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Abstract

If players learn to play an infinitely repeated game using Foster and Young’s (Games
and Economic Behavior 45, 2003, 73–96) hypothesis testing, then their strategies almost
always approximate equilibria of the repeated game. If, in addition, they are sufficiently
“conservative” in their hypothesis revision, then almost all of the time is spent approximating
an efficient subset of “forgiving” equilibria. Journal of Economic Literature Classification:
C72; C12.
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“To err is human; to forgive, divine.”
Alexander Pope, An Essay on Criticism (1711)

1 Introduction

Game theorists’ teeth are cut on the Prisoner’s Dilemma:
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With defection a dominant strategy, and thus the unique Nash equilibrium, we are left to
wonder how players might cooperate, and thus realize a Pareto improvement. Repeating the
game provides an intuitive and dramatic answer; the Folk Theorem for infinitely repeated games
says that, if players are sufficiently patient, all feasible individually rational stage-game payoffs
can be sustained in a (Nash or subgame-perfect) equilibrium of the repeated game (Aumann
1957, Aumann and Shapley 1976, Rubinstein 1979, Fudenberg and Maskin 1986). In Figure 1,

∗Thanks are due in particular to Joe Perkins and Peyton Young for their indefatigable interest, and to seminar
participants at Oxford University. Email thomas.norman@all-souls.ox.ac.uk.
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Figure 1: Equilibrium payoffs in the repeated Prisoner’s Dilemma

the possibilities are thus widened from the stage Nash payoffs (1, 1) to the entire shaded region.

The Folk Theorem thus provides an answer to the puzzle of cooperation in the Prisoner’s
Dilemma, but it also clearly leaves us with a rather profound equilibrium selection problem.
Nevertheless, there is a general sense amongst practitioners that some of the equilibria attainable
under the Folk Theorem are more appealing than others:

“In applying repeated games, economists typically focus on one of the efficient
equilibria, usually a symmetric one. This is due in part to a general belief that players
may coordinate on efficient equilibria, and in part to the belief that cooperation is
particularly likely in repeated games. It is a troubling fact that at this point there
is no accepted theoretical justification for assuming efficiency in this setting.”1

The idea of “renegotiation proofness” (Farrell and Maskin 1989, van Damme 1989, Pearce 1987,
Abreu, Pearce, and Stacchetti 1993)—whereby a Pareto-dominated equilibrium in any subgame
is “renegotiated” away—is one possible justification, but it sits a little uneasily with the non-
cooperative approach in general, and the criticisms of Pareto optimality in static games in
particular.

An alternative justification for efficiency in repeated games is provided by the evolutionary
approach. Axelrod’s (1981, 1984) celebrated evolutionary simulations of the repeated Prisoner’s

1Fudenberg and Tirole (1991), p. 160.
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Dilemma found selection pressure in favor of the strategy of “tit-for-tat,” whereby a player
cooperates in the first period and thereafter chooses the action his opponent took in the previous
round. However, the outcome of such simulations is quite sensitive to the initial distribution
of strategies upon which the selection process acts. On a theoretical level, meanwhile, the
usual formulation of evolutionary stability suffers from severe existence problems in infinitely
repeated games (Boyd and Lorberbaum 1987, Farrell and Ware 1988, Kim 1994), whilst a switch
to neutral stability gives little sharpening of the predictions of the Folk Theorem. Fudenberg and
Maskin (1990) and Binmore and Samuelson (1992) do find efficiency to be implied by modified
versions of evolutionary stability, but such concepts too are subject to path dependence in their
predictions.

The recent literature on stochastic evolution (Foster and Young 1990, Kandori, Mailath,
and Rob 1993, Young 1993, Ellison 2000) offers up techniques for equilibrium selection that are
insensitive to the initial distribution of strategies. The concept of stochastic stability picks out
the equilibrium most likely to be played over the long-run evolution of a system made ergodic
by the introduction of noise. However, such a system need not in general pick out a Nash
equilibrium. Moreover, the learning interpretation of evolutionary models seems particularly
strained in the case of repeated games; evolution requires a large number of repetitions of the
whole game—a repeated repeated game, if you will—which may be unappealing in many cases.

The learning literature seems to provide the more natural analytical framework of learning
over the course of a single repeated game. Furthermore, certain forms of convergence to equilibria
of the repeated game have been demonstrated in this setting, both for Bayesian rational learning
(Kalai and Lehrer 1993) and for hypothesis testing (Foster and Young 2003). The latter offers
an interesting opportunity for equilibrium selection. For the noise inherent in the hypothesis-
testing process means that, whilst it will spend most of its time approximating equilibria of
the repeated game, it will not settle for so long on a particular equilibrium. Rather, any given
equilibrium will be visited with a frequency determined by its attractiveness and persistence, as
in the stochastic stability literature.

This paper investigates the implications of this observation for equilibrium selection in in-
finitely repeated games, under certain conditions on the hypothesis-testing process. In particu-
lar, it is found that, if players are sufficiently “conservative” in revising their hypotheses—in the
sense that a rejected hypothesis is with high probability replaced by a “nearby” alternative—
then the process spends most of its time approximating an efficient subset of equilibria of the
repeated game. Furthermore, this subset has a “forgiving” property shared by a common mod-
ification of the “tit-for-tat” strategy.
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2 Evolutionary Stability in Infinitely Repeated Games

Evolutionary stability has had limited success in selecting between the equilibria possible under
the various Folk Theorems. Axelrod and Hamilton (1981) show that “always defect” is not
an ESS in the repeated Prisoner’s Dilemma with time-average payoffs, since it is vulnerable
to invasion by tit-for-tat (though this breaks down under discounting). Axelrod (1981, 1984)
argues in favor of tit-for-tat on the basis of his concept of a “collectively stable strategy,” but
this concept does not imply evolutionary stability and gives little sharpening of the Nash Folk
Theorem. Moreover, tit-for-tat is not a subgame-perfect equilibrium strategy against itself, and
thus is not even a candidate equilibrium under the perfect Folk Theorems.

