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Abstract

This note demonstrates that in a principal-agent environment with inde-
pendent private values and generic payoffs, the mechanism implemented by an
informed principal is not ex-ante optimal. This result implies that in (generic)
settings where the principal can covertly acquire private information before
selecting a mechanism, she will fail to select an ex-ante optimal mechanism.
Furthermore, the principal is indifferent whether to become informed before or
after selecting a mechanism.
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1 Introduction

This note studies the principal-agent environment with independent private values,
in which the principal may have private information at the moment of mechanism
selection. It consists of two parts. In the first part, I demonstrate that for generic
payoff functions, reservation utilities and prior beliefs, the equilibrium allocation im-
plemented by an informed principal is not ex-ante optimal.1 Because an uninformed
principal can implement an ex-ante optimal allocation as an equilibrium in a corre-
sponding (optimal) direct mechanism, the arrival of the principal’s private information
before mechanism design has negative impact on her ex-ante payoff.

∗Department of Economics, University of Bonn, Adenauerallee 24-42, 53113 Bonn.
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1An ex-ante optimal allocation maximizes the ex-ante payoff of the principal among all interim
incentive-compatible and individually rational allocations and can be implemented by an uninformed
principal as an equilibrium in an optimal mechanism. A property is generic if it holds on a dense open
set of the payoff functions satisfying the assumptions of the model. This genericity concept is the
same as in Mas-Colell [11] and Maskin and Tirole [14]. The quasilinear preferences are non-generic
in our model and our results will not hold for these preferences.
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The tension between what the informed principal can implement and what the
principal would like to implement ex-ante has implications for her behavior: at the
ex-ante stage the principal may be willing to delay gathering her private information,
restrict the set of available mechanisms, or even give up the principal’s rights.2 The
second part of this note analyzes one such implication. I consider a setting in which a
principal covertly chooses between acquiring private information either before select-
ing a mechanism or after selecting a mechanism but before executing it. I demonstrate
(1) that in equilibrium the principal is indifferent about when to become informed
and (2) that the equilibrium allocation is equivalent to the allocation implemented
by the informed principal and thus generically is not ex-ante optimal. In particular,
there is a surprising equilibrium in which the principal stays uninformed until after
selecting a mechanism and yet selects a mechanism which would be implemented if
she were informed. Importantly, these results imply that the principal will not select
an ex-ante optimal mechanism in (generic) settings where she can covertly acquire
private information before mechanism design.

In our model, the principal always observes her private information by the time
of execution of a mechanism. Therefore, early realization of information may only
decrease the principal’s ex-ante payoff. One channel through which this can happen
is the information leakage through mechanism design: if the agent infers something
about the principal’s private information from the choice of mechanism, his incentives
constraints would be tightened. However, the Inscrutability Principle by Myerson
[16] states that the mechanism selected by an informed principal need not signal any
information: any allocation which can be achieved by an informed principal can also
be achieved without revealing any private information until after the mechanism is
played. Moreover, Maskin and Tirole [14] (henceforth, MT) show that generically
in equilibrium no principal’s private information is revealed to the agent until after
mechanism design.

Yet, neither the Inscrutability Principle nor the results in MT imply that an in-
formed principal can achieve an arbitrary allocation and, in particular, an ex-ante
optimal allocation. What the principal can achieve in equilibrium depends on the
deviations available to her different types. In an ex-ante optimal allocation the prin-
cipal gets insured by increasing payoffs of some types at the expense of other types.
This is done to such an extent that these latter types can always construct profitable
deviations guaranteed to be accepted by the agent. Thus, the principal is unable to
implement an ex-ante optimal allocation not because of information leakage to the
agent but rather because of the conflict among her own types.

The crucial step in proving this result is to establish a restriction on an ex-ante
optimal allocation that must be satisfied if this allocation is implemented by an in-
formed principal. Following MT, I analyze the problem in terms of indirect payoff
functions of the principal’s types defined on the space of slacks in incentive com-
patibility and individual rationality constraints of the agent. In an ex-ante optimal
allocation, the marginal values of these payoff functions are equal across the types of

2Mylovanov [17] presents an example in which the mechanism selected by the informed principal
delivers a lower ex-ante payoff than the mechanism selected by her opponent.
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the principal. The allocation selected by the informed principal violates this condi-
tion for generic indirect payoff functions that are differentiably strictly concave. This
note complements the work of MT by proving the genericity result explicitly through
invoking the Transversality and the Implicit Function Theorems.

