no better than bid his
valuation in the current period.
This dynamic is essentially a problem of commitment identified in the bar-

gaining literature by Schelling (1960) and in the durable goods monopoly liter-
ature by Coase (1972). In Coase’s model, a monopolist owns a tract of land to
be sold off in lots. Charging a supra-competitive price to the batch of customers
with the highest willingness to pay, there are lots left over to be sold to the next
at a lower price. This process continues until the last lot is sold at marginal cost

1Buyers are given a predetermined window, say three days, during which they may place
bids. As bids are received, the current price as well as the high bidder’s identity are made
public. At the end of the auction, the high bidder wins the item and pays an amount equal
to the second-highest bid plus a small increment. Given the ending rule, the second-price
auction model seems most appropriate discription of the environment. For a more complete
description of the auction environment, see Bajari & Hortacsu (2003).
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and in the absence of frictions the price reaches marginal cost “in the twinkling
of an eye.”(2) In equilibrium, no customer will pay more than the competitive
price for a lot of land. In the case of bargaining, a mutually beneficial transac-
tion can be precluded by a problem of indeterminacy, as any division of surplus
is equally plausible. However, when one of the parties can make a commitment
preventing him from accepting any unfavorable offers, "he can squeeze the range
of indeterminacy down to the point most favorable to him."(13). Likewise, if the
durable goods monopolist could commit himself against future price reductions,
he can regain his power to price as a monopolist.
This purpose of this paper is to show that the seller’s inability to commit to

a reserve price can account for the popularity of the 99c/ reserve. In doing so,
we show that this model explains two empirical anomalies: 1. Bidding gaps: An
auction with a high reserve, say $14, ends with no bids while an auction with
a non-binding reserve of 99c/ ends with a price exceeding $14. Empirically, this
means that for any price of p, the probability that the sales price exceeds p is
decreasing in the reserve. 2. Reserve optimality: A non-binding reserve of 99c/
maximizes the seller’s expected revenue.
The optimality of a non-binding reserve price has been documented in the

empirical literature. Reiley (2004) conducts field experiments auctioning Magic
cards over the internet via first-price sealed-bid auction and finds that a zero
reserve maximizes expected revenues. Bajari & Hortacsu (2003) find that sellers
of rare coins on eBay tend to post reserve prices well below the coin’s book value.
A possible explanation given by Reiley, owing to the model of Levin & Smith
(1994), is that participation is endogenous and that buyers face participation
costs. In such a world, a buyer is less likely to participate in an auction with a
higher reserve as his expected surplus may not be large enough to compensate for
having paid the cost of participation. On average, a low-reserve high-expected-
participation auction yields greater revenue than a high-reserve low-expected-
participation auction. Riley claims to find evidence of participation costs by
auctioning several items simultaneously with no reserve and finds a paucity of
bidders placing bids on all items.
Another possible explanation is that buyers’ valuations are affiliated. In the

affiliated model of Milgrom & Weber (1982), not only are the valuations of bid-
ders interdependent, but information held by one buyer is positively correlated
with the valuation of another. In this way, a bid placed by one bidder may
cause another to reevaluate his willingness to pay and increase his bid. Thus,
the greater the number of bids, the more opportunities for other bidders to up-
date their bids to the benefit of the seller. Thus the seller is well served to start
the auction at a low reserve.
With the existing theories in mind, this paper offers an alternative model to

explain the prevalence of the 99c/ reserve. This model distinguishes itself from
the explanations given on the message board in that it does not rely on irrational
behavior. And contrary to the model of Milgrom & Weber, it is applicable to
markets in which buyers valuations would not be expected to be interdependent.
And as we will see, the model of Levin & Smith (1994), while plausible within
this context, is ambiguous as to the presence of bidding gaps.
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Section 2 presents both the standard auction model and the dynamic model
in which the seller cannot commit. Section 3 addresses the economic implica-
tions of the dynamic model to explain the aforementioned empirical anomalies
in a way the standard model cannot. Section 4 contrasts the relevant mod-
els and derives empirical tests to distinguish one from the next, and Section 5
concludes.

2 Independent Private Values Model with List-
ing Fees

Consider an auction marketplace consisting of a single seller and n potential
buyers indexed i = 1, 2, ..., n. The seller has one unit of a particular item to sell.
Buyers are risk neutral, have unit demands, and differ only in their valuation of
the item. Each buyer’s valuation, denoted v, is private information. Valuations
are assumed to be independent and identically distributed according to F , a
continuous distribution with density f defined over the support [v, v̄], v ≥ 0.
With the cost of production sunk, the seller has no value for the item, is risk
neutral, and offers the item for sale via sealed bid second-price auction with
posted reserve r ∈ [0,∞). For the privilege of running the auction on the online
platform, the seller pays a listing fee c (r), weakly increasing in the posted
reserve. The schedule of listing fees, consistent with what is used on eBay, c (r)
is a step function taking on values c0 for r ∈ [0, r0], c1 for r ∈ (r0, r1] and so
forth.2 Assume the seller’s valuation, the distribution of buyer valuations F and
the schedule of listing fees c (r) are all common knowledge. Lastly, we restrict
the shape of F to guarantee concavity of the seller’s objective function so that
the seller’s optimal reserve is unique.
This setup is meant to capture an environment of asymmetric information

in which each buyer knows his willingness to pay but not that of other buyers.
The seller has only imperfect information over the valuation of each buyer and
must set an optimal reserve price given her information. Since their valuations
are known to themselves, buyers learn nothing about the item’s value from the
seller’s reserve price or from the bidding of others. Through this environment,
we compare the optimal reserve price, the average resultant transaction price,
and the seller’s net revenue when: 1.commitment by the seller is possible and
2. commitment is not possible. By commitment, I am referring to a credible
promise to not offer the item for sale at a future date with a lower reserve
price.3 Thus commitment could take the form of a promise to either burn the
merchandise following the auction in the event the auction does not result in a
sale, or to keep the reserve price at a previously determined level when the item
goes up for auction again. Either promise, if credible, eliminates any incentive

2The schedule of listing fees actually used on eBay is given in Table 1 of the Appendix.
3This "commitment" is analogous to that referred to in the durable goods monopoly lit-

erature whereby the monopolist can prevent himself from lowering the sale price in future
periods.
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on the part of buyers to wait for the item to be listed at a lower price and buy
it then.
In the literature on optimal auctions,4 it is commonly assumed that a seller

can commit to no future sales in the event the item goes unsold at the optimal
reserve price, or any reserve price for that matter. While this assumption may
seem valid when the seller is a reputable auction house, it is clearly not so
when the seller is one of thousands of semi-anonymous eBay merchants. In
various online formats, these merchants readily admit amongst themselves to
the practice of relisting, seemingly unaware of the consequent dynamic effects.
Further, the relative anonymity of retailers makes establishing a reputation
difficult and pledges not to relist non-credible.