Boyd and Lorberbaum (1987) show that no pure strategy can be evolutionarily stable in
the infinitely repeated Prisoner’s Dilemma, whilst Farrell and Ware (1988) extend this to finite
mixtures of pure strategies. Kim (1994) generalizes these results to any strategies, and also to
Selten’s (1983) extensive-form concept of direct ESS. But Sugden (1986) and Boyd (1989) show
that ESSs do exist if players occasionally make “mistakes” (as distinct from mutations)—an
important notion throughout the rest of the paper. The existence problem for direct ESS is the
possibility of mutation to strategies that differ from the existing ones only off the equilibrium
path. Selten’s notion of a limit ESS addresses this problem by perturbing the game—so that
every information set is reached with positive probability—and finding the limit of a sequence
of direct ESSs as the perturbations vanish. This gives a refinement of sequential equilibrium in
symmetric extensive-form games (van Damme 1987). However, Kim proves that a Folk Theorem
obtains for limit ESSs; the concept offers no sharpening of the predictions of subgame perfection
in the infinitely repeated Prisoner’s Dilemma.

A similar criticism can be levelled at the relaxation of evolutionary stability to neutral
stability, even with time-average payoffs, where there exist neutrally stable strategies of the
infinitely repeated Prisoner’s Dilemma that are arbitrarily close to “always defect” (Fudenberg
and Maskin 1990) for example. Modifications of evolutionary/neutral stability would thus seem
to be required for significant refinements of the Folk Theorem. One such modification is Fuden-
berg and Maskin’s (1990) explicit incorporation of mistakes into neutral stability, with players
weighting events lexicographically in decreasing order of the number of mistakes required for
the event to occur. When players employ finitely complex strategies and have time-average
payoffs of this lexicographic form, Fudenberg and Maskin demonstrate that stability implies
efficiency in the infinitely repeated Prisoner’s Dilemma. The essential idea is that, when players
make mistakes, the worst possible history for an inefficient strategy profile will eventually occur;
such a profile is then vulnerable to invasion by a mutant that mimics the incumbent strategy
except after this worst history, at which point it engages in the familiar evolutionary “secret
handshake” (Robson 1990), having nothing to lose from punishment. Binmore and Samuelson
(1992) also employ the secret handshake to destabilize inefficient profiles, but their modification
to neutral stability is the introduction of complexity costs in the players’ strategies, so that the
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off-the-equilibrium-path punishments required to prevent secret handshakes cannot themselves
form part of a stable strategy profile.

But static notions of evolutionary stability are usually justified with reference to their dy-
namic stability properties (see, e.g., Weibull 1995). And whilst it seems likely that one could
specify dynamic processes that would justify these modifications of evolutionary stability, to
do so would highlight an (arguably) unappealing feature of the evolutionary approach to re-
peated games in general—namely, that the process would involve many repetitions of the whole
repeated game. This presents obvious difficulties in the zero-discounting case of time-average
payoffs, and whilst the hazard-rate interpretation of the discounting case guarantees that the
repeated game will end in finite time (Binmore and Samuelson 1992), this still seems a little
unsatisfactory. Moreover, the simple behavior (e.g. imitation, myopia) assumed in evolutionary
models seems out of place in the high-rationality world of repeated games. The more natural
setting for exploring equilibrium selection in repeated games would instead seem to be provided
by models of learning.

3 Hypothesis Testing and the Folk Theorem

Let us begin by recalling the details of Foster and Young’s (2003) hypothesis-testing model.
There is a finite, n-person stage game G with players i = 1, 2, . . . , n, action spaces Xi and
utility functions ui : X → R, X = ΠXi. This stage game is infinitely repeated in discrete
time t = 1, 2, . . ., with public observation of play. A history of play is denoted ω ∈ Ω; ωt =
(ωt

1, . . . , ω
t
n) ∈ X then denotes the actions taken in period t, ωt = (ω1, ω2, . . . , ωt) the initial

history of actions taken in periods 1 through t inclusive, and Ω(ωt) = {α ∈ Ω | αt = ωt} the set
of all continuations of the initial history ωt. Let Ω(ωt) = {αt′ | t′ ≥ t, αt = ωt} be the set of
possible continued initial histories following ωt−1.

Each player then has a forecast pt
i(x−i | ωt−1, bi) of his opponents’ one-step-ahead behaviors,

conditional on every possible initial history, determined by his model bi. Moreover, this model
has memory at most m in that the conditional distributions satisfy

pt
i(x−i | ωt−1, bi) = pt

i(x−i | ωt−m, . . . , ωt−1, bi) for all t > m.

Since there are M = |X|m possible length-m histories, models with memory at most m occupy
the Euclidean space Bi =

∏
j 6=i ∆

M
j . In response to his model, player i adopts a behavioral

response ai with memory at most m in that the conditional probability that i plays action xi in
period t, given the history ωt−1, is

qt
i(xi | ωt−1, ai) = qt

i(xi | ωt−m, . . . , ωt−1, ai) for all t > m.

