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Abstract

We analyze a symmetric common agency game between two privately informed

principals. Principals offer contributions to a common agent who produces a

public good on their behalf. Asymmetric information introduces incentive

compatibility constraints which replace the requirement of truthfulness found

in the earlier common agency literature under complete information. There

exists a large class of differentiable equilibria which are ex post inefficient.

Inefficiencies come from the fact that each principal wants to reduce public

good production to induce the agent to reveal the types of others which have

been learned from observing their contributions. This screening problem in

games with voluntary contributions highlights a new source of inefficiency in

public good provision which differs from the usual free-riding problem. For

distributions having a linear hazard rate, closed-form equilibria are obtained.

Those equilibria are interim efficient for some distributions of social weights on

the different types of principals. Introducing asymmetric information on the

agent’s cost of producing the public good might also help to select a unique

equilibrium under some circumstances.
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1 Introduction

Over the past twenty years and following the seminal contributions of Wilson (1979) and

Bernheim and Whinston (1986a), the common agency literature has developed an analyt-

ical framework to tackle a variety of important problems such as menu auctions,1 public

good provisions through voluntary contributions,2 or policy formation with competing

lobbying groups.3 Given this broad range of applications, it is fair to say that common

agency is by now viewed as a major piece of the toolkit of many economists, especially in

the field of political economy.

The success of this model relies both on its simple underlying structure and on its

clear-cut predictions. Under common agency, several principals design non-cooperatively

contributions ti(q) for a common agent. The agent accepts or refuses contracts and then

chooses a quantity q of public good on behalf of principals. Players’ preferences are com-

mon knowledge. A priori, many equilibria of this three-stage game may be sustained

thanks to the freedom in specifying contributions off the equilibrium. By imposing that

contributions are truthful, i.e., reflect the relative preferences of the principals among

alternatives, Bernheim and Whinston (1986a) significantly reduced this indeterminacy

and selected efficient equilibria.4 Since each principal’s marginal preferences among al-

ternatives are fully reflected by his truthful contribution, what this principal pays at the

margin for inducing a change in the agent’s decision is exactly what it is worth to him.

Modulo truthfulness, common agency aggregates preferences efficiently under complete

information.

This paper extends the common agency framework to an environment where principals

are privately informed on their preferences. This extension is needed in a variety of

circumstances. Voluntary contributions to a public good are designed by donors with an

eye on howmuch information on their willingness to pay they convey. In political economy

settings, lobbying groups have private information on the benefits they withdraw from a

given policy and much of their activity consists in conveying information to a less-well

informed policy-maker.

Private information on the principals’ preferences introduces incentive compatibility

constraints which replace the more ad hoc truthfulness requirement imposed under com-

plete information. To understand the impact of incentive compatibility on the properties

1Wilson (1979) and Bernheim and Whinston (1986a).
2Laussel and Lebreton (1998).
3Grossman and Helpman (1994) and Dixit, Grossman and Helpman (1997), among many others.
4Multiplicity might come from the flexibility in sharing the aggregate surplus among the contributing

principals and their common agent. The feasible redistributions of the aggregate surplus are described
by means of simple inequalities. See Bernheim and Whinston (1986a).
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of equilibria, it is useful to make a brief detour by the theory of informed principals.5

Indeed, at a best-response to what other principals are offering, a given principal de-

signs his own contribution not only to convey information to the common agent on his

preferences but also to extract the information that this agent may have learned from

observing the contributions of others. This screening role of a contribution points at the

fact that “market information”6 has to be learned in equilibrium. Of course, the diffi-

culty is that “market information” is by large endogenous: this is what other principals

reveal to the common agent through their offers. Standard mechanism design techniques

can nevertheless still be used to compute best-responses. When choosing how much to

contribute at the margin for q units of the public good, each principal behaves thus as a

monopsonist in front of an agent who is privately informed on the preferences of others.

Using a standard argument of the screening literature, this principal reduces his marginal

contribution to reduce the rent that the agent may withdraw from privately observing the

other principals’ offers.

Two properties of equilibria immediately follow.

Multiplicity: When the marginal contributions of other principals do not change much

with their types, the agent withdraws little rent from observing their offers. A given

principal induces little downward distortions for screening purposes and the marginal

contribution of that principal does not change much with his own type. The reverse

happens if other principals’ contributions change significantly with their own types. This

generates multiple equilibria.

Inefficiency: All equilibria are ex post inefficient. Again, because each principal wants

to reduce the agent’s output for screening purposes, downward distortions below the first-

best always occur. Principals contribute less at the margin than what the good is worth

to them not because they want to hide their types to the common agent but because this

limits the rent that this agent may get from learning the types of other principals.

Turning to the weaker concept of interim efficiency,7 we show existence of an interim

efficient equilibrium for a large class of distributions having linear hazard rates. Such

an interim efficient allocation is achieved through a centralized mechanism offered by an

uninformed mediator. The social weights given to the different types of principals in

the welfare function that would be maximized by this mediator are then characterized.

Unsurprisingly, because the agent gets a positive rent in equilibrium, he must also receive

a positive weight in the social welfare function.

5See Maskin and Tirole (1990).
6See Epstein and Peters (1999) and Peters (2001). Those papers derived Revelation Principles for

multiprincipal environments where principals’ preferences are common knowledge. Market information
captures the endogenous randomness that arises in mixed-strategy equilibria.

7See Holmström and Myerson (1983) and Ledyard and Palfrey (1999).
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Looking then for a device to select among equilibria which would be available with

less restrictive assumptions on the distributions, we introduce private information on

the common agent’s cost of producing the public good. Provided the distribution of this

parameter has a sufficiently large support, there exists a unique equilibrium of the common

agency game that can be characterized as the fixed-point of a functional operator. We

give also an analytical example such that this equilibrium can be explicitly computed.

Review of the literature: The results of the earlier common agency literature under

complete information have been extended in many different directions. Dixit, Grossman

and Helpman (1997) introduced redistributive concerns by relaxing the quasi-linearity as-

sumption. Laussel and Lebreton (1998) studied incomplete information on the preferences

of the common agent but focused on ex ante contracting, i.e., before the agent learns the

realization of his cost. In both papers efficiency is still obtained.8

Paralleling those papers which put aside incentives, Stole (1991), Martimort (1992,

1996), Mezzetti (1997), Biais, Martimort and Rochet (2000) and Martimort and Stole

(2002, 2003) among others analyzed oligopolistic screening environments where differ-

ent principals elicit information privately known by the common agent at the contract-

ing stage. These papers stressed the impact of oligopolistic screening on the standard

rent/efficiency trade-off. We focus instead on asymmetric information on the principals’

side. The agent’s private information vis à vis each principal is then endogenized; it is

what the agent may have learned from observing the other principals’ offers.

