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Abstract

Sequentially Nash Credible Joint Plans (SN) as in Nieva (February 2006)
are shown to exist also whenever actions sets are infinite in a modification of all
three-player Aumann-Myerson (1988) (A-M) bilateral link formation games. In
contrast to A-M, binding transfers can occur if pairs match pairs of non negative
payoff proposals out of the sum of their Myerson values (1977) in the prospective
network. Pairs can also enunciate simultaneous negotiation statements about
payoff-relevant play and bargain cooperatively over payoffs induced by tenable
and reliable joint plans where the disagreement one suggests link rejection. A
SN is for the most the one that suggests credibly−so followed through−the
Nash solution in the bargaining game. In contrast to the bargaining network
literature and the transfer game in Bloch and Jackson (2005), the one here is
bilateral, sequential and has unique payoff predictions. In strictly superadditive
cooperative games the complete graph never forms. The simple majority game
yields the nucleolus in coalition structure.
Keywords: Simultaneous Cheap Talk;
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1 Introduction

Network structures, represented by sets of links, play an important role in the outcome
of many social interactions (See Jackson (2005b)). In particular, its effect on how
payoffs are allocated within a network is important not only in terms of fairness
considerations but because it determines players’ incentives to form networks. Hence,
it is relevant to have a theory that explains not only how they form but how payoffs
are allocated and how this depends on relevant circumstances.
The present paper focuses on payoff division in communication network forma-

tion games by studying the role played by bilateral sequential bargaining, aimed at
influencing cooperation, coordination of actions, and focal simultaneous negotiation,
simultaneous message exchange to influence equilibrium outcomes, according to a
finite rule of order.
I do so by proposing a coalitional−as players can cooperate within a coalition of

players provided they have communication links−network sequential bilateral bar-
gaining procedure that entails modifying all three-player Aumann-Myerson (1988)
(A-M) network games, where pairs are allowed to propose not simply bilateral links
but also "transfers" out of their "static" Myerson (1977) values. The latter are an
important payoff allocation rule for such games also called transferable utility (TU)
cooperative games with network effects where the worth of what a coalition of players
can achieve is given by the characteristic function.
The focal theory of equilibrium selection used is an extension of neologism proof-

ness as in Farrel (1993) and a refinement of publicly correlated subgame perfect
equilibrium and it is due to Nieva (February 2006). The author defines an almost
non cooperative solution (ANC), "Sequentially Nash Credible Joint plans" (SN), for
a friendships’ environment that induces a coalitional "strategic" network bilateral
focal sequential bargaining game. A version of SN that assumes a "last-mover advan-
tage" exists for strategic network games, where link choice and actions are strategic
variables, whenever action sets are finite. Another version that instead assumes
an "oldest-friend focal effect" exists also for my modification of A-M whenever the
underlying cooperative game is a three-player simple majority game provided one
introduces focal negotiation and infinite action sets are interpreted as the infinite
proposals sets in my transfer game.
The present paper extends existence of SN to my modified A-M game for all

normalized three-player cooperative games. Thus, the claim in that paper that SN
is a unifying single valued solution concept for network games is supported as I
proof that SN exist for more general trivial strategic network games where besides
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proposals and link choices there is no other strategic variable. More importantly, the
interpretation of a friendships’ environment as my modified A-Mmakes clear that any
network game with a given value function, that gives what a network can achieve,
with or without externalities could be interpreted as a trivial strategic network game
and the existence of SN could be assessed.
As the "smoothed Nash demand game" was given in that paper as a "novel" non

cooperative foundation for this ANC solution for the friendships’ environment that
predicts the nucleolus in coalition structure for the simple majority game, the present
paper is a contribution to the bargaining literature that looks for noncooperative
foundations for reasonable cooperative solutions to TU cooperative games.
Before an informal presentation of the model, I want to situate the present pa-

per within the related literature. With respect to the network literature, this has
relied in solution concepts where players evaluate prospective networks according to
analytical payoff allocation rules that are static in the sense that they depend only
on the fixed network structure (see for example Jackson and Wolinksky (1996)). As
bargaining and transfers in the process of network formation are observed empirically
(See Bloch and Jackson (2005)), network payoffs should depend on the possibilities
of players forming other networks. The network bargaining literature (See Jackson
(2005)) has addressed that problem by allowing link formation and payoff division
to happen simultaneously. However, the emphasis has been on network formation
and the tension between equilibrium outcomes and efficiency rather than on payoff
division. The reason may be found in the well known difficulty of bargaining games
yielding unique outcomes whenever players can cooperate.
More specifically, some papers address the problem of static network payoffs by

disregarding static payoff allocation rules while allowing non cooperative bargaining
over the total payoffs a network can achieve.1 Bargaining in the form of payoff
and link proposals, occur multilaterally and simultaneously in Slikker and Van de
Noweland (2001). Currarini and Morelli (2000) have instead a sequential model and
still multilateral model. In the present paper bargaining occurs instead sequentially
and bilaterally. Navarro and Perea (2001) use a bilateral sequential model, however,
the latter authors’ goal objective is to implement the Myerson value.
Within the same strand of literature, the model in this paper is closer to Jack-

son and Bloch (2005) as the authors assume to begin with that payoffs are received
individually−in the present paper players would receive their Myerson values if my
transfers are zero. They consider the possibility of different types of binding trans-
fers schemes at the time of link formation in a multilateral simultaneous bargaining
model and find its implications on the efficiency in network outcomes. The difference
with these authors is that "implied implicit transfers" here are only direct and the
bargaining process occurs sequentially and bilaterally.

1The reader may be interested in a related paper by Jackson (April 2005) which addresses the
problem instead axiomatically by proposing payoff allocation rules that account for simultaneous
possibilities of extra link formation.
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More importantly, in neither of the positive models above payoff predictions are
unique.
With respect to the literature that looks for foundations for cooperative solutions,

SN can be implemented with an appropriate smoothed Nash demand game that
contrasts with most foundations as these are based on variations of the Rubinstein
model where players are restricted to use stationary strategies. The reader is referred
to Nieva (February 2006) for relating SN to the specific related bargaining literature
and the literature on strategic transmission as an equilibrium selection device.
In A-M, pairs of players propose permanent bilateral communication links and

evaluate induced communication structures, represented by graphs−sets of links−using
their Myerson (1977) values. The Myerson values are reasonable as more payoff is
assigned to players with more links. Links are formed if the pair agrees. As in bridge,
after the last link has been formed, each of the pairs must have a last chance to form
an additional link. If then every pair rejects, the game ends. This game is of per-
fect information. Hence, it has subgame perfect equilibria in pure strategies. Each
equilibrium has a unique graph formed at the end of play.
Consider the following modification, at each stage of the A-M game, a link, say

ij, "may" form if both players i and j play choice y in the simultaneous link choice
"formation" game. If at least one of them plays a unilateral rejection, n, the link
does not form.
Following any outcome of the link "formation" game a current simultaneous action

game takes place. Actions are interpreted as proposals pairs. Each player proposes a
non negative payoff for player i and for player j. Proposals pairs are feasible if they
add to the sum of the pair Myerson values in the immediate prospective graph, the
one that would form if the link ij forms. Proposals pairs match if they are feasible
and coincide. If the compete graph is the immediate prospective graph then only the
Shapley values that coincide with the associated Myerson values are feasible proposals
pairs.
A link forms and a given transfer scheme is binding for players i and j, if and only

if both choose y and match proposals pairs. Otherwise, the link does not form. With
respect to payoff outcomes, if the immediate prospective graph does not form and the
game ends, payoffs in the last proposal match−the one that led to the formation of the
last graph−are realized. The third player gets her Myerson value in such last graph.
Otherwise stage payoffs are zero unless the complete graph forms, in which case the
Shapley values are realized. Note that whenever a pair of players did not form its
link, the underlying two-player strategic form game has the same action profile set
but play of any action profile is payoff-irrelevant. This is needed for my modification
of the A-M model to fit the model in Nieva (February 2006). Also, in contrast, in the
present paper, the link forms provided both choose y and the pair matches proposals.
Pairs can also engage in preliminary negotiations and enunciate before play payoff-

irrelevant simultaneous negotiation statements represented by a correlated strategy,
"promise-requests", in the link formation game and the current payoff proposal game
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and similar future games for future preliminary negotiators, "future-requests", even
if they don’t have a communication link. I assume that they have a temporary com-
munication technology. To solve the natural equilibrium selection problem in my
payoff-relevant bilateral transfer games which persists even with pre-play communi-
cation (See Rabin (1994)), I use criteria in Nieva (February 2006) to select through
"endogenous O-F Nash effective cooperative negotiation" a joint plan−which consists
of two similar negotiation statements−that is "credible". Informally, any pair bar-
gains cooperatively over payoffs induced by "tenable and reliable" joint plans about
the payoff-relevant game to follow−these joint plans suggest subgameperfect publicly
correlated equilibria. The "disagreement joint plan" suggests, in particular, link re-
jection. A credible joint plan is the one consistent "for the most" with the Nash
Bargaining Rule (NBR), and is defined as an Oldest-Friends (O-F) Joint Plan.
An assumption−the Oldest-Friends focal effect−that in Nieva’s (February 2006)

theory is claimed to be sufficient for his "joint plan bargaining problems" to be well
defined whenever actions sets are finite are not so whenever action sets are infinite−in
the present paper, sets of proposals pairs−in the general case. This assumption is
that only oldest pairs of "successful" preliminary negotiators that formed their link
may influence future play. Whenever the worth of a two-player coalition is zero,
the possibility of open bargaining feasible sets does not disappear−the O-F focal
effect ensures that the simple majority game given in the paper in question does not
have that problem. Hence, I adopt a second natural assumption not to be found in
that paper: pairs suggest to future pairs of players in a way to induce well defined
rational play, specifically, to induce closed feasible sets in bargaining games "whenever
appropriate". Informally, if you want people do what you want, you suggest them to
play well defined games; "you may not want to confuse them".
I then prove by construction that all possible joint plan bargaining problems at

any stage of the multistage game with communication associated to the modified A-M
are well defined and O-F Joint Plans exist at the beginning of the game; these have
been defined in Nieva (February 2006) as Sequentially Nash Credible Joint Plans.
In section two, I solve a three-player simple majority game with A-M and then

I illustrate how the O-F focal effect induces the nucleolus by finding SN using my
modification of the game. In section three, I define O-F Joint Plans. In section
four, notation for graphs is given, Myerson values are described and notation in the
A-M model is defined. In section five, the A-M model is modified by setting up
a multistage-payoff relevant game. Next, endogenous O-F Nash effective coopera-
tive negotiation is assumed at each history of the associated multistage game with
communication game. In section six, existence of SN is proved by constructing re-
cursively well defined joint plan bargaining problems. My predictions are partially
characterized for strictly superadditive games. Conclusions follow.
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2 An Example

Consider the three-player simple majority game with characteristic function:
v(1) = 0, v(2) = 0, v(3) = 0,
v(13) = 1 v(23) = 1 v(12) = 1,
v(123) = 1.
where, for example, v(13) is the total wealth players 1 and 3 can assure if they

collude and cooperate.
Graph gij is the one that only has a link between player i and j, ij. Graph gij+jl

is the one that would result if links jl is added to graph gij for i 6= j 6= l, where
i, j, l ∈ {1, 2, 3}. Graph gN denotes the complete graph where all players are linked.
Also, if I write that some values for player i and j are (x, y), the first (second) value
component refers to player i (j). Myerson values for different graphs are given in the
following table (the first, second third component in the triplet corresponds to player
1,2, and 3 respectively):

One-link Values Two-Link Values Complete Values
g13 (3

6
, 0, 3

6
) g13+32 (1

6
, 1
6
, 4
6
) gN (2

6
, 2
6
, 2
6
)

g23 (0, 3
6
, 3
6
) g12+23 (1

6
, 4
6
, 1
6
)

g12 (3
6
, 3
6
, 0) g21+13 (4

6
, 1
6
, 1
6
)

Note how the player who has relatively more links or friends gets more.
In the rest of the paper, I assume that links 12, 23 and 13 are proposed in that

order.

Claim 1 The A-M solution has three subgame perfect equilibrium outcomes in which
either of the one link graph is the last to form.

Proof. From any two link graph the complete graph follows as the players not linked
get more if they link, 2

6
instead of 1

6
. A one link graph is last to form as any player

in that link would reject a second link as the complete graph would follow next in
which case her payoff would go down from 3

6
to2
6
.

Suppose links 12 and 23 have been rejected. Link 13 would form as players 1
and 3 would expect to get half instead of zero payoffs in case the game would end
after rejection. One stage backwards, player 3 is indifferent between linking or not
with player 2. One more stage backwards, player 2 is indifferent between linking or
not with player 1 if players expect link 23 to form. On the other hand, player 1 is
indifferent between linking or not with 2 if players expect link 23 not to form and
instead link 13 to form. Thus, depending on the decision of the indifferent player,
there are several subgame perfect equilibria outcomes in which either of the one link
graph forms.

Claim 2 In the three-player modified simple majority game, a Sequentially Nash
Credible Joint Plan has the first pair suggesting "half-each" payoffs and future-requesting
joint plans that suggest consecutive rejection of the next two links in the order.