2.1 Standard Auction Model: Seller Commitment

For means of comparison, consider a one-shot game where the seller commits to
a given reserve r. The auction game proceeds as follows: Buyers are called upon
to submit sealed bids.5 If the highest bid exceeds r, the item sells for the greater
of the second-highest bid and r. If not, all players get nothing and the game
ends. In the event of a tie, the item is awarded to one of the tying bidders at
random and the winner pays his bid. The equilibrium concept is Bayesian-Nash
equilibrium.
This game is identical to the second-price auction mechanism devised by

Vickrey (1961) with the added feature of a reserve price. Vickrey showed that
each bidder follows a weakly dominant strategy of revealing his true type v
through his bid. The following lemma shows that Vickrey’s strategy extends to
an environment with a reserve price.

Lemma 1 In the second-price auction with seller commitment and reserve r,the
following bidding strategy is (weakly) dominant: Bid v if v ≥ r; do not bid
otherwise.(7)

Proof. Consider the strategy of buyer 1 with valuation v and let b1 denote the
maximum of the bids placed by all other buyers. There are 3 cases to consider.
In each case, we see that buyer 1’s payoffs are at least as great playing the
proposed strategy as they would be under any possible deviation.

1. v > b1 :If v > r then deviating affects the outcome only when player 1 re-
duces his bid so as to go from winning the auction and payingmax {r, b1} <
v to losing the auction and getting nothing. If v < r then deviating affects
the outcome only when player 1 bids an amount greater than r so as to
go from receiving nothing by not bidding, to winning the auction, paying
r, and receiving negative surplus.

4See Riley & Samuelson (1981) for an intuitive derivation of the optimal auction mechanism
or Meyerson (1981) for a more technical treatment.

5By assuming a sealed-bid second-price auction, we abstract away from the ascending
nature of the online auction. This turns out not to be a problem as the normal form of the
ascneding auction is equivalent to that of the second-price auction in the independent private
values environment.
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2. v < b1 : Deviating affects the outcome only when player 1 raises his bid
so as to win the auction at max {r, b1} and receive negative surplus when
he would have received zero by playing the prescribed strategy.

3. v = b1 : Player 1’s payoffs are zero if he wins and zero if he loses regardless
of his bid.

Given the best response of buyers, we now wish to calculate the seller’s
expected revenue. We begin by calculating the expected payment for a given
buyer, say buyer 1. In what follows, let Y1 denote the largest of the valuations of
all players other than player 1 with G (y) its distribution and associated density
g (y). Since vi are independent, it follows that G (y) = F (y)n−1. Conditional on
winning the auction, buyer 1’s payment is r when Y1 < r and Y1 when Y1 ≥ r.
Thus, his expected payment is:

mc (v) = rG (r) +

Z v

r

yg (y) dy = vG (v)−
Z v

r

G (y) dy (1)

Expected receipts from the seller’s perspective, Rc, is just n−times the ex-
pectation of mc (v) for v ≥ r. Thus, Rc (r) = n

R v̄
r
mc (v) f (v) dv. The seller’s

revenue is the net of the expected receipts, Rc, and the listing fee c. The seller
then chooses r∗ to solve 6:

Γc = Max
r∈[v,v̄]

{−c(r) +Rc (r)} (2)

Since c (·) is a discrete function, Γc is non-differentiable. To solve (2), we
compare revenue from the reserve maximizing Rc with the reserve prices located
along at the jump points in c (·). Let r̂ denote the reserve that maximizes Rc,
assumed to be unique. Direct computation yields the interior solution r̂ =
1−F (r̂)
f(r̂) . The seller’s optimal reserve r

∗ can be no greater than r̂ since such a
reserve would cost at least as much to list but result in a lower expected sales
price. Let k (r̂) denote the index of the reserve such that c

¡
rk(r̂)

¢
= c (r̂). It

follows that:

r∗ = argmax{Γc
¡
r0
¢
,Γc

¡
r1
¢
, ...,Γc

³
rk(r̂)−1

´
,Γc(r̂)} (3)

The upshot is, if listing fees are significant enough to affect the seller’s choice
of reserve, she will choose a reserve at the corner of a given step. Any alternative
reserve on the same step would cost her the same to list but result in a lower
expected price as it would be further from r̂. Suppose that r̂ = $14. From Table
1 (in Appendix), the seller incurs a listing fee of 65c/. Other candidates for r∗

are $9.99 and 99c/ which result in fees of 35c/ and 25c/ respectively. However,
if v > 99c/, then any reserve under 99c/ is a candidate as they are all equally
profitable. The seller will choose a reserve of 99c/ or less rather than r̂ if the

6 In the actual online environment, the seller pays a fraction λ of the final sale price to
eBay. We then interpret c as the actual listing fee normalized by dividing by 1− λ.
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decrease in receipts is less than the 40c/ difference in listing fee. While this may
be the case for some items, these cost savings are small enough that they are
unlikely to account for a 99c/ reserve in all cases. Such ambiguity is averted in
the dynamic model when the seller’s receipts actually increase for a reserve of
99c/ over r̂.
It is within this framework that the presence of a bidding gap is so paradoxi-

cal. Since every buyer whose valuation exceeds a reserve of say $14 will bid their
valuation, for a given realization of the random variables, if a 99c/ auction results
in a sale price in excess of $14, so should the $14 reserve auction. From an empir-
ical standpoint, for any p > r, the probability that the transaction price exceeds
p given a reserve r can be calculated from the density of the second-order statistic
of valuations to be P {price > p|r} = n (n− 1)

R v̄
p
F (x)

n−2
[1− F (x)] f (x) dx,

which is independent of r.

2.2 Dynamic Model with No Commitment

Lacking a credible commitment device, the seller suffers from a time-inconsistency
problem. That is, if the item fails to sell in the initial auction, the optimal re-
sponse has her put it on sale in the following period and reduce the reserve every
subsequent period until the item eventually sells or until the reserve reaches v,
at which point the item will necessarily sell. To analyze this process, we con-
sider an infinite horizon model with periods indexed t = 1, 2, .... In period 1, the
seller runs a second-price auction with reserve r. If the item sells, the outcome
is as before. If it does not sell, the seller runs another second-price auction in
period 2. In the period-2 auction, the seller must choose the reserve optimally,
given the item failed to sell in period 1. In equilibrium, this reserve price will
be no greater than that chosen in period 1. If the item fails to sell in period
2, the game repeats itself in period 3 and so on. As the game advances from
one period to the next, all buyers discount returns accrued in the next period
by factor δb and the seller discounts by factor δs, both of which are common
knowledge. We simplify the problem for the time being by assuming the listing
fee to be some constant c and that c is small enough that it is profitable for the
seller to offer the item for auction in the initial period.
The technical treatment of this problem follows that of Fudenberg, Levine,