There exists a tiny literature on voluntary contributions by privately informed con-

tributors. Menezes, Monteiro and Temini (2001) and Laussel and Palfrey (2003) both

analyzed such games for a 0-1 public good. Both papers stressed the multiplicity of equi-

libria that arises in those environments but, as we will see, somewhat underestimate the

problem by looking at a discrete decision. Menezes, Monteiro and Temini (2001) high-

lighted the strong ex post inefficiency of equilibria. Laussel and Palfrey (2003) focused

instead on the interim efficiency of some equilibrium allocations. We show that downward

distortions below the first-best exist in any equilibrium satisfying a simple monotonicity

condition. We provide more comments on how the results of Laussel and Palfrey (2003)

on interim efficiency and ours compare in due place.

More broadly, our paper also contributes to the general issue of understanding public

good provision under asymmetric information. From Clarke (1971) and Groves (1973), it

is well-known that ex post efficiency is possible under dominant strategy provided that

one is ready to generate a surplus. D’Aspremont and Gerard-Varet (1979) showed that

one can maintain budget balance and efficiency under Bayesian implementation. Laffont

8Other extensions less directly relevant for the analysis of this paper include Prat and Rustichini
(2003) who studied competition among principals trying to influence multiple agents and Bergemann and
Välimäki (2003) who considered dynamic issues.
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and Maskin (1979), Rob (1989) and Mailath and Postlewaite (1990) stressed the role of

participation constraints to generate inefficiency. The game of voluntary contributions

we analyze below is an alternative to the centralized mechanisms used in this literature;

something that may be attractive in the absence of a mediator to enforce such a central-

ized mechanism.9 Common agency ensures voluntary participation by principals, relies

on Bayesian strategies, and finally generates a positive surplus for the agent and ex post

inefficiency. When a centralized mechanism is offered by an uninformed mediator, ineffi-

ciencies are due to the contributors’ incentives to hide their own types to this mediator:

the so-called “free-rider" problem. Under common agency, as we will see below, contrib-

utors reveal instead costlessly their types through their contract offers to the agent but

want to screen this agent according to what he has learned from others: a different source

of inefficiency in public good provision.

Section 2 presents the model. Section 3 characterizes the differentiable equilibria of our

common agency game under asymmetric information. A special attention is given to the

so-called pointwise optimal equilibria. Lindahl-Samuelson conditions are derived and a few

properties of the equilibria, noticeably their ex post inefficiency, are discussed. Section

4 is devoted to the multiplicity problem. Section 5 reinterprets the pointwise optimal

equilibria using a mechanism design approach. Section 6 discusses interim efficiency.

Section 7 introduces adverse selection on the agent’s cost to select a unique equilibrium

allocation which is characterized as the unique fixed-point of a functional operator. Section

8 briefly concludes. Proofs are relegated to an Appendix.10

2 The Model

There are two risk-neutral principals Pi (i = 1, 2) who derive utility from consuming a

public good which is produced in non-negative quantity q.11 This public good may be an

infrastructure of variable size, a charitable activity, or it may also have a more abstract

interpretation as a policy variable in a lobbying game. Pi gets a utility Vi = θiq− ti from

consuming q units of the good when he pays an amount ti.

Principals are privately informed on their respective valuations θi. Those types are

independently drawn from the same common knowledge and atomless distribution on

Θ = [θ, θ̄] with c.d.f. F (·) and everywhere positive density f = F ′. The hazard rate
1−F (θ)
f (θ)

is a Lipschitz function. Eθ[·] denotes the expectation operator with respect to the

law of θ.

9One example one may have in mind is given by transnational public goods where no international
agency is available to enforce such a mechanism.

10For completeness, we show there also how to construct non-differentiable equilibria.
11Extension to the case of more than two principals increases significantly complexity.

5



Contributions are collected by a risk-neutral common agent A who produces at cost

C(q) the public good. The function C(·) is twice differentiable, increasing and convex.

To avoid technicalities due to corner conditions, the Inada condition C ′(0) = 0 holds.

The game unfolds as follows. First, principals learn their preferences. Second, they

offer non-cooperatively contributions {ti(q, θ̂i)}θ̂i∈Θ to the agent. Third, the agent accepts

or refuses those contracts. If he refuses all contracts, the game ends. Upon acceptance of

at least one offer, the agent produces an amount q. Payments are made.

We want to characterize Perfect Bayesian Equilibria (PBE) - or equilibria in short -

of this game.

We will give conditions on the type distribution so that principals offer in equilibrium

non-negative contributions with non-negative margin. The first condition implies that the

agent is always as well-off accepting both offers. The second condition implies that the

level of public good produced is greater with two principals than if only one contributes.

Benchmark: For future references, we denote by q∗(θ1, θ2) the first-best level of public

good. It satisfies the following standard Lindahl-Samuelson conditions:

C ′(q∗(θ1, θ2)) =
2∑

i=1

θi.

Note that q∗(·) is (strictly) monotonically increasing in each of its arguments.

3 Preliminary Results

Even though the contexts are quite different, we follow the same strategy as when com-

puting the symmetric equilibrium of a first-price unit auction to characterize equilibria of

the common agency game under asymmetric information. We first conjecture the form

of such equilibrium as a menu of contributions. Within this menu, each principal chooses

according to his type. By the Revelation Principle applied to that Bayesian game, there

is no loss of generality in restricting to incentive compatible menus. Facing the symmetric

menu of contributions {t(q, θ̂)}θ̂∈Θ, principal Pi with type θi optimally picks t(q, θi).
12 We

denote p(q, θi) =
∂t
∂q
(q, θi) the marginal contribution of type θi when q units of public good

12It is important to distinguish incentive compatibility from the notion of “truthfulness” developed by
Bernheim and Whinston (1986a). When the principals’ preferences are common knowledge, truthfulness

means that each principal’s marginal contribution is equal to his marginal valuation, i.e., ∂t
∂q
(q, θ̂i) = θ̂i for

all θ̂i and all q. Under asymmetric information, incentive compatibility requires only that each principal
finds optimal to pick the contribution corresponding to his type.
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are produced.13 ,14

For any pair (θ1, θ2), let define the agent’s rent when accepting both contributions as

U(θ1, θ2) = max
q

2∑

i=1

t(q, θi)− C(q).

From the fact that, in a common agency equilibrium, the agent gets more by taking both

contributions than rejecting any of those or both, we must have:

U(θ1, θ2) ≥ max{0, Û(θ1), Û(θ2)} for all pairs (θ1, θ2) ∈ Θ
2. (1)

Û(θi) = maxq t(q, θi)− C(q) is the agent’s rent when accepting only Pi’s contribution.