See appendix for proof.
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3 Simultaneous Negotiation Problems

3.1 A Two-Player Negotiation Problem

I consider the problem of two players i and j, the negotiators, when they have the
opportunity to make simultaneous negotiation statements to players i, j and l in
preliminary negotiations, say with a temporary communication technology, about a
payoff-relevant game with finite horizon to follow. Suppose first that past statements
that negotiators i and j may know about at the time they negotiate are not influential.
The payoff-relevant game begins with a simultaneous communication link "forma-

tion" game where the choice sets that negotiators i and j have available are denoted
by the sets Ai = Aj = {y, n}. The communication link is assumed to be permanent.
Such a set Al for player l has a trivial unique payoff-irrelevant choice, "move nothing".
Denote by A = Ai × Aj × Al the associated choice profile set in the payoff-relevant
game Also, the two-player choice profile set for i and j is denoted by Aij. A bilateral
link ij between players i and j forms "only if" both players play y :(note, this is a
necessary condition in contrast to Nieva (February 2006)). Hence n is considered a
unilateral rejection.
Play of a choice a = (ai, aj , al) ∈ A can be identified with an immediate con-

tingency a, the one that occurs right after a is played, or alternatively a current
contingency a in the payoff-relevant game, at which a current simultaneous game a
takes place where the action sets that negotiators i and j have available are denoted
by Bi,a and Bj,a. Such a set Bl,a for player l has as trivial unique payoff-irrelevant
action. Denote by Ba = Bi,a×Bj,a×Bl,a the associated action profile set. Individual
sets are assumed to be the same regardless of a, i.e., Ba = B for all a. The set of
current joint strategies ×B in the payoff-relevant game is the Cartesian product of
Ba for all a, that is,
×B =

Y
a

Ba = B4,

An element of ×B is denoted by ×b and ba, is the a-th component of ×b.
In any immediate contingency (a, b), the one that can be identified with play of

choice a followed by action profile b ∈ B, a future game (a, b) takes place. The set of
joint strategies in this game are denoted by ×Zp/(a,b), a Cartesian product of Zp(a,b)

sets, that is,
×Zp/(a,b) =

Y
p(a,b)

Zp(a,b) (1)

. Each Zp(a,b) stands for the choice or action profile set in any contingency of the
payoff-relevant game that may follow the (a, b) occurrence including immediate con-
tingency (a, b) . Any such a contingency is denoted by p (a, b) . It is assumed that
×Zp/(a,b) only depends on the link ij forming or not; as it will turn out, a link will
form, if and only if both players choose "yes" and play "identical feasible" actions.
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The set of future joint strategies in the payoff-relevant game is

×Z =
Y
(a,b)

Y
p(a,b)

×Zp(a,b) (2)

, or, using Eq. (1),
×Z =

Y
(a,b)

×Zp/(a,b) (3)

, the Cartesian product of sets of joint strategies in all possible future games (a, b) .
Any contingency in any future game (a, b) is defined as a future contingency p of the
payoff-relevant game.
For any (a,×b,×z), where a ∈ A, ×b ∈ ×B and ×z ∈ ×Z, Um (a,×b,×z) denotes

the expected utility payoff outcome for player m = i, j, l if a, ×b and ×z are played
in the payoff-relevant game.
For simplicity and, wlg., I define a correlated strategy on a strategy profile set

T as a function τ from T to the Real interval [0, 1] such that (τ (t))t∈T⊂ ∈ ∆T⊂

is a probability distribution over some finite strategy profile subset T⊂ of T, and
τ (t) = 0 if t /∈ T⊂. The set of correlated strategies on T is denoted by fT . A given
correlated strategy τ may be implemented with a mediator that randomly chooses
a profile t of pure strategies in T⊂ with probability τ (t) . Then the mediator would
recommend each player, say i, j and l, publicly to implement the strategy ti, tj and tl
respectively. If such mediation is possible one has the equivalent of direct unmediated
communication possibilities.
A vector of correlated strategies ϑ on a Cartesian product of action profile sets

that depend on events e ∈ E and denoted by ×T =
Y
e

Te is defined as:

ϑ =
Y
e

ϑe (4)

, where ϑe is a correlated strategy on Te. The interpretation is that if event e ∈ E
occurs, the mediator would implement correlated strategy ϑe, the e-th component of
ϑ. The set of all vectors of correlated strategies on ×T is denoted by f×T .
A negotiation statement for player i µi suggests play in the communication game

corresponding to the payoff-relevant game. Any contingency in the communication
game corresponds to a given contingency in the payoff-relevant game in the sense that
besides past negotiation statements and recommendations by different negotiators
and mediators respectively any such corresponding contingency includes the same
sequence of choices and actions that led to the given contingency in the payoff-relevant
game.
A negotiation statement µi is represented, abusing notation, by three components.

The first component is a correlated strategy on action profile set A in the simulta-
neous link formation game, a link promise-request αi ∈ fA. The second component
is a correlated strategy on action profile sets in current contingencies a, a current
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promise-request βi ∈ f×B. The third component is a correlated strategy on choice or
action profile sets in future contingencies p, a future-request ζ i ∈ f×Z , using Eqs. (2)
and (4). It is implicit that these suggestions are, wlg., the same regardless of specific
recommendations that may have occurred as in the theory proposed in this paper
credibility of negotiation statements will depend on past sequences of choices and
actions and later on even on past negotiation statements but not on specific recom-
mendations. For simplicity in the notation, we thus abstract from recommendations
(See also 4.2.2).
Using Eqs. (3) and (4), it will be useful to express ζi as follows:

ζi =
Y
(a,b)

ζi,p/(a,b) (5)

, where ζi,p/(a,b) ∈ f×Zp/(a,b) .
In particular, if the negotiator announces βi,a

¡
ζi,p
¢
,for the corresponding current

(future) contingency in the communication game to the current (future) contingency
a (p) of the payoff-relevant game, she is requesting player j to obey player i’s mediator
according to βi,a

¡
ζi,p
¢
. She is promising to obey her own mediator according to βi,a¡

ζi,p
¢
. She is requesting player j to obey player i’s mediator according to βi,a

¡
ζi,p
¢
.

The request to player l is trivial in this particular case.
A negotiation statement for player i is thus an element of f = fA × f×B × f×Z

and it is denoted by µi = (αi, βi, ζi) ∈ f.
A negotiation statement for player j is defined analogously and her negotiation

statement µj ∈ f.
To formalize the credibility, reliability and tenability of a negotiation statement

whenever there are two simultaneous negotiators, one needs to deal first with the
problem of conflicting simultaneous negotiation statements. To set up this problem
precisely, I will define first a tenable and reliable statement for a player when she is
the sole negotiator.
Let player i be the sole negotiator with negotiation statement µi = (αi, βi, ζi)

given player j0s statement µj =
¡
αj, βj, ζj

¢
, where the latter is to be regarded as

noise. I assume in this section that there exists a well defined non empty tenability
correspondence Q : f →→ f×Z , where Q (µi) represents the set of all vectors of
correlated strategies that could be rationally implemented by the players in future
contingencies of the communication game pc−that correspond to future contingencies
p−following the negotiator’s statement if they would believe negotiation statement
µi. A negotiation statement µi is future tenable iff ζi ∈ Q (µi) . One writes then
µi ∈ f ⊂ f.
Let µi = (αi, βi, ζi) ∈ f and, wlg., noise µj =

¡
αj, βj, ζj

¢
be given. If a0 ∈

A was played following µi in the communication game, consider the following a0-

concatenated2 strategic form game
³
Bi ×Bj, π

µi//a
0

ij

´
, where payoffs are given by

2The term concatenated is taken from Gibbons (1992) that uses the Nash equilibria of a one shot
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π
µi/a

0
ij (bi, bj) =

"X
z

Ui (.) Pr [Ui (.)] ,
X
z

Uj (.) Pr [Uj (.)]

#
(6)

if (bi, bj) is played, Um (.) = Ui (a
0,×b,×z), the a0-th component of ×b is such

that ba0 = (bi, bj, bl) and Pr [Um (.)] is the probability that Um (.) results given that
contingency (a0, bi,a0) occurred and play is consistent with ζi thereafter, for m = i, j.
Note that πµi/a

0
l (bi, bj), the associated payoff to player l can be computed analo-

gously and πµi/a
0
(bi, bj) would then refer to a payoff triplet for all players. Recall, bl

is trivial.
Let µi and the a0-concatenated game be given and hence players are expected

to obey future-request ζ i. A request in β00i,a0 by player i is tenable if it is optimal
for player j to obey player i’s mediator given that player i is believed to fulfill his
promise to obey the mediator. A promise in β00i,a0 by player i is reliable if it is optimal
for player i to obey the mediator given that player j is expected to obey the mediator.
Equivalently, I will say that a promise-request β00ia0 by player i is reliable and tenable

given µi if β
00
ia0 is a publicly correlated equilibrium of

³
Bi ×Bj, π

µi/a
0

ij

´
. A statement

µi = (αi, βi, ζi) ∈ f is current reliable and tenable iff any promise-request βi,a0 is
reliable and tenable for all a0 ∈ A given µi.
Given µi = (αi, βi, ζi) ∈ f, αi is tenable and reliable iff αi is a publicly correlated

equilibrium of
¡
Ai ×Aj, π

µi
ij

¢
, where payoffs for

¡
a0i, a

0
j

¢ ∈ Ai ×Aj are

π
µi
ij

¡
a0i, a

0
j

¢
=
X
b

βi,a0 (b)π
µi/a

0
ij (bi, bj) (7)

, the expected payoffs for players i and j if current contingency a0 occurs and play is
consistent with βi and ζ i thereafter. A statement µi = (αi, βi, ζi) ∈ f is link reliable
and tenable iff αi is reliable and tenable.
A statement µi is reliable and tenable iff it is future tenable, link and current

reliable and tenable. Such a statement will be said to belong to ef.
As for the Aumann (1990) critique, one should consider only µi = (αi, βi, ζ i) ∈ef where any βi,a0 implies putting positive probability only on self-signaling Nash

equilibria−that is player i wants to suggest any Nash equilibrium if and only if it is
true (See Farrel (1993) for a detailed explanation of the term)−of

³
Bi ×Bj, π

µi/a
0

ij

´
for all a0 ∈ A. In my modification of A-M all Nash equilibria turn out to be self-
signalling.
Analogously, one defines reliability and tenability of µj for player j whenever she

is the sole negotiator and has her own mediator. Note that µi, µj ∈ f, so µi is tenable
and reliable whenever player i is the sole negotiator if and only if µj is tenable and
reliable whenever player j is the sole negotiator.

concatenated strategic form game (see figure 2.3.4) to find the subgame perfect equilibria of the two
period repeated game in figure 2.3.3.
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In case neither of the negotiation statements by players i and j are noise, the
tenability of one player’s statement−link, current and future tenability−depends on
the statement of the other one. If one has conflicting requests, who would players
obey if they are willing to obey either of the negotiators, or equivalently, if both
negotiators’ statements are tenable whenever they are the sole negotiators? The
subsections that follow address this problem.
A simultaneous negotiation problem for players i and j as just described is denoted

by Φij = (A,B,×Z,U,Q)ij.

3.2 O-F and Nash Coherent Joint Plans

3.2.1 Preliminary Definitions

We define for any two vectors x and y in R2
x ≥ y (x is as least as good as y) iff xi ≥ yi and xj ≥ yj, and
x > y (x is strictly better than y) iff xi > yi and xj > yj, i 6= j.
A bargaining problem for agents i and j consists of a pair (F,ψ) , where F is a

closed convex subset of R2, ψ =
¡
ψi, ψj

¢
is a vector in R2 and the set of individually

rational feasible allocations ( IRF set)
F ∩ ©(xi, xj) |xi ≥ ψi and xj ≥ ψj or xij ≥ ψij

ª
is non-empty and bounded. Here F represents the set of feasible payoff allocations

or the feasible set, and ψ represents the disagreement payoff allocation or the outside
options.
A bargaining game (F,ψ) is essential iff there exists at least one allocation x in

F that is strictly better for agents than the disagreement allocation ψ, i.e., x > ψ.
A point x in F is strongly (Pareto) efficient iff there is no other point y in F such

that y ≥ x and xw > yw for at least one player w ∈ {i, j}. A point x in F is weakly
(Pareto) efficient iff there is no other point y in F such that y > x. The feasible
frontier is the set of feasible payoffs allocations that are strongly Pareto efficient in
F . The IRF frontier is the set of points in F that are strongly Pareto efficient in
the IRF set.

3.2.2 A Joint Plan Bargaining Problem

Before I develop a notion of credibility whenever negotiation statements are simul-
taneous by adding "Nash or O-F Nash effective cooperative negotiation", necessary
conditions for simultaneous statements to be reliable and tenable in this context have
to be given for these eventually to be credible.
Negotiation statements for both players are similar if µi = µj. A joint plan is

a negotiation statement µ ∈ f such that there exists similar statements for players
1 and 2 and µ1 = µ2 = µ. Abusing notation, µ will also refer to (µ1, µ2), where it
may seldom be the case that µ1 6= µ2, in which case there will be no confusion as the
term joint plan will not be implicit! Such a joint plan µ is tenable and reliable iff
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µ is tenable and reliable for player i or j whenever any of them is the sole negotiator.
Finally, only joint plans can be tenable and reliable in this context.
If one would not restrict players to enunciate only tenable and reliable joint plans

then tenable and reliable statements that happen to coincide could not be focal be-
cause it can be shown (at the reader’s request) that there are both Nash equilibria
of the communication game associated, say, to a payoff-relevant simultaneous game
where tenable and reliable individual statements conflict and ones where such state-
ments don’t conflict. Outside players or the two players themselves would ask, does
the pair mean what it says? Is the pair really agreeing? In a different way, how
could the pair be agreeing if there is the possibility that the pair could enunciate
such conflicting statements. For a pair of tenable and reliable statements to be focal
this restriction is necessary.
Next, a joint plan bargaining problem (F,ψ,Φij) for players i and j derived from

a simultaneous negotiation problem Φij = (A,B,×Z,U,Q) is a bargaining problem
(F, ψ) with two characteristics:

1. For each payoff pair (xi, xj) ∈ F, there exists an associated tenable and reliable
joint plan

µ = (α, β, ζ) ∈ ef such that (xi, xj) =X
a

α (a)πµij (ai, aj), where π
µ
ij (ai, aj) is

as defined in Eq. (7).

2. The disagreement payoff allocation is ψ = (xi, xj) = πbµij (bai,baj) the payoff as-
sociated to the disagreement joint plan bµ = ³bαba, bβ,bζ´ ∈ ef that is tenable and
reliable and derived as follows: Let the disagreement future-request for now be
given by bζ (See 5.2.2 for derivation). The disagreement current promise-requestbβ is such that bβa0 for all a0ij 6= (y, y) , corresponds to a unique Nash equilibrium
strategy profile of

³
Bi ×Bj, π

bµ/a0
ij

´
; wlg., bβa0 . if a0ij = (y, y) is arbitrary fixed

to any value. Finally, wlg., bαba is a degenerate correlated strategy that puts
probability one on unilateral rejections, that is bαba (ba) = 1, where baij = (n, n).

