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Abstract

We evaluate the effect of preference signaling in two sided matching
markets. Firms and workers have strict preferences over members of
the other side of the market. Each firm makes an offer to exactly one
worker. Workers select the best offer from those available to them. The
short time frame produces congestion and the market fails to reach a
stable outcome. But if workers are able to signal their preferences, (i.e.
their top choice firm,) firms may use this information as guidance for
their offer choices. We find that in this signaling setting, it is optimal
for firms to make use of these signals in the form of cutoff strategies.
However, making use of signals imposes a negative externality on other
firms. We find that on average, introducing a signaling technology
increases the average number of matches, one possible measure of social
welfare.

1 Introduction

Many entry-level labor markets, as well as many markets for educational po-
sitions share the feature that applicants become available at the same time
and search for positions in the near future. An outcome in these markets is
stable if no applicant-employer pair would prefer a match with each other
to their current match. To ensure stability, significant information about
preferences needs to be processed. In many settings, market frictions limit
the amount of information that can be processed, so that stable outcomes
are an unrealistic hope. However, these frictions may be mitigated by al-
lowing applicants to signal preference information to potential employers.
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By introducing a signaling mechanism, where signals are (by construction)
scarce, and hence credible, we may achieve a second best outcome. In this
paper, we model such a signaling mechanism, analyzing behavior and wel-
fare implications. Ultimately we hope the model will provide insight and
policy recommendations as to when such a mechanism might be useful, and
what form a signaling mechanism should take.

In two-sided matching markets (e.g with firms matched to workers, or
men to women), the amount of information about preferences that must
be transmitted to guarantee that a particular matching is stable can be
significant. In a market where firms make costless proposals to workers, in
a stable matching, each firm must be convinced that no worker better than
its current match would prefer to renege on its match and pair with the firm
instead. Segal [5] points out that the minimal informational requirements
can be achieved via a firm proposing deferred acceptance algorithm (see
e.g. Roth Sotomayor [3].) This means that every firm must have made an
offer, and been rejected by, every worker it prefers to its current match. To
get an idea of the number of offers that must be made, observe that with
N workers and N firms with uncorrelated preferences over each other, the
expected number of offers is approximately N · HN , where HN is the Nth
harmonic number (Knuth) [2]. When N = 100, 100 × H100 ≈ 500 offers
must be made. Since offers are often made sequentially, the time to reach a
stable matching can be significant (Roth and Xing) [4].

There are many reasons we may not expect markets to solve this problem,
that is to fully extract all the information necessary to achieve a stable
matching. A market simply may not have enough time to clear because, for
example, classes start in college, or jobs are about to start. Without a fixed
endpoint, employers may still experience time constraints, as applicants may
begin accepting offers elsewhere on which they cannot costless renege. Even
when a market experiences no time restrictions, an employer may find itself
subject to frictions. For example, offers may be costly, or in the extreme
case a firm may be restricted in the number of offers it may make.1

In markets where frictions are an issue, employers often face a tradeoff
between making an offer to their most desirable candidate (who is still avail-
able) and a less desirable candidate who is more likely to accept an offer.
In such markets, we might expect applicants to convey their willingness to
accept an offer. In a market with no frictions, and where the value of each

1For example, departments may face deans who argue that after four rejections, making
an offer to a fifth choice candidate should be ruled out, because ‘we are not a fifth choice
candidate institution.’
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match is known to the firm, applicants’ indications of preferences are not
useful to the firm.2 Furthermore, if applicants may costlessly convey such
preference signals to all employers, these signals may again be useless.

Signaling in Matching Markets

In practice, we find a multitude of markets that are prone to conges-
tion, and in many of these markets, some form of preference signaling takes
place. In some markets, formal signaling mechanisms have been introduced.
In others, we witness informal signaling, where due to reputation or other
considerations, the signals may still be credible.

An example of a market where preference signals are unambiguously in-
terpreted by employers as a measure of likelihood of acceptance (and do not
convey information about the value of a match) is the market for clinical psy-
chologists as described by Roth and Xing [4]. From 1973 to 1998 the market
operated under very specific rules that essentially emulated a deferred ac-
ceptance algorithm with offers and acceptances made over telephone. In this
market, program directors for internships in clinical psychology compete for
doctoral students. The rules impose a uniform time regime in which offers
can be made, with fixed start and end times.3 Because the market operates
in a decentralized manner, and offers take time, the outcome of the market
is not stable. Indeed, some programs find themselves rejected close to the
end, and do not have enough time to make offers during the operation of
the market. The aftermarket is also heavily regulated, and includes only
applicants who have not accepted an offer elsewhere. A program that finds
itself rejected close to the end of the market may not be able to fill its slot
with a desirable applicant. This illustrates the market congestion; time can
run out before programs have a chance to make offers to all the candidates
they are interested in. On a site visit in 1993, Roth and Xing describe the
behavior of one program and its program directors on selection day, which
then lasted from 9 am to 4 pm. The program had 5 positions to fill, and
a rank order list of 20 acceptable candidates. The co-directors said that
their general strategy in the market was to not “tie up offers with people
who will hold them the whole day.” At the beginning of the market they
made offers to candidates 1, 2, 3, 5 and 12, where 3, 5 and 12 had indicated

2For the base model in this paper, we assume that the information gathering stage has
taken place, so that firms valuations of candidates are known. Hence, applicant signals
of preferences are only valuable in that they affect the likelihood of offers being accepted.
Alternative formulations could include signaling as part of an information gathering stage,
so that signals convey information about the valuation of a match, or even yield consid-
erations, where rejections themselves affect firm utility.