Under additional assumptions on the primitives of the model, which guarantee
that the allocation selected by the informed principal is deterministic, this result
implies the equivalent result in the space of direct payoff functions defined over allo-
cations. Because of technical difficulties I have been unable to establish this equiv-
alence for stochastic allocations. However, the result for deterministic allocations is
still a valuable observation since due to similar technical reasons the literature almost
exclusively restricts attention to deterministic allocations.

Our results do not imply that an informed principal implements an allocation
that is worse than an ex-ante optimal allocation for all types of the principal. Both
allocations are interim incentive-efficient in the sense of Holmström and Myerson
[9]: there are no other incentive-compatible and individually rational allocations that
generate higher payoffs for all types of the principal. However, (generically) the
allocation selected by the informed principal does not generate the highest feasible
ex-ante payoff and hence allowing the principal to observe her private information
before selecting a mechanism has negative value from the ex-ante perspective. At
the same time, as MT has demonstrated (generically) the allocation selected by the
informed principal achieves for each type of the principal a payoff strictly higher than
would be possible if the principal’s information were common knowledge. This reveals
that allowing the agent to observe the principal’s private information before selecting
a mechanism has negative value from both the ex-ante and the interim perspectives.

The consequence of our genericity result is that in (generic) environments where
the principal can covertly acquire information before mechanism design she will be
unable to implement an ex-ante optimal allocation. In equilibrium, the principal can
always deviate and learn her information early. Because the agent anticipates this
the only equilibrium outcome is an allocation which would be implemented by the
informed principal, regardless of whether the principal actually becomes informed. In
fact, in equilibrium the principal is indifferent about when to acquire information.

The question of information acquisition in mechanism design has been recently
studied by Bergemann and Välimäki [3]. Their focus is on the existence of mecha-
nisms that simultaneously create efficient incentives for the information acquisition
by agents and achieve an ex-post efficient allocation. In contrast, in our model the
issue is the timing of the information acquisition by the principal; information acqui-
sition is costless and the principal always observes her information before execution
of the mechanism. Our model is also related to Cremer and Khalil [5], who consider
a setting in which the agent has a choice about whether to become informed before
or after signing a contract.

The rest of the note is organized as follows. Section 2 presents the environment.
Section 3 shows the genericity result. Section 4 considers a setting in which the
principal has a choice over when to become informed.
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2 Model

Environment. Our environment is identical to the one in MT. There is a principal
(she) and an agent (he), who can contract on an observable and verifiable allocation
(y, t) ∈ Ω, where Ω = Ωy × Ωt is a convex and compact subset of R × R.3 (As an
example, one might think of the principal and the agent as a buyer and a seller, in
which case y is the amount of good exchanged and t is the price paid.)

The agent has a twice continuously differentiable von Neumann - Morgenstern
payoff function Uj(y, t), where j ∈ {1, 2} is the agent’s type.4 The payoff function
U(·)(·) is decreasing in y, increasing in t, and strictly concave in (y, t).5 It decreases
in j,

U1(y, t) > U2(y, t) for all (y, t) ∈ Ω,

and also satisfies the single-crossing condition,

−∂U1/∂y

∂U1/∂t
< −∂U2/∂y

∂U2/∂t
for all (y, t) ∈ Ω.

The principal has a twice continuously differentiable von Neumann - Morgenstern
payoff function Vi(y, t), where i ∈ {1, . . . , N}, N ≥ 2, is the principal’s type. The
payoff function V(·)(·) is increasing in y, decreasing in t, and strictly concave in (y, t).

The agent has interim individual rationality constraint: in any contract each type
of the agent has to obtain at least his reservation utility u. There are no individual
rationality constraints for the principal.