Denote the ba-disagreement concatenated strategic form game without communi-
cation−in the sense that players think that the communication link won’t form−by³
Bi ×Bj, π

bµ/ba
ij

´
. Note that play suggested by this joint plan bµ is self-enforcing in

part because (n, n) is always a Nash equilibrium of any
¡
Ai ×Aj, π

µi
ij

¢
.

Definition 3 A tenable and reliable joint plan µ = (α, β, ζ) such that its link promise-
request puts positive probability on link formation, that is, α (a) > 0 where aij =
(y, y) ,and its current promise-request following a suggests with positive probability
"identical and feasible" actions is called successful otherwise it is unsuccessful and
one says preliminary negotiations or negotiators are successful or otherwise unsuccessful.

12



If α (a) = 1, and current promise-request following a only suggests randomizations
among "identical and feasible" actions, it is fully successful.

Note that the associated communication link can form only if aij = (y, y) is played;
recall that the link forms if in addition "identical and feasible" actions are played.
Also bµ is unsuccessful.
Definition 4 The technology of communication implicit in definition 3 is character-
ized as apparent and contingent in a sense explained in 3.2.4, remark 5.

Any such plan bargaining game will be denoted by (F, ψ,Φij) .

3.2.3 Nash Coherent Joint Plans

Define a solution of the joint plan bargaining problem (F,ψ,Φij) to be a payoff pair
(xi, xj) ∈ F and an associated tenable and reliable joint plan µ ∈ ef.
Players i and j can carry out negotiations endogenously, Nash effectively and

cooperatively if given the simultaneous negotiation problem Φij, they can construct
and solve (F,ψ,Φij) as follows:

1. The solution is derived from the non transferable utility (NTU) Nash Bargaining
Rule (NBR) applied to the associated (F,ψ) . The NTU NBR solution solves:
argmaxx∈F (h), x≥ψ (xi − ψi)

¡
xj − ψj

¢
.

2. If the IRF set is a singleton, i.e., @ (xi, xj) ∈ IRF s.t. x > ψ and the disagree-
ment point is identical to any individually rational feasible payoff associated to
any fully successful tenable and reliable joint plan, a last-mover advantage is
assumed in the sense that the solution is required to consist of a fully successful
tenable and reliable joint plan µ ∈ ef and hence the link would form if µ is
followed through.

There is endogenous cooperation in the sense that failed cooperation is possible and
meaningful as both successful and unsuccessful preliminary negotiations are possible
Nash bargaining outcomes.3

A joint plan µ is Nash Coherent and hence a credible joint plan if it is the solution
component of a joint plan bargaining problem (F,Φij, ψ) where players can negotiate
Nash effectively and cooperatively4. Whenever I want to refer to players i and j’s set
of Nash Coherent Joint Plans in Φij given ψ, I write η (Φij, ψ) ⊂ ef.

3In standard bargaining problems disagreement or failed cooperation is not meaningful in the
sense that in general it does not occur and if it "would occur" only the disagreement payoffs pair
is obtained. In this paper disagreement is in contrast meaningful as different payoffs for the third
player may occur after disagreement and an opportunity to form a permanent link has been not
used.

4One can think of pairs having possibilities to set up a smooth Nash demand game that yields
in the limint as unique equilibrium outcome the NTU NBR payoff. Then the unique Rabin’s (1994)
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3.2.4 Oldest-Friends Joint Plans

I will be interested in developing credibility criteria for simultaneous statements as-
suming instead that past joint plans by successful negotiators may influence a nego-
tiation problem in a future contingency of the communication game pc corresponding
to p.
So let pairs of players, out of a total of three, take turns to conduct preliminary

negotiations and then play a respective payoff-relevant game according to a finite rule
of order in stages k of a corresponding multistage game with communication, where
k = 1, ...K + 1. Also, let statements enunciated by different past pairs that were
involved in preliminary negotiations be denoted by µk

−
, i.e., µk

−
= (µ1, ..., µk−1),

where µt =
¡
µtj, µ

t
l

¢
with µtj = µtl as for restriction on 3.2.2, for t = 1, ...k − 1, k > 1

and i 6= j 6= l. To allow for such influence, it will be useful to think of contingencies
in the communication game pc having not just a past sequence of choices ak

−
and

actions bk
−
but, in addition, a sequence of joint plans µk

−
. The current negotiation

problem at contingency pc at stage k−history (defined in 4.2.2) of the corresponding
multistage game with communication is then denoted by Φij,µk− and the tenability
correspondence by Qµk− .
To formulate these criteria, I make the following assumption:
Oldest-Friends Focal Effect: Let one or both players in the pair of negotiators

be indifferent between joint plans with payoffs in the IRF set of a joint plan bargain-
ing problem

³
F k, ψk,Φil,µk−

´
. If k > 1, the solution to

³
F k, ψk,Φil,µk−

´
involves the

payoff in the IRF that is future-requested in the tenable and reliable joint plan by
the oldest pair of successful negotiators that formed their link−according to the rule
of order−among the past preliminary negotiators that included one of the indifferent
players. Otherwise η

³
Φil,µk− , ψ

k
´
is used.

The credible joint plans that are predicted under this assumption will be de-
fined as Oldest-Friends Joint Plans (O-F Joint Plans) and its set is denoted by

ηf
³
Φij,µk− , ψ

k
´
. One then says that pairs can carry out negotiations endogenously,

O-F Nash effectively and cooperatively. For existence purposes, specially when action
sets are infinite, note that the outside options depend on past sequences of choices
and actions in the multistage game with communication.

Remark 5 It is said that there is an apparent and contingent technology of commu-
nication because even though a link may form if a successful, reliable and tenable joint

negotiated equilibrium in a game with preplay communication where there is such a payoff-relevant
bargaining game would be associated to the tenable and reliable joint plan that yields the NTU
NBR. Alternatively and without any cooperative transformation (See Myerson (1991)) of the orig-
inal payoff-relevant game, one could assume that pairs focus in the Rabin’s negotiated equilibrium
equilibrium that yields the NBR prediction. Without any of these assumptions, unique payoff pre-
dictions are only possible if negotiations are lengthy and one has pure coordination payoff relevant
games.
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plan is enunciated, link formation does not occur in equilibrium of the communica-
tion game unless such joint plan is in addition Nash Coherent or O-F and it is not
the case that both choose a unilateral rejection or no "identical and feasible" action
suggested with positive probability is played.

Remark 6 Disagreement joint plans enunciated by older pairs of negotiators are
trivially followed as any bµ = ³bαba, bβ,bζ´ future-requests in bζ optimal future play in
case of disagreement (See Remark 8).

Remark 7 If a pair can carry out negotiations endogenously, either Nash or O-
F Nash effectively and cooperatively, contingencies of the communication game, pc,
include only tenable and reliable joint plans, that is, µk

−
consists of µt =

¡
µtj, µ

t
l

¢
,

such that µtj = µtl ∈ eft for all t = 1, ...k−1, k > 1. Hence, abusing notation, µt could
be regarded as a tenable and reliable joint plan with no risk of confusion whatsoever
from now on, i.e., µt = µtj = µtl

Remark 8 It is implicit in Remark 6 that if any tenable and reliable joint plan that is
not part of a solution to an older joint plan bargaining problem is enunciated, this joint
plan still may5 influence future play in the relevant subgames of the communication
game6.

The situation in last Remark 8 is analogous to the case where say only the male
enunciates a negotiation statement a day before the battle of the sexes game is played.
Suggesting both going to the Ballet concert influences play in the subgame that follows
this statement where the battle of the sexes game is played (because it suggests a
Nash equilibrium in that subgame) in the second day. However, it is not even a Nash
equilibrium in the whole game that begins the day before. when the male statement
is enunciated, because "its not the best the male can say" (See Myerson (1991), pp.
110-111).

O-F Joint Plans Formal Definition Let i, j, l ∈ {1, 2, 3} , and i 6= j 6= l. Suppose
players i and j had successful preliminary negotiations, link ij formed and have
enunciated, as part of their future-request, the tenable and reliable joint plan γ ∈ efil

and only then j and l successfully negotiated, formed link jl and future-requested
δ ∈ efil where it maybe that γ 6= δ. Schematically, as the bargaining problem for i
and l follows, one has the following physical apparent and contingent order of link
formation:

5For that to happen the plan has to be succesful, the link has to form and the indiference cases
have to occur.

6These are "credible neologisms" in the sense of Farrel (1993). That is they would be understood
and would signal bilateral cooperation and believed if the pair of negotiators would enunciate such
tenable and reliable joint plans. However, these are not "the best joint plan" the pair can enunciate
because these are not associated to the NBR.
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(i, j) (j, l) (i, l) .
For all essential bargaining problems for i and l, set
ηf
³
Φil,µk− , ψ

k
´
= η

³
Φil,µk− , ψ

k
´
.

Otherwise:
Case 1. If @ (xi, xl) ∈ IRF k s.t. xki > ψk

i , however ∃ (xi, xl) ∈ IRF k s.t. xkl > ψl,

set ηf
³
Φil,µk− , ψ

k
´
= γ;

Case 2. If @ (xi, xl) ∈ IRF k s.t. xkl > ψk
l , however ∃ (xi, xl) ∈ IRF k s.t. xki > ψk

i

set ηf
³
Φil,µk− , ψ

k
´
= δ;

graphically, in the plane (xi, xl) , the IRF k set for
³
F k, ψk,Φil,µk−

´
is a straight

closed vertical and horizontal closed segment respectively.
Case 3. If @ (xi, xl) ∈ IRF k s.t. xk > ψk

set ηf
³
Φil,µk

− , ψk
´
= γ.

In words, there are three cases in which the assumption turns out to imply a not
essential

³
F k, ψk,Φil,µk

−
´
to be "effectively" a singleton. As oldest friends’ tenable

and reliable statements are the only ones that are credibly understood by their literal
meanings, the only possible payoff (xi, xl) ∈ IRF k and associated joint plan to be
bargained about by players i and l is the one that confirms the joint plan by the
oldest successful pair of friends that has one of its member, i or l, indifferent between
any payoff in IRF k.
In addition, if one only has pair (i, j) enunciating as part of its future-request

γ ∈ efil and thus one has schematically,
(i, j) (i, l) ,
For all essential bargaining problems for i and l, set
ηf
³
Φil,µk− , ψ

k
´
= η

³
Φil,µk− , ψ

k
´
.

Otherwise
Case 1. @

¡
xki , x

k
l

¢ ∈ IRF k s.t. xki > ψk
i , however ∃ (xi, xl) ∈ IRF k s.t. . xkl > ψk

l

set ηf
³
Φil,µk− , ψ

k
´
= γ;

Case 2. @ (xi, xl) ∈ IRF k s.t. xk > ψk

set ηf
³
Φil,µk− , ψ

k
´
= γ.

If there are no past successful negotiators, that is, no apparent and contingent
links have formed,

ηf
³
Φil,µk− , ψ

k
´
= η

³
Φil,µk− , ψ

k
´
.

In contrast to the case with a last-mover advantage, in all non essential bargaining
games in this bilateral sequential negotiation and bargaining environment an O-F
Joint Plan may be the disagreement one, in which case, unsuccessful preliminary
negotiations occurs and the link does not form.
It is clear that if the tenability correspondence is non-empty and the joint plan

bargaining game is well defined then, depending on the assumption, either Nash
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Coherent or O-F Joint Plans exist in any corresponding contingency pc (corresponding
to p should be understood) of the communication game. In what follows, I develop a
theory of rational behavior in corresponding future contingencies in the latter game
and formalize the idea of a history whenever the underlying payoff-relevant game is
my modification of the A-M game. This theory will be relevant for the construction
of the tenability correspondence that has been assumed so far as given, in particular,
the disagreement future-request bζ. More importantly, it will make it possible to define
Sequentially Nash Credible Joint Plans.

4 Preliminary Definitions

4.1 Notation for Graphs

Denote by N = {1, 2, 3} the set of players. A graph g is a set of unordered pairs
of distinct agents belonging to N. Each pair is represented by a link (non-directed
segment) between the two players (nodes). Thus, g stands also for the set of links for
graph g.
We denote by ij ,or equivalently ji, the link that joins agents i and j, where

i 6= j 6= l, i, j, l ∈ N. If ij ∈ g, we say that i and j are directly linked in graph g. Iff
ij, jl ∈ g, we say that i and l are indirectly linked by j.
We use often ij as a superscript for referring to the graph g that contains only link

ij, say gij. In turn, the superscript ijl would refer to the graph where only player j is
directly linked to two agents. Later on, we will distinguish among different orderings
of ijl representing the order in which links have been formed.
The graph where every pair is directly linked, or linked from now on, is called the

complete graph, and is denoted by gN . The empty graph where no pair is linked is
represented by g∅.The set G of all possible graphs on N is {g : g ⊆ gN}. We use,
gθ+ij when referring to the graph that results to adding link ij to graph gθ, where
θ ∈ {∅, il, ilj} i 6= j 6= l, i, j, l ∈ {1, 2, 3}.
Let B ⊆ N, g ⊆ G, i ∈ B, j ∈ B be given. Agents i and j are connected in B

by g iff there is a path in g from i to j and stays within B. That is, iff i and j are
directly or indirectly linked under some g0, where g0 is such that g0 ⊆ g and g0 ⊆ G0,
and G0 is the set of all graphs of B.