Note that ai ∈ Ai = ∆M
i , and Bi =

∏
j 6=iAj . Letting A =

∏Ai and ~a = (a1, . . . , an) ∈ A,

5



we can define the mapping Bi : A → Bi from any response vector ~a to the correct model for i,
Bi(a) =

∏
j 6=i aj .

With a discount factor ρi < 1 for player i, i’s normalized discounted utility following the
initial history ωt−1 is U t

i (ω) = (1−ρi)
∑∞

t′=t ρt′−t
i ui(ωt′). Letting νai,bi be the probability measure

over infinite histories induced by the response ai and the model bi, we can define i’s expected
utility U t

i (ai, bi) ≡ E
(
U t

i (ω) | ai, bi, ω
t−1

)
at time t over all continuation histories Ω(ωt−1) as

E
(
U t

i (ω) | ai, bi, ω
t−1

)
=

∫

Ω(ωt−1)
U t

i (ω)dνai,bi

/∫

Ω(ωt−1)
dνai,bi .

Given σi > 0, ai is then a σi-optimal response to bi if U t
i (ai, bi) ≥ U t

i (a
′
i, bi)−σi, ∀t, ∀a′i. For each

player i there is a σi-optimal response function Aσi
i : Bi → Ai that is assumed to be continuous

in bi and each payoff ui(x), and diffuse in the sense that each action is played with positive
probability. Such an Aσi

i is called a σi-smoothed best response function and {Aσi
i : σi > 0} is a

family of smoothed best response functions. Let S~σ be the set of fixed points of A~σ ◦B, with S
the set of subgame-perfect equilibrium response vectors obtained when σi = 0, ∀i.

Player i periodically tests his null hypothesis that “the real process generating the actions
from time t on is described by the pair (Aσi

i (bt
i), b

t
i).” If i is not conducting a test at the start

of a given period, he begins a new test with probability 1/si. He then collects data on realized
actions over the next si periods, at the end of which he either accepts H0 or rejects it. If it
is rejected, he chooses a new model according to a probability measure f t+si+1

i (bi | ωt+si).
The hypothesis tests that the players employ are assumed to be “powerful,” in that they
accept the null with high probability when the null is correct, and reject with high probabil-
ity when the null is not correct; see Foster and Young (2003) for the formal details of this concept.

The relevant formulation of the (perfect) Folk Theorem for this framework is Fudenberg and
Maskin’s (1986, 1991) discounting case, which also allows for unobservable mixed strategies.2

The theorem says that, when players can observe each others’ payoffs and actions, all feasible
individually rational payoffs can be sustained in a subgame-perfect equilibrium of the infinitely
repeated game if the discount factor is sufficiently close to one and a “full dimensionality”
condition is satisfied. Foster and Young’s (2003) Theorem 2 then says that, if players—lacking
knowledge of their opponents’ payoffs—engage in hypothesis testing about opponents’ strategies,
then there exist parameters of this process such that the strategies are ε-close to being a subgame-
perfect equilibrium of the infinitely repeated game at least 1− ε of the time.

But we need not stop here; not all subgame-perfect equilibria are equally appealing under
hypothesis testing. Rather than settling on a particular equilibrium, for given ε > 0 the process
will perpetually bounce around between equilibria given long enough. But it will spend more
time in some equilibria than in others, according to how likely they are to be entered and exited.

2Also relevant will be Aumann and Shapley’s (1976) time-average case, where players are arbitrarily patient.
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The crucial variables in this respect are, for our purposes, the probabilities fi(·|ωt) with which
new models are adopted upon hypothesis rejection.

4 Conservatism and Forgiveness

The main assumption made on the hypothesis-revision densities fi(·|ωt) by Foster and Young
(2003) is flexibility, whereby, for each τ0 > 0, the fi-measure of any τ0-ball of hypotheses is
bounded below by a strictly positive number f∗(τ0) > 0. This is quite a weak assumption,
allowing a wide range of possible models to be adopted at any given revision. In particular,
absent further assumptions, it need not be more difficult for a player to adopt a model further
away in the Euclidean model space Bi =

∏
j 6=i ∆

M
j , as would be the case in most traditional

evolutionary analyses. This role for the “distance” between models is instead captured by
Foster and Young’s “conservatism,” under which the new hypothesis lies within λi of the old
hypothesis with probability at least 1 − λi, where λi is positive and close to zero. Foster and
Young do not use this assumption in their main convergence results; rather, they show that if
players are sufficiently conservative, have sufficiently sharp best responses and employ sufficiently
powerful hypothesis tests with sufficiently fine tolerances, then at all times the hypothesis testing
strategies are ε-best responses to their beliefs (as distinct from models).

We will modify conservatism slightly, in order to allow us to strengthen the concept some-
what.

Definition 1 Model revision is conservative if, following rejection, player i adopts a new model
that is within λi of his previous model with probability at least 1− Λi.

Conservatism thus still captures the idea that local model revisions are highly probable, but
just how probable is no longer tied to the size of the neighborhood; this will be key in proving
the main result.