At the last stage of the game, the agent chooses optimally q given that he has accepted

both contributions. The interior level of public good is given by the first-order condition

2∑

i=1

p(q(θ1, θ2), θi) = C
′(q(θ1, θ2)), (2)

provided that the local second-order condition for the agent’s problem holds, namely:

2∑

i=1

∂p

∂q
(q(θ1, θ2), θi)− C

′′(q(θ1, θ2)) ≤ 0. (3)

We will first omit this last constraint and check ex post that it is satisfied at equilibrium.

Of particular relevance are non-negative contributions such that an upward shift in the

principal’s valuation increases the equilibrium quantity. This is of course obtained when
∂p

∂θi
(q, θi) ≥ 0 for all (q, θi). Such schedules satisfy the same Spence-Mirrlees property

(SMP) than the principals’ preferences.

Definition 1 : A non-negative contribution satisfies the Spence-Mirrlees Property (SMP)

(resp. the Strict Spence-Mirrlees Property (SSMP)) when

∂p

∂θi
(q, θi) ≥ 0 (resp. > 0) for all (q, θi).

Standard revealed preference arguments yield then:

13For technical reasons, we focus on contributions which are three times piece-wise differentiable with
respect to q and θ̂i. In the Appendix, we analyze also a class of non-differentiable equilibria.

14This specification of the contributions available to principals seems to restrict a priori their strategy.
Since principals have to choose within a given menu of contributions, they are not allowed to offer more
complex mechanisms. Section 5 shows that the equilibria obtained with those menus are in fact robust.
They are also equilibria when principals can deviate and offer more complex mechanisms. For instance,
Pi could ask the agent about the information that he learns on P−i by observing his mere offer.
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Lemma 1 : In any PBE with non-negative contributions satisfying SMP:

• q(θi, θ−i) is almost everywhere differentiable,

• ∂q

∂θi
(θi, θ−i) ≥ 0, for all (θi, θ−i) in Θ2. Inequalities are strict when SSMP holds.

Truthtelling is a Bayesian-Nash equilibrium between the principals when:

θi = argmax
θ̂i

Φ(θ̂i, θi) (4)

where Φ(θ̂i, θi) = Eθ−i

[
θiq(θ̂i, ·)− t(q(θ̂i, ·), θ̂i)

]
is Pi’s payoff when his type is θi and he

picks the contribution corresponding to type θ̂i within the proposed menu.

Proposition 1 : The first- and second-order conditions for optimality of the principal’s

problem (4) are respectively given by:

Eθ−i

[
∂q

∂θi
(θi, ·)

[
θi + p−i(q(θi, ·), ·)− C

′(q(θi, ·))−
1− F (·)

f(·)

∂p

∂θ−i
(q(θi, ·), ·)

]]
= 0, (5)

Eθ−i

[
∂q

∂θi
(θi, ·)

]
≥ 0 for all θi ∈ Θ and i = 1, 2.15 (6)

Pointwise-optimality: Among the equilibrium schedules satisfying conditions (5) and

(6), we focus on those which are pointwise optimal and monotonic in the following sense:

θi + p(q(θi, θ−i), θi)− C
′(q(θi, θ−i)) =

1− F (θ−i)

f(θ−i)

∂p

∂θi
(q(θi, θ−i), θ−i) (7)

and
∂q

∂θi
(θi, θ−i) ≥ 0 for all (θi, θ−i) in Θ

2, i = 1, 2. (8)

Pointwise optimality will receive a clear motivation in Section 5. Unless specified

otherwise, equilibria will be understood as satisfying pointwise optimality.

Condition (7) looks like the standard optimality condition for a problem involving only

Pi and an agent having preferences t+t−i(q, θ−i)−C(q) who has also private information on

θ−i. The right-hand side of (7) represents then the standard adverse selection distortion.

Section 5 makes again this analogy clearer.

The following lemma gives conditions which ensure that the first- and second-order

conditions for the principals’ and the agent’s optimization problems are also sufficient.

15From Lemma 1 the second-order condition for the principal’s problem is implied by the monotonicity
properties coming from the agent’s problem in a SMP equilibrium.
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Lemma 2 : Let {q(θ1, θ2), p(q, θ)} be a public good level and a non-negative marginal con-

tribution satisfying SMP, (2), (7) and (8). This profile, if it exists, forms an equilibrium.

Lindahl-Samuelson conditions: Condition (7) is also helpful in already deriving a few

properties of the equilibrium schedules. To do so, consider SSMP equilibria which entail

a strictly increasing output ((8) is strict over the range of q(·)). We can thus uniquely

define the inverse function ψ(q, θi) as q(θi, ψ(q, θi)) = q for all θi and q in the range of

q(θi, ·).16 Condition (7) becomes:

ψ(q, θi) + p(q, θi)− C
′(q) =

1− F (θi)

f(θi)

∂p

∂θi
(q, θi), (9)

for all q in the range of q(θi, ·). This can be rewritten as:

∂

∂θi
[p(q, θi)(1− F (θi))] = (ψ(q, θi)− C

′(q))f(θi).

This is a differential equation in θi which can be integrated to get p(q, θi) as

p(q, θi) =
ϕ(q)

1− F (θi)
+ C ′(q)−

1

1− F (θi)

∫ θ̄

θi

ψ(q, x)f (x)dx, (10)

where ϕ(q) is an integration constant.

If we impose that p(q, θi) is bounded around θi = θ̄ for all q, we must have ϕ(q) = 0.

Finally, the equilibrium schedule writes as:

p(q, θi) = C
′(q)−

1

1− F (θi)

∫ θ̄

θi

ψ(q, x)f (x)dx. (11)

Taking into account that

p(q, θi) + p(q, ψ(q, θi)) = C
′(q), (12)

for all q in the range of q(θi, ·) yields

p(q, ψ(q, θi)) =
1

1− F (θi)

∫ θ̄

θi

ψ(q, x)f (x)dx,

or using that ψ(q, ψ(q, θi)) = θi for all θi

p(q, θi) =
1

1− F (ψ(q, θi))

∫ θ̄

ψ(q,θi)

ψ(q, x)f (x)dx. (13)

16Note that because q is in the range of q(θi, ·), ψ(q, θi) belongs to [θ, θ̄].
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By summing the expressions of the non-negative marginal contributions obtained from

(13), we get the following Lindahl-Samuelson conditions:

C ′(q(θ1, θ2)) =

2∑

i=1

1

1− F (θi)

∫ θ̄

θi

ψ(q(θ1, θ2), x)f (x)dx. (14)