4.2 Payoffs in Communication Structures as Graphs

Let a cooperative game v be given withN as the player set. GivenN , let CL be the set
of all coalitions (non-empty subsets) of N , CL = {B ⊆ N,B 6= ∅}. A characteristic
function v : CL → R associates the maximum wealth or transferable utility (TU)
payoff achievable if the coalition B ∈ CL forms and coordinates effectively.
There are intermediate cases between N-player games that are played coopera-

tively and non-cooperatively. For predicting payoff outcomes in these cases, Myerson
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(1977) assumes that effective coordination can occur if pairs of players establish at
least bilateral agreements or friendship relationships that are represented by links of
communication. For example a link between two agents lets them get all the benefits
of effective coordination. In this context a set of links is denoted equivalently as a
cooperation, communication or cooperation structure.
Let a coalitional game v be given with N as player set and g as the cooperation

structure. For each player i and given the graph g and the characteristic function v,
the Myerson value for player i is denoted by φgi = φgi (v).
Define B|g as the unique partition of B in which groups of players are together

iff they are connected in B by g. Loosely speaking, it is the collection of smaller
coalitions, or connected components of B|g, into which B would break up, if players
could only coordinate along the links in g.
I founded this practical method by Myerson (1977) to be useful to give intuition

and to derive the Myerson values: Given v and g, define a coalitional game vg by
vg(S) :=

X
vg(Sj),

where the sum ranges over the connected components Sg
j of S|g. Then

φgi (v) = φi(v
g)

where φi denotes the ordinary Shapley (1953) value for player i.
In words the Myerson value is the Shapley value of an auxiliary cooperative game

where any given coalition gets all its worth provided all players in that coalition are
at least indirectly linked. Otherwise the payoffs in that coalition are the sum of the
worth of its subcoalitions that in contrast get all their worth (including possible trivial
singleton coalitions).
I normalize three-player cooperative games by focusing in characteristic functions

v : CL→ [0, d] with
v (1) = 0, v (2) = 0, v (3) = 0, a
v (13) = a, v (23) = b, v (12) = c, v (123) = d,
where d =. These are defined as normalized cooperative games.

4.3 Adding Useful Notation in the A-M Model

Consider gN , where N = 3, i.e., g = {(1, 2) , (2, 3) , (1, 3)}. The rule of order according
to which pairs of players propose links in A-M can be represented by the function
ρ∅ : g

3 → {1, 2, 3}. Wlg., I will assume a fixed ρ∅, where
ρ∅(12) = 1 ρ∅(23) = 2 ρ∅(13) = 3.
The interpretation is that pair (1, 2) in the initial history as of stage 1 discusses

the first link 12 in the game. If 12 is rejected, 23 follows, and if 23 is in turn rejected,
13 follows. If 13 is rejected the game ends
If a first link ij has just been accepted I will write that a first round of play has

been completed. Suppose that is the case. The rule of order for the left out pairs to
propose a second link in the game,

ρij : g
3\gij → {1, 2}, for i, j ∈ {1, 2, 3}, i 6= j,
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is derived from ρ∅ and one has:
ρ12(23) = 1, ρ12(13) = 2,
ρ23(13) = 1, ρ23(12) = 2 or
ρ13(12) = 1, ρ13(23) = 2
depending on either link 12, 23 or 13 being the first to form respectively. The

interpretation is analogous as before. In particular, if all left out pairs reject the game
ends.
If two links have just been accepted, and thus a second round of play has been

completed, the pair not linked yet is next. If the left out pair rejects, the game ends.
If the third round of play has been completed (and thus, three links have formed) the
game ends.
Given ρ∅, an A-M-history is a sequence of links acceptances and rejections. If the

game ends, then an A-M final history is reached. Except for the latter, each history
has an immediate prospective graph−the one that would result if the associated link
being proposed forms. The immediate prospective graph that may result after link
decisions have been made is defined as the next prospective graph. Unless otherwise
stated let, from now on, θ ∈ {∅, il, ilj} i 6= j 6= l, i, j, l ∈ {1, 2, 3}. Also, let k be the
stage of the game one is at and ρ∅ be given. An immediate prospective graph will be
denoted by gθ+ij.
I assume that the order of ijl matters. Non final histories are then denoted

uniquely by hkAM
¡
gθ+ij

¢
. For example, only h1AM (g

∅+12) stands for the initial history.
If link 12 is rejected, the next history is denoted uniquely by h2AM (g

∅+23) and so on.
History h5AM (g

13+32) , or equivalently h5AM (g
132) , corresponds to link 13 being the

first link to form, following ρ13, link 12 being rejected so that link 32 is next to be
discussed in stage 5. Analogously, h3AM (g

123+13) has third link 13 next to be proposed
in stage 3 after link 12 formed in stage 1 and link 23 was accepted in stage 2.
With respect to payoff outcomes, let gθ be the last graph to form at the end of

the game. Then each player gets her Myerson value in graph gθ. In particular, if in
history hkAM

¡
gilj+ij

¢
link ij is accepted then players get their Myerson value in the

complete graph. Otherwise payoffs are zero.

5 A Modification of the A-M Game

I want to add endogenous, O-F Nash effective cooperative negotiation, as defined in
section 3.2.4, each time pairs of players have preliminary negotiations in my modifi-
cation of the A-M model. Next I derive the tenability correspondence. Hence, I first
describe my modification.

5.1 The Abstract Model

I will consider aK+1-multistage game with payoff-relevant observed actions M based
in Fudemberg and Tirole (1991), however with substages.
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5.1.1 Choice and Actions Sets and Histories

At the beginning of the first stage 1, all players m = 1, 2, 3 select simultaneously
from choice sets Am,h1 , where Am,h1 for the player m that is not associated to the
link being proposed has a trivial unique payoff-irrelevant action "move nothing". For
the other two players Am,h1 = {y, n} . A permanent communication link may forms,
if both latter players play y. I let the initial history be h1 = ∅ at the start of play.
At the end of the first substage, all players observe the substage 1’s choice profile.
Let a1 = (a11, a

1
2, a

1
3) be the first substage’s choice profile. At the beginning of the

second substage players know history h1.2 that can be identified with a1 given that
h1 is trivial. In the second substage, regardless of a1, all players m = 1, 2, 3 choose
simultaneously from the same action sets, that is, Bm,h1.2 = Bm,h1 , m = 1, 2, 3, where
Bm,h1 for the player m that is not associated to the link being proposed has a trivial
unique payoff-irrelevant action. At the end of the second substage, all players observe
the second substage’s action. Let b1 = (b11, b

1
2, b

1
3) be the second substage action profile.

At the beginning of stage 2 players know history h2 that can be identified with (a1, b1)
or, equivalently, (h1.2, b1).
In general, choices and actions for player m will depend on previous choices and

actions, so I let Am,h2 denote the action set for player m at history h2 and Bm,h2

denote the action set for player m at history h2.2. By iteration, histories in general
are

hk =
¡
a1, b1, a2, b2, ..., ak−1, bk−1

¢
and
hk.2 =

¡
a1, b1, a2, b2, ..., ak−1, bk−1, ak

¢
and Bm,hk is the action set for player m at stage k when the history is hk.2 and

Am,hk is the action set for player m at stage k when the history is hk. I let K + 1 be
the total number of stages in the game. By definition each hK+1 describes an entire
sequence of choices and actions from the start of the game on. I denote HK+1 as the
set of all terminal histories that can be identified with the set of possible outcomes
when the game is played.
Note that this is a model where pairs of players have non trivial stage action

sets whenever they follow−depending on a link being formed or not and according
to the rule of order−to propose a link. The third player has a trivial unique payoff-
irrelevant choice or action. If the last pair in the rule of order played the associated
stage games all players move nothing there after, that is choice and action profile
sets are singletons there after. Let K + 1 be the total number of stages in the game.
By definition each hK+1 describes an entire sequence of actions from the start of the
game on. I denote HK+1 as the set of all terminal histories that can be identified
with the set of possible outcomes when the game is played.
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5.1.2 Pure Strategies and Payoff Outcomes

A pure strategy for player i is a contingent plan on how to play in the first and second
substage at stage k of the game for respective possible histories hk and hk.2. I let Hk

or Hk.2 denote the set of all substage k-histories, and
Ai,Hk = ∪hk∈HkAi,hk and
Bi,Hk.2 = ∪hk.2∈Hk.2Bi,hk.2.
A pure strategy for player i is a sequence of maps {ski }Kk=1, where each ski maps

Hk∪Hk.2 to the set of player i’s feasible choices Ai,Hk and actions Bi,Hk.2 (i.e., satisfies
ski (h

k) ∈ Ai,hk and ski (h
k.2) ∈ Bi,hk.2 for all hk ∈ Hk and hk.2 ∈ Hk.2). The set of all

pure strategies for player i in the payoff-relevant multistage game is denoted by Si.
A sequence of choices and actions for a profile for such strategies s ∈ S is called

the path of the strategy profile, where S is the set of all strategy profiles: the first
substage choices are a1 = s1 (h1) . Second substage actions are b1 = s1 (a1) . The first
substage choices in stage 2 are a2 = s2 (a1, b1). The second substage actions in stage
2 are b2 = s2 (a1, b1, a2) and so on. Since the terminal histories represent an entire
sequence of play or path associated with a given strategy profile, one can represent
each players’ corresponding overall’s payoff as a function ui : H

K+1 → R. Abusing
notation, I denote the payoff vector to profile s ∈ S as u(s) = u

¡
hK+1

¢
, as one can

assign an outcome in HK+1 to each strategy profile s ∈ S.

5.1.3 Nash Equilibrium

A pure-strategy Nash equilibrium in this context is a strategy profile s such that no
player i can do better with a different strategy or, using standard Fudemberg and
Tirole’s (1991) notation, ui(si, s−i) ≥ ui(s

0
i, s−i) for all s

0
i ∈ Si.

5.1.4 Subgameperfect Equilibrium

Since all players know the history hk or hk.2, one can view respectively the game from
stage k on with history hk or hk.2 as an extensive form game in its own and denote it
by M

¡
hk
¢
or M

¡
hk.2

¢
. To define the payoff functions in this game, note that if the

sequence of choices and actions or path in stages k through K are ak or bk through
bK , the final history will be hK+1 = (hk, ak, bk, ..., bK) or hK+1 = (hk.2, bk, ..., bK). The
payoffs for player i will be ui(hK+1).
Strategies in M

¡
hk
¢
or M

¡
hk.2

¢
respectively are defined in a way where the

only histories one needs consider are those consistent with hk or hk.2. Precisely, any
strategy profile s of the whole game induces a strategy profile s|hk on any M

¡
hk
¢

or s|hk.2 on any M
¡
hk.2

¢
. For each i, si|hk or si|hk.2 is the restriction of si to the

histories consistent with hk or hk.2. One denotes the restriction profile set by S|hk or
S|hk.2.
Let histories hK+1 be such that hK+1 = (hk, ak, bk, ..., bK) or hK+1 = (hk.2, bk, ..., bK)

and the associated subset of HK+1 be denoted by HK+1(hk) or HK+1(hk.2). As one
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can assign respectively an outcome in HK+1(hk) or HK+1(hk.2) to each restriction
profile s|hk or s|hk.2 where s ∈ S, the overall payoff vector to the restriction s|hkor
s|hk.2, will be denoted abusing notation by u(s|hk) or u(s|hk.2). Thus, one can speak
of Nash equilibria of M

¡
hk
¢
or M

¡
hk.2

¢
.

It will be useful to express S|hk as a set of points rather than a set of mappings.
Hence, consider the following Cartesian product derived recursively for all hk:

S|hk = Ahk ×B4
hk ×

Y
(ak,bk)

S| £hk, ak, bk¤ (8)

. A strategy profile s of a multi-stage payoff-relevant game with observed actionsM is
a subgame-perfect equilibrium if, for every hk and hk.2, the restriction s|hk and s|hk.2
to M

¡
hk
¢
and M

¡
hk.2

¢
respectively is a Nash equilibrium of M

¡
hk
¢
and M

¡
hk.2

¢
.

5.1.5 Interpretation

In history h1, I define a next prospective graph−as defined in the A-M model−stage
outcome function that depends on an element of the link choice profile set Ah1 and
the initial immediate prospective graph g∅+12 as follows: Link 12 may form if a1 is
such that a112 = (y, y) and so would graph g∅+12. The next prospective graph would
be g12+23 following the A-M rule of order. If a12 6= (y, y), link 12 is rejected and
the next pair in the rule of order ρ∅ follows, that is link 23 is proposed. The next
prospective graph in this case is g∅+23.
After any outcome in the first substage the second substage action set for agent

m = 1, 2 consist of payoff proposals pairs and it is the same. Formally,
Bm,h1.2 = Bm,h1 = {bm = (b(1), b(2)) |b(1) ≥ 0, b(2) ≥ 0} ,
i.e., player m, proposes a payoff for player 1, b(1), and one for player 2, b(2); both

are restricted to be non-negative.
For player 3, the choice set B3,h1.2 = B3,h1 is the singleton "do nothing".
Player m’s payoff pair proposal is feasible, iff
bm(1) + bm(2) = φg

∅+12

1 + φg
∅+12

2 , m = 1, 2.
In words, a proposals pair by player m is feasible, iff its components add up to

the sum of both agents’ (1 and 2) Myerson values in the immediate prospective graph
g∅+12.
Proposals pairs coincide iff b1 = b2. Proposals pairs match for player’s 1 and 2,

iff their proposals pairs are feasible and coincide. A proposals pair by player m is
called a unilateral proposals pair rejection if bm is not feasible. I define b to be a
proposal match iff proposals pairs for player’s i and j match. Otherwise b is not a
proposal match. A link forms, if and only if after a112 = (y, y), proposal pairs match.
Otherwise the link does not form. For a given transfer scheme to be binding players
i and j have to match proposals pairs.
It will be useful to index a history in the payoff-relevant multistage game by its im-

mediate prospective graph. The initial history is then arbitrarily indexed as h1
g∅+12(∅).
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A generic history in any stage k that had the sequence ..
¡
a1, b1, .., a(k−1), b(k−1)

¢
and

led to immediate prospective graph gθ+ij is denoted by hk
gθ+ij(a1,b1,..,a(k−1),b(k−1))

. When-

ever much specificity is not necessary, one writes hk
gθ+ij(a(k−1),β(k−1))

, hkgθ+ij(.) or even

hk(.).
In general, the stage k choice pair set in history hk

gθ+ij(.)
for player m = i, j is

equal Am,hk = {y, n}. Such a set Al for player l has a trivial unique payoff-irrelevant
choice, "move nothing".
The payoff action profile set for players i, j and l is denoted by
Bhk

gθ+ij(.)
=
n
Bm,hk

gθ+ij(.)

o
m=i,j,l

where Bl,hk
gθ+ij(.)

is trivial and Bm,hk
gθ+ij(.)

= Bm,h1 for m = i, j.