We will also depart from the Foster and Young framework in our notion of smoothed best
response. First, we will begin with a static notion of σi-optimality which requires only that
U t

i (ai, bi) ≥ U t
i (a

′
i, bi) − σi, ∀a′i, in the period t when ai is selected, before moving on later to

Foster and Young’s full extensive-form σi-optimality. Second, we will allow player i to adopt
any σi-smoothed best response function following the adoption of a new model, rather than
always employing the same Aσi

i . Once they have chosen such a response though, they must still
retain it until the next time they reject their model. This modification of the Foster and Young
framework is necessary to allow the experimentation with efficiency exploited in the proof of
the main result. Individual response vectors are, however, doomed to instability even under
this assumption, given the presence of many alternative σi-optimal strategies following adoption
even of a model arbitrarily close to the rejected one. Hence, we consider the stability not of
individual response vectors, but of a class of response vectors sharing certain properties.
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4.1 Example: Prisoner’s Dilemma

Consider two players playing the infinitely repeated Prisoner’s Dilemma according to (slightly
noisy) “trigger” strategies: cooperate if and only if your opponent has always cooperated in the
past. Suppose that one of the players has made a mistake, so that the players are locked in to
perpetual defection. And suppose that one of the players now tests and then rejects his current
(correct) hypothesis in favor of a local alternative placing small probability on his opponent
playing “perfect tit-for-tat”—whereby a player cooperates in the first period and thereafter
cooperates if and only if either both players cooperated or both players defected in the previous
period—starting in some particular future period t′. Then, if that player is sufficiently patient,
it is a smoothed best response (according to our static notion of optimality) for him also to
play perfect-tit-for-tat starting in t′, and continuing as long as there have been no more than l

deviations from perfect tit-for-tat since t′, where l is a positive integer. To see this, note that it is
optimal to play perfect tit-for-tat if it turns out that the opponent is playing perfect tit-for-tat,
and if not, reversion to the trigger strategy after l deviations yields only a small loss if the player
is sufficiently patient. Crucially, things can be no worse for the player upon reversion to the
trigger strategy, since they were already locked in to the worst possible scenario of perpetual
defection.

Suppose now that the opponent too rejects his null hypothesis in favor of the same local
alternative. Then it is a smoothed best response for him to experiment with perfect tit-for-
tat starting in t′ in the same way. Cooperation will thus begin in period t′, and continue for
some time if mistakes are unlikely. During this cooperative phase, if a player again rejects
his hypothesis, and adopts a local alternative with somewhat more probability on his opponent
playing perfect tit-for-tat, then it is a smoothed best response for that player to continue playing
perfect tit-for-tat as long as there have been no more than l′ deviations from perfect tit-for-tat
since t′, where l′ > l; more mistakes are forgiven, since it is now less likely that the opponent
is playing the trigger strategy. Indeed, further model rejections and revisions may occur before
reversion to trigger strategies takes place; and ultimately, enough model revisions may occur
for the system to arrive in a state where both players are almost certain that their opponent is
playing perfect tit-for-tat, a smoothed best response to which is to also play perfect tit-for-tat.

Once each player correctly believes perfect tit-for-tat is being played by his opponent, no
local model revision can destabilize it. For there is no initial history such that perfect tit-for-tat
is strongly Pareto-dominated by some other response vector; it is a response vector that forgives
mistakes. Whilst a player can still place small probability on his opponent experimenting with
a response that would leave the player better off (e.g. the “always cooperate” strategy, against
which defection goes unpunished), the opponent has no incentive to adopt such a response, and
the experimentation is doomed to break down, resulting in reversion to perfect tit-for-tat or an
equivalent forgiving strategy. If such forgiving strategies are to be upset then, we require a (less
probable) nonlocal model revision, or a sequence of (improbable) model rejections and revisions.
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Hence, the set of forgiving response vectors is easy to enter and difficult to leave, so that the
system will spend a lot of time there (or thereabouts).

4.2 General Case

This logic applies quite generally to favor response vectors that share the forgiving property of
perfect tit-for-tat.

Definition 2 (~a, ωt−1) is weakly θ-efficient if (E(U t
i (ω)|ai, Bi(~a), ωt−1))i=1,2 is weakly Pareto-

~θ-undominated in the set of equilibrium response vectors.
The worst-case scenario for player i under (~a, ωt−1) is the initial history ωt′′−1

i =
arg min

ωt′−1∈Ω
si (ωt−1)

E(U t′
i (ω)|ai, Bi(~a), ωt′−1).

(~a, ωt−1) is θ-forgiving if, for any worst-case scenario ωt′′−1
i , (~a, ωt′′−1

i ) is either weakly θ-
efficient or has probability at most θ following ωt−1.

Thus, if (~a, ωt−1) is θ-forgiving, then any worst-case scenario such that some equilibrium response
vector strongly Pareto-~θ-dominates (U t′

i (ai, Bi(~a)))i=1,2 is reached with probability at most θ.
If θ = 0, then we call (~a, ωt−1) simply efficient or forgiving. Intuitively, (~a, ωt−1) is forgiving if
any finite number of mistakes brings no reduction in expected payoffs for at least one player. In
the repeated Prisoner’s Dilemma, perfect tit-for-tat following mutual cooperation (or defection)
is forgiving in this sense. This is slightly different (though related) to Axelrod’s (1984, p. 36)
informal notion of forgiveness in the Prisoner’s Dilemma as the “propensity to cooperate in the
moves after the other player has defected.”

Let us begin with a result for our static notion of σi-optimality, under which experimentation
with forgiveness is easier to foster.

Theorem 1 (Static) Suppose that two sufficiently patient players adopt hypotheses with finite
memory, have σi-smoothed static best response functions, employ powerful hypothesis tests with
comparable amounts of data, and are flexible and conservative in the adoption of new hypotheses.
Given any ε > 0, if the σi are small (given ε), if the test tolerances τi are sufficiently fine (given
ε and σi), if the amounts si of data collected are sufficiently large (given ε, σi and τ) and if
the degrees 1 − Λi of conservatism are sufficiently high, then there exists θ > 0 such that the
repeated-game strategies are within ε of θ-forgiving (~a, ωt−1) at least 1− ε of the time.