To understand (14), it is useful to come back on the definition of the equilibrium schedule

given in (13). Given the equilibrium conjecture p(·), one may define for any type θi and

output q, the conjugate type ψ(q, θi) which is such that the quantity q is produced when

both a type and his conjugate follow the equilibrium strategy. All types corresponding

to a valuation x greater than ψ(q, θi) are thus ready to contribute at the margin at least

p(q, ψ(q, θi)) for q units of public good in any SMP equilibrium. This is in front of those

types that Pi can in fact underestimate his valuation θi and contribute less. By how much

can he underestimate his valuation? Facing such a type x, the marginal contribution of

Pi with conjugate type ψ(q, x) is p(q, ψ(q, x)). Once q units of the good are produced

with type x for P−i, one can infer that Pi’s marginal valuation is at least ψ(q, x). (13)

shows that the marginal contribution of type θi is an average of all such inframarginal

valuations. Since x is greater than θi, and ψ(q, ·) is decreasing in its second argument,

that average is lower than θi.

Ex post inefficiency: Integrating by parts (13), we obtain:

p(q, θi) = θi +
1

1− F (ψ(q, θi))

∫ θ̄

ψ(q,θi)

∂ψ

∂θ
(q, x)(1− F (x))dx. (15)

From the definition of ψ(·), ∂ψ
∂θ
(q, x) = −

∂q

∂θ1
∂q

∂θ2

(x, ψ(q, x)) < 0 when output is monotonically

increasing. Therefore, in any symmetric SSMP equilibrium of the contribution game (if

such an equilibrium exists) and with contributions having bounded derivative ∂p
∂θ
(·) around

θ̄, t(q, θi) does not reflect the preferences of the principal. This contrasts with Bernheim

and Whinston (1986a)’s findings under complete information. Indeed, we have:

p(q, θi) ≤ θi, (16)

for all θi in [θ, θ̄], with a strict inequality everywhere except when q = q(θi, θ̄).
17

4 Equilibrium Existence, Multiplicity, Inefficiency

The qualitative properties found above do not give much information on the existence

and multiplicity of equilibria, even when one restricts the analysis to SSMP equilibria

17Note that p(q, θi) can be arbitrarily extended linearly for out of equilibrium quantities q ≥ q(θ, θ̄)
and q ≤ q(θ, θ) so that p(q, θ) is no longer given by (15) but the inequality (16) still holds.
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with bounded marginal contributions. After all, the Lindahl-Samuelson conditions (14)

are complex and only define q(·) implicitly in terms of the inverse function ψ(q, ·).

Constructing equilibria: To get further insights on the existence and multiplicity of

SSMP equilibria, it is useful to come back on the two conditions which define the mar-

ginal contribution p(q, ·) and the conjugate type ψ(q, ·) and to reconstruct from there an

equilibrium:

p(q, θ) + p(q, ψ(q, θ)) = C ′(q), (17)

θ − p(q, θ) =
1− F (ψ(q, θ))

f(ψ(q, θ))

∂p

∂θ
(q, ψ(q, θ)), (18)

for all (q, θ), where q is in the range of the equilibrium schedule of outputs q(·).

Those two equations do not uniquely define an equilibrium marginal contribution. To

do so, we need first to define which type θ̃ is such that q(θ̃, θ̃) = q in the equilibrium

under scrutiny. When both principals have type θ̃, their marginal contributions are the

same. For such a θ̃, we must have

ψ(q, θ̃) = θ̃ and p(q, θ̃) =
C ′(q)

2
. (19)

By definition of a conjugate type, it must also be that:

ψ(q, ψ(q, θ)) = θ, (20)

for all θ in [θ, θ] and q in the range of q(·).

Instead of defining its output q(·), we may describe an equilibrium in terms of its

isoquant lines ψ(q, θ). The strict monotonicity properties ∂q

∂θ1
(θ1, θ2) > 0 and

∂q

∂θ2
(θ1, θ2) >

0 are then satisfied whenever

∂ψ

∂θ
(q, θ) < 0 and

∂ψ

∂q
(q, θ) > 0 (21)

over the whole domain of definition of ψ(·).

This approach in terms of isoquants is used thereafter to characterize equilibria. It

illuminates the degree of freedom left in specifying the equilibrium output Q(θ) = q(θ, θ)

along the 45 degree line. Since an isoquant is symmetric with respect to that line, it is

enough to characterize the pair {p(q, ·), ψ(q, ·)} over the interval [θ, θ̃] and to reconstruct

the equilibrium marginal contribution over the whole interval [θ, θ̄] using (17).18

18When an isoquant ψ(q, θ) is defined over [θ, θ̃] it must be, by definition, that ψ(q, θ) ≤ θ̄. When
ψ(q, θ) is only defined over an interval [θ1, θ̃] for some θ1 such that θ1 > θ, we have in fact ψ(q, θ1) = θ̄.
In other words, q does not belong to the range of the equilibrium schedule q(θ, ·) for θ < θ1. We will
abuse language by saying that the interval of definition of ψ(q, ·) is still [θ, θ̃].
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Proposition 2 : Fix any strictly increasing output schedule Q(θ) such that Q(θ) ≤

q∗(θ, θ) (with equality only at θ̄). Define for any q in the range of Q(·) and any θ̃ such

that q = Q(θ̃) the following system of first-order differential equations over the interval

[θ, θ̃]
∂p

∂θ
(q, θ) =

ψ(q, θ) + p(q, θ)− C ′(q)
1−F (θ)
f(θ)

, (22)

∂ψ

∂θ
(q, θ) = −

1−F (ψ(q,θ))
f(ψ(q,θ))

1−F (θ)
f (θ)

(
ψ(q, θ) + p(q, θ)− C ′(q)

θ − p(q, θ)

)
, (23)

with the boundary conditions (19).

This system admits a unique solution over [θ, θ̃]. Provided that ∂ψ

∂q
(q, θ) > 0, the

second-order conditions for the agent’s and the principals’ problems (3) are satisfied, and

this solution defines a SSMP equilibrium pair {p(q, θ), ψ(q, θ)}. The conditions ∂ψ

∂q
(q, θ) >

0 and p(q, θ) > 0 are always satisfied when θ̄ − θ is small enough.

A better understanding of the multiplicity of equilibria requires a detour by the theory

of informed principals, and we postpone such discussion to Section 5.

