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Abstract

We propose a new test for cost allocation rules in minimum cost spanning
tree games. The Shapley value, as well as some recent rules proposed in the
literature, i.e. the equal remaining obligation rule (Feltkamp, Tijs and Muto
(1994)) or the Dutta-Kar rule (Dutta and Kar, 2004), are vulnerable to merging
maneuvers by users. Bird’s rule, on the other hand, passes this test. We give a
characterization of Bird’s rule based on this property.
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1 Introduction

Consider the issue of providing a service to a group of villages, where each village
needs to be connected directly or through other villages to a source. Construct-
ing a service link between villages is costly, so the first challenging question is
to find the cheapest network that spans all the villages, i.e. a minimum cost
spanning tree. Chezh mathematician Bor̊uvka (1927) proposed an algorithm to
achieve this goal.2 Later, Jarnik (1930) formulated another algorithm which, in
the literature in economics, came to be attributed to Prim (1957) and Dijkstra
(1959). Kruskal (1956) also found a similar algorithm.
There is a wide literature in operations research concerning the various com-

putational properties of these algorithms. Most of the recent research on this
topic in economics, however, concerns itself with a different question: given a
minimum cost spanning tree situation, how should we allocate the costs of the
network to the villages?
In this paper, we consider merging maneuvers by groups of users. Let N

denote the set of users, and consider a group of users S ⊂ N . A merging
maneuver by S occurs when the users in S choose a user i∗ ∈ S to represent
them in the minimum cost spanning tree game, while constructing a private
network among themselves, the costs of which are borne only by S. If the cost
allocation of the representative user i∗ in the merged game plus the cost of this
private network is less than the cost allocation of S before merging, we say that
this merging maneuver is beneficial for S.
Claus and Kleitman (1973) introduced the problem of allocating costs on a

minimum cost spanning tree, whereas Bird (1976) treated it with game theoretic
methods. Bird proposed a specific cost allocation for the problem, closely related
to the Jarnik-Prim-Dijkstra algorithm, which is now known as Bird’s rule. Bird
also showed that the proposed allocation lies in the core of a cooperative game
derived from the minimum cost spanning tree problem. This game is defined as
follows: the players are the villages, and the worth of a coalition is the minimal
cost of connecting this coalition to the source, using only the links between the
members of this coalition. One approach is to look at the Shapley value of this
game. However, the Shapley value will frequently be an allocation outside the
core.
A problem with Bird’s rule is that it does not satisfy cost monotonicity :

an increase in the cost of one of the edges of a user might decrease her cost
allocation. Based on this observation, Dutta and Kar (2004) proposed a new
rule that satisfies cost monotonicity, and lies in the core of the stand alone cost
game. They give characterizations of this rule and Bird’s rule, and argue that
the main difference between these rules is in their consistency properties.
We criticize the Dutta-Kar rule and the Shapley value for minimum cost

spanning tree games based on the fact that they are vulnerable to merging

2Bor̊uvka was asked to solve this problem in relation to the issue of providing an electricity
network over locations in Bohemia, Bor̊uvka (1926b).
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by coalitions. Bird’s rule, on the other hand, is invulnerable to merging. We
provide a characterization of Bird’s rule based on this property.
The idea of the irreducible core, originally developed by Bird (1976), re-

ceives a lot of attention in the literature. See, for example, Feltkamp, Tijs and
Muto (1994) and Bergantiños and Vidal-Puga (2004). In light of the results of
Feltkamp, Tijs and Muto (1994), our main result implies that none of the rules
that are selections from the irreducible core pass the merge-proofness test.