& Tirole (1985) on sequential bargaining and Gul, Sonnenschein, & Wilson
(1986) on durable goods monopoly as the three problems are closely related.
In sequential bargaining, a seller who’s valuation is known, makes a sequence
of price offers (one per period) to a single buyer who’s valuation is a random
variable with distribution F . In durable goods monopoly, a producer who’s
(constant) marginal cost is known, makes a sequence of price offers (one per
period) to a mass of consumers with unit demands where F (x) represents the
mass of consumers who’s valuations lie below x. In both models, the strategy of
a buyer involves deciding on a price at which the seller’s offer is accepted. The
difference is, sequential bargaining deals an uncertain environment whereas the
environment of the durable goods monopoly is deterministic. The auction set-
ting considered herein can be thought of as an n−buyer extension of sequential
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bargaining. The seller makes offers through her choice of reserve price. Buyers
indicate acceptance by placing a bid in excess of the reserve. The magnitude
of the bid comes into play only when more than one buyer accepts the seller’s
offer. In this case, the magnitude of the bid breaks ties by raising the price to
the point at which only the winning bidder continues to accept.
To analyze this game, we search for symmetric perfect-Bayesian-Nash equi-

librium strategies. We show that an equilibrium exists though the equilibrium
path depends upon whether or not v exceeds c. In each case, the unique equilib-
rium is defined by σ (Ht−1), the seller’s best response function, and β (Ht), the
lowest valuation type to place a bid (with positive probability) in each period
t respectively given the history of of reserve prices, where Hτ = {r1, r2, ..., rτ}.
We begin by establishing essential properties of either equilibrium.
Lemma (2) establishes the Coasian nature of the game.

Lemma 2 In any period t, there exists a minimum type βt = β (Ht), such that
every buyer whose valuation exceeds βt submits a bid.

Proof. It is sufficient to show that if it is profitable for a bidder with valuation
v to submit a bid in some period t, then bidding will also be profitable for a
buyer with valuation v0 > v. In this vein, if a buyer with valuation v submits a
bid period t, then it must be that payoff from doing so exceeds the continuation
payoff. Formally, this implies

vQt (v)−mt (v) ≥ δbΠt+1 (v; v) (4)

where Qt (z) = Q (z;Ht) is the probability of winning in period t given his-
tory Ht for a buyer who plays the strategy of a type-z buyer, mt (z) is the
analogous expected payment for such a player, and Πt+1 (z; v,Ht) is expected
continuation payoff for a buyer with valuation v playing as if his type were
z. Of course in equilibrium, z = v as each player plays according to his
type. We need to show that for every v0 > v, we have v0Qt (v

0) − mt (v
0) >

δbΠt+1 (v
0; v0). Because a buyer always has the option of bidding in the current

period, δb [Πt+1 (v0; v0)−Πt+1 (v; v)] ≤ Πt (v0; v0) − Πt (v; v). And since the v0
type can always follow the strategy of the v−type player, Πt (v0; v0)−Πt (v; v) ≤
(v0 − v)Qt (v). Therefore,

δb [Πt+1 (v
0; v0)−Πt+1 (v; v)] ≤ (v0 − v)Qt (v) (5)

Incentive compatibility implies that in every period v0Qt (v
0)−mt (v

0) ≥ v0Qt (v)−
mt (v) or equivalently

v0 [Qt (v
0)−Qt (v)]− [mt (v

0)−mt (v)] ≥ 0 (6)

Adding (6) to both sides of (4) yields v0Qt (v
0) − mt (v

0) − (v0 − v)Qt (v) ≥
δbΠt+1 (v; v). Rearranging terms and making use of (5) yields the desired result.

Analogous to the literature on durable good monopoly, βt is the lowest
valuation type to buy in period t. It must be the case that βt ≥ rt otherwise a
player could earn negative surplus by bidding.
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As a point of terminology, we refer to βt as the posterior in period t since it
refers to the highest remaining type after the period t auction has taken place.
This type then becomes the common prior, ut+1, in the following period from
which the seller chooses her optimal reserve.
The Coasian nature of the game ultimately restricts the set of buyer types

that bid in a given period. However, this should not affect a buyer’s strategy
conditional on submitting a bid.

Lemma 3 Conditional upon bidding, it is a weakly dominant strategy for each
bidder to bid his valuation.

Proof. The proof is the same as that for Lemma (1) .
This result is rather intuitive. Having already made the decision to bid in the

current auction, each bidder chooses a bid to maximize surplus. By definition,
a dominant strategy has each buyer playing the prescribed strategy regardless
of the strategy of others, in particular if some of the others choose not to bid.
With buyers’ strategies well-defined, the probability of winning the period-t

auction is Qt (v) = G (v) for v ≥ βt; 0 otherwise. A buyer’s expected payment
is mt (v) = rtG (βt) +

R v
βt
yg (y) dy for v ≥ βt; 0 otherwise. Since the seller’s

revenue in a given is just n−times a given buyer’s expected payment, the seller

chooses rt to maximize Γ(ut) =
∞X
j=0

δjF (ut−1+j)
n
³
n
R ut+j
β(rt+j)

mt+j (v)
f(v)

F (ut+j−1)
n dv − c

´
where β is a known function of r in equilibrium. The following Lemma shows
that this necessarily results in a downward sloping reserve-price path.

Lemma 4 The seller’s equilibrium reserve-price path is strictly decreasing.

Proof. Suppose by way of contradiction that rt+1 ≥ rt. We will show that any
player that submits a bid in t+ 1 should also bid in period t. Consider a buyer
with valuation v that prefers not bid in the current auction (v < βt). Since this
buyer would have won the current auction only when no one else bids (Y1 < βt),
not bidding implies,

(v − rt)G (βt) < δbΠt+1 (v) (7)

For rt+1 to be part of an equilibrium, it must be the case that some buyer type
bids in period t+ 1. Otherwise, the seller would incur listing fee c and gain no
additional revenue. She could increase expected profits by jumping ahead to
the next reserve price that results in some type placing a bid. Thus, there must
exist a minimum type βt+1 strictly below βt that bids in period t + 1. This
type, by virtue of being the lowest type to bid, earns expected surplus

Πt+1
¡
βt+1

¢
=
¡
βt+1 − rt+1

¢
G
¡
βt+1

¢
(8)

Since, as we have argued, type βt+1 does not bid in period t let v = βt+1 in (7).
Combining equations, we have¡

βt+1 − rt
¢
G (βt) <

¡
βt+1 − rt+1

¢
G
¡
βt+1

¢
(9)
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which is a contradiction since both sides are positive, G
¡
βt+1

¢
< G (βt) by

Lemma (2) and rt+1 ≥ rt by hypothesis.
The upshot is, if the seller posts a reserve greater than the last, she won’t

receive any bids. Following this logic recursively, the current reserve must be
lower than all previous reserve prices.
As the game goes on, if the item remains unsold the reserve may eventually

be reduced to v. At this point, the seller needn’t reduce the reserve any farther
as all buyer types will bid.

Lemma 5 Regardless of the history, all buyer types bid when the reserve is at
or below v.