The resolution techniques and the multiplicity of equilibria found above are reminiscent

of the analysis of equilibria in double-auctions made in Leininger, Linhart and Radner

(1989) and Sattherwaite and Williams (1989). Those authors have developed procedures

that consist in fixing the equilibrium strategies for the buyer and the seller when their

valuations coincide and reconstruct numerically the bidding strategies as solutions of

differential equations with lags on both sides of these critical values. Our approach is

not numerical. Menezes, Monteiro and Temini (2001) and Laussel and Palfrey (2003,

p. 460) use also a similar technique in their public good model with a 0-1 decision. The

restriction to a 0-1 decision hides in fact the multiplicity problem that arises from the

arbitrary specification of the monotonic equilibrium output on the diagonal.

Ex post inefficiency: The Lindahl-Samuelson conditions (14) derived in the case of

a contribution with bounded derivative imply that equilibrium outputs are downward

distorted below the first-best. This result holds in fact for all equilibria described in

Proposition 2.

Corollary 1 : An ex post efficient outcome can never be implemented at a SSMP equi-

librium. Downward distortions below the first-best always occur.

Closed-form solutions: Although generally quite complex, the derivation of some ex-

plicit solutions is feasible for a large class of distributions including, uniform and expo-

nential among others.
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Proposition 3 : Assume that F (·) has linear hazard rate, i.e., 1−F (θ)
f(θ)

= β(θ̄ − θ) + γ

where (β, γ) ∈ R2+ where θ ≥
1

1+β
(β(θ̄− θ) + γ). Then, there exists a unique19 symmetric

equilibrium with a non-negative marginal contribution which is linear in θ and given by:

p(q, θ) =
θ

1 + β
+

β

1 + β
C ′(q)−

β

(1 + β)(1 + 2β)
θ̄ −

γ

(1 + β)(1 + 2β)
. (24)

It corresponds to a non-negative output:

C ′(q(θ1, θ2)) =
1 + 2β

1 + β
(θ1 + θ2)−

2β

1 + β
θ̄ −

2γ

1 + β
. (25)

5 Informed Principals and Mechanism Design

In this section, we propose an alternative approach to characterize pointwise optimal

equilibria. This approach illustrates the role of nonlinear contributions in simultaneously

screening the other principal’s type and signaling his own type to the agent.

Viewing the strategy of each principal as a choice within a menu {t(q, θ̂i)}θ̂i∈Θ as we

did so far and writing down the condition for incentive compatibility may a priory entail

a loss of generality if we want to describe the whole set of equilibria when principals are

unrestricted in the mechanisms they may offer. Indeed, a given principal might like to

deviate to a more complex mechanism than a nonlinear contribution. In this section,

we show that this is indeed not the case. We will describe explicitly Pi’s best-response

to P−i’s own offer within the largest class of mechanisms available and show that it can

actually be implemented as a nonlinear contribution.

For any fixed contribution offered by Pi, the design of P−i’s own contribution is an

informed principal problem under private values. We know fromMaskin and Tirole (1990)

that, under risk-neutrality, there is no loss of generality in having P−i offer a contract to

the agent exactly as if the latter was informed on the principal’s type. Intuitively, the

mechanism consisting in piling up the various contracts that would be signed by those

different types if the agent was informed on P−i’s preferences is incentive compatible from

the principal’s point of view and achieves a lower bound on the principal’s payoffs. The

key insight due to Maskin and Tirole (1990) is that, higher payoffs can only be achieved

if the principal is risk-averse. This is obtained by pooling those contracts at the time of

offering contracts and revealing the principal’s type at a later communication stage only.

Pooling offers relax the agent’s incentive and participation constraints and improve risk-

sharing among the different types of the principal. With risk-neutrality, this insurance

19Uniqueness is meant in terms of marginal contributions. Different equilibrium payoffs for the princi-
pals may of course be sustained by playing on the constants of integration.
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motive disappears and the lowest bound on the principal’s payoff is also an upper bound.

Instead of offering a mechanism to the agent with a communication stage after contract’s

acceptance, the principal is as well off revealing his type right away by offering only one

contract. For each contribution offered by Pi, P−i has thus always in his best-response

correspondence a separating menu of contributions.20

In the case of a single principal analyzed by Maskin and Tirole (1990), this equiva-

lence between two contracting modes has no consequence. Under common agency instead,

that seemingly innocuous difference in the timing of information revelation has a strategic

value since it affects the way Pi contracts himself with the agent. Provided that P−i’s offer

reveals his type to the agent, Pi knows that he should design his contribution not only to

signal his own type to the agent but also to screen P−i’s type which is “endogenously”

learned in equilibrium by the agent. This points at the major role that nonlinear contri-

butions play in a common agency environment: learning over what Epstein and Peters

(1999) and Peters (2001) call market information, i.e., the preferences of other principals.

We focus on pure strategy equilibria with separating menus which reveal all informa-

tion on the principals’ types to the agent through contract offers. To compute Pi’s best

response to any given P−i’s nonlinear contribution t−i(q, θ−i) within the largest space of

possible mechanisms, we use the Revelation Principle.21 We may thus as well restrict the

analysis to direct truthful revelation mechanisms {tDi (θ̂−i|θi), q(θ̂−i|θi)} where θ̂−i is the

agent’s report on θ−i (that he has learned from P−i’s offer). The agent’s utility can then

be written as:

Û(θ̂−i, θ−i|θi) = t
D
i (θ̂−i|θi) + t−i(q(θ̂−i|θi), θ−i)− C(q(θ̂−i|θi)). (26)

From incentive compatibility, we get:

U(θ−i|θi) = Û(θ−i, θ−i|θi) = max
θ̂−i

Û(θ̂−i, θ−i|θi).

We assume that t−i(q, θ−i) is twice differentiable and satisfies SSMP. Using standard

techniques, we get:

• q(θ−i|θi) is monotonically increasing and thus almost everywhere differentiable in

θ−i with
∂q

∂θ−i
(θ−i|θi) ≥ 0 a.e., (27)

20The reader may have recognized a feature already found in Bernheim andWhinston (1986a). To refine
with truthfulness among all equilibria under complete information, they indeed first noticed that each
principal has a best-response which is truthful and thus justified that focusing at equilibria in truthful
schedules is meaningful. We apply the same device to justify that focusing on equilibria where principals
reveal their types through a separating offer is also meaningful.

21See Martimort and Stole (2002, 2003) for this way of applying the Revelation Principle to compute
best-responses in pure strategy equilibria of common agency games.
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• U(θ−i|θi) is almost everywhere differentiable in θ−i with

∂U

∂θ−i
(θ−i|θi) =

∂t−i

∂θ−i
(q(θ−i|θi), θ−i). (28)

At a best-response to t−i(q, θ−i), Pi with type θi must solve the following problem:

(Pi) : max
{U(·|θi);q(·|θi)}

Eθ−i [θiq(·|θi) + t−i(q(·|θi), ·)− C(q(·|θi))−U(·|θi)] , (29)

subject to (27)-(28) and

U(θ−i|θi) ≥ max{0, Û(θ−i)}, for all θ−i ∈ Θ, (30)

where (30) is the agent’s ex post participation which guarantees that he makes a positive

profit for all profiles (θi, θ−i) and prefers to take both contributions that only one.