A state is within ε of (~a, ωt−1) if its initial history is ωt−1 and its response vector is within ε of
~a. The proof is relegated to the appendix.

The intuition behind the result is that, if (ωt−1,~a) is not forgiving, then it is vulnerable
to experimentation initiated following the worst mistakes that will go unforgiven, since the
experimenter has nothing to lose and both players have something to gain. This is similar to the
reasoning employed by Fudenberg and Maskin (1990), except that a one-off secret handshake
followed by permanent efficiency or reversion can no longer work, since the continued possibility
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of mistakes makes the secret handshake’s signal imprecise.3 Instead, the players must first
experiment a little, then gradually tolerate more and more mistakes as the experimentation is
reciprocated, until they finally become completely efficient and forgiving.

On the other hand, if (ωt−1,~a) is forgiving, then experimentation cannot lead to a payoff
profile strictly preferred by both players, and hence it will fail. Unlike in the symmetrized setting
of Fudenberg and Maskin (1990), however, such failed experimentation can occur, and when it
does the experimenter may revert not just to his previous response ai, but to any alternative
smoothed best response to his model. Hence, any given response vector cannot possibly be
stable; rather, because a smoothed best response to a forgiving model must itself be θ′-forgiving
for some θ′ > 0, there exists a θ > θ′ such that the set of θ-forgiving response vectors is stable for
some long period of time. These observations, along with the probabilistic techniques of Foster
and Young (2003), are exploited to give the result on the long-run behavior of the dynamical
system.

The idea of experimentation that is doomed to failure might seem a little odd; why should a
player adopt a model (of reciprocated experimentation) under which his opponent fails to act in
his own interests in such an elaborate manner? Should player i not place low probability on his
opponent playing a response that is σj-optimal, j 6= i, under no possible models? The answer
is that such reasoning can have no place in a learning model such as Foster and Young’s, since
it would require players to have knowledge of opponents’ payoffs and would thus sacrifice the
“uncoupled” nature of the process.4

One deficiency of Theorem 1 is the static notion of σi-optimality employed. This facili-
tates experimentation, since it is not clear that Fudenberg and Maskin’s worst-case scenario will
endure long enough to sustain extended experimentation as σi-optimal in all subgames. Demon-
strating that it will in fact do so if players are sufficiently patient is the key to the following
result, which returns to Foster and Young’s full extensive-form notion of σi-optimality.

Theorem 2 (Extensive-form) Suppose that two sufficiently patient players now have σi-
smoothed extensive-form best response functions, but are otherwise as before. Given any ε > 0,
there again exist values of the learning parameters and θ > 0 such that the repeated-game strate-
gies are within ε of θ-forgiving (~a, ωt−1) at least 1− ε of the time.

The proof is again relegated to the appendix.
The downside with this extensive-form σi-optimality result is that it is likely to require a

much higher discount factor than Theorem 1; experimentation must now remain σi-optimal in
every subgame where it continues, so that less departure from time-average payoffs and their
disregard for initial histories can be tolerated. Whether or not the θ parameter is tighter in
Theorem 2 is not so clear; whilst the set of extensive-form σi-optimal responses to a θ′-forgiving

3Moreover, the noise that is explicit in the Foster and Young set-up allows an extension of Fudenberg and
Maskin’s reasoning from time-average payoffs to the discounting case.

4On uncoupled learning processes, see Hart and Mas-Colell (2003, 2004), and Foster and Young (2005).
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model is narrower than the set of static σi-optimal responses, we are constrained to reaching
only a θ′-forgiving great state initially, rather than a forgiving great state.

5 Conclusion

If patient players learn according to Foster and Young’s (2003) hypothesis testing then, and are
sufficiently conservative in their adoption of new hypotheses, almost all time is spent approx-
imating an efficient set of “strategies” that have an intuitive forgiving property. For example,
in the Prisoner’s Dilemma, almost all time is spent close to the Pareto frontier of the shaded
region of Figure 1, enforced by equilibrium strategies such as perfect tit-for-tat that forgive
finite numbers of mistakes. Intuitively, strategies that do not forgive mistakes are vulnerable to
experimentation with efficiency once mistakes have been made. And whilst any given forgiving
strategies are unstable in the face of alternative best replies, the set of forgiving strategies is
stable; a change in long-run behavior requires both players to “agree” on their new behavior,
which they cannot do if they are already playing efficiently.

The noise inherent in the hypothesis-testing process thus provides a tool for selecting among
the myriad possibilities of the Folk Theorem, and under conservatism it gives support for the
notion that efficiency is likely to emerge in repeated games. The hypothesis-testing model has
precisely the elements required of an evolutionary refinement of the Folk Theorem: a tractable
metric space for (approximations of) strategies and beliefs to occupy; endogenous “mistakes” oc-
curring with small probability; and a technology for rejection and revision of “beliefs.” However,
it is likely that our results would extend to other stochastic dynamic models of evolution and
learning in repeated games that share the key features of noisy best response and conservatism.

Appendix

Proof of Theorem 1. As in Foster and Young (2003),

∀i, σi ≤ ε

2

and, for any given Aσi
i ,

∃δ > 0, ∀~u, t, i, ∀bi, b
′
i,

∣∣bi − b′i
∣∣ ≤ δ ⇒ ∣∣Aσi

i (bi)−Aσi
i (b′i)

∣∣ ≤ ε

4
, and δ <

ε

4
. (1)

Furthermore, fix τ > 0 such that

τ ≤ δ

6
;
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for each τ there exist functions k(τ) and r(τ) such that whenever a player’s model is within c(τ)
of the correct model, he rejects with probability at most

k(τ)e−r(τ)s∗ .