Let t be the minimal transfer in Ωt. It is assumed that payoff functions are such
that (1) given this transfer the agent is necessarily worse off than without a contract,
regardless of his type or the action y:

Uj(y, t) < u for all (y, t) ∈ Ω and j ∈ {1, 2}.

and (2) regardless of the types, there exists an allocation such that both parties prefer
it to no contract.

The types of the parties i and j are their private information, independently
realized with strictly positive probabilities φi and pj.

6 The structure of preferences
and rules of the games are common knowledge.

Allocations and mechanisms. Let P be the set of probability measures over the
set of allocations Ω. An allocation rule is a function which maps the types of the
parties into a distribution over allocations ν : {1, . . . , N}×{1, 2} → P . Let Ψ be the

3The convexity and compactness of Ω are required for existence of equilibrium in the informed
principal game.

4MT require the payoff functions to be continuously differentiable. However, twice continuous
differentiability is needed for the genericity result.

5MT require strict concavity of the parties’ payoffs only in y. The genericity results in MT and
this note will not hold if payoffs are linear in t. See Proposition 11 in MT, Yilankaya [23] and
Mylovanov [18] for the corresponding results.

6MT allow for degenerate probability distributions.

4



set of allocation rules. For the principal denote the expected payoff of type i, who
obtains the allocation of type i′, by

Vi(i
′, ν) =

∑
j

pj

∫

Ω

Vi(y, t)dν(i′, j).

Define similarly for the agent

Uj(j
′, ν) =

∑
i

φi

∫

Ω

Uj(y, t)dν(i, j′).

An allocation rule ν is incentive-compatible if for i, i′ ∈ {1, . . . , N}

Vi(i, ν) ≥ Vi(i
′, ν) (PIC)

and for j, j′ ∈ {1, 2}

Uj(j, ν) ≥ Uj(j
′, ν). (AIC)

An allocation rule is individually rational if for j ∈ {1, 2}

Uj(j, ν) ≥ u. (AIR)

A mechanism is a game form whose outcome is a probability distribution over
allocations.7 The solution concept for a mechanism is Perfect Bayesian equilibrium.
Following MT, the set of allowed mechanisms is determined by two properties: for
any mechanism (a) there exists equilibrium regardless of the agent’s beliefs about
the principal, and (b) the equilibrium payoff correspondence is upper-hemicontinuous
and convex-valued in beliefs.8

Uninformed and informed principal games. Figure 1 depicts the timing of the game
in which the principal selects a mechanism before learning her type. The highest
expected payoff for the principal in a Perfect Bayesian equilibrium of this game is
obtained by an ex-ante optimal allocation, which is a solution of the following program:

max
ν∈Ψ

∑
i

φiVi(i, ν) (EA)

7In our model, the continuation equilibrium in a mechanism offered off the equilibrium path
depends on the out-of-equilibrium beliefs of the agent. The Revelation Principle (e.g., Myerson
[15] or Dasgupta et al. [6]) does not apply off the equilibrium path and hence we cannot restrict
attention to direct mechanisms. However, the Revelation Principle applies on the equilibrium path:
any equilibrium outcome can be described by an incentive-compatible and individually rational
allocation rule, which is a truth-telling equilibrium outcome of some direct mechanism.

8These properties are needed for existence of equilibrium; standard existence results do not apply
because the action space includes a choice of a mechanism. Any set of one-stage mechanisms with
finite strategy spaces satisfies these properties, given the parties can use a public correlation device
(needed for convexity of equilibrium correspondence). The requirement (b) could be somewhat
weakened. See p. 398 in MT for details.
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subject to (PIC), (AIC), and (AIR). An ex-ante optimal allocation exists, since the
set of allocations rules satisfying the constraints is compact in the weak topology and
the objective function is continuous.

Figure 2 depicts the timing of the informed principal game, in which the principal
selects a mechanism after she learns her type. The equilibrium allocation in the
informed principal problem is characterized in MT. Following MT define an indirect
payoff function Vi(ci, ri) to be the value function of the program

max
ν∈Ψ

Vi(i, ν) (IUi)

subject to
∫

Ω

U1(y, t)dν(i, 1)−
∫

Ω

U1(y, t)dν(i, 2) = −ci,
∫

Ω

U2(y, t)dν(i, 2)− u = −ri.