Proof. We begin by asserting that the seller will never drop the reserve below
her valuation of zero. At a reserve of zero, a buyer submits a bid as long as his
expected surplus exceeds his continuation payoff. Since the reserve can get no
lower, the continuation payoff can be no greater than the payoff of bidding. With
every bidder bidding their respective valuation, each type receives

R v
v
G (y) dy ≥

0. Thus, every buyer type bids when the reserve is zero.
We now use recursive logic to show that every type bids for any reserve

less-than or equal to v. Knowing that zero is the lowest possible reserve, buyers
bid at reserve price r ∈ (0, v] as long as vG (v) − m (v; r) ≥ δb

R v
v
G (y) dy ⇔

[β (r)− r]G (β (r)) +
R v
β(r)

G (y) dy ≥ δb
R v
v
G (y) dy where β (r) is the lowest

type to submit a bid. From Lemma (2), if this condition holds for the lowest
buyer type β, it holds for all higher types. Thus it is sufficient to show that this
condition holds for v = β, which implies,

[β − r]G (β) ≥
Z β

v

G (y) dy (10)

where we set v = β and δb = 1. This condition holds for all β ≥ v indicating all
buyer types do submit bids. Furthermore, it also holds for all r ≤ v, establishing
the desired result.
Lemma (5) says that the seller can induce bids from all buyer types and

guarantee a sale with a reserve of v or below. It turns out that when v > c, the
seller will eventually reduce the reserve to v when ut becomes sufficiently small.
This guarantees the game ends with a sale. When v < c, this outcome may also
be possible. But it is also possible that depending upon the magnitude of c, the
seller may eventually find it unprofitable to list the item for ut sufficiently small.
In such case, the last posted reserve is binding and the game ends without a
sale. Regardless of the case, we know that the game ends in finite time so we
can solve for the equilibrium through backward induction. This, along with our
assumption that the seller’s best response function σ is single-valued, guarantees
our equilibrium is Markovian. That is, the seller’s best response depends only
on the current prior ut and a buyer’s strategy, characterized by β, depends only
on the current reserve rt.
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Proposition 6 For any c > 0 and any δb, δs ∈ [0, 1] , an equilibrium exists and
it is generically unique. The equilibrium is Markovian.

Proof. See Appendix.

3 Economic Implications of Dynamic Model
In this section, we describe the bidder’s decision to bid in a given period and
show how bidding gaps can result. We then characterize the conditions under
which our model predicts a non-binding initial reserve.

3.1 Bidding Gaps

In equilibrium, the seller’s reserve price path is a deterministic sequence {rt}T
∗

t=1

with a corresponding sequence of minimum types βt such that a buyer bids his
valuation in period t if it falls in the interval [βt, βt−1). Since a player with
valuation βt wins the period−t auction only when Y1 < βt and thus pays the
reserve rt, βt must satisfy

(βt − rt)G (βt) = δbΠt+1 (βt) (11)

where due to the descending nature of the reserve price path, the type indifferent
in period t strictly prefers bidding in t+1. This yields a continuation payoff of:

Πt+1 (βt) =
¡
βt+1 − rt+1

¢
G
¡
βt+1

¢
+

Z βt

βt+1

G (y) dy (12)

Equations (11) and (12) define a cutoff such that a buyer bids in the current
period only when the payoff of doing so exceeds the opportunity cost. This
makes bidding sequentially rational Furthermore, the cutoff value βt has some
interesting economic properties laid out in the following corollary.

Corollary 7 For any reserve r along the equilibrium path, the corresponding
posterior β (r) has the following properties:

1. ∂β
∂r > 0.

2. β (v) = v, β (r) > r ∀r > v.

3. β (r;n0) < β (r;n) for n0 > n, lim
n→∞

β = r.

4. ∂β
∂δb

> 0, lim
δb→0

β = r.

Proof. See Appendix.
Property 1 says the minimum valuation type submitting a bid increases with

the reserve price. This property is fairly trivial as it holds in the case of seller
commitment where the minimum bidding type is equal to the reserve. The
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interesting property, 2, says that there exists a gap between the reserve price
and the minimum bidding type for any reserve greater than v. It is this property
that perplexed the eBay sellers. Viewing the auction as a one-shot game, they
seem to think that any rational bidder willing to pay $14 in a 99c/ reserve should
be willing to pay $14 in a $14 reserve auction. Property 2 says this may not
be the case as the minimum type that bids in a $14 reserve auction exceeds
$14. Thus, we should not be surprised to see an auction with a 99c/ reserve end
with a price exceeding $14 while the $14 reserve auction ends with no sale. In
particular, the probability that the price exceeds $14 when the reserve is $14 is
equal to the probability that the second-highest valuation exceeds $β (14). In
contrast, when the reserve is 99c/, the probability of the price exceeding $14 is
equal to the probability that the second-highest valuation exceeds $14 which is
less than $β (14). These probabilities would be equal could the seller commit in
advance.
From an empirical standpoint, property 2 says that for some p > r, P {price > p|r} =

n (n− 1)
R v̄
max{p,β(r)} F (x)

n−2 [1− F (x)] f (x) dx, which is decreasing in r for p
sufficiently close to r. The upshot is, for a given reserve r, if we choose a value
p just greater than r, the probability that the price exceeds p is equal to the
probability that the second-highest valuation is both greater than p and large
enough that it pays to bid in the current auction. Since the value β that deter-
mines whether or not it pays to bid in the current auction is both greater than r
and increasing in r, by lowering the reserve by some small amount dr, we can ex-
pect to invite bids from buyers with valuations in the interval [β (r − dr) , β (r)],
where β (r − dr) exceeds p. By inviting more bids from buyers whose valuation
exceeds p, we should see the probability that the price exceeds p increase.
Property 2 illustrates a buyer’s incentive to "game" the seller by delaying

bidding. Properties 3 and 4 show how the number of buyers and the level of
buyer impatience curbs this incentive. As the number of buyers increases, the
probability that the item goes unsold at any reserve decreases. This has the
effect of reducing a buyer’s incentive to delay bidding resulting a lower value of
β for a given reserve. Likewise, as buyers become more impatient—indicated by
a lower value of δb—the value of delaying bidding is reduced resulting in a lower
value of β.