In the proof of their Claim 2, Foster and Young demonstrate that there is a γ > 0 such that,
for a given model fixed point ~bf = B(~af ),

∀i,
∣∣∣bi − bf

i

∣∣∣ < γ ⇒
∣∣∣bi −Bi

(
A~σ(~b)

)∣∣∣ < c(τ).

Finally, recall Foster and Young’s notion of a great state—where, for every player i, i’s model is
within γ of a fixed point and no player is currently in a test phase.

Beginning at a θ-unforgiving ~a at time t for given θ > 0, there exists a worst-case sce-
nario ωt′′−1

1 = arg min
ωt′−1∈Ω

s1 (ωt−1)
E(U t′

1 (ω)|a1, B1(~a), ωt′−1), with probability at least θ,

such that (E(U t′′
i (ω)|ai, Bi(~a), ωt′′−1))i=1,2 is strongly Pareto-~θ-dominated by some forgiving

~a∗ ∈ S. Letting ωt′′′−1
2 := arg min

ωt′−1∈Ω(ωt′′−1)
E(U t′

2 (ω)|a2, B2(~a), ωt′−1), it follows that
E(U t′′′

2 (ω)|a2, B2(~a), ωt′′′−1) ≤ E(U t′′
2 (ω)|a2, B2(~a), ωt′′−1). Let the response al1

1 continue to play
a1 unless ωt′′′−1

2 is realized, in which case it plays a∗1 if and only if there have been at most l1

deviations from ~a∗ (by either player) since t′′′; otherwise, it reverts to a1 forever. This response
clearly does not have memory m—and in fact requires infinite memory over the whole game—
but if it is σ′1-optimal, σ′1 < σ1, given some memory-m model, then we can always choose m

sufficiently large such that there exists a σ1-optimal memory-m response constructed from al1
1

using the procedure described in Foster and Young (2003, p. 81). Similarly, let al2
2 respond

to ωt′′′−1
2 by playing a∗2 if and only if there have been at most l2 deviations from ~a∗ since t′′′,

otherwise reverting to a2 forever. Finally, let a∞i := limli→∞ ali
i be the response that plays a∗i

for all ωt′−1 ∈ Ω(ωt′′−1
1 ), and b′i = (1−λi + ιi)bi +(λi− ιi)a∞j , ιi < min{δ, λi/2}, j 6= i. Consider

the following sequence of events leading to a great state with a response vector within min{γ, δ}
of ~a∞.

Step 1. Play proceeds in accordance with ωt′′−1
1 . Player 2 does not start a test between periods

(t′′ −max{s1, 2s2}) and (t′′ − 1); player 1 does not start a test between periods (t′′ − 2s1) and
(t′′ − (s1 + 1)), but does so in period (t′′ − s1). After 1’s test phase is completed, he rejects his
current hypothesis and adopts a model within ι1 of b′1. Now, fixing σ′1 ∈ ((1 − λ1 + ι1)σ1, σ1),
whilst E(U t′

1 (ω)|al1
1 , b1, ω

t′−1
1 ) is nonincreasing in l1 for given ρ1 < 1 and any ωt′−1 ∈ Ω(ωt′′−1),

if ρ1 is sufficiently high there exists a maximum l1 > 0 such that al1
1 is a σ+

1 -optimal response
to b1 for all l1 ≤ l1 and σ+

1 := σ′1/(1 − λ1 + ι1) > σ1. To see this, note that, by eventually
reverting to a1, al1

1 gives the same time-average payoff as a1 against b1 following ωt′′−1
1 . And

since a1 is a σ1-optimal response to b1, it follows that al1
1 must be a σ+

1 -optimal response to
b1 under discounting given l1 sufficiently low and ρ1 sufficiently high. Moreover, since a∗1 is
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an optimal response to a∗2, mistakes have zero probability under ~a∗ and hence al1
1 must be an

optimal response to a∞2 . Hence,

E(U t′′
1 (ω)|al1

1 , b′1, ω
t′′−1
1 ) = (1− λ1 + ι1) E(U t′′

1 (ω)|al1
1 , b1, ω

t′′−1
1 )

+ (λ1 − ι1) E(U t′′
1 (ω)|al1

1 , a∞2 , ωt′′−1
1 ),

≥ (1− λ1 + ι1)(sup
a′1

E(U t′′
1 (ω)|a′1, b1, ω

t′′−1
1 )− σ+

1 )

+ (λ1 − ι1) sup
a′1

E(U t′′
1 (ω)|a′1, a∞2 , ωt′′−1

1 ),

≥ sup
a′1

E(U t′′
1 (ω)|a′1, b′1, ωt′′−1

1 )− (1− λ1 + ι1)σ+
1

= sup
a′1

E(U t′′
1 (ω)|a′1, b′1, ωt′′−1

1 )− σ′1,

so that al1
1 is a σ′1-optimal response to b′1. (1) then implies that player 1 has a σ1-optimal

response to his new model within ε/4 of (a σ1-optimal memory-m response to b′1 appropriately
constructed from) al1

1 . (Duration: (t′′ − t) periods.)