2 Preliminaries
Let N denote the finite set of potential users. 0 6∈ N will be given the special
role of source or root. Given N ⊂ N , we let N0 = N ∪ {0} . A network on S ⊂
N ∪ {0} is a graph with node set S. A link in this graph is of the form (ij) for
some i, j ∈ S. We denote a generic network on S by gS . A graph gS is said to
be connected over S if, for all i, j ∈ S, i and j are connected in graph gS , i.e.
there is a path from i to j. We denote by ΓS the set of connected graphs on S.
Given N ∈ N , a cost matrix c = [cij ]i,j∈N0

represents the cost of direct
connection between users i and j. We assume that cij > 0 if i 6= j and cii = 0
for all i ∈ N0. The set of all cost matrices for N0 is denoted by CN . We let
C = ∪N⊂NCN .
We assume that all users have to be connected to the network, so we want

to construct a connected graph on N0. Of particular importance are efficient
networks, i.e. connected graphs with minimal cost. Such a graph cannot have
any cycles, otherwise we could remove an edge from this cycle and still have a
(cheaper) connected graph. Hence, the efficient network must be a tree. A min-
imum cost spanning tree (m.c.s.t. from now on) over N0, denoted by g [N0, c] ,
satisfies g [N0, c] = argming∈ΓN0

P
(ij)∈g cij . Also, given S ⊂ N0, g [S, cS ] de-

notes the m.c.s.t. on users S, where cS is the restriction of c to S. For all
S ⊂ N0, we define m (S, cS) = ming∈ΓS

P
(ij)∈g cij =

P
(ij)∈g[N,cS] cij .

Given N ⊂ N and c ∈ CN , we call (N, c) a m.c.s.t. problem. Note that
there might be several m.c.s.t. associated with a m.c.s.t. problem. The familiar
issue of actually constructing the set of m.c.s.t of a m.c.s.t problem will be dealt
with in the next section. Assuming that we constructed an efficient network,
we are interested in sharing the cost of the network among the users. This is
achieved by a cost allocation rule.

Definition 1 A cost allocation rule is a family of functions {φ (N, ·)}N⊂N such
that, for all N ⊂ N , φ (N, ·) : CN −→ RN+ satisfies

P
i∈N φi (N, c) = m (N0, c)

for all c ∈ CN .
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3 Jarnik-Prim-Dijkstra Algorithm and Related
Solutions

Given N ⊂ N , let σ : N → {1, 2, ..., |N |} denote a priority ordering of the users
in N , i.e. i is before j in the priority ordering σ if and only if σ (i) < σ (j) . We
let Φ (N) denote the set of priority orderings of N. The Jarnik-Prim-Dijkstra
algorithm (from now on J-P-D algorithm) reaches an m.c.s.t in the following
manner.

Step 0 S0 = {0} and g0 = ∅.

Step 1 Take the arc
¡
0i1
¢
such that c0i1 = mini∈N {c0i} . If there are several

arcs satisfying this condition, choose
¡
0i1
¢
where i1 = argmini∈N σ (i).

Let S1 =
©
0, i1

ª
and g1 =

©¡
0i1
¢ª

.

Step p+ 1 Take an arc
¡
jip+1

¢
such that cjip+1 = mink∈Sp,l∈N\Sp {ckl} . If

there are several arcs satisfying this condition, choose
¡
0ip+1

¢
where ip+1 =

argmini∈N\Sp σ (i). Let Sp+1 = Sp ∪
©
ip+1

ª
and gp+1 = gp ∪

©¡
jip+1

¢ª
.

This algorithm terminates after |N | steps. Note that different priority or-
derings may lead to different minimum cost spanning trees. We write gσ [N0, c]
to denote the m.c.s.t resulting from the priority ordering σ. The total cost of
gσ [N0, c] is the same for all σ ∈ Φ (N) (see Prim (1956)). It follows that when
we have a unique m.c.s.t, gσ [N0, c] is independent of σ.
Bird (1976) studied cost allocation on a minimum cost spanning tree and

proposed what is now referred to as Bird’s rule, a rule that is based on the
J-P-D algorithm. To introduce this rule, we need some more notation, which
follows the notation in Dutta and Kar (2004).
Given a tree g, the (unique) path from i to j is a set U (N,c) (i, j, g) =

{i1, i2, ..., iK} , where (ik−1ik) ∈ g for all k = 1, 2, ..,K and i1, i2, ..., iK are all
distinct users with i1 = i and iK = j. The predecessor set of user i in g is defined
as P (N,c) (i, g) =

©
k ∈ N0|k 6= i, k ∈ U (N,c) (0, i, g)

ª
. The immediate predeces-

sor of user i, denoted by α(N,c) (i, g) is the user that comes right before i :¡
α(N,c) (i, g) , i

¢
∈ g and α(N,c) (i, g) ∈ P (N,c) (i, g). The successors of user i are

those users that come after i : S(N,c) (i, g) =
©
k ∈ N |i ∈ P (N,c) (k, g)

ª
. The im-

mediate successors of user i is denoted by β(N,c) (i, g) =
©
k ∈ N |α(N,c) (k, g) = i

ª
.