But for gθ+ij = gN , player m’s proposals pair is feasible, iff
bm(i) + bm(j) = φg

θ+ij

i + φg
θ+ij

j ,
for m = i, j.
If gθ+ij = gN , I define there to be only one feasible proposals pair, that associated

to the Myerson values in the complete graph. This is given by
bm = (b(i), b(j)) =

³
φg

N

i , φg
N

j

´
, for m = i, j.

As before, b is a proposal match iff proposals pairs for player’s i and j match.
Sometimes, I refer to a proposal match and its components by simply b and (b(i), b(j))
instead of b and
[(bi(i), bi(j)) , (bj(i), bj(j)) , bl] respectively.
In history hkgθ+ij(.), link ij forms if forms if and only if a

k is such that akij = (y, y)
and a proposal match occurs, and so does graph gθ+ij . Also for a given transfer scheme
to be binding players i and j have to match proposals pairs. The next prospective
graph follows according to the A-M rule of order. If a12 6= (y, y) link ij is rejected. If
that is the case only the next pair in the rule of order ρ∅ may follow. Analogously, a
next prospective graph may follow or not.
Following the A-M game, if the game ends, all agents move "nothing" thereafter

until stage K. Outcomes are non existent or trivial as links cannot be formed any-
more. After stage K the final history K + 1 follows.
Payoffs outcomes are realized at the end of stage k whenever the game ends in

A-M. In that case, the last pair that formed a link receives its payoff proposal match
and the third player receives her Myerson value in the resulting last graph.
Formally, the overall’s payoff function u = (u1, u2, u3) is constructed from payoff

functions ν in all possible non final histories as follows:
If the immediate prospective graph is the complete graph, that is, the associated

history hk.2
gθ+ij(a−k,b−k,ak)

is such that gθ+ij = gN , and link ij forms, that is the case only

provided akij = (y, y) and proposals match, then the three players get their Myerson

value in the complete graph, i.e., player m gets νm,hk.2
gθ+ij(.)

¡
bk
¢
= φg

N

m for m = i, j, l,
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where bk is the proposal match that leads to gN .
Suppose i 6= j 6= l, i, j, l ∈ {1, 2, 3}.
Let θ = ilj. Suppose one is at history hk.2

gθ+ij(a−k,b−k,ak)
, where akij 6= (y, y) , and

regardless of any bk being played, link ij does not form (thus, it is assumed that play
of any bk is payoff irrelevant), and hence, the game ends in the sense of A-M, then
the stage payoffs for players i, j and l are given by

νi,hk.2
gθ+ij(bk−1)

¡
bk
¢
= φg

θ

i ,

νj,hk.2
gθ+ij(bk−1)

¡
bk
¢
= bk−1 (j) and

νl,hk.2
gθ+ij(bk−1)

¡
bk
¢
= bk−1 (l) ,

where bk−1 is the last proposal match that occurred in stage k − 1 where the last
link lj was accepted and thus gθ formed.
Analogously, let θ = il. Suppose that akij 6= (y, y) and that the game would end

in the sense of A-M in such a case, then payoffs regardless of bk are
νi,hk.2

gθ+ij(bk−2)

¡
bk
¢
= bk−2 (i) ,

νj,hk.2
gθ+ij(bk−2)

¡
bk
¢
= φg

θ

j and

νl,hk.2
gθ+ij(bk−2)

¡
bk
¢
= bk−2 (l) ,

where k − 2 is the stage where the last proposal match, bk−2, occurred.
Let θ = ∅. Suppose that akij 6= (y, y) and that the game would end in the sense of

A-M in such a case, then payoffs regardless of bkare
νh3.2

g∅+13(.)
(b3) =

³
φg

∅

1 , φg
∅

2 , φg
∅

3

´
= (0, 0, 0),

In any other k = 1, ...K substage history payoffs are zero.
There is no discounting. Thus, player m0s, for m = 1, 2, 3, overall payoff at the

hK+1 terminal history that has as past history the outcome where the game "ends"
at stage k ≤ K with a graph gθ, where θ = ilj, is given by

um
¡
hK+1

¢
= νm,hk.2

gθ+ij(bk−1)

¡
bk
¢
.

For example, uj
¡
hK+1

¢
= bk−1 (j) (See above).

Analogously, if the game ends with a graph gθ, where θ = il, one has
um
¡
hK+1

¢
= νm,hk.2

gθ+ij(bk−2)

¡
bk
¢
.

If the game ends with a graph gθ, where θ = ∅, one has
u
¡
hK+1

¢
= νh3.2

g∅+13(.)
(b3) =

³
φg

∅

1 , φg
∅

2 , φg
∅

3

´
= (0, 0, 0).

If the game ends with a graph gθ+ij = gN then
um
¡
hK+1

¢
= νm,hk.2

gθ+ij(.)

¡
bk
¢
= φg

N

m .

5.1.6 Vectors of Correlated Strategies

I will be interested in defining negotiation statements at any history of an associated
multistage game with communication represented as a vector of correlated strategies
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in a "corresponding" history of the payoff-relevant multistage game. Because mixed
payoff proposals would have zero probability of inducing any payoff proposal match,
as I claimed earlier on in section 3, the following formalization that uses my definition
of correlated strategies is wlg.:
A vector of correlated strategies is a sequence of maps {ωk}Kk=1, where each ωk

maps Hk and Hk.2 to the set of correlated strategies on elements of AHk and BHk.2

(i.e., ωk(hk) is a correlated strategy on Ahk for all hk ∈ Hk and ωk(hk.2) is a correlated
strategy onBhk for all hk.2 ∈ Hk.2). I denote byW |h1 the set of all vectors of correlated
strategies in history h1.
Given ω|h1 ∈ W |h1, I am interested in the probability Pr [s/ω|h1] of the path¡

a1, b1, a2, ..., aK , bK
¢
corresponding to strategy profile s ∈ S. This will be given by

the expression
Pr [s/ω|h1] = ω1h1 (a

1) ∗ ω1(a1) (b1) ∗ ω2(a1,b1) (a2) ∗, ..., ∗ωK
(a1,b1,a2,...,aK)

¡
bK
¢
.

Let ω|hk ∈ W |hk be the set of all vectors of correlated strategies in the sub-
game that begins in history hk. It will be also of interest to know the probability
Pr
£¡
s|hk¢ /ω|h1¤ of the path ¡hk, ak, bk, ..., aK, bK¢ corresponding to the restriction

s|hk of s ∈ S onM
¡
hk
¢
for any hk ∈ Hk for all k. This will be given by the expression

Pr
£¡
s|hk¢ /ω|hk¤ = ωk

hk

¡
ak
¢ ∗ ωk

(hk,ak)

¡
bk
¢ ∗, ..., ∗ωK

(hk,ak,bk,...,aK)

¡
bK
¢

(9)

.

5.2 Credibility in the Communication Game Histories

I want to add O-F Nash effective cooperative negotiation as defined in 3.2.4 to the
multistage payoff-relevant game. In order to do so, at every relevant "history" of the
associated multistage game with communication game a player m = i, j, l that moves
non trivially can engage in preliminary negotiations. To set up negotiation problems
as in section 3, future joint strategies in the associated payoff-relevant games to
follow are defined in this context. Note that different vectors of correlated strategies
enunciated at different stages of the communication game by the same player should
be implemented by having respectively different mediators that, at each stage, make a
public announcement or recommendation observed by all players. For simplicity, the
associated notation in the multistage game with communication will be abstracted
from for the most!

5.2.1 Future Joint Strategies

I denote the set of future joint payoff relevant strategies at stage k ≤ K as ×Zhk .
Using Eq. (3), one can recursively derive ×Zhk for all hk as a Cartesian product of
joint strategies in future games

£
hk, ak, bk

¤
:
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×Zhk =
Y
(ak,bk)

×Zh0k
(.)
/[hk,ak,bk] (10)

, where hk
0
(.) should be interpreted as a future contingency in the payoff-relevant game

to follow at hk. For any restriction of strategy profiles S can be expressed as a
Cartesian product from Eq. (8) , at each recursion, when obtaining ×Zhk ,

×Zh0k
(.)
/[hk,ak,bk] = S| £hk, ak, bk¤ (11)

Hence, at each recursion

×Zhk =
Y
(ak,bk)

S| £hk, ak, bk¤ (12)

.

5.2.2 Negotiation Problems and The Tenability Correspondence

Now one can define utility functions at histories hk(.) where the arguments are link
choices, current actions and future joint strategies by using:

Uhk
(.)

¡
ak,×bk,×zk¢ = u(s|hk),

where s|hk = ¡ak,×bk,×zk¢ after using Eq. (8) and (12) . This expression refers to
the expected utilities for the three players if ak ∈ Ahk , ×bk ∈ ×B4

hk and ×zk ∈ ×Zhk
(.)

are played following hk(.).
To formulate negotiation problems and joint plan bargaining problems in the no-

tation of section 3, I assume that a history of the multistage game with communication
corresponding to the multistage payoff-relevant game, h̊k(.) 6= hk(.), includes in the sub-

script (.), in addition to a sequence of past choices ak
−
and actions, bk

−
, a sequence

of past tenable and reliable joint plans
¡
µ1, ..., µk−1

¢
= µk

−
(See Remark 5) and

past recommendations by different mediators. Abstracting from recommendations,
for each negotiation problem in h̊k

(µk− ,ak− ,bk−)
, a corresponding history to the unique

hk
(ak− ,βk−)

, one sets B = Bhk
(.)
and ×Z = ×Zhk

(.)
and U = Uhk

(.)
.

The negotiation problem is trivial in histories where players move nothing. Wlg.,
and as a way of illustration, assume link ij is accepted, and the rule of order has next
links il, and jl being proposed in that order, link il is rejected and link jl is accepted.
One defines O-F Joint Plans in histories h̊kgijl+il(.).
The set of future joint strategies ×Zh̊k

gijl+il(.)

= ×Zhk
gijl+il(.)

, or ×Zk, if no confusion

arises, is the Cartesian product of singleton action profile sets. So the tenability
correspondence in a history h̊kgijl+il(.) is trivially defined as

Qh̊k
gijl+il(.)

¡
µk
¢
= f

×Z
h̊k
gijl+il(.) .
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If no confusion arises, I will write only f×Zk , also a singleton, a Cartesian product
of functions that put probability one on the unique element of the trivial action set
profiles at each future history of the payoff-relevant game to follow h̊k

gijl+il(.)
. Set the

tenability correspondence in section 3, Qµk
− (µ) = Qh̊k

(µk−)

¡
µk
¢
.

For any trivial (as a trivial future game follows) a0k-concatenated strategic form

game
³
Bk
i ×Bk

j , π
µkm/a0k

´
, where µkm =

¡
αk
m, β

k
m, ζ

k
m

¢ ∈ fk, to be well defined, one

sets for any bk ∈ Bhk
gijl+il(.)

and the unique trivial zk ∈ ×Zk

Pr
h
Um,hk

gijl+il(.)
(.)
i
= 1 (13)

, where as for Eq.(6), Um,hk
gijl+il(.)

(.) = Um,hk
gijl+il(.)

¡
a0k,×bk,×zk¢, the a0k-th compo-

nent of×bk bka0k =
¡
bki , b

k
j , b

k
l

¢
and Pr

h
Um,hk

gijl+il(.)
(.)
i
is the probability that Um,hk

gijl+il(.)
(.)

results given that
³
a0k, bki,a0k

´
occurred and play is consistent with ζkm thereafter, for

m = i, j.
The outside options in the joint plan bargaining problem are ψk =

¡
xki , x

k
j

¢
with

disagreement plan bµk = ³bαkbak , bβk,bζk´ where the disagreement future-request bζk is
trivial. The disagreement plan suggests unilateral link rejections, that is, bµk is such
that bαkbak has bakij = (n, n) and bβka0k for any a0k 6= (y, y) is any same fixed correlated
strategy for in any a0-concatenated game, where a0kij 6= (y, y) , any pair of proposals
pairs is a Nash equilibrium; wlg., bβa0 if a0 = (y, y) is arbitrary fixed to any given
unilateral proposals pair rejection pair, (unfeasible proposals pairs) as any is a Nash
equilibrium of any concatenated game. So bµk is tenable and reliable.
One completes the formulation of the negotiation problem in the notation of sec-

tion 3 in history h̊k
gijl+il(.)

, if the sequence of past statements is given by µk
−
, by setting

Φil,µk− = Φh̊k
gijl+il(µk−),

or simply Φk.

Recall that to each such history in the communication game h̊k(.), there are asso-
ciated future-requests by pairs il or jl that may have formed in some order. Suppose
that

¡
F,Φk

ij, ψ
¢̊
hk
(.)

is well defined, then ηf
h̊k
(.)

¡
Φk
ij, ψ

k
¢
, the credible joint plan set,.can

be defined and exists for any such possible history.
In general, suppose that one has inductively defined a non empty O-F Joint Plan

set in any h̊kgθ+ij(.), that is, for all θ ∈ {∅, il, ilj} i 6= j 6= l, i, j, l ∈ {1, 2, 3} suppose.

ηf
h̊k
gθ+ij(.)

¡
Φk, ψk

¢ 6= ∅ (14)

. As for Eqs. (5) and (12) the vector of correlated strategies ζk of section 3 in
future histories of the future game can be expressed in terms of a vector of correlated
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strategies of the payoff-relevant game to follow history hk in the multistage payoff-
relevant game of section 5 for

ζk =
Y
(ak,bk)

ζ
hk
0
(.)
/

·
hk
gθ+ij(.)

,ak,bk
¸ ∈ Y

(ak,bk)

W |
h
hkgθ+ij(.), a

k, bk
i

(15)

. Let µk =
¡
αk, βk, ζk

¢
have ζk ∈ Qh̊k

(.)

¡
µk
¢
, that is, µk is future tenable. The

future-request ζk should be such that for any
¡
ak, bk

¢ ∈ Ahk
(.)
×Bhk

(.)

ζ
h0k
(.)
/

·
hk
gθ+ij(.)

,ak,bk
¸ ∈ ηf

h̊k+1
(.)