-
mechanism

Principal offers
(or not)
accepts
Agent

realized
Information

walk away
Agent may

played
Mechanism

Figure 1: Uninformed Principal: Ex-ante selection of a mechanism.

-
(or not)
accepts
Agent

realized
Information

mechanism
Principal offers

played
Mechanism

Figure 2: Informed Principal: Interim selection of a mechanism.

Propositions 2 – 4, 6, and 7 in MT prove existence of Perfect Bayesian equilibrium
and show that an allocation ν is an equilibrium outcome if and only if there exist
strictly positive real numbers µr and µc such that

1. for i = 1, . . . , N the allocation ν(i, ·) solves program IUi given the slacks ri and
ci that are a solution of the program

max
(ri,ci)∈Zi

Vi(ci, ri) (WEi)

s.t. µrri + µcci = 0, (BCi)

where Zi is the set of (ri, ci) for which there exists a solution of program IUi

for i with ν(i, ·) that has support on Ω (see Maskin and Tirole [12], the proof
of Proposition 2); and
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2. ν satisfies AIR for j = 2 and AIC for j = 1,

∑
i

φiri = 0, (IIR)

∑
i

φici = 0. (IIC)

MT call these allocations strong unconstrained Pareto optimum (henceforth, SUPO).9

Interior Solution. I will further assume that the set of payoff functions and the
allocations Ω is such that the first order conditions of program WEi are satisfied with
equality, i.e., its solution is interior. Without this restriction the results in this note
would not be valid for two reasons. First, Proposition 4 in MT, which is further used
for the equilibrium characterization in Proposition 6 in MT, makes use of first order
conditions that hold with equality. Second, the first order conditions which hold with
equality are a crucial building block in the proof of Lemma 3 in this note.

Properties of indirect payoff function. I also make

Assumption 1. The payoff functions Ui(y, t) and Vi(y, t) are such that the indirect
payoff functions Vi(ri, ci) are strictly concave and twice continuously differentiable.

These properties are required to prove the regularity of SUPO, i.e., that the Ja-
cobian of the system of first-order optimality conditions describing SUPO allocations
has non-zero determinant. Unfortunately, the general conditions under which these
properties hold have not been established in the literature and I have also been unable
to do so.

On the other hand, these properties are straightforward to obtain if the solution
of program IUi is a deterministic allocation. In the setting with two types of the
principal, Quesada [20] imposes the following additional assumptions on preferences:

Assumption 2. 1. The principal has two types.10

2. Vi(y, t) = V (Si(y)−t) and Uj(y, t) = U(t−ψj(y)), where V and U are increasing
and strictly concave, Si is increasing and concave and S2(y) > S1(y), and ψj is
increasing and convex and ψ2(y) > ψ1(y);

3. The function Φ(x, y) = U(U−1(x) + ψ2(y)− ψ1(y)) is strictly convex.

9More precisely, MT (1) define Walrasian equilibrium to be the triple (µr, µc, ν) that solves
programs WEi and satisfies IIC, IIR and (2) establish equivalence between SUPO and ν of the
Walrasian equilibrium for strictly positive beliefs. As MT show SUPO exists and generically there are
at most finitely many of them. Under additional assumptions on preferences, Quesada [20] establishes
some further properties of SUPO. However, in environments other than with independent private
values SUPO may not exist. See Maskin and Tirole [13] and Tisljar [22] for analysis of common
values environments and Cella [4] and Kosenok and Severinov [10] for analysis of environments with
correlated types.