3.2 Non-binding Initial Reserve

With respect to the seller, the incentive to delay bidding reduces expected re-
ceipts from a given reserve in any period. To see this, consider the expected
payment for a buyer in period t:

mt (v) = rtG (βt)+

Z v

βt

yg (y) dy = vG (v)−(βt − rt)G (βt)−
Z v

βt

G (y) dy (13)

As in (1), we have written the expected payment as the difference between a
buyer’s gross and net benefit. What distinguishes (1) from (13) is the wedge
(βt − rt)G (βt). This term is positive and does not depend on v. From (11),
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we see that the wedge is equal to the reservation level surplus of the indifferent
bidder. Thus, any buyer that bids must be guaranteed this level of surplus,
which comes right out of the seller’s pocket. For this reason, at any prior ut,
the expected payment for a buyer and hence expected receipts for the seller in
period t are lower than they would have been could the seller commit herself to
not relist.
We want to show that the inability to commit forces the seller’s initial reserve

price below what it would have been under commitment. In what follows, we
assume that c, the generic listing fee, lies below v so that the reserve eventually
drops to v. Harking back to the advice of the seller Clact in the introduction, the
99c/ reserve works best when the expected sales price is well above 99c/. Thus,
we can think of our assumption as a condition guaranteeing that the expected
sales price is sufficiently large. However, when v is sufficiently greater than 99c/,
it is not enough to show that the reserve drops to v. For the seller to want to
drop the reserve to 99c/, it must be that the listing fee associated with a 99c/
reserve is below the fee paid for a reserve of v. To introduce this component
without affecting the existence of equilibrium, we assume that the schedule of
listing fees is again a step function like that on eBay with the restriction that
any reserve in [v, v̄] has the same fee c. Lastly, we assume that c0, the minimum
listing fee, is strictly less than c.
The optimal reserve depends in part on the discount rate of both buyers in

sellers. We saw in Lemma 7 that when buyers’ discount rate is 0, they behave
as if the seller could commit. Regardless of her discount rate, the seller could
do no worse than to post a reserve of r∗, which maximizes revenue in a one-shot
game. Thus, for the seller to start with a low reserve requires that buyers be
patient enough to wait for the reserve to be reduced.

Corollary 8 For any c ∈ (0, v) and any δs ∈ [0, 1], there exists a δ̄ such that
if δb exceeds δ̄, σ (v̄) = v. In such case, the seller’s initial reserve is no greater
than r0 < v, all buyer types bid and the seller earns

R v̄
v
Mc (v; v̄) dv − c0. The

optimal reserve, expected selling price, and total seller revenue are lower than
in the case of commitment, strictly so when r∗ > v.

The cutoff value for buyers’ discount factor δ̄ is the smallest value of δb such
that a seller with prior v̄ prefers to make the initial reserve non-binding when
he otherwise would do so in the following period. Following from the first-order
condition of the seller’s two-period problem, we have:

δ̄ = 1− [(1− δs) v + δsc] f (v) (14)

The introduction included a quote from the seller Clact who claims the 99c/
auction works best for items that are expected to sell for at least $10. In such
cases, the reserve constitutes a small fraction of the item’s transaction price.
If v > r0, then r0, representing a reserve of 99c/, is part of the set of optimal
reserves and constitutes a small fraction of the transaction price. Thus the
findings of this model are consistent with our two empirical anomalies. The
only remaining question is then: Why a 99c/ reserve? Why not 1c/? It turns out
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that many auctions do employ a reserve of 1c/ as well, though few use any in
between 1c/ and 99c/.
Given the curiousness of this result, we may be interested to consider what

happens when the seller tries to post an initial reserve in excess of v. A numerical
example is useful here. Suppose n = 2, δs = δb = 1, buyer valuations are
distributed uniformly on [.2, 1.2], and c < .2 In the standard auction model,
the seller chooses a reserve to maximize n

R 1.2
r
[2v − 1.2](v − .2)dv, which yields

r̂ = .6 and Rc = .576. When the seller cannot commit to a reserve in period
1, δb > δ̄ = 1 − c implies the seller posts a non-binding reserve in the initial
period. If the seller posts some reserve r1 > .2 in the initial period, a buyer bids
only if his valuation exceeds a cutoff, β2 (r1) determined as the type indifferent
between bidding with the current reserve and waiting for the following period
where the seller will revert back to the optimal reserve path which calls for a
nonbinding reserve. From (11) and (12), we have β2 (r1) = 2r1 − .2.
Suppose the seller, in the absence of commitment, posts a period-1 reserve of

r̂ = .6. Only buyers whose valuations exceed β2 (r̂) = 1 submit bids resulting in
expected period-1 receipts of only R1 (r̂) = .362. Overall, her combined receipts
from periods 1 and 2 equal R1+R2 = .533, independent of her reserve in period
1. The figure below illustrates Rc (r) , R1 (r), and R1 + R2 as functions of r..
Notice that Rc is positive for all r ∈ [.2, 1.2] and is maximized at r̂ = .6. In
contrast R1 is positive only for r ≤ .7, since no types find it profitable to bid at
any higher reserve. It is maximized at .2 with expected receipts of .533. The
fact that R1 lies below Rc for any r indicates that at any reserve, not just the
optimal reserve, a seller capable of commitment does better than one that is
not. R1 + R2 is constant across r at a value equal to R1 (.2) since at a reserve
of .2, the item is guaranteed to sell in period 1, so the seller’s period 1 receipts
are her total receipts.
As a concluding point, we point out the commitment potential of the listing

fee. Corollary (8) demonstrates the worst possible outcome for the seller. And
this occurs when c is small relative to v. We noted in the previous section that
when c > v, there exist a case where the last reserve posted is a binding reserve.
In such cases, in the last period, the listing fee serves as a commitment device
guaranteeing the reserve will not be reduced further. For a large enough listing
fee, the seller could actually commit to r̂—the optimal reserve in the standard
model—and earn net revenues greater than under conditions in which the seller
is forced to post an initial reserve of 99c/. So a seller facing patient buyers may
actually prefer a larger listing fee as it confers greater pricing power or strength
in bargaining.

4 Empirical Predictions
The introduction presented several alternative models that are said to explain
the prevalence of the 99c/ reserve. The behavioral models of our eBay sellers
claim that buyer irrationality is the cause either through a competitive impulse
to win the auction or through a quasi-endowment effect. The model of Milgrom
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&Weber (1983) suggests that affiliated signals condition one bidder’s willingness
to pay on the bids of other players. Reiley (2004) argues that the presence of
participation costs cause potential buyers to rethink their participation decision
when the reserve price is high. All three of these theories result in the seller’s
reserve price being a small fraction of the final sale price. In what follows, we
take a harder look at these theories and compare their predictions to those of
the model presented herein.
We begin by distinguishing our model from the standard auction with seller

commitment. In the standard auction, every buyer bids as long as his valuation
exceeds the reserve r. Thus, a sale occurs as long as X1, the first-order statistic
of buyer valuations, exceeds r. Conditional on a sale occurring, the sales price
is equal to r for all realizations of X2, the second-order statistic, less than r.
For all realizations of X2 greater than r, the sales price is equal to X2. Thus,
the density of sales prices is identical to the density of X2 for values greater
than r with a mass point at r equal to the probability of X2 < r conditional on
X1 > r.
In contrast to the standard model, in our model, potential buyers bid if

their valuations exceed some cutoff β which exceeds the reserve for all reserves
greater than v. Thus a sale takes place only if X1 exceeds β. However, the
sales price can take on values less than β when X2 < β, in which case sales
price is r. As before, when X2 exceeds β, the sales price is equal to X2. Thus,
the density of sales prices is identical to the density of sales prices in the stan-
dard model for values of X2 greater than β with a hole over the interval (r, β)
and a mass point at r equal to the mass point in the standard model plus the
area of the hole. The presence of this hole indicates the presence of positive
selection. If we compare a 99c/ reserve auction to a $14 reserve auction and
restrict attention to outcomes in which the sales price exceeds $14, the aver-
age sales price will be higher for the $14 auction since the calculation only
includes values of X2 exceeding β. This positive selection gives rise to a bidding
gap. As explained in the introduction, this is tendency for a 99c/ auction to
result in a price exceeding $14 while a $14-reserve auction results in no sale at
all. This happens when 14 < X2 < X1 < β (14). To empirically test for the
presence of a bidding gap, we consider Ω (p; r) ≡ P {price > p|r} for p > r.
In our model Ω (p; r) = n (n− 1)

R v̄
max{p,β(r)} F (x)

n−2
[1− F (x)] f (x) dx is de-

creasing in r for values of p near r while in the standard model Ω (x; r) =
n (n− 1)

R v̄
p
F (x)

n−2
[1− F (x)] f (x) dx is independent of r.