A solution to (Pi) is an allocation {U(θ−i|θi), q(θ−i|θi)} or equivalently a direct rev-

elation mechanism {tDi (θ−i|θi), q(θ−i|θi)} (we omit the dependence on t−i(q, θ−i)) from

which we can reconstruct a nonlinear contribution ti(q, θi) when q(θ−i|θi) is invertible.

Of course, since all problems (Pi) have the same constrained set whatever θi, the menu

{ti(q|θ̂i)}θ̂i∈Θ obtained is incentive compatible from Pi’s point of view.

The standard techniques for solving problems like (Pi) consists in first neglecting the

second-order condition (27), second integrating by parts, and third maximizing pointwise

with respect to output the virtual surplus function obtained thereby. A first difficulty is to

ensure the concavity of this virtual function since it depends on the other principal’s offer

t−i(q, θ−i) which is endogenous in equilibrium. A second difficulty comes from checking

that the second-order condition (27) holds.22 It turns out that those difficulties can

be handled altogether when principal P−i offers a contribution t−i(q, θ−i) such that the

corresponding ψ−i(q, θ) function obtained from (22) as

ψ−i(q, θ−i) = −p−i(q, θ−i) + C
′(q) +

1− F (θ−i)

f (θ−i)

∂p−i

∂θ−i
(q, θ−i) (31)

satisfies
∂ψ

−i

∂q
(q, θ−i) > 0 and

∂ψ
−i

∂θ−i
(q, θ−i) < 0.

Provided that both conditions hold, Pi’s best response is well-defined and entails an

optimal output which is increasing with respect to θ−i. The corresponding output is then

defined by the pointwise optimality condition (7).

Let us now consider {p(q, θ), ψ(q, θ)} a pair defined in Proposition 2 and corresponding

to a contribution t(q, θ) offered in the symmetric equilibrium of a common agency game

where principals are a priori restricted to choose within the incentive compatible menu

{t(q, θ̂i)}θ̂i∈Θ. From the analysis above, we get:

22In standard principal-agent’s problems, such monotonicity results again from the monotonicity of the
hazard rate plus again the concavity of the virtual surplus function and an assumption on the sign of the

third derivative ∂3t−i
∂θ2∂q

(q, θ−i).
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Proposition 4 : An equilibrium pair {p(q, θ), ψ(q, θ)} as defined in Proposition 2 is also

an equilibrium when principals can deviate to a larger space of mechanisms.

Comparing with the more direct approach taken in Proposition 2, we observe that

equilibria with separating contributions correspond to the pointwise optimal allocations

selected in Section 4. Proposition 4 shows thus that the focus on pointwise optimal

allocations is a rather natural requirement. It comes from the fact that each principal

may as well reveal truthfully his type to the agent through his offer.

The link between the direct and the informed principal approaches becomes stronger

once one notices that the condition ∂ψ

∂q
(q, θ) > 0 that must be checked ex post on the

solution of the system of differential equations (19)-(22)-(23) in the direct approach to

guarantee an equilibrium corresponds in fact to the condition which guarantees concavity

of the virtual surplus of each principal in the mechanism design approach.

Ex post inefficiency and multiplicity revisited: The mechanism design approach is

also useful to understand inefficiencies. At a best-response, a principal wants to induce a

lower production from the agent than what is ex post efficient from the point of view of

the bilateral surplus of the pair he forms with the agent. This downward distortion helps

indeed to reduce the information rent that the agent may get from his private knowledge

of the other principal’s type. This phenomenon should be contrasted with the usual “free-

rider” problem for public good provision found in centralized Bayesian mechanisms à la

Laffont and Maskin (1979), Rob (1989) and Mailath and Postlewaite (1990). Free-riding

comes there from the contributors’ incentives to underestimate their valuations. Under

common agency instead, principals do not hide their own valuations to the agent but want

to screen the agent about the preferences of others. This is no longer the contributors

who hide information but the agent who is at the intersection of all information sets.

The informed principal approach is also useful to understand the multiplicity of equi-

libria. When choosing how much to contribute at the margin for q units of the public

good, a given principal behaves as a monopsonist in front of an agent privately informed

on the preferences of other principals. When the marginal contributions of other princi-

pals do not change much with their types, the agent withdraws little rent from observing

their offers. A given principal induces little downward distortions for screening purposes

and the marginal contribution of that principal does not change much with his own type.

The reverse happens if other principals’ contributions change significantly with their own

types. This generates multiple equilibria.
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6 Interim Efficiency

Under complete information, it is well known that the “truthful” equilibria of common

agency game are on the Pareto-frontier of what the principals could achieve by coop-

erating. Under asymmetric information, one can still be interested by the normative

properties of common agency equilibria provided that interim efficiency is used as the

welfare criterion.23 We now investigate under which circumstances an equilibrium of the

common agency game under asymmetric information might be interim efficient.

Interim efficient allocations are obtained as solutions of a centralized mechanism design

problem. An uninformed mediator offers a single mechanism to both principals, who then

report their types to this mediator. This mediator maximizes a weighted sum of both

the principals and the agent’s utilities with the weights given to different types of the

principals being possibly different. Because, we want to replicate with such centralized

mechanism a symmetric common agency equilibrium, we restrict to symmetric weights

which do not depend on the principal’s identity.

Proposition 5 : (Ledyard and Palfrey (1999)) A public good profile q(θ1, θ2) is in-

terim efficient if and only if there exist non-negative social weights α(θ) ≥ 0 such that∫ θ̄
θ
α(θ)f(θ)dθ ≤ 1 and

C ′(q(θ1, θ2)) =

2∑

i=1

b(θi) (32)

where b(θi) = θi −
1−F (θi)
f (θi)

(1− α̃(θi)) is increasing and α̃(θi) =
1

1−F (θi)

∫ θ̄
θi
α(x)f(x)dx.