When there is no room for confusion, we will drop the superscript (N, c) and
the argument of g.
Given a priority ordering σ, Bird’s allocation on the m.c.s.t gσ [N, c] is given

by

Bσ
i (N, c) = cα(i,gσ[N,c])i ∀i ∈ N.

When there are several m.c.s.t, Bird takes averages over the priority orderings
according to which ties are broken in the J-P-D algorithm.
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B (N, c) =
X

σ∈Φ(N)

1

|N |!B
σ (N, c) .

When there is no room for confusion, we write Bi instead of Bi (N, c) . Also,
we use Bσ

i (N, c) to denote cα(i,gσ[N0,c])i for notational ease.

A merging maneuver by a group of users S ⊂ N happens in the following
manner: The users in S merge into i∗ ∈ S and the new problem becomes (N∗, c∗)
with N∗ = N\S ∪ {i∗}, c∗ij = cij for {i, j} ⊂ N∗\i∗ and c∗i∗j = mini∈S cij for
all j ∈ N∗\i∗.
When a merging maneuver occurs, the users in S construct a private network

among themselves, and then they connect to the network through the merged
user i∗. Accordingly, when S merges, they have to pay for the cost share of i∗

in the merged problem (N∗, c∗), and they pay for the cost of g [S, cS ] , which we
defined to be m (S, cS) . We are now ready to give the following definition.

Definition 2 A cost allocation rule φ is vulnerable to merging if there exist
N ⊂ N ,c ∈ CN , S ⊂ N , and i∗ ∈ S such thatX

i∈S
φi (N, c) > φi∗ (N

∗, c∗) +m (S, cS) . (1)

We say that φ is merge-proof if it is not vulnerable to merging.

The lemma below shows that merge-proofness is a very strong property.

Lemma 1 On C, there is no merge-proof cost allocation rule.

Proof. Take a cost allocation rule φ and a m.c.s.t. problem (N, c) such that
N = {1, 2, 3} , c0i = 4 for i = 1, 2, 3 and cij = 1 for all i, j ∈ N, i 6= j. Now,
the cost of a m.c.s.t is m (N, c) = 6. Let φ = φ (N, c), and suppose that φ is
merge-proof.
Suppose φ1 ≤ 2. Let

¡
N2, c2

¢
and

¡
N3, c3

¢
denote the problems where the

coalition S = {2, 3} merges into 2 and 3, respectively. Let x = φ
¡
N2, c2

¢
and

y = φ
¡
N3, c3

¢
. Note that in (N, c) , the cost allocation to S, φ1+φ2, is at least

4. The cost of the private network on S is 1. Therefore, for φ to be merge-proof,
we must have x2 ≥ 3 and x1 ≤ 2. A similar argument yields y3 ≥ 3 and y1 ≤ 2.
Now let i∗ denote the user in S who has the higher cost allocation in the problem
(N, c) : φi∗ = max {φ2, φ3} ≥

6−φ1
2 . If the {1, i∗} coalition merges into 1, they

pay the cost of their private network, which is 1, and the cost allocation of user
1 in problem

¡
NS\i∗ , cS\i

∗¢
, which is not bigger than 2. This move is beneficial

for {1, i∗} as their cost allocation in the original problem (N, c) is at least 6+φ12 .
Therefore, we must have φ1 > 2, a contradiction.
This lemma implies that, if we are to insist on merge-proofness, we have to

restrict the domain of cost matrices. In this paper, we use the following domain
restriction:

5



Definition 3 For all N ⊂ N , C1N = {c ∈ CN |c induces a unique m.c.s.t. on N0} .
We write C1 = ∪N⊂NC1N .