4.1 Participation costs

The model of Levin & Smith (1994) is identical to the standard auction model
only with some exogenous participation cost, incurred prior to each player learn-
ing his valuation. Nature (or some exogenous process), selects N the number of
potential buyers. The participation cost, e, is assumed to be large enough that
if all buyers participate, each receive negative expected surplus. Since buyers
do not know their valuation before incurring the participation cost, a buyer
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will choose not to do so if he thinks all others will participate. But if they all
thought that way, a buyer could deviate and profit from being the only bidder in
the auction. The symmetric equilibrium calls for each buyer to participate with
probability q, where q satisfies an ex-ante zero-surplus condition. The number
of participants, n, is then a binomial random variable with mean qN . Since
each buyer receives zero expected surplus in equilibrium, net social surplus is
equal to the seller’s revenue. With revenue maximization implying net social
surplus maximization, the seller will not choose a reserve price that precludes
any surplus-increasing transaction. For a seller with a valuation of zero, this
implies that a binding reserve is never optimal.
With respect to bidding gaps, the effect of the reserve on Ω is felt only

through its effect on participation. This is because an ex-ante participation
cost does not screen participants so selection is random. However, it turns
out that the effect of r on Ω is ambiguous. To see this, notice that Ω (p; r) =
NX
n=0

P {X2:n > p|n}P {N = n}, where the first term is the probability of the

second-order statistic of n bidders exceeds p and the second term is the proba-
bility of there being n bidders. As mentioned earlier, the effect of r is felt only
with respect to the second term, where P {N = n} =

¡
N
n

¢
qn (1− q)

N−n. We

have that ∂P{N=n}
r =

¡
N
n

¢
qn−1 (1− q)N−n [n−Nq]∂q∂r , where

∂q
∂r is negative and

[n−Nq] is negative over small values of n and positive over large. Thus ∂Ω
∂r

is a weighted sum of ∂P{N=n}
∂r which is generally ambiguous. To test for the

presence of such participation costs, we simply regress Ω on r while controlling
for participation. The model of Levin & Smith predicts no relationship once
participation is controlled for while our model does as participation has already
been controlled for.
On the other hand, if the cost of participation is incurred after buyers know

their valuations, only those with high valuations will participate. This gives rise
to the same type of positive selection as in our model. In a result originally due
to Riley & Samuelson, there is a duality between a reserve price and an ex-post
entry fee. If the seller in a standard auction wishes to exclude all buyers with
valuations below r∗, the seller can post a reserve of r∗ or charge an entry fee
e (r∗) satisfying e (r∗) =

R r∗
v

G (y) dy. This entry fee extracts all surplus from
a buyer with valuation r∗, insuring that only those with valuations above r∗

participate. But in the environment of the online auction, the participation cost
is exogenous—thought to be the time cost of bidding—and is sunk. Consider the
seller’s problem in a standard auction where buyers face an ex-post participation
cost e. Before the seller can even think about posting a reserve, all buyers with
valuations below e are already excluded. If e is greater than

R r∗
v

G (y) dy the
participation cost has already excluded a larger set of buyers than the seller
would have chosen herself. Her best response would be to post a non-binding
reserve. If e is less than

R r∗
v

G (y) dy, the seller can exclude all types up to r∗
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with a reserve r (e) satisfying:

e =

Z r∗

r(e)

G (y) dy (15)

Notice that (15) defines a gap between the reserve price, r (e), and the lowest
type submitting a bid, r∗. This leads to a hole in the density of sales prices
just as in our model. One way in which we can distinguish between the two
models is to look at auctions of varying length. On eBay, the length of the
auction is predetermined by the seller as either 3, 5, or 7 days. If buyers incur
the participation cost after discovering their valuation, then the cost is in the
monitoring of the auction and the placing of bids. It then stands to reason
that longer auctions result in greater costs. In this case, the effect on overall
participation is ambiguous as greater length allows more buyers to find out about
the auction but greater costs deter more people. However, greater costs lead to a
greater selection effect. Thus, if ex-post participation costs are present, Ω should
be increasing in auction length, controlling for participation. In our model, the
length of the auction does not effect Ω when controlling for participation.

4.2 Affiliated values

In the affiliated values story, bids placed by other players serve as signals, posi-
tive or neutral, of the item’s true value. The greater the number of bids placed
prior to the end of the auction, the greater a buyer’s willingness to pay will
escalate. Thus to encourage more bidding, the seller should start the auction
at a low enough reserve. Affiliated values can account for bidding gaps in the
event that a player’s ex-ante expected valuation is less than the level of a re-
serve, but becomes greater than that level conditional upon observing the bid of
other players. Though commitment may still play a role in a model of affiliated
values, we may rule out affiliated values as a cause of bidding gaps by restricting
attention to goods who’s value does not depend on the perception of others or
that do not tend to have resale value.

4.3 Quasi-endowment & competition effects

Since irrationality can be said to explain any counter-intuitive behavior, we must
be rigorous in evaluating the explanatory power of the behavioral hypotheses
posed by the eBay sellers. The idea that bidders respond to competition from
other bidders Heyman et. al.(2004) dub an "opponent effect." To test for the
presence of an opponent effect involves looking at bidding behavior as the num-
ber of competing bidders varies. Heyman et al hypothesize that as the number
of competing bidders increases, the opponent effect should be greatest and thus
result in greater response by an individual bidder. Of course, our model also
predicts a higher price the greater the number of participants. We can distin-
guish the two models by looking at bid increments, the difference between a
bidder’s second-to-last and last bid and the price he ultimately pays. In the
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presence of an opponent effect, there should be a positive relationship between
bid increment and the number of bidders. In our model, there should be no
relationship.
The second behavioral hypothesis which claims that bidders become attached

to an item during the course of the auction is dubbed a "quasi-endowment
effect" by Heyman et. al. The well known concept of the "endowment effect"7

says that ownership of a particular item raises the minimum amount the owner
will accept to sell the good above what he would have initially paid to buy
it. During the course of an auction, the leading bidder may experience a sense
of ownership—quasi-ownership—over the good up for bid. Thus when another
bidder comes along and tops his bid, he is compelled to increase his bid due
to the sense of loss he would experience from not obtaining the good. Heyman
et al. hypothesize that quasi-endowment is greatest the longer a participant is
involved in an auction and in particular the longer he/she is actually the leading
bidder. Thus the more time spent as the leading bidder, the greater the amount
such a bidder should be willing to bid once overtaken by another bidder. In an
ascending auction version of our model, we would presume such bid increases
to be random and thus independent of the time spent in the lead. The test
between our model and a model of quasi-endowment effects would simply check
for a relationship between time in the lead and final bid increment.