3In its later stages, the interval was a seven hour period within a single day.
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they would accept an offer immediately. Candidates 1 and 2 were deemed
attractive enough to be worth taking a chance on. Later in the day, other
candidates called to report that the program was now the highest ranked
program on their list, and indeed, the co-directors of the program decided
to make the offers that were turned down by candidates 1 and 2 to the best
of those candidates. The program eventually hired candidates 3, 5, 8, 10
and 12, all of which had indicated they would accept an offer immediately.
Only candidates 1 and 2 received offers without having signaled their intent.
Candidates 4, 6, 7, 9 and 11 (who were all preferred to some of the applicants
eventually hired) were never made an offer. Roth and Xing summarize this
episode by remarking on the program directors’ concern over making offers
which ran the risk of being rejected late in the day, the consequent attention
paid to candidates who indicated that they would accept immediately, and
the willingness of candidates to convey such information.

An important example of preference signaling is the college admissions
market, in which early application to a college can be interpreted as a prefer-
ence signal. For many colleges this is a market with two application periods,
one early and one ‘regular.’ Although early application rules vary by col-
lege, many schools require that early applicants not send early applications
to other competing schools, so that students are often faced with choos-
ing exactly one school to which they can apply early. A distinction across
schools is the commitment implications of early application. Some colleges
used ‘early action,’ in which applicants may apply early but without any
commitment to accept an offer from the college should they receive one.
Other colleges use an ‘early decision’ plan that included students’ commit-
ment to attend the college should they be admitted. These plans, although
varying by school, represent a formal way of sending a credible preference
signal.4 Avery et. al [1] examine this market in detail, and show that both
early action and early decision applications result in a higher chance of ad-
mission than do regular applications.

In this paper we provide an explicit model of a labor market with fric-
tions, and consider the effects of introducing a signaling mechanism. We
examine the strategic behavior of firms and workers in the presence of such
a mechanism, as well as welfare effects and comparative statics. We find
that when preferences are uncorrelated it is optimal for firms to make use of
these signals in the form of cutoff strategies. However, making use of signals
imposes a negative externality on other firms. We find that on average, in-

4We also observe signaling in other forms during the regular admissions process via
college visits, contact with the admissions office, etc.
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troducing a signaling technology increases the average number of matches,
one possible measure of social welfare. We hope that the model may provide
insight into policy recommendations for second best solutions in congested
markets.

2 No Signaling Structure

We first set up the market in the absence of a signaling mechanism. Let
F = set of firms, W = set of workers, |F | = |W | = N . Each firm f has
preferences over the workers chosen uniformly and randomly from the set of
all strict preference orderings. Worker preferences are analogously chosen.

Each firm f makes an offer to a worker, and offers are made simultane-
ously. Workers choose an offer from those available to them.

Let Θfi
be the set of all preference lists (or rank order lists or ROLs)

for firm i, and let Θwj be the set of all preference lists for worker j. Lists
θfi ∈ Θfi and θfi ∈ Θfi are vectors of length N . Let Θ = Θf1 × . . .×ΘfN

×
Θw1 × . . .×ΘwN indicate preference list profiles.

We will consider Bayesian Nash Equilibria. The vector of agent types
θF

5 is drawn from the space ΘF = Θf1× . . .×ΘfN
according to the uniform

distribution. That is, the type of firm i is simply his preference list θfi , and
from i’s perspective, other firms’ preferences are uncorrelated and uniformly
distributed.

Firm i with preferences θfi values a match with worker wj as g(θfi , wj),
where g(θfi , ·) is a von-Neumann Morgenstern utility function. We assume
that utility of a match depends on worker rank. That is, for any permutation
σ, we have g(σ(θfi), σ(wj)) = g(θfi , wj). 6 We will sometimes abuse notation
and write g(θfi , θ

j
fi

) as g(j), firm utility from matching with its jth ranked
worker.

Definition 1. The offer game with no signals is given by

Γ0 = [F, {Si}, {πi(·)},ΘF , U(·)]
5Sequential rationality ensures that workers will always select the best offer from those

available to them. Hence, we assume this behavior for the workers and focus on the
reduced game with only firms as players.

6Let σ : {1, . . . , N} → {1, . . . , N} be a permutation. Abusing notation, we apply σ
to preference lists, workers, and sets of workers such that the permutation applies to the
worker indices. For example, suppose N = 3, σ(1) = 2, σ(2) = 3 and σ(3) = 1. Then we
have θf = (w1, w2, w3) ⇒ σ(θf ) = (w2, w3, w1) and σ(w1) = w2.
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In this definition, F is the set of firms. Message space Si = W for
each firm i. Function πi : S × Θfi → R yields the payoff to firm i as a
function of the message profile and firm i’s type. Note that this function
will incorporate an expectation over all possible preferences of workers. Set
ΘF is the type space, the space of firm preference profiles. Finally, U(·) is
the uniform distribution over the type space ΘF .

Recall that a strategy for a firm i in this Bayesian game is a mapping
si : Θfi → W .