We assume that any group of users have free access to the source. In other
words, they can always break away from the grand coalition and construct their
own network to connect to the source, using only their own links. Hence, we look
at the stand alone cost of a coalition and explore core stability. Accordingly,
the cost of coalition S ⊂ N is defined to be the cost of a m.c.s.t. on S ∪ {0} ,
i.e. m (S0, cS0) . We say that a cost allocation z ∈ RN is in the core of the
m.c.s.t problem (N, c) if,

P
i∈N zi = m (N0, cN0

) and for all S ⊂ N, we haveP
i∈S zi ≤ m (S0, cS0) .We write Core (N, c) to denote the set of cost allocations

that are in the core of (N, c) .

Definition 4 A cost allocation rule φ satisfies core selection (CS) if, for all
N ⊂ N , c ∈ CN , φ (N, c) ∈ Core (N, c) .

The following property for cost allocation rules suggests that we only use
the information from the minimum cost spanning tree while allocating costs.

Definition 5 A cost allocation rule φ satisfies tree invariance (TI) if, for all
N ⊂ N and c, c̄ ∈ C1N such that c and c̄ have the same m.c.s.t

φi (N, c) = φi (N, c̄) for all i ∈ N.

We are now ready to state our main result.

Theorem 1 On C1, the cost allocation rule φ satisfies MP, CS, and TI if and
only if φ = B.

Proof. We already know B satisfies CS (Bird, 1976). Also, Bird’s rule is defined
using information only from the m.c.s.t. of a m.c.s.t. problem, so that it also
satisfies TI. We now show that B satisfies MP. To this purpose, fix N ⊂ N and
c ∈ C1N ..
Take any S ⊂ N. Suppose S merges into i∗ ∈ S. The new problem becomes

(N∗, c∗) as defined above. Let B∗ = B (N∗, c∗) . Choose σ∗ ∈ Φ (N∗) such
that Bσ∗

i∗ (N
∗, c∗) = Bσ∗

i∗ = minσ∈Φ(N∗)B
σ
i∗ (N

∗, c∗). Let i1 ∈ S be such that
c(α(i∗)i1) = c(α(i∗)i∗). Now consider an ordering σ of N such that, for all i with
σ∗ (i) < σ∗ (i∗) , σ (i) = σ∗ (i) and σ

¡
i1
¢
= σ∗ (i∗) . Let B = Bσ (N, c) =

B (N, c) .
Now let τ and τ∗ denote the orderings according to which the users in N

and N∗ are added to the networks gσ [N0, c] and gσ
∗
[N∗0 , c

∗] according to the
J-P-D algorithm, respectively. Note that none of the comparisons made by the
J-P-D algorithm are affected by the merging maneuver, until the step at which
the merged user i∗ is added to the network. This implies that, for all users with
τ∗ (i) < τ∗ (i∗) , we have τ (i) = τ∗ (i) and τ

¡
i1
¢
= τ∗ (i∗). Hence, Bi1 = Bσ∗

i∗ .
It follows from this argument that in graph gσ [N0, c], none of the users in S\i1
lie on the path from 0 to i1.
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We showed that Bi1 = Bσ∗

i∗ ≤ B∗i∗ . A sufficient condition for the merging
move not to be beneficial is X

i∈S\i1
Bi ≤ m (S, cS) (2)

Now let g1 = {(α (i) i)}i∈N\S∪i1 and consider the graph g = g1 ∪ g [S, cS ] .
Note that g1 is a subgraph of g [N0, c] and is therefore a forest. LetG1,G2, ...,GK

be the set of disjoint trees in g1 : Gk ∩ Gl = ∅ for all k, l = 1, 2, ...,K, k 6= l,
and ∪Kk=1Gk = g1. Without loss of generality, assume that i1 ∈ G1. This
implies that 0 ∈ G1 as well, since we argued above that @j ∈ S such that
j ∈ U

¡
0, i1, g [N0, c]

¢
. Now, as all users in S\i1 are connected to i1 through

the network g [S, cS ] , they are also connected to 0 in g. By construction, for all
k = 2, 3, ...,K there exists a user jk in tree Gk such that α (jk) ∈ S\i1. This in
turn implies that all users in ∪Kk=2Gk are connected to 0 in graph g.
Hence, g is a connected graph with n+1 vertices and n edges. This implies

that g must be a tree, and the cost of g must be no less than the cost of the
m.c.s.t. on N0, i.e.X

i∈N\S∪i1
Bi +m (S, cS) ≤

X
i∈N\S∪i1

Bi +
X

i∈S\i1
Bi.