10Although MT allow for n ≥ 2 types of the principal, the proof of the uniqueness of the equi-
librium (Proposition 7) in MT is carried out for the case of n = 2. MT state that their results are
straightforward to generalize for the environments with more than two types.
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Proposition 1 in Quesada states that under Assumption 2 any SUPO allocation
is deterministic or, more precisely, that any SUPO allocation has support consisting
of one allocation (y, t) for each combination of types of the principal and the agent.11

However, the proof of Proposition 1 in Quesada does much more: it shows that any
solution of program IUi has support consisting of one allocation (y, t) for each type
of the agent. This allows us to obtain

Lemma 1. If Assumption 2 holds, then the solution of program IUi is unique and
the indirect payoff function Vi(ri, ci) is strictly concave and twice continuously differ-
entiable.

Proof. “Uniqueness of solution”. Imagine there are two distinct allocations ν1 and
ν2 that solve program IUi. Then, the stochastic allocation νS which mixes with
equal probabilities between ν1 and ν2 is also a solution of program IUi: it satisfies
constraints IIR, IIC and achieves the same value of the objective function as ν1

and ν2. However, this allocation has support consisting of two points (y, t) for each
agent’s type and therefore, as shown in the proof of Proposition 1 in Quesada, cannot
be a solution of program IUi.

“Properties of Vi(ri, ci)”. Strict concavity of Vi(ri, ci) follows directly from the
uniqueness of the solution of program IUi over the set of deterministic allocations. An
application of the Implicit Function Theorem to the first-order conditions describing
the solution of program IUi over the set of deterministic allocations gives continuous
differentiability of the Lagrange multipliers and thus twice continuous differentiability
of the value function.

3 Negative Value of Information

An SUPO allocation is computed subject only to IIR and IIC and ignoring other
incentive compatibility and individual rationality constraints. To facilitate the com-
parison between the ex-ante optimal allocation and SUPO, define an unconstrained
ex-ante optimum (UEAO) to be the allocation which maximizes the ex-ante expected
payoff of the principal

∑
φiVi(ci, ri) subject to constraints IIR and IIC. The fol-

lowing lemma establishes restrictions on allocations which are simultaneously SUPO
and UEAO. It states (equation (6)) that marginal values of indirect utilities should
be equal across the types of the principal.

Lemma 2. If SUPO is UEAO, it solves

11Quesada shows existence of payoff functions satisfying her assumptions. It can be further shown
that the set of payoff functions satisfying Assumption 1 is open in the set of payoff functions satisfying
assumptions of our model. The topology for the space of payoff functions on compact Ω is given by
C2 uniform convergence: a sequence of functions fn converges to a payoff function f , fn → f , if and
only if every derivative of fn → f from 0-th to 2-nd order uniformly converges to zero.
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∂Vi(ri, ci)

∂ri

− γiµr = 0 (1)

∂Vi(ri, ci)

∂ci

− γiµc = 0 (2)

µrri + µcci = 0 (3)∑
i

φiri = 0 (4)

µr = 1 (5)

γ1 − γ2 = 0 (6)

where γi, µc > 0.

Proof. Equations (1)–(5) are satisfied by any SUPO. Let γi be the Lagrange multi-
plier corresponding to constraint BCi in program WEi. Equations (1) and (2) are
the first order conditions with respect to ri and ci, and (3) is constraint (BCi) of
programs WEi. Equation (4) is constraint (IIR). Equation (5) is normalization.
The last equation holds if SUPO is UEAO. The first order conditions of the program
determining UEAO with respect to ri and ci are

∂Vi

∂ri

(ri, ci)− λr = 0 (for i = 1, 2),

∂Vi

∂ci

(ri, ci)− λc = 0 (for i = 1, 2).

Together with (1) and (2) it implies µr = λr/γi, µc = λc/γi and γ1 = γ2.

The next Lemma indicates that the conditions under which SUPO is UEAO are
limited. We say that a property is generic if it holds on a dense open set of the payoff
functions satisfying the assumptions of the model.12

Lemma 3. SUPO is not UEAO generically on the set of the principal’s payoff func-
tions and the agent’s prior beliefs about the principal.

Proof. We will prove that the set the principal’s payoff functions and the agent’s
prior beliefs about the principal for which SUPO is not UEAO is dense in the set
of principal’s payoffs and the agent’s prior beliefs satisfying the assumptions of the
model by demonstrating that

(*) if for some principal’s payoff functions, Vi(y, t), and the agent’s prior
beliefs about the principal, φi, SUPO is UEAO, then in any open set
containing these payoffs and beliefs there exist Vi(y, t) and φi for which
SUPO and UEAO differ.