5 Conclusion
...

6 Appendix

6.1 Table 1

Reserve Price Listing Fee
$0.01-$0.99 $0.25
$1.00-$9.99 $0.35
$10.00-$24.99 $0.65
$25.00-$49.99 $1.20
$50.00-$199.99 $2.40
$200.00-$499.99 $3.60
$500.00 or more $4.80

6.2 Proof of Proposition 6

The result must be proven for two distinct cases. We begin with the case of
v > c. To prove existence by backward induction, we first establish the existence
of a finite end time.

7Kahneman, Knetsch, & Thaler (1990).
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Lemma 9 When v > c, there exists a TL such that if the item fails to sell in
the first TL periods, the seller drops the reserve below v in the following period.

Proof. We first show that when ut is sufficiently small, the seller posts a non-
binding reserve regardless of the prior history. We do this by demonstrating
that when buyers play myopically (δB = 0), there exists a u∗ such that for any
ut ≤ u∗, the optimal reserve is no greater than v. This argument is sufficient for
our purposes as the incentive to drop the reserve is greater when buyers are not
myopic. Myopic buyers bid whenever their valuation exceeds the reserve. Thus
the current reserve becomes the posterior if the item goes unsold. Starting with
a posterior of ut, the seller’s expected revenue is bounded by the following:

B (r) = n

Z ut

r

[vf (v) + F (v)− F (ut)]F (v)
n−1 dv + F (r)n δS (r − c) (16)

The first-order condition is negative if F (ut) < [(1− δs) v + δsc]f (v), which is
true for sufficiently small ut as f (v) is bounded away from zero. This establishes
the existence of u∗.
Next we show that the posterior gets to below u∗ in finite time. Once again,

considering myopic buyers puts a lower bound on the speed of descent of the
posterior. The first-order condition establishes the distance between the prior
and the chosen reserve: [F (ut)− F (r)] > [(1− δs) v + δsc] f , where f is the
minimum of f . Thus the distance between the posterior and the chosen reserve
is bounded from below whenever the optimal reserve is interior. When it is not
interior, then by definition ut is below u∗.
Given the result of Lemma (??), we can solve for the equilibrium through

backward induction. We begin by establishing cutoff values for the seller’s prior
such that if say ut < uk, the seller chooses a reserve price that ends the game
in at most k − 1 additional periods.
For readability and ease of notation, let n

R ut
βt

Mc (v;ut) dv denote the ex-
pected period-t receipts of a seller in the standard model when ut is the prior.
M c(v;ut) = [vf (v) + F (v)− F (ut)]G (v). In the absence of commitment, in
any period t, the seller’s expected receipts areRt = n

R ut
βt
[Mc (v;ut)− (βt − rt)G (βt) f (v)] dv.

Let β2 (r) denote the type indifferent between bidding today and bidding
in the following period when the following period’s reserve will be v. β2 (r) is
unique and increasing in r. Let Γ2 (u) denote the seller’s unconditional expected
payoff with prior u when constrained to post a reserve of v in the following pe-
riod. That is, when the lowest type to bid is β2 (r). Suppose σ2 (u) is the argmax
of Γ2 (u), which we assume to be unique. Since σ2 is increasing in u, we can

uniquely define u2 such that u2 = max
n
u < v̄|Γ2 (u) = n

R u
v
Mc (v;u) dv − c

o
.

u2 is the highest prior such that the seller prefers to reduce the reserve to v in
the current period when constrained to do so in the following period. Thus for
any ut < u2, the game will last exactly one more period.
Now consider some generic k > 2. Let βk (r) be the type indifferent be-

tween bidding today with reserve r and in the following period with reserve
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σk−1
³
βk (r)

´
. If σk−1 and βk−1are increasing functions, then βk (r) is well-

defined and unique. Consider Γk (u) = −c+max
n
n
R u
βk(r)

h
Mc (v;u)−

h
βk (r)− r

i
G
³
βk (r)

´
f (v)

i
dv + δsΓ

k−

Let σk (u) be the argmax of Γk (u). Since σk is an increasing function of u, uk

is uniquely defined such that uk = max
©
u ≤ v̄|Γk (u) = Γk−1 (u)

ª
. uk is then

the highest prior such that the seller prefers to reduce the reserve to some value
that has the reserve drop to v in k− 1 periods. By induction, we can show that
for any k > 2, if βk−1 and σk−1 are unique and increasing, then σk is increasing
in u, which implies uk is unique.
Lemma (??) proved the existence of u∗ such that for u < u∗, the seller

drops the reserve to v regardless of the history. We prove the rest by backward
induction on u.

Lemma 10 If ut ∈ [v, u2), then σt (Ht−1) = v.

Proof. Choose ε1 sufficiently small such that for any β ∈
£
u∗, u2

¤
, n
R β+ε1
β

Mc (v;β + ε1) dv+

δs

h
n
R β
v
Mc (v;β) f (v) dv − F (β)n c

i
< n

R β+ε1
v

Mc (v;β + ε1) dv and u∗+ε1 <

u2. This says that for ε1 small enough, an upper bound on two-period revenue
resulting from a non-binding reserve is smaller than that of a reserve of v. We
claim that at time t, for some history, ut ∈ (u∗, u∗ + ε1] implies a best response
of v. She can always guarantee herself

R ut
v

Mc (v;ut) dv.
Assume she posts a reserve of rt > v such that βt falls in the interval (v, u

∗].
Then rt+1 = v and a buyer bids in period t if his valuation exceeds β2 (rt). Since
the seller will drop the reserve to v in the following period and ut ≤ u2, she
does so in the current period by definition of u2. Alternatively, posting a reserve
leading to βt ∈ (u∗, u∗ + ε1], she obtains at most n

R u∗+ε1
u∗ Mc (v;u∗ + ε1) dv +

δs

h
n
R u∗
v

Mc (v;u∗) dv − F (u∗)n c
i
< n

R u∗+ε1
v

Mc (v;u∗ + ε1) dv by construc-

tion. Therefore, for any history at time t such that ut ∈ (v, u∗ + ε1], rt = v,
βt = β2, and Γ (ut) = Γ1 (ut). Given this result, we can prove by induction that
this is true for any ut ∈ [v, u2).

Lemma 11 If ut ∈ [u2, u3), then σt (Ht−1) = σ2 (ut).