This immediately gives us the desired inequality (2) , establishing that B is
merge-proof.
To show the only if part, take a cost allocation rule φ that satisfies MP, CS,

and TI. We use an induction argument on |N | to show that φ = B. It is clear
that φ coincides with B on problems with |N | = 1.
Induction Argument 1: Assume that φ coincides with B on problems with

|N | ≤ K, where 1 ≤ K.
Take a m.c.s.t. problem (N, c) with |N | = K + 1, and let φ = φ (N, c). We

first show that for all users i ∈ N such that S (i) = ∅ and α (i) = 0, we have
φi = Bi. This is because CS implies φi ≤ Bi and

P
j∈N\i φi ≤

P
j∈N\iBi.

Recalling
P

j∈N φi =
P

j∈N Bi, it follows that φi = Bi.
Next, we will use an induction argument on the number of users in S (i) for

a non-leaf user i to show that φ = B. First note that for any user i ∈ N, CS
implies

P
j∈i∪S(i) φj ≥

P
j∈i∪S(i)Bj , since m ((N\S (i))0) =

P
j∈N\S Bj .

Now consider a non-leaf user i. When the coalition i∪S (i) merges into {i} ,
the new problem is one with less than K players and hence by the Induction
Argument 1, the merged user pays Bi in the new problem. Now, as the cost
of the spanning tree on i ∪ S (i) is

P
j∈S(i)Bj , MP implies that we must haveP

j∈i∪S(i) φj ≤
P

j∈i∪S(i)Bj as well, establishing the following observation.
Observation 1:

P
j∈i∪S(i) φj =

P
j∈i∪S(i)Bj for all non-leaf users i ∈ N.

Now consider a non-leaf user i such that |S (i)| = 1. Let S (i) = {i1} .
Let a = Bi and b = Bi1 . Now, Observation 1 implies φi + φi1 = a+ b.
As i1 is a leaf, S (i1) = ∅ and CS implies that φi1 = b + x for some x ≥ 0.

Suppose x > 0. Take a user i2 6∈ N, and consider the problem
¡
N̄, c̄

¢
, where
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N̄ = N ∪ {i2} \ {i1} , c̄ij = cij for all {i, j} ⊂ N̄\ {i2} , c̄ji2 = cji1 for all

j ∈ N̄\ {i} , and c̄ii2 = d < b. Check that c̄ ∈ C1N , and that β
(N̄,c̄) (i) = {i2} .

Let φ̄ = φ
¡
N̄ , c̄

¢
. CS implies φ̄i2 = d+y for some y ≥ 0, and CS and MP imply

φ̄i + φ̄i2 = a+ d.

Next, consider the problem
³
Ñ, c̃

´
, where Ñ = N ∪ {i2} , c̃ij = cij for all

{i, j} ⊂ Ñ\ {i2} , c̃ji2 = c̄ji2 for all j ∈ Ñ\ {i1} and ci1i2 = b + ε for some

0 < ε < x. Check that β(Ñ,c̃) (i) = {i1, i2} and {i1, i2} are leaves in graph
g
h
Ñ0, c̃

i
.

Let φ̃ = φ
³
Ñ, C̃

´
and note that Observation 1 implies φ̃i + φ̃i1 + φ̃i2 =

a + b + d. Now, suppose φ̃i1 < b + x, which implies φ̃i + φ̃i2 > a − x + d.
Consider a merging move by users {i, i2} into {i} .The m.c.s.t. corresponding
to the resulting problem is the same as that of the original problem (N, c) and
so by TI, user {i} pays a− x in the merged problem. The {i, i2} coalition pays
this plus the cost of their private network, cii2 = d. Hence, {i, i2} coalition pays
a− x+ d when they merge, a contradiction to MP. Hence, φ̃i1 ≥ b+ x.