12I do not use a more recent concept of genericity in Anderson and Zame [2] because my results
rely on some genericity results proven in MT using the older concept. See footnote 11 for topology
on the space of payoff functions.
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Proposition 1 in MT implies that ri 6= 0 at SUPO holds generically on the set of
payoff functions. Hence, by the Baire property we only need to prove (*) for Vi(y, t)
and φi for which ri 6= 0.

Let SUPO be UEAO for some such Vi(y, t) and φi. Claim (*) holds for these
payoffs and beliefs if there is no open set containing φi for which SUPO is UEAO.

Assume otherwise and denote by Bφ an (arbitrary) open set of φi for which SUPO
is UEAO for the payoff functions Vi(y, t). Now let us consider an open set BV of
principal’s payoff functions containing Vi(y, t) such that for all payoff functions in BV

and all beliefs in Bφ, ri 6= 0 at SUPO. Then, there exists ε > 0 close to zero such that
for all ε ∈ (−ε, ε) the payoff functions,

Ṽi(y, t) = (1 + aiε)Vi(y, t), ãi =





1, i = 1;
−1, i = 2;
0, otherwise.

belong to BV .
Because Ṽi(y, t) are monotone transformations of Vi(y, t), the solution of program

IUi is the same for both functions. Hence,

Ṽi(ri, ci) = (1 + aiε)Vi(ri, ci).

Since ri 6= 0, there exists ri′ , i′ 6= i, such that r1 − ri′ 6= 0. Because SUPO is UEAO,
Lemma 2 implies that the following equations have to be satisfied,

(1 + aiε)
∂Vi(ri, ci)

∂ri

− γ = 0 (Ri)

(1 + aiε)
∂Vi(ri, ci)

∂ci

− γµc = 0 (Ci)

ri + µcci = 0, (BEi)∑

i6=i′
φi(ri − ri′) = 0. (IIR′)

where IIR′ is obtained from (4) using φi′ = 1−∑
i 6=i′ φi. The Jacobian of this system

with respect to (r1, c1, . . . , rN , cN , γ, ε, φ1, µc) evaluated at ε = 1 is

J =




∂2V1

∂r2
1

∂2V1

∂r1∂c1
0 0 . . . −1 1 · γ 0 0

∂2V1

∂r1∂c1

∂2V1

∂c21
0 0 . . . −µc µc · γ 0 −γ

0 0 ∂2V2

∂r2
2

∂2V2

∂r2∂c2
. . . −1 −1 · γ 0 0

0 0 ∂2V2

∂r2∂c2

∂2V2

∂c22
. . . −µc −µc · γ 0 −γ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 µc 0 0 . . . 0 0 0 c1

0 0 1 µc . . . 0 0 0 c2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ1 0 φ2 0 . . . 0 0 r1 − ri′ 0



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where the order of equations is (R1), (C1), ..., (RN), (CN), (BE1), ... , (BEN), (IIR′)
and it is assumed that i′ 6= 2. Its dimensionality is 2(N + 1) + 1 by 2(N + 2).

Observe that the second last column of Jacobian contain one non-zero element and
2(N + 1) zeros. This implies that rank(J) = 1 + rank(J1), where is the submatrix
of J obtained from J by removing the 2(N + 1) + 1-th row and the 2(N + 1) + 1-th
column. Now, form a matrix by taking first 2(N +1) rows with first 2(N +1) elements
of J . Clearly, rank(J1) ≥ rank(J2). The matrix J2 is square and has a determinant,
which is equal to

2γ ·
2∏

i=1

(
∂2Vi

∂r2
i

µ2
c − 2

∂2Vi

∂ri∂ci

µc +
∂2Vi

∂c2
i

) N∏
i=3

(
∂2Vi

∂r2
i

∂2Vi

∂c2
i

−
(

∂2Vi

∂ri∂ci

)2
)

. (7)

The last product is strictly positive because its each term is a Hessian of Vi. The
first product is non-zero because its each term is a quadratic polynomial in µc, whose
discriminant,

D = 4

[(
∂2Vi

∂ri∂ci

)2

− ∂2Vi

∂r2
i

∂2Vi

∂c2
i

]
,

is proportional to the negative of the determinant of the Hessian of Vi(ri, ci) and is
less than zero. Hence, there is no real µc setting any of the terms to zero. This gives
rank(J2) = 2(N + 1) and rank(J) = 2(N + 1) + 1.