Proof. The proof is analogous to that of Lemma (10). That in mind, let ut ∈
[u2, u3) and define ε2 small enough that for every β ∈ [u2, u3), n

R β+ε2
β

Mc (v;β + ε2) dv+

δs[Γ
2 (β)−F (β)

n
c] < Γ2 (β + ε2) and u2+ ε2 < u3. We claim that if at time t,

for some history, ut ∈ [u2, u2+ ε2) implies a best response of σ2 (ut). The seller
can guarantee herself Γ2 (ut) as buyers with valuation β

2 (rt) bid in the current
period since they expect a reserve of v in period t+ 1.
Posting a reserve that leads to βt < u2, the seller earns Γ2 (ut) since only

buyers with valuations exceeding β2 (rt) bid in the current period anticipating a
reserve of v in the following period. Therefore, an upper bound on what she gets
when βt ≥ u2, is n

R ut
u2

Mc (v;ut) dv + δs[Γ
2 (ut) − F

¡
u2
¢n

c] < Γ2 (ut). So the
seller will never make such an offer. Thus, when ut ∈ [u2, u2+ ε2), rt = σ2 (ut),
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βt = β2 (rt) and Γ (ut) = Γ2 (ut). Given this result, we can prove by induction
that this is true for any ut ∈ [u2, u3).
The remainder of the proof involves showing for any k > 2, ut ∈ [uk, uk+1),

σt (Ht) = σk (ut). As before, choose εk small enough such that for every β ∈
[uk, uk+1), n

R β+εk
β

M c (v;β + εk) f (v) dv+δs
£
Γk (β)− F (β)n c

¤
< Γ3 (β + εk).

To show that the seller can always guarantee herself Γk (ut), we need to show
that when the seller posts a reserve of rt = σk (ut), a buyer with valuation
βk (rt) bids. If not, then ut+1 > βk (rt) which implies rt+1 > σk−1 (ut+1) >

σk−1
³
βk (rt)

´
. But then a buyer of type βk (rt) would not bid in the following

period since by definition, such a buyer is indifferent between bidding at rt and at

σk−1
³
βk (rt)

´
. When the reserve in the following period rt+1 > σk−1

³
βk (rt)

´
he prefers not to bid. But this contradicts the definition of βk, thus he bids at
the current reserve rt, so the seller earns Γk (ut). We complete the proof using
induction on k for at most TL periods. And since, by construction, rt depends
only on the prior ut, the equilibrium is Markovian.
We move now to the case where v ≤ c. This encompasses the "no gap" case

(v = 0) considered in FLT and in the durable goods monopoly literature. In
those papers, the analysis was complicated by the fact that the game need not
end in finite time. Due to the presence of a listing fee in our analysis, the game
still necessarily ends in finite time so we may again solve for the equilibrium
path via backward induction.

Lemma 12 When v ≤ c, there exists a TH such that the game ends in at most
TH + 1 periods.

Proof. There are two cases two consider. One, when the seller drops the reserve
to v and the game ends with a sale. In the other, the seller stops listing the
item for sufficiently small priors so that the game ends with a binding reserve
and may not result in a sale. Notice that when ut = v, the seller’s revenue is
at most v − c < 0. Thus there must exist a u1 such that whenever ut < u1, the
seller prefers not to list the item and TH = t− 1. Let r̂ (ut) denote the optimal
reserve given prior ut in a one-period game. It follows that u1 < v̄ satisfiesR u1
r̂(u1)

Mc
¡
v;u1

¢
dv − c = 0.

As in the case of v > c, define u∗ such that for ut ≤ u∗, σ (ut) = v. u∗ =

max
n
ut ≤ v̄|∂Γ(ut)∂rt

< 0
o
. There is no natural comparison between u∗ and u1

as one depends on the slope of Γ while the other on its magnitude. If u1 > u∗

then for any ut < u1, the seller does not list the item and the game ends. If
u∗ > u1, then for any ut ∈ [u1, u∗], r̂ (ut) = v and the game ends in one more
period while if ut < u1 the game ends immediately.
We need now only show that the game reaches max

©
u∗, u1

ª
in finite time.

When u∗ > u1, the proof is the same as before: when rt is an interior solution,
the rate of descent is bounded below, when it is not, ut < u∗ and we’re done.
When u1 > u∗, if u∗ is reached in finite time, then so is u1.
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Within this subcase, there are two distinct equilibria depending upon which
is larger u∗ or u1. If u1 > u∗, then there exists a u2 such that for any uτ ∈
[u1, u2), σ (uτ ) = r̂ (uτ ) < u1. We can then work backward to show existence
and uniqueness of uk, k > 2, such that if ut ∈ [uk, uk+1), the seller chooses a
reserve that has the game end in at most k periods. If u∗ > u1, then there exists
a distinct u2 such that for any uτ ∈ [u1, u2), σ (uτ ) = v. The rest of the proof
in either distinct case is analogous to the proof for when v > c.

6.3 Proof of Corollary 7

1. From (11) and (12), differentiating with respect to r yields:

∂βt
∂rt

= G (βt) / [(1− δb)G (βt) + (βt − rt) g (βt)] > 0 (17)

2. When rt = v, Πt+1 is necessarily zero. This requires that the left-hand side
of (11)is also zero, which implies βt = v. When rt > v, Πt+1 > 0, which
requires the left-hand side of (11) to be positive, which implies βt > rt.

3. Πt+1(v)G(v) = E
£
v − rt+1I

©
Y1 < βt+1

ª
− Y1I

©
Y1 > βt+1

ª
|Y1 < v

¤
is decreas-

ing in n due to stochastic dominance, where I represents the indicator
function. It then follows from (8), that βt − rt is smaller for larger values
of n.

4. From (11) and (12), differentiating with respect to δb yields:

∂βt
∂δb

= Πt+1 (βt) / [(1− δb)G (βt) + (βt − rt) g (βt)] > 0 (18)

6.4 Proof of Corollary 8

We need to show that for δb sufficiently large, the seller’s best response at
the initial node, σ (∅), is v. Since in the final period TL, the minimum type
is v, we consider the second-to-last period. Posting a reserve r, β satisfies
(β − r)G (β) = δb

R β
v
G (y) dy. The seller then chooses r ≥ v (and consequently

β ≥ v) to maximize
R u
β
Mc (v;u) dv−δb

R β
v
G (y) dy+δs

h
−F (β)n c+

R β
v
Mc (v;u) dv

i
.

σ (u) = v when the first-order condition, evaluated at v is negative, meaning
F (u) < [(1− δs) v + c] f (v) + δb. We want to show that when δb is sufficiently
large, this condition holds for any u ≤ v̄. For u = v̄, this is equivalent to
δb > 1− [(1− δs) v + δsc] f (v) ≡ δ̄. We need only now show that δ̄ ≤ 1, which
is true as long as [(1− δs) v + δsc] f (v) ≥ 0 which is necessarily true.
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