Definition 2. Strategy profile (s1(·), . . . , sN (·)) is a Bayesian Nash Equi-
librium if for all i and θfi

we have

si(θfi) ∈ arg max
w∈W

Eθ−fi
[π(w, s−i(θ−fi), θfi) | θfi ]

We focus on strategies that depend on workers’ rank within a firm’s
preference list, rather than index.

Definition 3. Firm i’s strategy si is anonymous if ∀ σ ∈ Σ, θfi
∈ Θfi

we
have si(σ(θfi)) = σ(si(θfi)).

For example, ‘always make an offer to my second ranked worker’ is an
anonymous strategy, whereas ‘always make an offer to w2 is not.

Due to the uniform distribution over the type space, each firm optimally
makes an offer to the highest ranked worker on its preference list. Hence,
the unique Bayesian Nash Equilibrium of the offer game with no signals is

si(θfi) = θ1
fi

for all i, θfi .

3 Model: Signaling Structure

We now modify the game so that each worker sends a signal to exactly one
firm on its preference list. Rather than observing all signals from workers
who have sent it a signal, firm i only sees its most preferred worker signal.7

Define bi(θ) ∈ W ∪ {∅} to be the highest ranked worker according to
θfi who has ranked fi first. We refer to this worker as fi’s ‘top guaranteed
worker’ (TGW) or as fi’s ‘top signal.’

Firm i’s type space is now Θfi × (W ∪ {∅}) ≡ ΦFi . That is, fi’s type is
its preference profile combined with its TGW, if it exists.

7One way to think about it is that the number of signals is a second order effect,
whereas the value of this top worker is a first order effect. Otherwise, we can think of the
firm as naively focusing on its best guaranteed option and forgetting about the others, as
it would never make offers to them anyway.
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Definition 4. The offer game with signals is given by

Γ = [F, {Si}, {πi(·)}, ΦF , p(·)]

In this definition, F is the set of firms. Message space Si = W for each
firm i. Function πi : S×Φfi → R yields the payoff to firm i as a function of
the message profile and firm i’s type. Note that this function will incorporate
an expectation over all possible preferences of workers consistent with fi’s
type. Distribution p(·) over types is derived from the uniform distribution
over preference profiles.

A strategy for firm i consists of a function si : Θfi × (W ∪ {∅}) → W.
Since we can infer fi’s TGW w from the complete firm/worker profile θ,
we abuse notation and may also describe fi’s action as si(θ). Similarly, we
sometimes will write i’s payoff function as πi(si(θ), s−i(θ), θ).

Once again, we require strategies to be anonymous.

Definition 5. Firm i’s strategy si is anonymous if ∀ σ ∈ Σ, θfi ∈ Θfi , w ⊆
(W ∪ {∅}), we have si(σ(θfi

), σ(w)) = σ(si(θfi
, w)).

In the offer game with signals, we again focus on Bayesian Nash Equi-
libria.

Definition 6. Strategy profile (s1(·), . . . , sN (·)) is a Bayesian Nash Equi-
librium if for all i and φfi

∈ Φfi
we have

si(φfi) ∈ arg max
w∈W

Eφ−fi
[π(w, s−i(φ−fi), φfi) | φfi ]

We will be interested in a special type of strategy, the cutoff strategy.

Definition 7. Firm fi’s strategy si(·, ·) is a cutoff strategy if for all θfi ,
and all w, w′ with w ¹θfi

w′, we have si(θfi , w) = w ⇒ si(θfi , w
′) = w′.

Observe that when strategies are anonymous, a cutoff strategy can be
summarized by a single value. A firm using a cutoff strategy with cutoff j
will make an offer to its TGW, provided its TGW is ranked j or higher.
Otherwise it will make an offer to its TRW.

Cutoff strategies seem reasonable; if it is optimal for firm i to make an
offer to his TGW, it seems that in a scenario where i has a better TGW, that
worker too should receive an offer. The caveat is that worker signals provide
information about the signals other firms receive, affecting their behavior,
and hence the optimal decision for firm i.
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Example 1. Non-optimal cutoff strategies. Suppose firms −i all use the
strategy of making an offer to the most preferred worker who has not sig-
naled to them. From firm i’s perspective, a higher TGW indicates that in
expectation, other firms now have fewer signals from workers other than i’s
TGW, signals which firms −i shy away from. Hence a higher TGW reduces
riskiness of an offer to TRW. For carefully constructed utility functions, a
cutoff strategy is not optimal. (For example, a utility function for firm i
such that i is nearly indifferent between workers ranked j and j + 1.)

The following proposition states that so long as other firms use cutoff
strategies, it is optimal for firm i to use a cutoff strategy.

Proposition 1. If firms −i are using cutoff strategies s−i(·), then it is
optimal for firm i to use a cutoff strategy.

To prove this proposition, we will need a ‘junk signal’ lemma.
Define a junk signal for a firm as a signal from a worker to whom the

firm does not make an offer. The following lemma states that if other firms
use cutoff strategies, then firms prefer not to receive junk signals.

Lemma 2. Let firms −i use cutoff strategies s−i(·) and let firm i use strategy
si(·). Then for ∀ θfi ∈ Θfi , ∀ w, w′ ∈ W with w ºθfi

w′, we have

Eθ[ πi(si(θ), s−i(θ), θ) | θ ∈ Θw ] ≤
Eθ[ πi(si(θ), s−i(θ), θ) | θ ∈ Θww′ ]

where

Θw = { θ ∈ Θ | θfi = θfi and bi(θ) = w }
Θww′ = { θ ∈ Θ | θfi

= θfi
and bi(θ) = w and θ1

w′ = fi }.