By a similar argument to the one above, we can also show φ̃i2 ≥ d+y. Now,
suppose {i1, i2} coalition merges into {i2} . Again, the m.c.s.t. corresponding
to the resulting problem is the same as that of the problem

¡
N̄, c̄

¢
and so by

TI, user {i2} pays d+y in the merged problem. The cost of the private network
(i1i2) is b+ε. Hence, the coalition {i1, i2} when they merge pays d+y+ b+ε <
d+y+b+x ≤ φ̃i1+ φ̃i2 . This is a contradiction to MP, establishing that φi1 = b,
and since φi + φi1 = a+ b, φi = a.
Induction Argument 2: Fix a positive integer M ≤ K − 1 and assume that,

for all users j ∈ N such that S (j) contains at most M users, φk = Bk for all
k ∈ j ∪ S (j) .
Consider a user i ∈ N such that S (i) contains M + 1 users. We consider

three cases, and make use of the following observation, which follows from the
construction of a m.c.s.t. using the J-P-D algorithm.
Observation 2: Given (N, c), take i1, i2 ∈ N such that (i1i2) 6∈ g [N0, c] .

Consider the problem (N, c̄) where c̄ij = cij for {i, j} 6= {i1, i2} and c̄i1i2 >
max {Bi1 , Bi2} . We have g [N0, c] = g [N0, c̄] .
Case 1. Everyone in β (i) is a non-leaf user. Let β (i) = {i1, i2, · · · , im} .

Now, by Induction Argument 2, for all l = 1, 2, ...,m, we have φj = Bj for all
j ∈ il ∪ S (il). Therefore,

X
j∈S(i)

φj =
mX
l=1

X
j∈il∪S(il)

φj =
mX
l=1

X
j∈il∪S(il)

Bj =
X
j∈S(i)

Bj

Since
P

j∈i∪S(i) φj =
P

j∈i∪S(i)Bj by Observation 1, we have φi = Bi.

Case 2. Everyone in β (i) is a leaf. Let β (i) = {i1, i2, ..., im} ,m ≥ 2.
Let a = Bi and assume, without loss of generality, that Bi1 ≤ Bi2 ≤ · · · ≤

Bim . For each ik ∈ β (i) , CS implies φik = Bik + xk for some xk ≥ 0. Now,
suppose there exists k ∈ {1, 2, ...,m} such that xk > 0. Take any il 6= ik
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and consider the problem (N, c̄) where c̄ij = cij for all {i, j} 6= {ik, il} , and
c̄ikil = max {Bik , Bil} + ε for some 0 < ε < xk. By Observation 2, the m.c.s.t
corresponding to the problem (N, c̄) is the same as that of (N, c) . This implies
that φ (N, c̄) = φ (N, c) = φ.When the coalition {ik, il} merges into iargmin{k,l},
they have to construct the egde (ikil) which costsmax {Bik , Bil}+ε. The merged
user pays his Bird allocation argmin {Bik , Bil} by Induction Argument 1. Now
MP implies min {Bik , Bil} + max {Bik , Bil} + ε = Bik + Bil + ε ≥ φ1 + φk =
Bik +Bil +xk, a contradiction. This, together with Observation 1, implies that
φi = Bi.
Case 3. β (i) = {i1, i2, · · · , im, j1, j2, · · · , jn}, where everyone in {i1, i2, · · · , im}