Step 2. Play proceeds in accordance with ωt′′′−1
2 . Prior to period (t′′′ − s2), player 2 starts

a test period, at the end of which he rejects and adopts a model within ι2 < δ, λ2/2 of b′2. By
the argument in Step 1, there is then a σ2-optimal response to b′2 within ε/4 of (a σ2-optimal
memory-m response to b′2 appropriately constructed from) al2

2 . (Duration: (t′′′ − t′′) periods.)

Step 3. Each player i conducts successive non-overlapping tests, rejecting at the end of each
and adopting a λi-close model within ιi of a linear combination of bi and a∞j , j 6= i, that
maximizes the weight on a∞j subject to its ιi-ball being contained in the rejected model’s λi-
ball, until he adopts a model within min{γ, δ} of a∞j . Throughout this process, there are no
deviations from ~a∗. (1) then implies the existence of a σi-optimal memory-m response within
ε/4 of (a σi-optimal memory-m response to a∞j appropriately constructed from) a∞i . (Duration:
at most % = d2(1−min{γ, δ}−λ∗+2ι∗)/(λ∗−2ι∗)es∗ periods, where λ∗ := mini λi, ι∗ := maxi ιi

and s∗ := maxi si.)

Step 4. If the number of periods in Steps 1–3 is T ′ < t′′′ − t + %, no player begins a test for
the next t′′′ − t + %− T ′ periods.

The duration of the whole sequence is exactly t′′′ − t + %.
We now calculate the probability of a particular such sequence. To begin with, ωt′′−1

1 must
be realized, which occurs with probability h~a(ωt′′−1

1 | ωt−1) say. There must be no rejections
between t and t′′ − 1, which occurs with probability at least (1 − 1/s∗)2(t′′−s∗−t), where s∗ :=
mini si. Player 1’s first test phase must then begin in period (t′′−s1), and player 2 must not test
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during this phase, which occurs with probability at least (1/s∗)(1− 1/s∗)s∗ . Player 1 must then
reject his null hypothesis, and adopt a new one within a target of radius ι1 in his model space,
which occurs with probability at least (1 − ν∗)f∗, where f∗ = f∗(ι∗) and ν∗ is the maximum
probability of a player accepting his null hypothesis.

Next, ωt′′′−1
2 must be realized, which occurs with probability h~a(ωt′′′−1

2 | ωt′′−1
1 ). There

must be no rejections between t′′ and t′′′ − 1, followed by a player-2 test phase starting at
(t′′′ − s2) and with no simultaneous testing by player 1, which occurs with probability at least
(1/s∗)(1−1/s∗)2(t′′′−1−s∗−t′′)+s∗ . Player 2 must then reject his null hypothesis, and adopt a new
one within a target of radius ι2 in his model space; this event has probability at least (1−ν∗)f∗.

The Step 3 test phases must each begin at a specific time and no player can be testing
during the other’s phase; the probability of this is at least

(
(1/s∗)(1− 1/s∗)s∗)%/s∗ . Each of

these tests must end with rejection and subsequent adoption within a model-space target of
radius ιi; we can choose the test parameters such that the rejections occur with probability at
least 1/2, so that the event has probability at least (f∗/2)%/s∗ . There must be no deviations
from ~a∗ from ωt′′′−1

2 to the end of Step 4; let the probability of this event be h~a(ω∗ | ωt′′′−1
2 ),

and let H = h~a(ω∗ | ωt′′′−1
2 ).h~a(ωt′′′−1

2 | ωt′′−1
1 ).h~a(ωt′′−1

1 | ωt−1).
Finally, there must be no further tests before period t′′′ + %; this occurs with probability at

least (1− 1/s∗)2(t′′−t+%).
In summary, the probability of Steps 1–4 is at least

H.(1− ν∗)2(1− 1/s∗)3%+2(t′′′+t′′−1−2t+s∗−2s∗)(f∗/2s∗)2+%/s∗ .

Thus there are constants α, β ∈ (0, 1) such that the probability of Steps 1–4 is at least αβ%,
establishing the following fact: If (~a, ωt−1) is θ-unforgiving, the probability of being in a forgiving
great state at time t′′′ + % is at least αβ%.

Now suppose that the process is in a forgiving great state at time t. Letting T be a large
positive integer, the probability that any player rejects a test over the next T periods is bounded
above by

d2T/s∗ek0e−r0s∗ < T e−4rs∗ ,

where the inequality holds for all sufficiently large s∗ and some r > 0. The probability, con-
ditional on rejection, that player i will adopt a new model b′′i such that A~σ(b′′i , bj) gives a
θ′-unforgiving state is bounded above by Λ, for some θ′ ≥ 0. To see this, note that otherwise
there would have to be a player i and a model b′i = (1 − ζ)bi + ζb′′i , ζ ≤ λi, b′′i ∈ Bi, that
induced a σi-optimal θ′-unforgiving response a′i; choose θ′ such that no such model exists. But
θ′ must be sufficiently low to then avoid a worst-case-scenario escape of the sort seen above;
choose ~σ sufficiently low that mistakes—and thus a worst-case scenario escape—are sufficiently
unlikely. There is then a constant η ∈ (0, 1) and a θ > θ′—which fixes the level of θ at the
beginning of the proof—such that the following fact holds: If (~a, ωt−1) is a forgiving great state,
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the probability of being in a θ-unforgiving state within T periods is at most ηΛT .5 Moreover,
θ′—and thus θ—vanishes with ~σ.