Because J has full rank, the Transversality Theorem implies that the system (R1),
(C1), ..., (RN), (CN), (BE1), (BE2), (IIR′) in variables (r1, c1, . . . , rN , cN , γ, ε, µc) has
a regular solution on some open set B′

φ ⊆ Bφ.
13 By the Implicit Function Theorem

(r1, c1, . . . , rN , cN , γ, ε, µc) can be locally solved as a function of φ1 for φi ∈ B′
φ.14

Therefore, for φi ∈ B′
φ system (R1), (C1), ..., (RN), (CN), (BE1), (BE2), (IIR′) has

a solution only on a set of ε of Lebesgue measure zero. This implies that for any
φi ∈ B′

φ we can always find an ε arbitrarily close to 1 such that the system (R1), (C1),
..., (RN), (CN), (BE1), (BE2), (IIR′) does not have a solution and hence SUPO is
not UEAO. This establishes claim (*).

The fact that the set of Vi(y, t) and φi on which SUPO is not UEAO is open follows
from the upperhemicontinuity of the solutions of programs IUi and the program
corresponding to UEAO in the payoff functions and prior beliefs.

I now present the main result that generically the informed principal will fail to
select an ex-ante optimal allocation.

Proposition 1. Strong unconstrained Pareto optimum is not ex-ante optimal allo-
cation generically on the set on the set of the principal’s payoff functions and the
agent’s prior beliefs about the principal.

Proof. Lemma 1 in MT, Proposition 1 in MT, and the proof of Corollary to Proposi-
tion 4 in MT imply that the subset of the set of payoff functions and beliefs satisfying

13See, for instance, Abraham and Robin [1], or Mas-Colell [11], Theorem I.2.2, p. 45, and, in
particular, Proposition 8.3.1, p. 320.

14See Hirsch, [7] or Mas-Colell [11], Theorem H.2.2, p. 38.
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the assumptions of our model for which in SUPO the only binding constraints are
IIR (AIR for j = 2) and IIC (AIC for j = 1) is dense and open. By Lemma 3 the
subset on which SUPO is not UEAO is dense and open. By the Baire property, the
intersection of these two subsets is also dense and open.

Hirshleifer [8] was first to point out that premature acquisition or release of in-
formation may destroy beneficial trading opportunities. Proposition 1 in MT shows
that generically SUPO Pareto dominates the allocation implemented under common
knowledge of the principal’s type, i.e., the principal would be strictly hurt if her infor-
mation were released to the agent. The result that generically SUPO is not ex-ante
optimal allocation complements these findings by showing that the principal’s ex-ante
payoff is decreased even if the information is released only to the principal and not
to the agent.

The results obtained in this section will not hold if the players have quasilinear
preferences. Proposition 11 in MT and Proposition 1, and Corollary 2 in Mylovanov
[18] imply that in this environment the sets of SUPO, UEAO, and ex-ante optimal
allocations coincide.

4 Information Acquisition

The results in the previous section could be used to study the incentives of the prin-
cipal to acquire information before selecting a mechanism. Consider a mechanism
selection game with covert information acquisition, in which the principal can pri-
vately decide whether to acquire private information before selecting a mechanism or
after selecting but before executing a mechanism (Figure 3). As Neyman [19] points
out, in equilibrium a player cannot be made strictly worse off by a unilateral im-
provement in her information, which implies that the principal will always (weakly)
prefer to learn her type early. Moreover, as MT show in the proof of Proposition 7,
the principal who knows her type can always implement SUPO. We have,
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Figure 3: Principal secretly chooses between acquiring information before selecting a
mechanism or after selecting but before executing a mechanism. Vertical lines indicate
that the agent does not observe when the principal acquires information.
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Proposition 2. In the mechanism selection game with covert information acquisition,
an allocation rule ν is an outcome of a Perfect Bayesian equilibrium if and only if it
is SUPO.