The inequality that
∫ θ̄
θ
α(x)f(x)dx ≤ 1 captures the possibility that the common agent

receives a positive weight in the social welfare function maximized by the uninformed

mediator. Remember that, in a common agency equilibrium, the agent gets a non-negative

ex post rent U(θ1, θ2) which should be accounted for when evaluating welfare.24

An interim efficient allocation is necessarily such that C ′(q(θ1, θ2)) is separable in θ1

and θ2; a rather strong condition. This separability has a simple origin. To compute

interim efficient allocations, the valuation of each informed party is then replaced by a

23See Holmström and Myerson (1983) and Ledyard and Palfrey (1999).
24This distinguishes our notion of interim efficiency from the usual one where it is assumed that

budget is always balanced ex post (see Ledyard and Palfrey (1999) for instance). Formally, the mediator
maximizes now:

EΘ×Θ

(
2∑

i=1

α(θi)f(θi)V (θi) + U(θ1, θ2)

)

under the principals’ incentive and participation constraints. The characterization of those interim effi-
cient allocations follows then closely Ledyard and Palfrey (1999) and is left to the reader.
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virtual valuation. This modification captures the bilateral communication between this

informed party and the mediator that takes place in a centralized mechanism. Under

common agency instead, allocations result from an equilibrium between mechanisms. As

Section 5 makes clear, each principal signals his own type through the mere offer he

makes to the agent whereas, at the same time, he screens the preferences of his rival. For

each piece of information, there is too much communication compared with a centralized

mechanism. This lack of coordination can benefit the agent by making him able to extract

some rent from playing one principal against the other. This makes it not obvious that

interim efficiency can be achieved in any equilibrium of our game.

To check for interim efficiency of some equilibrium allocations, it is useful to give an

alternative expression of the Lindahl-Samuelson conditions. This expression is obtained

by summing up the conditions of pointwise optimality for both principals to get first:

C ′(q(θ1, θ2)) =
2∑

i=1

(
θi −

1− F (θi)

f(θi)

∂p

∂θi
(q(θ1, θ2), θi)

)
. (33)

To obtain interim efficient equilibria of the common agency game, one might first identify

simply the conditions (33) with (32) obtained at interim efficient allocations. Proceeding

that way would lead to choose:

∂p

∂θi
(q, θi) = 1− α̃(θi). (34)

Even though they are simple, we show in the Appendix that these identifications fail to

achieve interim efficiency.

The next propositions might nevertheless be viewed as being more optimistic in our

quest for interim efficiency.

Proposition 6 : Assume that F (·) has linear hazard rate, i.e., 1−F (θ)
f(θ)

= β(θ̄ − θ) + γ

where (β, γ) ∈ R2+ where θ ≥ 1
1+β
(β(θ̄ − θ) + γ). Then, the unique linear symmetric

equilibrium defined by (24) and (25) is interim efficient. It corresponds to social weights

which are constant, α(θ) = β

1+β
.

Linear hazard rate distributions are attractive because they give closed-form solutions as

we already know from Proposition 3. Such an equilibrium is actually interim efficient but

it corresponds to the case where the uninformed mediator gives some positive weight to

the common agent in his objective function.25 This is an important result which shows

that modelers may give up the complexity of the common agency game and focus instead

on a centralized mechanism provided that they stipulate a given distribution of social

weights which is of course linked to the distribution of types.

25In the case of an exponential distribution (i.e., β = 0), principals have even zero bargaining power
(see Proposition 7 below).
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Proposition 7 : Assume that C(q) = q2

2
, and that F (θ) = 1− exp(− θ−λ

λ
) on [λ,+∞).

Then, the unique linear symmetric equilibrium corresponds to an output and a non-

negative marginal contribution given by:

q(θ1, θ2) = θ1 + θ2 − 2λ, and p(q, θ) = θ − λ ≥ 0. (35)

Interim efficiency is achieved with social weights on the principals which are identically

null. No other interim efficient outcome can be sustained at an equilibrium.

The important point to notice in this proposition is that there is a unique interim

efficient outcome which can be implemented as a common agency equilibrium. This

uniqueness contrasts with Laussel and Palfrey (2003)’s finding for a discrete 0-1 public

good.26

7 Equilibrium Uniqueness

As shown above, one may face some difficulties in using interim efficiency as a robust

criterion to select equilibrium outcomes if one does not make specific assumptions on the

type distribution. Alternatively, we introduce in this section another selection device:

asymmetric information on the agent’s cost. Our goal is to show that, provided there

is enough uncertainty on the agent’s cost, the multiplicity of equilibria of the common

agency game disappears and, that one may select a quite tractable solution under some

weak assumptions.

Formally, suppose that the agent’s marginal cost writes as C ′(q)+ε where the random

variable ε is distributed on the interval I = [0, ε̄] with a cumulative distribution G(·) and

an everywhere positive and differentiable density g(·).

For technical reasons, we will also make the following assumptions:

Assumption 1 : d
dx

(
g′(x)
g(x)

)
≤ 0 for any x.

Assumption 2 : g′(0) ≤ g(ε)g(0).27

26These authors argued that there is an open set of interim efficient outcomes which arise as common
agency equilibria. They import the techniques due to Gresik (1996) in the case of double-auctions. Those
techniques consist in defining a given profile of social weights for one agent (say the buyer in the double-
auction case) and derive the social weights of the other (the seller) so that the trade boundary derived
from equilibrium behavior fits with the trade boundary achieved at an interim efficient outcome. This
leeway in specifying one family of social weights is no longer available in our context. Symmetry between
the two players requires that, in the type space, the boundary between producing the public good or not
in a symmetric equilibrium is replicated by an interim efficient outcome where both agents receive the
same social weights. This symmetry puts lots of constraints on the possible social weights.

27The uniform distribution on I satisfies Assumptions 1 and 2.

19



Assumption 3 : C ′(q) ≥ θ̄ + θ − Φ(θ) (where Φ =
(
G
g

)−1
) for all θ and q in the

equilibrium range q(θ, ·) and θ > 1
g(ε̄)
.

To analyze equilibria under asymmetric information on the agent’s cost, the most

useful procedure relies on the supply profile due to Wilson (1993). Consider thus Pi with

type θi who pays a marginal contribution p for q units of the public good. This principal

must assess the probability that the type of P−i is large enough and that the agent’s cost

is low enough so that those q units are indeed produced. Formally, if P−i follows the

symmetric equilibrium strategy p(q, ·), the likelihood that at least q units of public good

are produced is proba
{
p(q, θ̃−i) + p ≥ C

′(q) + ε
}
= E

θ̃

[
G(p+ p(q, θ̃)− C ′(q))

]
where

E
θ̃
(·) is the expectation operator. From this, p(q, θ) should satisfy:

p(q, θ) ∈ argmax
p
(θ − p)E

θ̃

[
G(p+ p(q, θ̃)− C ′(q))

]
.

The corresponding first-order condition can be written as:

−E
θ̃

[
G(p(q, θ) + p(q, θ̃)− C ′(q))

]
+ (θ − p(q, θ))E

θ̃

[
g(p(q, θ) + p(q, θ̃)− C ′(q))

]
= 0.