is a non-leaf user and everyone in {j1, j2, · · · , jn} is a leaf. For all
l = 1, 2, ...m, β (il) contains at most M non-leaf users, and hence by Induction
Argument 2, φj = Bj for all j ∈ il ∪ S (il). For every l = 1, 2, ..., n, CS implies
φjl = Bjl + xl for some xl ≥ 0. Now suppose there exist jl ∈ {j1, j2, · · · , jn}
such that φjl = Bjl + xl for some xl > 0. Next. consider the problem (N, c̄)
where c̄ij = cij for all {i, j} 6= {i1, jl} and c̄i1jl = max {Bi1 , Bjl} + ε for some
0 < ε < xl. We know that the m.c.s.t corresponding to (N, c̄) is the same as
that of (N, c) by Observation1, and so by TI, φ (N, c̄) = φ. Consider a merging
maneuver by S = {i1, jl} into i∗ = argminj∈S Bj . The new problem has at
most K users and so by Induction Argument 1, we have φi∗ (N, c̄) = Bi∗ . This
means that in problem (N, c̄) , the cost share to coalition S, Bi1 + Bjl + xl,
is more than what they would have paid had they merged, min {Bi1 , Bjl} +
max {Bi1 , Bjl}+ ε = Bi1 +Bjl + ε. This is a contradiction to MP, and therefore
we must have x1 = x2 = · · · = xn = 0. In other words, φj = Bj for all j ∈ S (i) .
This, together with Observation 1, implies that φi = Bi.
This ends the induction argument, and establishes that φ = B.

4 Discussion
In order to understand the implications of our theorem, we should first intro-
duce the notion of the irreducible core of a m.c.s.t. problem, first discussed
in Bird (1976). We define the canonical cost matrix of a given a m.c.s.t prob-
lem (N, c) , c ∈ C1N , denoted by ccan (N, c). The matrix ccan (N, c) is such
that, g [N0, c] is a m.c.s.t in problem (N, ccan (N, c)) and, for all cost matrices
c0 ∈ CN with c0ij ≤ c∗ (N, c)ij for all i, j ∈ N0 and c0 6= c∗ (N, c) , g [N0, c] is not
a m.c.s.t in problem (N0, c

0).3 For example, consider the problem (N, c̄) where
N = {1, 2, 3}, c̄01 = 4, c̄12 = c̄13 = 1, and c̄02 = c̄03 = c̄23 = 10. The irreducible
cost matrix ccan (N, c̄) is given by the cost matrix c in Example 1. Bergantiños
and Vidal-Puga (2004) prove that it is unique.
A cost allocation rule φ is a selection from the irreducible core if, for all

N ⊂ N , c ∈ CN we have φ (N, c) ∈ Core (N, ccan (N, c)) . There is a wide
class of cost allocation rules that are selections from the irreducible core. The
cost sharing game (N, ccan (N, c)) is submodular (Bird, 1976), and the extreme

3This definition of the canonical matrix appears in Bergantiños and Vidal-Puga (2004).
Bird (1976) calls ccan (N, c) the minimal network.
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points of the irreducible core are the Bird allocations induced by all the different
priority orderings of N . As a result, the Shapley value of (N, ccan (N, c)) is
equal to Bird’s rule applied to the problem (N, ccan (N, c)). Feltkamp, Tijs and
Muto (1994) call this rule the Equal Remaining Obligations (ERO) rule , and
Branzei, Moretti, Norde and Tijs (2003) call it the p-value. See these papers
and Bergantiños and Vidal-Puga (2004) for alternative characterizations of this
rule.
The class of cost allocation rules constructed in Feltkamp, Tijs and Muto

(1994) are selections from the irreducible core and satisfy TI on C1. Among
these rules are Bird’s rule (Bird, 1976), Dutta-Kar rule (Dutta and Kar, 2004)
and the Equal Remaining Obligations rule. As it is mentioned in that paper,
Core (N, ccan (N, c)) ⊂ Core (N, c) . Therefore, if the cost allocation φ is an irre-
ducible core selection, it satisfies CS. Also, since these rules use only information
from the m.c.s.t, they satisfy TI. Our main result implies that, on domain C1,
Bird’s rule is the only merge-proof one among these rules.
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Pr̆írodovedĕcke Spolecnosti (6): 57-63.

10



[10] Kar A (2002) Axiomatization of the Shapley value in minimum cost span-
ning tree games. Games and Economic Behavior (38): 265-277.

[11] Prim R C (1957) Shortest connection network and some generalization.
Bell System Technical Journal (36): 1389-1401.

[12] Sharkey W W (1995) Network models in economics. In: Ball M O et. al.
(Eds) Handbooks in Operation Research and Management Science, Else-
vier.

11