Proof. Necessity. If in equilibrium, the principal gets informed before selecting a
mechanism with probability one, then Proposition 7 in MT implies that she will im-
plement SUPO. Suppose now that in equilibrium with probability p < 1 the principal
stays uninformed at the moment of mechanism selection. The proof of Proposition 7
in MT shows that the principal can always deviate, get informed with probability 1
and, regardless of the agents’ beliefs, implement an allocation that yields payoffs that
are arbitrary close to those of SUPO. Hence, her equilibrium payoff should weakly
dominate her payoff from SUPO. By definition of SUPO, there is no allocation that
strictly dominates SUPO and hence SUPO is the equilibrium allocation.

Sufficiency. Fix any p ∈ [0, 1]. Now, consider an equilibrium candidate in which
with probability p the principal stays uninformed and with probability 1− p she gets
informed. In both cases she offers a mechanism whose equilibrium outcome given
prior beliefs is the same SUPO. The proof of Proposition 6 in MT establishes that
for any SUPO there exist beliefs for any alternative (out-of-equilibrium) offer of a
mechanism such that in the continuation equilibrium the principal’s payoff is weakly
lower than in this SUPO for all types and hence the principal does not want to deviate
and offer a different mechanism.
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Figure 4: Principal publicly chooses between acquiring information before selecting a
mechanism or after selecting but before executing a mechanism.

This result together with Proposition 1 implies that generically (on the set of
the principal’s payoff functions and the agent’s prior beliefs about the principal) the
principal who can covertly acquire information before designing a mechanism will fail
to implement an ex-ante optimal allocation.

Corollary 1. In the mechanism selection game with covert information acquisition
the equilibrium allocation is not ex-ante optimal generically.

As can be seen from the sufficiency part of the proof of Proposition 2, there are
multiple equilibria that differ in the probability with which the principal gets informed
before selecting a mechanism. It follows that generically there is an equilibrium in
which the uninformed principal fails to implement an ex-ante optimal allocation.
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Corollary 2. In the mechanism selection game with covert information acquisition
there generically exists an equilibrium in which the principal is uninformed at the
moment of mechanism design and the equilibrium allocation is not ex-ante optimal.

It is interesting to contrast these results with the principal’s behavior in the envi-
ronments with other information acquisition structures. In the setting in which the
principal’s decision about when to become informed is observed by the agent and
is common knowledge (Figure 4), the principal cannot increase her ex-ante payoff
by acquiring private information early and (generically) the only equilibrium for the
principal is to stay uninformed and implement an ex-ante optimal allocation.15 The
observation that common knowledge of information acquisition may benefit the prin-
cipal by substituting for the principal’s inability to commit not to acquire information
early is similar to the result in Shavell [21] that mandatory disclosure is often socially
desirable. In Shavell, however, mandatory disclosure limits the cost of information
acquisition exhorted by the seller and ensures that socially desirable information is
revealed (Shavell, [21], p. 28), whereas in our model it prevents the principal from
acquiring information early and does not allow the conflict among different types of
the principal to decrease the principal’s ex-ante payoff.
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Figure 5: Principal has a choice between acquiring information before selecting a
mechanism or never acquiring it.

On the other hand, in the environments in which the principal faces a choice
between acquiring information before selecting a mechanism or never acquiring it
(Figure 5), the principal will never benefit from postponing information acquisition,
regardless of whether the agent observes her decision. The uninformed principal has
to restrict herself to allocations which do not condition on her type. These allocations
are Pareto dominated by the allocation that would be implemented if the principal’s
type were common knowledge, which in turn are generically strictly Pareto dominated
by the allocation implemented by the informed principal.

15In the (non-generic) settings where SUPO is an ex-ante optimal allocation, there also exist
equilibria in which the principal becomes informed.
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