We can now use the above bounds to show that the fraction of times that the process is not
in a θ-forgiving state is very small for small λ∗. Starting from time t, let E be the event “the
realized states in at least εT of the periods t + 1, . . . , t + T are θ-unforgiving.” Let E ′ be the
sub-event of E in which no forgiving great state is realized before the last θ-unforgiving state,
and let E ′′ = E − E ′. We shall bound the conditional probabilities of E ′ and E ′′ from above
independently of the state at time t.

Let tmax be the maximum over all θ-unforgiving ~a and all t′ ≥ t of the time interval between
t′ and the realization of both players’ worst remaining initial histories. If E ′ occurs, there are at
least bεT/(tmax + %)c = k distinct times t < t1 < · · · < tk ≤ t + T such that the following hold:

• tj+1 − tj ≥ tmax + % for 1 ≤ j < k,

• the state at time tj is θ-unforgiving for 1 ≤ j < k,

• no forgiving great state occurs from t1 to tk.

By the preceding, the probability of this event is at most (1 − αβ%)k−1 ≤ e−αβ%(k−1). Letting
T = (tmax + %)(1 + β−2%)/ε, we have

P (E ′) ≤ exp(−αβ%(bεT/(tmax + %)c − 1)) = exp(−αβ−%),

where bxc := max {z ∈ Z | z ≤ x}. This can be made as small as we wish when λ∗ is small; in
particular it can be made less than ε/2.

If E ′′ occurs, the process does not stay in θ-forgiving states for at least T periods after
entering a forgiving great state. So from above, and letting Λ = εβ3%/(tmax + %),

P (E ′′) ≤ ηΛT = ηΛ(tmax + %)(1 + β−2%)/ε = η(β3% + β%),

which can also be made less than ε/2 when λ∗ is sufficiently small. Putting all of this together
we conclude that, for all sufficiently small λ∗,

P (E) = P (E ′) + P (E ′′) ≤ ε.

Now divide all times t into disjoint blocks of length T , and let Zk be the fraction of θ-unforgiving
times in the kth block. We have just shown that P (Zk ≥ ε) ≤ ε for all k. Hence

E(Zk) ≤ P (Zk ≥ ε) · 1 + P (Zk < ε) · ε ≤ 2ε.

5A sequence of improbable rejections followed by local model revisions—an alternative means of escape from
a forgiving great state—becomes arbitrarily unlikely as λ∗ becomes small.
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It follows that the proportion of times that the process is in a θ-unforgiving state is almost surely
less than 2ε. Rerunning the entire argument with ε/2 yields the desired conclusion, namely that
(~a, ωt−1) is θ-forgiving at least 1− ε of the time.

Proof of Theorem 2. The proof proceeds in the same way as that of Theorem 1, except that
b′i = (1−λi+ιi)bi+(λi−ιi)al

j , ιi < min{δ, λi/2}, j 6= i, for some l ∈ N such that al
i is an extensive-

form σi-optimal response to b′i. To see that such an l exists, suppose that there is some σ−1 < σ1

such that al
1 is a σ−1 -optimal response to al

2, and fix σ′1 ∈ ((1 − λ1 + ι1)σ1 + (λ1 − ι1)σ−1 , σ1).6

Whilst E(U t′
1 (ω)|al1

1 , b1, ω
t′−1
1 ) is nonincreasing in l1 for given ρ1 < 1 and any ωt′−1 ∈ Ω(ωt′′−1),

if ρ1 is sufficiently high there exists a maximum l1 > 0 such that al1
1 is a σ+

1 -optimal response
to b1 for all l1 ≤ l1 and σ+

1 := (σ′1 − (λ1 − ι1)σ−)/(1 − λ1 + ι1) > σ1. To see this, note that,
under time-average payoffs, for any given hypothesis (ai, bi), E(U t′

i (ω)|ai, bi, ω
t′−1) is the same

for all ωt′−1; otherwise, there would exist a worst length-m history and a strictly preferred
continuation, a contradiction. Hence, by eventually reverting to a1, al1

1 gives the same time-
average payoff as a1 against b1 following ωt′′−1, and indeed following any ωt′−1 ∈ Ω(ωt′′−1). And
since a1 is a σ1-optimal response to b1, it follows that al1

1 must be a σ+
1 -optimal response to b1

under discounting given l1 sufficiently low and ρ1 sufficiently high. Hence, for l ≤ l1,

E(U t′′
1 (ω)|al

1, b
l
1, ω

t′′−1
1 ) = (1− λ1 + ι1) E(U t′′

1 (ω)|al
1, b1, ω

t′′−1
1 )

+ (λ1 − ι1) E(U t′′
1 (ω)|al

1, a
l
2, ω

t′′−1
1 ),

≥ (1− λ1 + ι1)(sup
a1

E(U t′′
1 (ω)|a1, b1, ω

t′′−1
1 )− σ+

1 )

+ (λ1 − ι1)(sup
a1

E(U t′′
1 (ω)|a1, a

l
2, ω

t′′−1
1 )− σ−1 ),

≥ sup
a1

E(U t′′
1 (ω)|a1, b

l
1, ω

t′′−1
1 )− (

(1− λ1 + ι1)σ+
1 + (λ1 − ι1)σ−1

)

= sup
a1

E(U t′′
1 (ω)|a1, b

l
1, ω

t′′−1
1 )− σ′1,

so that al
1 is a σ′1-optimal response to bl

1. A similar sequence of events to that in Theorem 1 then
leads to a great state with a response vector within min{γ, δ} of ~al. Now choose ~σ sufficiently
low that mistakes are sufficiently unlikely that ~al is θ′-forgiving for some θ′ < θ such that the
result holds.
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