Proof. Consider arbitrary θfi ∈ Θfi and w, w′ ∈ W with w ºθfi
w′. If

si(θfi , w) = w, then the inequality holds trivially, because in both cases the
payoff is fi’s certain payoff from matching with w. Assume si(θfi , w) = θ1

fi
,

fi’s TRW. Define

Θw
+ = {θ ∈ Θw | πi(si(θ), s−i(θ), θ) > 0} Θw− = Θw\Θw

+

Θww′
+ = {θ ∈ Θww′ | πi(si(θ), s−i(θ), θ) > 0} Θww′− = Θww′\Θww′

+

We will now argue that

|Θw| = N · |Θww′ | and (3.0.1)
|Θw

+| ≥ N · |Θww′
+ |. (3.0.2)
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This will be enough to show the result, as (3.0.1) and (3.0.2) combine to
give

|Θw
+|

|Θw| ≥
|Θww′

+ |
|Θww′ |

or
|Θw

+|
|Θw| · g(θfi , θ

1
fi

) ≥ |Θww′
+ |

|Θww′ | · g(θfi , θ
1
fi

)

which is equivalent to the inequality in the lemma. Define function ψ :
Θ× {1, . . . , N} → Θ by

i. (ψ(θ, j))w′ = θw′ , except that w′ removes the highest ranked firm on its
preference list and reinserts it in position j.

ii. (ψ(θ, j))w̃ = θw̃ ∀w̃ 6= w′.

iii. (ψ(θ, j))f̃ = θf̃ ∀f̃ .

To show (3.0.1), observe that ψ : Θww′×{1, . . . , N} → Θw is a bijection.
To show (3.0.2), observe first that ψ(Θww′

+ × {1, . . . , N}) ⊆ Θw
+. To

see this, consider any θ ∈ Θww′
+ and j ∈ {1, . . . , N}. For j = 1 clearly

ψ(θ, j) ∈ Θw
+. For j > 1, ψ(θ, j) differs from θ in that w′ moves fi to

position j and hence w′ now signals to the second firm (call this firm k) on
its list under θ. All firms other than k will make offers as before. Firm k,
however, has a new signal under ψ(θ, j), namely w′. If this is a junk signal,
then firm k will offer as under θ. If this signal (w′)is now firm k’s TGW, then
because firm k is using cutoff strategies, the only way it may change its offer
is to switch from its TRW to its new TGW w′. But from fi’s perspective,
this only reduces competition for its TRW, as its TRW cannot be w′. Hence,
ψ(θ, j) ∈ Θw

+. Furthermore, observe that ψ : Θww′
+ × {1, . . . , N} → Θw

+ is a
one-to-one mapping. ¤

To summarize, when junk signaler w′ switches away from sending fi a
signal, this only be beneficial for fi. The only impact it could have is to
draw another firm to signal to w′ and away from fi’s top choice.

We are now ready to demonstrate the optimality of cutoff strategies

Proof of Proposition 1. Suppose firms −i are using cutoff strategies
s−i(·), and that si(·) is a best response to s−i(·). Let θfi and w be any
pair such that si(θfi

, w) = w. Let w′ be the worker ranked just above w
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according to θfi . We will show that si(θfi , w
′) = w′, from which the result

follows. Define

Θw = {θ ∈ Θ | θfi
= θfi

and bi(θ) = w}
Θw′ = {θ ∈ Θ | θfi = θfi and bi(θ) = w′}
Θw′

+ = {θ ∈ Θw′ | θ1
w = fi}

Θw′− = {θ ∈ Θw′ | θ1
w 6= fi}

.

We calculate the returns to fi naming its TRW when its TGW is w′. Begin
by writing

Eθ

[
πi(θ1

fi
, s−i(θ), θ)

∣∣∣ Θw′
]

=
p(Θw′

+ |Θw′) · Eθ

[
πi(θ1

fi
, s−i(θ), θ)

∣∣∣ Θw′
+

]
+

p(Θw′− |Θw′) · Eθ

[
πi(θ1

fi
, s−i(θ), θ)

∣∣∣ Θw′−
] .

Observe that

Eθ

[
π(θ1

fi
, s−i(θ), θ)

∣∣∣ Θw′
−

]
= Eθ

[
π(θ1

fi
, s−i(θ), θ) | Θw

]
,

because under each condition, exactly one of {w, w′} has signalled to fi, and
no worker ranked higher than w′ has. By the junk signal lemma,

Eθ

[
π(θ1

fi
, s−i(θ), θ)

∣∣∣ Θw′
+

]
< Eθ

[
π(θ1

fi
, s−i(θ), θ) | Θw

]
.

Hence, we have

Eθ

[
π(θ1

fi
, s−i(θ), θ)

∣∣∣ Θw′
]

< Eθ

[
π(θ1

fi
, s−i(θ), θ) | Θw

]

and the result follows. ¤

The next proposition states that firms prefer that other firms not make
use of signals. That is, using signaling strategies imposes a negative spillover
on other firms.