¡
Φk+1, ψk+1

¢
,

where h̊k+1(.) =
h̊
hkgθ+ij(.), r

k
a, a

k, rkb , b
k, µk

i
, for all link choice recommendations rka ∈

Ahk
(.)
and payoff proposal recommendations rkb ∈ Bhk

(.)
. That is, any ζ

h0k
(.)
/

·
hk
gθ+ij(.)

,ak,bk
¸,

should equal the identical Credible Joint Plans in the histories that follow h̊k(.) after
players i and j enunciated µk,

¡
ak, bk

¢
was played and any pair of recommendations

occurred; for all possible recommendations belong to the support of αk and βk in the
given µk =

¡
αk, βk, ζk

¢
. Recall from section 3, that credibility of joint plans depend

only on past choices and actions in the last-mover advantage case and, under the
O-F focal effect, credibility depends in addition on past successful joint plans and not
on its specific recommendations. Hence, for simplicity, I will ignore recommendations
and write instead

h̊
hk
gθ+ij(.), β

k, µk
i
, provided indexing by µk

−
is not relevant.

It is implicit that if µk =
¡
αk, βk, ζk

¢
is such that histories h̊k+1(.) have players move

nothing, ηf
h̊k+1
(.)

¡
Φk+1, ψk+1

¢
is a trivial joint plan, as actions profile sets there and

thereafter are singletons.

Remark 9 If one assumes the O-F focal effect, tenable future-requests ζk in µk =¡
αk, βk, ζk

¢
, i.e., ζk ∈ Qh̊k

(.)

¡
µk
¢
, may be different depending on the µk

−
associated

to h̊k
(µk−)

, as different past successful joint plans may influence play in each history

in a different way.

By the inductive assumption in Eq. (13) Qh̊k
gθ+ij(.)

¡
µk
¢ 6= ∅. Next, for any a0k-

concatenated strategic form game
³
Bk
i ×Bk

j , π
µkm/a0k
ij

´
, where µkm =

¡
αk, βk, ζk

¢ ∈ fk,

to be well defined, one sets for any bk ∈ Bhk
(.)
and ×zk ∈ ×Zk

Pr
h
Um,hk

gθ+ij(.)
(.)
i
= Pr

£¡
s|hk¢ /ω|hk¤ ,

where Um,hk
(.)
(.) is defined as in Eq.(13) and Pr

h
Um,hk

(.)
(.)
i
equals toPr

£¡
s|hk¢ /ω|hk¤

in Eq. (9) ; the latter is the probability of the path corresponding to the restriction
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s|hk = ¡a0k,×bk,×zk¢ , from Eqs. (8) and (12) , given the vector of correlated strate-
gies ω|hk that can be expressed as µ̈k =

³
α̈k
a0k , β̈

k
, ζk
´
for Eq. (15) ; µ̈k puts probability

1 on both a0k and on bk after a0k occurred, i.e., β̈
k

a0k
¡
bk
¢
= 1 and is consistent with

ζkm thereafter, for m = i, j.
The outside options in the associated joint plan bargaining problem are derived

as before and are ψk =
¡
xki , x

k
j

¢
with tenable and reliable bµk = ³bαkbak , bβk,bζk´ , i.e.,bµk ∈ ef. Note that the disagreement future-request bζk can be derived given the finite

rule of order and has the peculiar feature that it depends only on statements of
pairs that have had or will have successful preliminary negotiations; of course, it
"depends" on the current pair’s disagreement future-request trivially (See Remark
6). Also, recall, it was fixed when outside options were defined in 3.2.2.
In general, history h̊kgθ+ij(.) has future-requests by pairs that have successfully nego-

tiated before in a given order. The ones of pairs that were unsuccessful are "basically"
ignored. Assume that (F,Φij, ψ)̊hk

gθ+ij(.)

is well defined, then ηf
h̊k
gθ+ij(.)

(Φij , ψ) exist for

any possible history.

5.3 Sequentially Nash Credible Joint Plans

Suppose that O-F Joint Plans exist for all histories, only then the inductive assump-
tion in Eq. (14) is justified. Then, the ones at the beginning of play are defined as
Sequentially Nash Credible Joint Plans (SN). Formally,

SN = ηf (Φij, ψ) (16)

, where ηf (Φij, ψ) = ηf
h̊1
(Φij, ψ) was defined in 3.2.4.

Clearly SN suggest subgameperfect publicly correlated equilibria in the multistage
game with communication.

6 Existence Theorem

In each history h̊kgθ+ij(.), it will be useful to have a term for expected payoffs associated
to future tenable joint plans that are possible by matching proposals pairs provided
a link forms. Formally,

¡
xki , x

k
j

¢ ∈ PMF k, the proposal match payoff feasible set in
h̊kgθ+ij(.), if there exists a proposal match bk ∈ Bhk

gθ+ij
and µk =

¡
αk
ak , β

k, ζk
¢ ∈ fk,

i.e., µk is future tenable, and ak is such that akij = (y, y) , β
k is such that βkak

¡
bk
¢
= 1,

bk ∈ Bk and π
µk/ak

ij

¡
bkij
¢
=
¡
xki , x

k
j

¢
(See Eq. 6). The set of strong Pareto efficient

points of PMF k is the frontier of PMF k.
Joint plan bargaining problems (F,Φ, ψ)̊hk

gθ+ij(.)

are classified into two types. In

type 1, there exists a better payoff proposal match.
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There exists a better payoff proposal match if some element of PMF k is as least
as good as the outside options, that is,

¡
xki , x

k
j

¢ ≥ π
bµk/bak
ij

³bbkij´, for some ¡xki , xkj¢ ∈
PMF k.
Note that, in particular, the βk associated to a better payoff proposal match is cur-

rent reliable and tenable as in the ak = (y, y)-concatenated game
³
Bk
ij ×Bk

j , π
µk/ak

´
it implies a Nash equilibrium. Also the akij associated to a better payoff proposal
match is a Nash equilibrium of

¡
Ai ×Aj, π

µi
ij

¢
and so the associated joint plan µk =¡

αk
ak , β

k, ζk
¢
is reliable and tenable. By definition, such

¡
xki , x

k
j

¢
belongs to the fea-

sible set. Thus, feasible sets are convex combinations of outside options and payoffs
associated to better payoff proposal matches. Such convex combinations may have
corresponding non degenerate tenable and reliable joint plans in the sense that the
latter entail non degenerate link or current promise-requests.
In type 2, there are not better payoff proposal matches and the only feasible payoff

pair is the one associated to the disagreement joint plan, hence the associated link will
not form. Joint plans associated to elements in PMF k don’t induce Nash equilibria in
their associated

³
Bk
i ×Bk

j , π
µk
´
as it is always better to unilaterally reject. Neither

in
³
Bk
ij ×Bk

j , π
µk/ak

´
, where ak = (y, y), as it is always better to propose something

unfeasible.
As it will become clearer in the construction proof, the existence of these two

types imply that feasible and IRF sets in each history coincide.

Theorem 10 Sequentially Nash Credible Joint Plans exist for three-player normal-
ized cooperative games with the Myerson value as a payoff allocation rule.

Proof. As feasible and IRF sets coincide, for the joint plan bargaining game to be
well defined at the initial history it suffices to show that the IRF sets are closed in
any possible future history of the multistage game with communication.
Part 1. The Joint Plan Bargaining Problem in h̊6g132+12(.)
Outside options in histories with the same last proposal match b5, h̊6g132+12(b5) (that

is equivalent to h̊6g132+12(a5,b5), where a
5
32 = (y, y) as link 32 formed in stage 5), are¡

ψ61, ψ
6
2

¢
=
¡
φ1321 , b5 (2)

¢
. The PMF 6 consists only of payoffs in the complete graph³

φg
N

1 , φg
N

2

´
.

Note that player 1 can for the most do better in the complete graph because φ1321 ≤
φg

N

1 ⇔ 0 ≤ c, (See diagram in Appendix). Recall that b5 (3) + b5 (2) = φg
132

3 + φg
132

2 .
Denote φg

132

3 + φg
132

2 − φg
N

2 = 2d+a+b−c
6

> 0 by b
5
(3) and φg

N

2 by b
5
(2) .

As player 2 would loose in the complete graph, the bargaining game is of type
2 iff b5 (2) > b

5
(2) = φg

N

2 . The IRF 6 consists just of ψ612. Otherwise, the IRF 6

contains the unique element of the PMF 6,
³
φg

N

1 , φg
N

2

´
, that now is associated to a

better proposal match, the one that leads to link 12 forming and hence the complete
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graph. The IRF 6 consists of convex combinations of the outside options
¡
ψ61, ψ

6
2

¢
and

³
φg

N

1 , φg
N

2

´
.

In any case, the IRF 6 is closed, thus, the O-F focal effect ensures that for any
h̊6g132+12(.) one can compute η

f

h̊6
g132+12(.)

¡
Φ6, ψ6

¢
.

Part 2. The Joint Plan Bargaining Problem in h̊5g13+32(.)

Outside options in histories h̊5g13+32(b3) are
¡
ψ53, ψ

5
2

¢
=
³
b3 (3) , φg

13

2 = 0
´
.

It suffices to check that the IRF 5 is closed in bargaining games of type 1. In what
follows of Part 2, I assume that b3 (3) induces such type. Let µ̆5 =

³
α5ă5 , β̆

5
, ζ̆
5
´
be a

fully successful degenerate joint plan; that is, ă532 = (y, y), β̆
5

ă5

³
b̆5
´
= 1, where b̆5 is a

proposal match. Assume history h̊6
g132+12(b3,µ̆5,b̆5)

is reached.

From Part 1, whenever b̆5 (2) > b
5
(2) , µ6 ∈ ηf

h̊6
g132+12(b3,µ̆5,b̆5)

¡
Φ6, ψ6

¢
is a disagree-

ment joint plan, i.e., µ6 = bµ6. As players 3 and 2’s µ̆5 = ³
α5ă5, β̆

5
, ζ̆
5
´
is future

tenable, it has to future-request bµ6, formally, ζ̆5
hk
0
(.)
/

·
h5
g13+32(b3)

,ă5,b̆5
¸
= bµ6. Associated

payoffs πµ̆
5

32,̊h5
g13+32(b3)

(ă532) = b̆532 are illustrated in figure 1 by the segment in bold not

including b
5

32 for the simple majority game where c > 0 and b
5
(2) = φg

N

2 = 2
6
.

Assume that c = 0 (See lemma 11 for the case c > 0) and hence player 1 in the
induced h̊6 is indifferent to further linking. If µ̆5 has b̆5 (2) ≤ b

5
(2), the bargaining

game in h̊6
g132+12(b3,µ̆5,b̆5)

is of type 1, however, it is not essential. As for the O-F focal

effect, future-requests in µ̆5 of O-F Joint Plans in h̊6
g132+12(b3,µ̆5,b̆5)

depend on µ3, so it

is useful to write h̊6
g132+12(µ3,b3,µ̆5,b̆5)

. Let a612 = (y, y) ; if µ
6 is an O-F Joint Plan, then

its link promise-request α6 may entail either link formation, that is, α6 (a6) = 1,.and
proposal matchs after a6, or the given unilateral rejection and so α6 (a6) = 0 or a
"mix", in which case α6 (a6) < 1.
One may think there will be a jump in payoffs whenever b̆5 (2) = b

5
(2) depending

on µ3. However, as b
5
(3) = φ1323 if c = 0, payoffs are always πµ̆

5

32,̊h5
g13+32(µ3,b3)

(ă532) =³
b
5
(3) , b

5
(2)
´
(See in contrast Remark 13).

If b̆5 (2) < b
5
(2) payoffs πµ̆

5

32,̊h5
g13+32(µ3,b3)

(ă532) are equal to convex combinations

between
³
b
5
(3) , b

5
(2)
´
and

³
b̆5 (3) , b̆5 (2)

´
depending on µ3.

Assumption 2: Plans µ3 are such that the latter convex combinations are con-
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tinuous on
h
0, b

5
(2)
h
.7

It follows that in any h̊5g13+32(µ3,b3), the IRF
5 is closed. Also, the IRF 5 frontier

has right side endpoint
³
x
5
3, x

5
2

´
in the plane (x53, x

5
2) equal to or to the southeast of

b
5

32 (depending on µ3). Thus, ηf
h̊5
g13+32(µ3,b3)

¡
Φ5, ψ5

¢
can be computed.

Part 3. Joint Plan Bargaining Problem in h̊4g13+12(.)
Let µ5 =

¡
α5, β5, ζ5

¢
. The outside options in any h̊4g13+12(.) depend on b3 and µ3

(See Part 2) as follows:

ψ412 = πbµ4
12,̊h4

g13+12(µ3,b3)

³bb412´ =X
a5

α5
¡
a5
¢
πµ

5

12,̊h5
g13+32(µ3,b3,bµ4,bb4)

¡
a532
¢

(17)

where µ5 = bζ4
hk
0
(.)
/

·
h4
g13+12(b3)

,bb4¸, the group component of bζ4 that contains correlated
strategies in histories that follow and include

h
h4g13+12(b3),

bb4i . Also, as bµ4 is future
tenable, µ5 is O-F in h̊5

g13+32(µ3,b3,bµ4,bb4), i.e.,
µ5 ∈ ηf

h̊5
g13+32(µ3,b3,bµ4,bb4)

¡
Φ5, ψ5

¢
.

Analogously, as in h̊5g13+32(.), one can prove that the IRF
4 set is always closed in

any h̊4g13+12(.), assuming now b = 0. Hence, ηf
h̊4
g13+12(.)

¡
Φ4, ψ4

¢
can be computed.

Part 4. The Joint Plan Bargaining Problem in h̊3g∅+13(.)