Proposition 3. Suppose that s−i(·) and s′−i(·) vary only in that firm j 6= i

has sj(θfj , w) = θ1
fj

while s′j(θfj , w) = w for some pair (θfj , w). Then for
all i, si(·), we have

Eθ[πi(si(θ), s−i(θ), θ)] ≥ Eθ[πi(si(θ), s′−i(θ), θ)].

The intuition is that when firms −i make offers to their guaranteed
workers, these workers will certainly be unavailable to firm i. Furthermore,
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when firm i is making a risky offer to its top ranked worker, this worker has
not signaled to i, and hence has signaled to someone else. Therefore, offers
from firms −i to their TGWs are more likely to create competition for i
than offers from −i to their TRWs.

Proof. By the law of iterated expectations, we have

Eθ[πi(si(θ), s−i(θ), θ] = EE[πi(si(θ), s−i(θ), θ) | θfi , bi(θ)].

Hence, it is enough to show that conditional on any type θfi , w, firm i
prefers that firm j use the ‘signal-ignoring’ strategy s′(·). That is, ∀θfi

, w,

E[πi(si(θ), s−i(θ), θ) | θfi , b(θ)] ≤ E[πi(si(θ), s′−i(θ), θ) | θfi , bi(θ)]. (3.0.3)

Let s−i(·) and s′−i(·) satisfy the assumptions, and let si(·), θfj and w be
arbitrary. Define

Θw ≡ { θ ∈ Θ | θfi = θfi and bi(θ) = w }
Θw

+ ≡ { θ ∈ Θw | πi(si(θ), s−i(θ), θ) < πi(si(θ), s′−i(θ), θ) }
Θw− ≡ { θ ∈ Θw | πi(si(θ), s−i(θ), θ) > πi(si(θ), s′−i(θ), θ) }

.

and Θw
0 = Θw −Θw

+ −Θw−.

In words, Θw
+ and Θw− are the states of the world where fj ’s strategy is

critical to fi. For states in Θw
+, fi’s offer is successful when opponents use

s′−i, but unsuccessful when they play s−i. For states Θw−, firm j’s strategy
is again critical to for firm i, but in the opposite direction.

We will show that
|Θw

+| ≤ |Θw
−| (3.0.4)

by constructing a one-to-one function ψ : Θw
+ → Θw−.

If Θw
+ = ∅, we are done. Otherwise, consider any θ ∈ Θw

+. Since fj ’s
strategy is critical for fi, we must have si(θ) = θ1

fi
≡ w1. Under s′−i(·), fi’s

offer is successful but under s−i(·) it is not. Hence, we must have

sj(θ) = θ1
j = w1 but

s′j(θ) = bj(θ) ≡ wx 6= w1.

Note that w1 has signaled to neither i nor j.
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Define ψ(θ) ≡ θ′ as follows.8 Beginning with θ, in fj ’s ROL θfj , reverse
the position of w1 and wx. Then switch the top two firms of w1 and wx’s
ROLs (call the old top firm of w1 fy). Each list will now have this new top
firm ranked twice. Replace the second appearance with the old top firm that
was just swapped out. That is,

fj : (w1, . . . , wx, . . . ) → (wx, . . . , w1, . . . ) and
w1 : (fy, . . . , fj , . . . ) → (fj , . . . , fy, . . . )
wx : (fj , . . . , fy, . . . ) → (fy, . . . , fj , . . . ) .

We now show that θ′ is in Θw−:

1. θ′ satisfies θ′fi
= θfi because fi’s ROL is unchanged.

2. θ′ satisfies bi(θ′) = w because only w1 and wx’s top candidates have
been exchanged, and in neither case was this top candidate fi.9

Therefore, fi again makes offer to w1, i.e. si(θ′) = w1.

3. Under θ′ and s′j , fi firm i’s offer to w1 is now un successful because

s′j(θ
′) = bj(θ′) = w1.

4. Under θ′ and sj , fi’s offer to w1 is now successful:

(a) Firm j makes its offer to (θ′)1j = wx 6= w1.

(b) Firm y does not make an offer to w1, as (θ′)1y 6= w1 and by(θ′) 6=
w1. To see this, observe that

i. If w1 = (θ′)1y = θ1
y, then under θ, firm j’s strategy could not

be critical; firm y would always make a successful offer to its
TRW w1, who is also its TGW .

ii. By construction of θ′, by(θ′) 6= w1.

(c) Offers by other firms are the same under θ and θ′, and hence, non
pivotal.

8An alternative means of constructing ψ(·) would be to adjust the instance of wx and
wi everywhere except in fi’s list, and then to swap the lists of wi and wx. This formulation
may be the only one that works when number of offers k>1.

9This is the step that fails if we try to construct the one-to-one function in the other
direction.
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Hence, we have constructed a one-to-one mapping given by ψ(θ) = θ′,
which proves (3.0.4). Finally, since the distribution Pθ|θ∈Θw(·) is uniform,
(3.0.3) follows and the proposition is proved. ¤

We now examine how a firm should adjust its behavior in response to
changes in the behavior of opponents. We find that responding to signals
is a case of strategic complements. One consequence of this result is that
strategic complements can very well allow for multiple equilibria, which by
Proposition 7 can be Pareto ranked.

Proposition 4. Responding to worker signals is a case of strategic com-
plements. That is, if firm j reduces its cutoff point (responds more to
signals), firm i will optimally also reduce its cutoff.