Players 1 and 2s’ outside options are ψ313 =
³
φg

∅

1 , φg
∅

3

´
= (0, 0) . As for Parts

1, 2 and 3, ef3 can be derived. I argue that the IRF 3 set and frontier are closed if
payoffs in the IRF 3 set are continuous on "appropriate subsets" of the tenable and
reliable set ef3 composed of degenerate fully successful joint plans µ̆3 = ³ᾰ3ă, β̆3, ζ̆3´.
It can be shown that all associated payoffs in such subsets correspond to all what is
achievable by such degenerate elements of ef3. Assume ef3 is known.
Back to h̊5

g13+32(µ̆3,b̆3,bµ4,bb4)
As x53 ≥ b

5
(3) > 0 and b̆3 (1)+ b̆3 (3) = φg

13

1 +φg
13

3 = a ≥ 0, different µ̆3 ∈ ef3 that
differ in b̆3 induce a total of three classes of bargaining games (for an approximate
graphical representation see figure 1as it assumes c > 0):
Class 1: If b̆3 is such that ψ53 = b̆3 (3) = x

5
3, player 3 will be indifferent between

forming or not link 32. The bargaining game in h̊5
g13+32(µ̆3,b̆3,bµ4,bb4) will be not essential

but it is of type 1.

7Actually, players 3 and 2 don’t loose anything by always assigning probability 1 to³
b̆5 (3) , b̆5 (2)

´
. In the latter sense, assumption 2 is not even necessary!
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Class 2: If b̆3 is such that b̆3 (3) < x
5
3, then the bargaining game is of type 1 and

agent 3 is better off if link 32 forms.
Class 3: If b̆3 is such that b̆3 (3) > x

5
3, then the bargaining game is of type 2.

The case a = x
5
3 exhibits the first two classes of bargaining games. If a < x

5
3 then

only the second class results. The case a > x
5
3 exhibits the three classes.

Depending on these three ranges of a, one needs to consider at most three "types of
families" of subsets of ef3. Wlg., I focus on the case a > x

5
3 where one can distinguish

three types of families.
Consider the expected payoff function associated to the O-F Joint Plan
µ5 =

¡
α5, β5, ζ5

¢ ∈ ηf
h̊5
g13+32(µ̆3,b̆3,bµ4,bb4)

¡
Φ5, ψ5

¢
.

This is given by

f532

³
µ̆3, b̆3, bµ4,bb4´ =X

a5

α5
¡
a5
¢
πµ

5

32,̊h5
g13+32(µ̆3,b̆3,bµ4,bb4)

¡
a532
¢

(18)

As ef3 is known, one can redefine µ̆5 (including ᾰ5 and β̆
5
), b̆3, bµ4and,bb4 wlg.,

as some given auxiliary functions of degenerate fully successful joint plans µ̆3 =³
ᾰ3ă, β̆

3
, ζ̆
3
´
∈ ef3, where ζ̆3 future-requests O-F µ5 after players 1 and 2 suggested

the disagreement bµ4and playedbb4. Hence, one can reinterpret from now on this payoff
function as a function of only µ̆3; so one writes simply f532

¡
µ̆3
¢
.

Denote a subset belonging to a family of disjoint subsets of ef3 of a first type
(type "→") by

−→ef 3 (Q5) , i.e., the "last name" of any subset in this family is → and

the "first name" is Q5. For any subset
−→ef 3 (Q5) , if µ́3 6= µ̆3 and µ́3, µ̆3 ∈

−→ef 3 (Q5) , the
respective induced tenability correspondences in histories h̊5

g13+32(µ́3)
and h̊5

g13+32(µ̆3)

are such that Q́5 = Q̆5 = Q5 (recall from Part 2 that Q5 depends non trivially on any

µ̆3 in cases of indifference of player 1). Respective future-requests ζ́
3
and ζ̆

3
suggest

fully successful O-F Joint Plans µ05 and µ005 with ζ 05 = ζ 005 = ζ5 (Q5) , a function of

Q5. Also, b́3 (3) 6= b̆3 (3) and both belong to the closed interval
h
0, x

5
3

i
. Assume for

now that "appropriate subsets" of
−→ef 3 (Q5) exist with an "appropriate metric". One

can show (See below) that the reinterpreted payoff function in Eq. (18) , f532
¡
µ̆3
¢
, is

continuous on any such appropriate subset of
−→ef 3 (Q5) .

As payoff for player 1 is constant regardless of link 32 being last to form or not

f5
¡
µ̆3
¢
= f5

³
µ̆3, b̆3, bµ4,bb4´ =X

a5

α5
¡
a5
¢
πµ

5

h̊5
g13+32(µ̆3,b̆3,bµ4,bb4)

¡
a532
¢

(19)

,
with range on R3, i.e., f5

¡
µ̆3
¢
=
£
f51
¡
µ̆3
¢
, f52

¡
µ̆3
¢
, f53

¡
µ̆3
¢¤
is continuous on any

appropriate subset of
−→ef 3 (Q5).
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By analogous arguments, f5
¡
µ̆3
¢
is continuous on any appropriate subset of←−ef 3

³
Q̈5
´
which belongs to a second type ← of family that is derived almost identi-

cally as before: Any such
←−ef 3

³
Q̈5
´
is such that future-requests in µ́3, µ̆3 ∈

←−ef 3
³
Q̈5
´

suggest in h̊5g13+32(.) the disagreement joint plan as O-F Joint Plans, that is, µ
05 =

µ005 = bµ5. As before, b̆3 (3) 6= b̀3 (3), however they belong to
h
x
5
3, a
i
.

As for the O-F focal effect, there is a third type of family where in contrast to the
first two types b̆3 (3) = x

5
3 and future-requested µ5 =

¡
α5, β5, ζ5

¢
, abusing language,

mixes over the disagreement joint plan and the fully successful joint plan that has
an immediate promise-request that puts probability one on the unique (not easy to

see) proposal match that yields
³
x
5
3, x

5
2

´
, the standard Nash bargaining solution in

h̊5
g13+32(µ̆3,b̆3,bµ4,bb4). Formally, such µ5 differs from bµ5 in that α5 is not always degenerate,
i.e., α5 (a5) ≤ 1, and β5a5

³
x
5
´
= 1, where a5 = (y, y) (See in simple majority example

future-requests under type 3 joint plans). For simplicity of exposition, we analyze
the first two types but the arguments apply to the third type too.
Graphically, as long as b̆3 (3) 6= b́3 (3) different plans, µ́3 and µ̆3, in any given

appropriate subset of
−→ef 3 (Q5)

µ←−ef 3
³
Q̈5
´¶

induce bargaining games with the same

PMF 5 frontier but with different outside options that move along the horizontal axis
to the right towards x53 (→) (to the left (←) towards x53) in the plane (x53, x52). (See
figure 1, albeit c > 0 and hence

³
x
5
3, x

5
2

´
= b

5

32; see lemma 11)

Back to h̊4
g13+12(µ̆3,b̆3)

Using Eq. (17), outside options are

ψ412 = πbµ4
12,̊h4

g13+12(µ̆3,b̆3)

¡ba412¢ =X
a5

ᾰ5
¡
a5
¢
πµ̆

5

12,̊h5
g13+32(µ̆3,b̆3,bµ4,bb4)

¡
a532
¢

(20)

As the last expression in this equation is f512
¡
µ̆3
¢
from equation (19), a function

solely of µ̆3, outside options ψ412
¡
µ̆3
¢
are continuous on any appropriate subset of

−→ef 3 (Q5)

µ←−ef 3
³
Q̈5
´¶

.

I proceed by constructing appropriate subsets of
−→ef 3 (Q5) . Player 2’s outside op-

tion, ψ42
¡
µ̆3
¢
weakly increases while ψ41

¡
µ̆3
¢ ≤ b

4
(1) is constant (where b

4
is defined

analogously as b
5
is) whenever µ̆3 ∈

−→ef 3 (Q5) has a lower b̆3 (3) ∈
h
0, b

5
(3)
i
. Thus,

there may exist some b̆3 (3) where player 1 is indifferent between linking or not with
agent 2. As before one may distinguish 3 classes of bargaining games depending
on parameter cases. Also, one may have to distinguish two types (not three as be-
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fore) of conditional (on
−→ef 3 (Q5)) families of disjoint subsets of

−→ef 3 (Q5), where sub-

sets in these two types of conditional families are denoted by either
−→ef 3↑ (Q5, Q4) or−→ef 3↓ (Q5, Q4) . These subsets will have elements µ̆3 ∈

−→ef 3 (Q5) that future-request on
players 1 and 2 a fully successful joint plan and a disagreement joint plan respectively

and are defined as appropriate subsets of
−→ef 3 (Q5) .

Consider payoffs associated to O-F Joint Plan µ4 ∈ ηf
h̊4
g13+12(µ̆3,b̆3)

¡
Φ4, ψ4

¢
This is given by

f412

³
µ̆3, b̆3

´
=
X
a4

α4
¡
a4
¢
πµ

4

12,̊h4
g13+12(µ̆3,b̆3)

¡
a412
¢

(21)

.
As before, after reinterpreting the payoff expression as a function of only µ̆3, i.e.,

f412
¡
µ̆3
¢
, one can show that this is continuous on any appropriate

−→ef 3↑ (Q5, Q4) or−→ef 3↓ (Q5, Q4). Informally, the outside options ψ412
¡
µ̆3
¢
are continuous on the latter

appropriate sets and the NBR payoffs in the associated bargaining games are continu-
ous on the outside options for a fix PMF 4 frontier (Recall, composition of continuous
functions are continuous). So is f4

¡
µ̆3
¢
with range in R3.

Analogously, f4
¡
µ̆3
¢
is continuous, if necessary (depending on parameter values),

on any element of two (as before, actually three but we analyze two) types of con-

ditional families of subsets of
←−ef 3

³
Q̈5
´
, denoted either by

←−ef 3→
³
Q̈5, Q̈4

´
(where an

element µ̆3 is such that b̆3 (1) → a− x
5
3 and suggests a fully successful joint plan to

players 1 and 2 in h̊4
g13+12(µ̆3,b̆3)

; recall b̆3 (3) ∈
h
x
5
3, a
i
) or
←−ef 3←

³
Q̈5, Q̈4

´
(this latter

subset if exists due to specific parameter values it is a singleton in A-M). Figure 2,

where in particular
³
x
4
1, x

4
2

´
= b

4
and

³
x
5
3, x

5
2

´
= b

5
is somewhat useful to illustrate

this claim’s proof.
It follows that πµ̆

3

13,̊h3
g∅+13(.)

(ă3) , a function of µ̆3, is continuous if necessary on any

element of these four (or more) conditional families of subsets, for any possible Q5³
Q̈5
´
.

Note that as b̆3 (3) varies along a closed interval associated with any given such

appropriate subset, the only components of µ̆3 =
³
ᾰ3ă3, β̆

3
, ζ̆
3
´
that may vary are the

degenerate correlated strategy in current contingency ă, β̆
3

ă3, (ζ̆
3

h4
g13+12(b̆3)

= α4, the

correlated strategy in contingency h4
g13+12(b̆3)

in the language of section 3, varies only

if considering a third type of conditional family not analyzed) ζ̆
3

h4.2
g13+12(b̆3,a4)

= β4a4,

a correlated strategy in contingency h4.2
g13+12(b̆3,a4)

provided ζ̆
3

h4
g13+12(b̆3)

= α4a4 , where
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a4 = (y, y) (analogously ζ̆
3

h5
g13+32(b̆3,bb4) varies if considering a third type of family not

analyzed) and ζ̆
3

h5.2
g13+12(b̆3,bb4,a5) provided ζ̆

3

h5
g13+32(b̆3,bb4) = α5a5 , where a

5 = (y, y). It can be

shown that any such appropriate subset, now completely characterized, is a metric
space (See a metric in the Appendix) and my earlier claims on continuity can be
justified.
In any h̊3g∅+13(.), convex combinations over the payoffs associated to joint plans in

any given appropriate subset and the outside options ψ313 yield a closed IRF
3 set and

frontier. So, O-F Joint Plans exist.
In turn, the outside options in any h̊2g∅+23(.) can be derived and the IRF

2 set and
frontier are closed by similar arguments−now assuming, whenever appropriate and
in that order a = 0 and c = 0. O-F Joint Plans exist. The same is the case for the
unique (as there are no past statements) h̊1g∅+12(.), assuming whenever appropriate
and in that order b = 0 or a = 0. After using lemma 11, the theorem follows for all
parameter values.

Lemma 11 If a, b, c > 0, the complete graph never forms.

Proof. In part 2 of theorem 10, in contrast, if b̆5 has b̆5 (2) ≤ b
5
(2) , player 1 gains by

forming link 12 and O-F joint plans don’t depend on µ3 anymore. Bargaining games
in h̊6

g132+12
³
b3,µ5,β̆

5
´ are of type 1.

In particular, if b̆5 (2) = b
5
(2) the bargaining game in such h̊6 is not essential and

given that player 2 is indifferent, the bargaining outcome depends on µ̆5. As for the O-
F focal effect a future tenable, µ̆5 may have players 2 and 3 future-request an O-F Joint
Plan that is a disagreement joint plan, a fully successful joint plan in h̊6

g132+12(b3,µ̆5,b̆5)

or a mix. In the first case, payoffs πµ̆
5

32,̊h5
g13+32(b3)

(ă532) would be "assured" to be³
b
5
(3) , b

5
(2)
´
. In the second case payoffs are

¡
φN3 , φ

N
2

¢ 6= ³
b
5
(3) , b

5
(2)
´
. Note

that as φN3 < b
5
(3) and φN2 = b

5
(2) , this payoff pair is not in the PMF 5 frontier.

These payoffs are not strongly Pareto efficient. The same is the case if a mix would
be future-requested.
If b̆5 (2) < b

5
(2) , the bargaining game is essential and µ̆5 future-requests in

h̊6
g132+12(b3,µ̆5,b̆5)

a fully successful joint plan, in which case payoffs are again
¡
φN3 , φ

N
2

¢
.

Thus, the IRF 5 set and frontier are closed in the bargaining game in any h̊5g13+32(b3).
Moreover, an O-F Joint Plan µ̆5 cannot future-request something different than a dis-
agreement joint plan in h̊6

g132+12
³
b3,µ5,β̆

5
´ as an O-F Joint Plan in h̊5g13+32(b3) (depending

on b3) suggests with probability one a proposal match in the IRF 5 frontier or, in
cases of indifference of player 3, mixes between fully successful joint plans or the dis-
agreement one. In no such a case link 12 formation is suggested. Lemma 11 follows
as the analysis for the cases a, b > 0 are similar.
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Corollary 12 The complete graph never forms in strictly superadditive games.

Remark 13 If whenever b̆5 (2) = b
5
(2) one would apply the standard Nash Bargain-

ing solution to the bargaining game in h̊6 in question whenever c > 0, the complete
graph would form and payoffs would be

¡
φN3 , φ

N
2

¢ 6= ³b5 (3) , b5 (2)´ , a point inside the
IRF5 set. Hence this set would not be closed. Tenable and reliable joint plans by play-
ers 3 and 2 solve that problem naturally by inducing either

¡
φN3 , φ

N
2

¢
,
³
b
5
(3) , b

5
(2)
´

or a mix.

7 Conclusions

This paper adds O-F Nash effective endogenous cooperative negotiation (See 3.2.4) to
my modification of the A-M model, where pairs of players play a transfer game over
the sum of their Myerson values in the prospective network. Negotiation statements
at each history of the associated multistage game with communication are credible, in
most cases, if they are the outcome of a joint plan bargaining problem where feasible
payoffs are those induced by tenable and reliable joint plans. The disagreement
tenable and reliable joint plan promise-requests link rejection. Sequentially Nash
Credible Joint plans exist and analytical payoffs predicted are unique if players listen
to oldest friends provided the latter suggest rational play, in particular, induce closed
feasible bargaining sets whenever appropriate. In particular, the simple majority
game yields the nucleolus in coalition structure.
It would be important to see if the nucleolus is always obtained for the three-player

general case. In a slightly different communication environment, in a preliminary
version of this paper, among other results, it is shown that all payoff predictions in
that model are efficient. I conjecture that the same results hold in the model of this
paper.
It would be relevant to use payoff allocation rules different than the Myerson value

and/or allow for N players. The issue of externalities and efficiency could be then
studied.

8 Appendix

8.1 An Appropriate Metric

Let µ̆3 =
³
ᾰ3ă3, β̆

3
, ζ̆
3
´
be an element of any given appropriate subset of

−→ef 3 (Q5)µ←−ef 3
³
Q̈5
´¶

. Given β̆
3

ă define γ ∈ [0, 1] so as to satisfy

γ
¡
φ131 + φ133 , 0

¢
+ (1− γ)

¡
0, φ131 + φ133

¢
= b̆313 (22)
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.
Let ζ̆

3

hk.2
gθ+ij(ak)

= β, where k > 3, be the component of ζ̆
3
that corresponds to a

future contingency p or history hk.2
gθ+ij(ak)

where ak = (y, y) or, better yet, ζ̆
3

hk.2, that

follows h3g13(.). For each correlated strategy ζ̆
3

hk.2 define γ ∈ [0, 1] so as to satisfy

γ
³
φg

θ+ij

i + φg
θ+ij

j , 0
´
+ (1− γ)

³
0, φg

θ+ij

i + φg
θ+ij

j

´
= π

ζ̆
3

hk
0
/hk

ij,̊hk

¡
akij
¢

(23)

.
If ak 6= (y, y) , set wlg. γ = 0. If future contingency p is history hkgθ+ij(.) instead,

future-request ζ̆
3
may suggest µk = ζ̆

3

hk
0
(.)
/hk that are mixes over the disagreement

joint plan and the fully successful joint plan that has a current promise-request in
current contingency ak = (y, y) that puts probability one on the unique (not easy to

see) proposal match that yields
³
x
k
i , x

k
j

´
, and hence the standard Nash bargaining

solution in h̊k. Hence for ζ̆
3

hk one sets

γ = ζ̆
3

hk

¡
ak
¢

(24)

, where wlg., ak = (y, y) .

Define the vector of gammas associated to µ̆3 as
µ
γ
³
β̆
3

ă

´
,
n
γ
³
ζ̆
3

p

´o
p

¶
. The

distance between two different µ̆3 could be given by any standard infinite dimensional
distance between their associated vector of gammas. Such rare metrics are necessary
specially as for the complex IRF frontiers of histories h̊5g13+32(.) and h̊

4
g13+12(.) whenever

c = 0 and b = 0 respectively (hence equation 23 suffices for histories hk.2). Also,
because in cases the IRF set is a closed segment, oldest friends may suggest tenable
and reliable plans µ̆k that induce any payoff on that segment (hence equation 24
suffices for histories hk).

8.2 Proof of Claim 2

Proof. Let the first two links in the rule of order 12 and 23 be rejected in stage 1
and 2 of the game respectively. Next to propose in stage 3 is pair (1, 3).8

Part 1
I. Suppose that players 1 and 3 have a fully successful joint plan (that is, it is

reliable, tenable, suggests link forming, that is, α3a3 puts probability one on a3 where
a313 = (y, y)) that suggests

9 a half-each payoff proposal match, that is, it recommends

8Note that if pair (1, 3) rejects the game ends with zero payoffs. If it accepts, pair (1, 2) follows;
in turn, if (1, 2) rejects, pair (2, 3) is next; because every not linked pair must have a last opportunity
to propose (as in bridge). If link 23 does not form the game ends, and so on.

9In the language of section 3, this plan has a promise-request, a degenerated correlated strategy,
that puts probability 1 on both proposing ( 36 ,

3
6).
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each one to propose (3
6
, 3
6
), a payoff for player 1 and another one for player 3. Suppose

after link 13 forms, link 12 is rejected in stage 4 and link 32 is being discussed in
stage 5. I want to find out, to begin with, what are all the tenable future-requests
for players 1 and 3 on players 3 and 2 in this contingency.
First, let’s see what players 3 and 2 can achieve by enunciating a future tenable

joint plan that suggests a proposal match (Note this joint plan is not necessarily
reliable and tenable) such that player 2 is offered (out of the sum of their Myerson
values in the immediate prospective graph g13+32, 4

6
+ 1

6
) less than what she would

get in the complete graph, 2
6
. After link 32 forms, as a future tenable joint plan,

it would have to future-request players 1 and 2 to enunciate their unique O-F Joint
Plan that suggests link formation and a proposal match (both propose their Shapley
values) and thus form the third link 12. This is the case as the latter players’ joint
plan bargaining problem would be "essential", both gain by linking. The expected
payoffs for player 3 and 2 associated to their joint plan (Plan a) would be (2

6
, 2
6
), their

Myerson values in the complete graph.
Second, if instead players 3 and 2 can enunciate a future tenable joint plan that

suggests a proposal match such that player 2 is offered strictly more than 2
6
, this joint

plan has to future-request players 2 and 1 to enunciate the unique O-F Joint Plan
that suggests both unilaterally rejecting the third link. Link 32 would be the last to
form (Plan of type b). The associated expected payoffs pair (x53, x

5
2) for players 3 and

2 would lie on the diagonal in figure 1 to the northwest of b
5

32 = (
3
6
, 2
6
).

Third, if instead players 3 and 2’s future tenable joint plan suggests a proposal
match that offers exactly 2

6
to player 2, proposal match b5 such that b532 = (

3
6
, 2
6
) = b

5

32

in figure 1, player 2 would be indifferent between forming or not the third link.
As players 3 and 2 could be the only relevant oldest pair of successful negotiators
according to the O-F focal effect, there are three types of future tenable joint plans
(provided these are tenable and reliable, there are three more types of histories in the
communication game corresponding to the payoff-relevant contingency that follows
b532 = (

3
6
, 2
6
)) if b532 = b

5

32. One type of joint plan would future-request an O-F Joint
Plan that suggests link 12 to be formed (Plan d1). The other one would future-
request an O-F Joint Plan that suggests link 12 to be rejected (Plan d2). The third
one consist of mixes (Plans d3). The associated expected payoffs (x53, x52) for players 3
and 2 would be respectively (2

6
, 2
6
), b

5

32 = (
3
6
, 2
6
) and convex combinations of the latter

pairs of payoffs. Note how the O-F focal effect prevents the IRF 5 set to be open at
b
5

32 = (
3
6
, 2
6
)!

As outside options for players 3 and 2 are (3
6
, 0), joint plan d2 with payoffs (3

6
, 2
6
)

is the only reliable, tenable that has strong Pareto efficient payoffs (Note that the
joint plan that suggests link 32 rejection is also tenable and reliable;d1 and d2 are
only future tenable). Thus, d2 is the unique Nash Coherent Joint Plan for players
3 and 2. Moreover it is fully successful. Player 1 would get in the latter case her
Myerson value in graph g13+32, 1

6
. See figure 1, however, set the outside options for
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players 3 and 2
¡
ψ53, ψ

5
2

¢
= (3

6
, 0).

Back to players’ 1 and 3’s discussion, as player 3 gets the same independently of
link 32 forming or not, the O-F focal effect implies that O-F Joint Plans whenever
link 32 is being discussed are up to the oldest fully successful friends 1 and 3. Fully
successful joint plans for players 1 and 3 vary if the O-F Joint Plan they future-
request either suggest link 32 rejection (type 1 plans), link formation with proposal
match (3

6
, 2
6
)−and thereafter link 12 rejection−(type 2 joint plan) or mixes (type 3

joint plans). Associated expected payoffs for players 1, 2 and 3 would be respectively
(3
6
, 0, 3

6
), (1

6
, 2
6
, 3
6
) and convex combinations between (3

6
, 0, 3

6
) and (1

6
, 2
6
, 3
6
). As it will

become clear soon, the O-F focal effect ensures payoffs will be (3
6
, 0, 3

6
) and hence the

nucleolus will be implemented in coalition structure!
One stage backwards, as of link 12 discussions in stage 4, one can now characterize

all possible type 1 fully successful joint plans for players 1 and 3. As the outside
option pair for players 1 and 2 is (3

6
, 0), using analogous reasons as in bargaining

among players 3 and 2 above, a fully successful joint plan for players 1 and 3 would
have to future-request an O-F Joint Plan that suggests either unilaterally rejecting
link 12 (type 1.1 Joint Plan) or link formation with a proposal match (3

6
, 2
6
) (type

1.2 Joint Plan) or a mix.(type 1.3 Joint Plans). Expected payoffs pairs for players
1 and 3 would be respectively (3

6
, 3
6
), (3

6
, 1
6
) and convex combinations between (3

6
, 3
6
)

and (3
6
, 1
6
). On the other hand, one can characterize the unique type 2 joint plan for

players 1 and 3. As the outside options pair for players 1 and 2 is (1
6
, 2
6
), their joint

plan bargaining game is essential and such a fully successful joint plan for players 1
and 3 would have to future-request an O-F Joint Plan for players 1 and 2 that suggests
link formation and a proposal match. Also, analogously as before, an O-F Joint Plan
that suggests link 23 rejection after link 12 forms would be future-requested. The
NTU NBR yields payoffs of (1

6
+ 1

6
, 2
6
+ 1

6
) for players 1 and 2. Player 3 would get her

Myerson value in g13+12, 1
6
. Under any joint plan of type 3, the bargaining game for

players 1 and 2 is also essential, thus player 3 would get also 1
6
and player 1 could not

get more than 3
6
!

II. Suppose that players 1 and 3 have a fully successful joint plan that suggests
proposal matches where player 3 is offered less than half.
If link 12 is rejected then in any O-F Joint Plan for players 3 and 2, they would

suggest link formation and a proposal match as the joint plan bargaining game is
essential (See figure 1 where player 3 is offered b3 (3) = 2

6
and hence outside options

are
¡
ψ53, ψ

5
2

¢
= (2

6
, 0)). Based on the analysis in I, link 23 would be the last link to

form. In particular, if player 3’s outside option is zero (Note that player 2’s outside
option is, as in I, again zero) the NTU NBR would give player 2 half of the sum of
their Myerson values, that is, 2.5

6
. That is the most she would get. The least she may

get is, following I, 2
6
(See figure 1 where she gets exactly that).

One stage backwards, as player 1’s outside option is 1
6
and that of 2’s is at most

2.5
6
, the joint plan bargaining game as of link 12 discussions is essential (as 1

6
+ 2.5

6
< 5

6
,

the sum of players 1 and 2’s Myerson values) whenever player 3 is offered less than
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half. Analogously as in the case of type 2 joint plan in I, it can be shown that under
any fully successful joint plan by players 1 and 3 with future-requests consistent with
the previous analysis, link 12 would form right after link 13 forms and then the third
link 23 would be rejected.
III. Now suppose player 3 is offered more than half.
If link 12 is rejected then in any O-F Joint Plan for players 3 and 2, they suggest

unilateral rejections. Note that as link 23 does not form, player 2 gets zero in g13,
and player 3 would get more than 3

6
.

One stage backwards as of link 12 discussions, as the outside option pair for players
1 and 2 is (ψ41, 0), where ψ

4
1 <

3
6
, as in II, a fully successful joint plan for players 1

and 3 consistent with the previous analysis would have to future-request on players 1
and 2 an O-F Joint Plan that suggests link formation and a proposal match. Again,
link 12 would be the last link to form.
Fully successful joint plans in cases II, III and I, where in the latter case one does

not include the fully successful joint plan for players 1 and 3 that future-requests
unilateral rejections of links 12 and 32−in that order−after link 13 forms (type 1.1
plan), have expected payoffs for players 1 and 3 that would give at least one player
(either 1 or 3) less than a half and the other one at most 3

6
.

Part 2 . Because the outside options are zero as of link 13 discussions, from Part
1, out of any fully successful tenable and reliable joint plan, type plan 1.1 is the
only one that yields strong Pareto efficient payoffs, (3

6
, 3
6
), if obeyed. Thus, it is the

unique O-F Joint Plan as of link 13 preliminary negotiations. Note that as of link 13
preliminary negotiations no link has formed−as past preliminary negotiations have
been unsuccessful−so the unique tenable and reliable joint plan by not linked pairs,
the disagreement joint plan is basically ignored or trivially followed.
Part 3. One stage backwards, fully successful joint plans for players 2 and 3 are

analogous to the one in the bargaining problem for players 1 and 3. In contrast,
outside options are zero for player 2 and a half for player 3. As players 2 and 3 have
no preceding oldest successful negotiators, the unique O-F Joint Plan suggests link
formation and a half-half proposal match and future-requests consecutive rejection
of the next two links in the order (it is a plan analogous to type 1.1 plan). At the
beginning of the game, a similar argument can be applied as of link 12 discussions
and the claim follows
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Diagram: Myerson Values for Normalized Games
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