Proof. By proposition 3, when an opponent of firm i reduces its cutoff,
the return to i’s risky strategy of making an offer to its TRW is lowered.
The safe payoff of going for a TGW remains the same. Hence, any tradeoff
previously in favor of the TGW remains so, while some additional decisions
may now favor the TRW - a lowering of i’s cutoff. ¤

When your opponent firms are making offers to workers who have sig-
naled to them, making an offer to a worker who has not signaled to you is
particularly risky. She has signaled to someone else, who is then very much
inclined to make her an offer. The greater this inclination on the part of
your opponents, the riskier it is for you to make offers to your TRW, and
hence, the more inclined you are to make an offer to your TGW as well. As
we shall see in the next section, this feature may potentially lead to perverse
welfare consequences.

4 Equilibria and Welfare

We now turn to equilibrium predictions of the signaling game. Continuity
properties guarantee the existence of equilibria in which players all use the
same cutoff. Interestingly, the strategic complementarity in cutoffs ensures
that we can find a pure strategy symmetric cutoff strategy. The results
in section 3 allow us to rank the equilibria from the perspectives of both
workers and firms. We also consider another measure of welfare, the ex-ante
expected number of matches.

Before proving equilibrium existence, a few observations about mixed
strategies. If a firm finds two distinct cutoffs i, j (i < j) to be optimal, we
have
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i. |i− j| = 1

ii. When TGW has rank j, it is indifferent between its TRW and its TGW.

iii. Mixing between cutoffs i, j (i < j) is the same as randomizing between
TRW and TGW when its TGW is ranked j and making an offer to
TGW when TGW is higher ranked than j.

In light of observations, we can interpret a mixed cutoff strategy as a
value in [1, N ]. That is, cutoff j + a

b is mixed strategy (1-a
b ) · j + a

b · (j + 1).

Proposition 5. There exists a symmetric cutoff equilibrium.

Proof: Observe that best response correspondences are

1. Convex

2. Upper hemicontinuous (from the theorem of the maximum)

3. map from [1, N ] to [1, N ]

The fixed point follows from Kakutani. ¤
However, by using the conjecture that signaling strategies are strategic

complements, we can show that there is a pure strategy equilibrium using
the lattice point strategy sets {1, 2, . . . , N}.
Proposition 6. When strategy sets are {1, 2, . . . , N}, there exists a pure
strategy symmetric equilibrium.

Proof: The proof is an application of Tarski’s fixed point theorem on lat-
tices. Consider the best response function br(j) which yields the optimal
cutoff for f when other firms all use cutoff j.10 By the strategic comple-
ments assumption, br(j) maps {k, k + 1, . . . , N} to itself and is (weakly)
monotonic increasing. By Tarski’s fixed point thereom , there exists a fixed
point, which is a pure strategy symmetric equilibrium. ¤

In general, cutoff equilibria are not unique. It is possible, for example,
to construct a setting in which two equilibria exist, one of which involves
an interior cutoff, and one which involves a cutoff of 1; that is, firms ignore
signals entirely.

The next proposition states that n the case of multiple symmetric cutoff
equilibria, firms prefer the equilibrium with the highest cutoff; that is, the
cutoff that involves the least use of signals.

10If ever two cutoffs are optimal, choose the lower cutoff.
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Proposition 7. Suppose there exist two symmetric pure strategy equilibria
with cutoffs j, k where j < k. Then all firms have higher (ex-ante) expected
payoffs in the equilibrium with cutoff k than in the equilibrium with cutoff j.

Proof. Let s′ and s be symmetric pure strategy cutoff equilibria with cutoffs
j and k, respectively, with j < k.

Since s is an equilibrium, for any firm i, we have

E[πi(si(θ), s−i(θ), θ)] ≥ E[πi(s′i(θ), s−i(θ), θ)].

By proposition 3, we have

E[πi(s′i(θ), s−i(θ), θ)] ≥ E[πi(s′i(θ), s
′
−i(θ), θ)].

Combining the two inequalities proves the result. ¤

This result may seem unusual, in that it appears to indicate that firms
prefer less signaling to more. However, note that this comparison only holds
for equilibria. It may very well be that a cutoff equilibrium is preferred by
all firms to a non-equilibrium strategy profile with higher cutoff.

When a firm optimally chooses to respond to signals, it increases its
payoff and lowers that of others. Hence, the overall effect on welfare is
ambiguous. However, by another welfare standard, the welfare effect is
unambiguous. Proposition 8 states that in expectation, firms responding to
signals increases the number of matches.

Proposition 8. (Number of Matches.) Let firms −i use strategies s−i(·).
Let si(·) differ from s′i(·) only in that for some pair (θfi , w), we have si(θfi , w) =
θ1
fi

while s′i(θfi , w) = w. Then

Eθ[ |µ(si(θ), s−i(θ), θ)| ] ≤ Eθ[ |µ(s′i(θ), s−i(θ), θ)| ].

Proof. Define

Θ+ = { θ ∈ Θ : |µ(si(θ), s−i(θ), θ)| < |µ(si(θ), s′−i(θ), θ)| } and
Θ− = { θ ∈ Θ : |µ(si(θ), s−i(θ), θ)| > |µ(si(θ), s′−i(θ), θ)| }.

Sets Θ+ and Θ− are the profiles for which firm i’s strategy swap (s to s′)
affects the number of matches. In particular, this means

θ ∈ Θ+ ∪Θ− ⇒ θfi = θfi and bi(θ) = w.
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For any θ ∈ Θ+, it must be that

|µ(si(θ), s′−i(θ), θ)| − |µ(si(θ), s−i(θ), θ)| = 1. (4.0.5)

For θ ∈ Θ+, it must be the case that without firm i’s offer, θ1
fi

has an offer
from another firm, and w does not. Similarly, for θ ∈ Θ−, it is w who has
an outside offer, and hence

|µ(si(θ), s−i(θ), θ)| − |µ(si(θ), s′−i(θ), θ)| = 1. (4.0.6)

We will now show that |Θ+| ≥ |Θ−|. Equations (4.0.5) and (4.0.6) along
with the uniformity of the distribution over preferences will then be enough
to prove the result.

Construct function ψ : Θ → Θ as follows: Let ψ(θ) be the profile in
which workers have preferences as in θ, but firms −i all swap the positions
of workers θ1

fi
and w in their preference lists. For any θ ∈ Θ−, without firm

i’s offer, w has an offer from another firm, and θ1
fi

does not. But then when
preferences are ψ(θ), without firm i’s offer

(i) Worker θ1
fi

must have another offer.

(ii) Worker w cannot have another offer.

To see (i), note that under θ, worker w signals to fi, so his outside offer
must come from a firm j who has ranked him first. Under ψ(θ), this firm
ranks θ1

fi
first. If θ1

fi
has not signaled to firm j, then by anonymity, θ1

fi
gets

fj ’s offer. If θ1
fi

has signaled to firm j, then by the positive interpretation

of signals assumption, θ1
fi

again gets fj ’s offer.

To see (ii), suppose to the contrary that under ψ(θ), worker w does
in fact receive an offer from some firm j 6= i. Since w signals to fi, w
must be fj ’s TRW under ψ(θ), so that θ1

fi
is fj ’s TRW under θ. But then by

anonymity and the positive interpretation of signals assumption, θ1
fi

receives
fj ’s offer under θ, a contradiction.

From (i) and (ii), we have

θ ∈ Θ− ⇒ ψ(θ) ∈ Θ+.

Since ψ(·) is clearly injective, we have |Θ+| ≥ |Θ−|, which is enough to prove
the result. ¤
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To summarize the intuition in the proof, observe that when a firm
switches his offer his TRW to his TGW, it is the outside offers of these
workers that determine the impact on the total number of matches. If both
firms have outside offers, or if neither has an outside offer, the number of
matches is unaffected. When exactly one firm has an outside offer, it is more
likely to be the TRW, as this worker has signaled to another firm, while the
TGW has not. Hence, by making an offer to its TGW, the firm maximizes
the expected total number of matches.

In addition to increasing the expected number of matches, response to
signals also unambiguously increases worker welfare.

Proposition 9. (Worker Welfare.) Let firms −i use strategies s−i(·). Let
si(·) differ from s′i(·) only in that for some type class σ ∈ Σ(θ̃f , w̃), we have
si(σ) = TRW (σ) while s′i(σ) = TGW (σ). Then

Eθ[πW (si(θ), s−i(θ), θ)] ≥ Eθ[πW (si(θ), s′−i(θ), θ)].

Proof. For every profile θ such that the switch (s → s′) causes a net worker
welfare decrease, we can find a profile such that the the change causes a net
worker welfare increase of greater magnitude as follow. Begin with θ. Note
that firm i’s type is (θi, bi(θ)) ≡ (θi, w). Now swap the positions of θ1

i and
w in the lists of all firms −i. Swap the lists of θ1

i and w, except for fi, which
maintains its ranking in the two lists.

This switch has the effect of swapping the outside (non fi) offers of θ1
i

and w, except possibly adding some offers for θ1
i (who may not signaled to

fi) and possibly removing some offers to w (who has signaled to fi). Under
this new profile θ′, net worker welfare is greater from fi’s offer to w, and
because of the extra outside offers for θ1

i (and fewer for w), the welfare
difference is greater than under θ.

Finally, since under anonymous strategies, workers all receive ex ante
identical utility, this change must improve welfare for all workers. ¤

5 Market Size

The value of a signal to a firm depends very much on market conditions. If
there are many more workers than firms, a firm may recognize its position
of power and ignore signals from workers. Rather, it will make an offer to
its top ranked worker, knowing this worker will likely be pleased to receive
an offer at all. On the other hand, if workers are in short supply, then a firm
will be ecstatic to receive any worker signal and will likely respond with an
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offer to avoid remaining unmatched. This idea is expressed in the following
proposition.

Proposition 10. Let sl, sh be the equilibria with lowest and highest cutoffs
in the market with M firms and N workers. Let s̃l, s̃h be the equilibria with
lowest and highest cutoffs in the market with M + 1 firms and N workers.
Let kl, kh, k̃l, and k̃h be the respective cutoffs of these equilibria. Then

k̃l > kl and k̃h > kh.

Proof. Define best response function brM (j) to be the optimal cutoff for
firm f when the other M−1 firms all use cutoff j11 Define brM+1(j) similarly
for the M + 1 firm market.

Observe first that brM (kh) = kh. If otherwise brM (kh) > kh, then we can
find a cutoff equilibrium with cutoff > kh. Next observe that ∀j, brM+1(j) >
brM (j). That is, when there is an additional firm, if other firms continue
to behave in the same manner, it is optimal for f to pay more attention to
signals. But now brM+1(·) maps the interval [kh, M + 1] onto itself and is
weakly monotonic increasing. Hence by Tarski’s fixed point theorem, there
is an (integer) cutoff j∗ ≥ kh with brM+1(j∗) = j∗, from which we have
k̃h > kh.

6 Extensions

There are a number of important problems that this baseline model can be
used to explore, including robustness to changes in preferences and market
size, as well as questions involving optimal mechanism choice.

1. Perfect Correlation.

(a) Perfect correlation of worker preferences. In this case, a signaling
mechanism adds no value. To see this, observe that the #1 firm
will ignore signals, as he is the top choice of all workers. The #2
firm doesn’t care what the firms below him are doing, and has
no information about what firm #1 is planning on doing. Hence,
firm #2 will ignore signals. And so on....

11If ever two cutoffs are optimal, choose the higher cutoff.
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(b) Perfect correlation of firm preferences. Even in the no signaling
case, the equilibrium is tricky. There may be an asymmetric ‘co-
ordination equilibrium’ where firm 1 makes an offer to worker 1,
etc.12 There may also be a symmetric equilibrium where firms
mix over workers.

Here signaling can add value. Since workers have no informa-
tion about the preferences of their fellow workers, they will signal
their top choices truthfully. Firms, after observing their TGW,
may still conceivably make an offer to a worker other than their
TGW. For example, there is a chance that #2 ranked worker
may have the same top choice firm as the #1 ranked worker, in
which case it may be worth making the #2 ranked worker an of-
fer. We postulate a symmetric mixed strategy equilibrium where
firms, upon seeing their TGW, mix offers over workers ranked
2 . . . TGW − 1. Under some regularity conditions (e.g linear util-
ity of rank), this mixture will be over an interval.

At best, we might hope to compare the (unique symmetric?)
equilibria in the no signaling and signaling cases in a simple 3x3
model.

2. Correlation: Two tiers of school. There are two tiers of firms, A
and B, and two tiers of workers, A and B. All firms in A are preferred
by all workers to firms in B, and all workers in A are preferred by all
firms to workers in B. Within tiers, preferences are uncorrelated. If
workers have one signal to send, top tier workers may choose to send
the signal to their top choice in tier A or B. Firms may make offers
to workers in tier A or B. Assume there is an imbalance in that there
are more top tier workers than top tier firms. Then the only cross sig-
naling we would expect would be for top tier firms to signal to second
tier firms. Similarly, we would only expect cross tier offers to come
from second tier firms to top tier workers.

Unlike the single tier models, there is now an important difference
between early decision and early action. Under early action, a top tier
worker may be willing to signal to a second tier school, knowing that
he can always accept offers from top tier schools who send him offers.

12Anonymity is no longer a requirement, as workers are naturally indexed by rank.
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Under early decision, we would expect a smaller fraction of top tier
workers to send signals to second tier firms, meaning that more top
tier workers would fall through the cracks.

One possible modeling simplification is that firms value all workers
in A at uA and all workers in B at UB. However, we then lose the
within tier TRW-TGW trade off.

3. Size of Market. Increasing the number of firms shifts the set of
equilibria so that workers respond more to signals. We conjecture
that increasing the number of firms also reduces worker welfare. We
further conjecture that the value of a signaling mechanism is greatest
in balanced markets.

4. Additional Signals. Concavity of introducing additional signals (i.e
workers send top two signals). Conjecture: when firms only have one
offer to make, the optimal number of signals is 1. When firms have k
offers to make, the optimal number of signals cannot be > k.

5. Endogenous Signal Credibility. Suppose that workers were in fact
allowed to signal to multiple firms, but that all signals were made pub-
lic. In this setting, despite the costless nature of the signals, workers
may be hesitant to signal to all firms, as their signals may then be dis-
regarded. A worker who signals to just a few firms may be more likely
to be take seriously. Such a mechanism has the advantage of provid-
ing flexibility in how a worker signals; a single “strong” signal versus
multiple “weak” signals, and credibility is endogenous. Furthermore,
one could envision worlds in which the publicizing is itself a costly act
on the part of the signaler, so that the need for a signaling mechanism
itself is obviated.

7 Conclusion

Market congestion is a reality, and the abundance of signaling in congested
markets suggests that signaling deserves consideration as a means of achiev-
ing second-best outcomes.

We have examined a natural signaling mechanism; allowing workers to
signal to a sole firm. In a setting of uncorrelated preferences, workers will
send this signal to their top choice firm, and the firms use this information
as guidance for their offers. We find that in this signaling setting, it is
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optimal for firms to make use of these signals in the form of cutoff strategies.
However, making use of signals imposes a negative externality on other firms,
so that while beneficial for workers, the overall welfare effect of a signaling
technology on firms is ambiguous. We find that on average, introducing a
signaling technology increases the average number of matches, one possible
measure of social welfare.

Ultimately the goal is to provide policy advice for a broad set of en-
vironments as to when an organized signaling mechanism might improve
outcomes, and should this be the case, what forms the signaling mechanism
might take. Our hope is that the approach in this paper will serve as a tool
and as a benchmark; a framework for examining settings with alternative
preference/market assumptions, and a point of comparison for alternative
signaling mechanisms.
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