(36)

Therefore, a symmetric equilibrium p(q, θ) satisfies the following functional equation:

p(q, θ) = θ −
Eθ̃

[
G(p(q, θ) + p(q, θ̃)− C ′(q))

]

E
θ̃

[
g(p(q, θ) + p(q, θ̃)− C ′(q))

] . (37)

Define now the set B = {p(q, ·) : Θ → R
+ continuous | p(q, θ) ≤ θ, for all θ ∈ Θ}

and consider the functional operator T [·] : B → B such that:

T [p](q, θ) = θ −
Eθ̃

[
G(p(q, θ) + p(q, θ̃)−C ′(q))

]

E θ̃
[
g(p(q, θ) + p(q, θ̃)− C ′(q))

] .

The fixed-points of T [·] are thus solutions of the functional equation (37).

Proposition 8 : Under Assumptions 1 to 3, there exists a unique fixed-point p̄(·) ∈ B for

the operator T [·]. Moreover, the class of differentiability of p̄(·) is the minimum between

that of g(·) and C ′(·).

Although Proposition 8 may yield uniqueness under fairly general conditions, it may

be possible to reach more precise results in specific contexts. To illustrate consider the

case where g(·) is uniform on an interval I = [0, ε̄] with ε̄ sufficiently large. The following
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consistency condition should hold to insure that best-responses are found at points where

the probability of producing the public good is strictly positive:

_
p(q(θ1, θ2, ε), θ1) +

_
p(q(θ1, θ2, ε), θ2)− C

′(q(θ1, θ2, ε)) ∈ I for all (θ1, θ2) ∈ Θ
2. (38)

Equation (36) becomes then:

2p̄(q, θ) = θ −Eθ̃(p̄(q, θ̃)) + C
′(q).

From which, we derive the explicit expressions of the marginal contribution at a symmetric

equilibrium and the output as:

p̄(q, θ) =
θ

2
−
Eθ̃(θ̃)

6
+
C ′(q)

3
and C ′(q(θ1, θ2, ε)) = max

{
3

2
(θ1 + θ2)−Eθ̃(θ̃)− ε, 0

}
.

The consistency conditions are then satisfied when

3θ̄ − Eθ̃(θ̃)− ε̄ ≤ C
′(q) ≤ 3θ − Eθ̃(θ̃),

a condition which defines the range of possible equilibrium outputs and puts a lower

bound on the degree of uncertainty on cost to ensure uniqueness of the equilibrium,

namely: 3(θ̄ − θ) ≤ ε̄.

8 Conclusion

In this paper, we have analyzed a common agency game with privately informed principals.

In checking whether the earlier lessons of the complete information literature can be

extended under asymmetric information, our conclusions are contrasted.

First, asymmetric information introduces incentive compatibility constraints for the

principals. Those constraints replace and put on firmer foundations the “truthfulness”

requirement used in the earlier complete information literature. Far from helping in select-

ing a unique equilibrium allocation, private information on the principals’ side introduces

a new source of multiplicity for the equilibria. The contribution chosen by a given princi-

pal depends on how he expects others to change their own marginal contributions as their

types change. The introduction of asymmetric information on the agent’s cost function

might nevertheless help to select a unique equilibrium, at least, as long as uncertainty on

that cost function is sufficiently spread.

Second, ex post inefficiencies are pervasive in common agency game. The weaker

criterion of interim efficiency may be satisfied by some equilibria in tractable examples

characterized by a type distribution with a linear hazard rate. In which case, the distri-

bution of social weights given to the various types of principals can be derived from the
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type distribution. Interestingly, the common agency equilibrium could result from a more

centralized mechanism design problem where principals receive as a whole a weight less

than one. Beyond that class of distribution, it is still unknown to us whether an interim

efficient allocation always arises at equilibrium.

Third, the class of pointwise optimal equilibria that we stressed can easily be ana-

lyzed with standard mechanism design techniques using the theory of informed principals.

Those equilibria are robust in the sense that a principal would not like to deviate to a

larger space of mechanisms to improve his payoff. Using the theory of informed princi-

pals shows that inefficiencies come from the fact that principals want to screen others’

types rather than hiding their own preferences contrary to the intuition underlying the

“free-riding” problem. This gives a fresh look at inefficiencies in public good provision.

Our model should certainly be extended along several directions. First, other infor-

mation structures would be worth being investigated, for instance, allowing correlation

between the principals’ types or common values aspects. Second, following Maskin and

Tirole (1990), we know that risk-aversion on the principals’ side forces some pooling in

informed principal games. Risk-aversion on the principals’ side may thus significantly

change equilibrium patterns in common agency environments. Third, one could also be

interested in analyzing settings with asymmetric principals. Lastly, in other institutional

contexts, allocations do not result from a well-centralized mechanisms but come out of the

equilibria among various decentralized mechanisms. One may think of multi-unit auctions

on financial or electricity markets for instance. It would be nice to extend the approach

taken in this paper to these environments. We hope to investigate some of these issues in

future research.
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Appendix

Proof of Lemma 1: Let us fix (θi, θ−i) and consider θi > θ
′
i. By definition, we have

t(q(θi, θ−i), θi) + t(q(θi, θ−i), θ−i)− C(q(θi, θ−i)) ≥ t(q̃, θi) + t(q̃, θ−i)− C(q̃), ∀q̃.

Thus,

t(q(θi, θ−i), θi) − t(q̃, θi) ≥ t(q̃, θ−i)− C(q̃)− [t(q(θi, θ−i), θ−i)− C(q(θi, θ−i))] , ∀q̃.

Using SMP, the l.h.s. above is lower than t(q(θi, θ−i), θ
′
i) − t(q̃, θ

′
i) for all q̃ ≥ q(θi, θ−i).

Then, q(θi, θ−i) ≥ q(θ′i, θ−i) and q(·) is almost everywhere differentiable in each of its

arguments.28 Using Theorem 2 of Edlin and Shannon (1998), inequalities are strict when

SSMP holds.

Proof of Proposition 1:

• First- and Second-Order Conditions: Integrating by parts and using (2) yields:

Eθ−i

[
t(q(θ̂i, ·), θ̂i)

]
= (F (·)− 1)t(q(θ̂i, ·), θ̂i)

∣∣∣∣
θ̄

θ

+Eθ−i

[
1− F (·)

f(·)
p(q(θ̂i, ·), θ̂i)

∂q

∂θ−i
(θ̂i, ·)

]

= t(q(θ̂i, θ), θ̂i) +Eθ−i

[
1− F (·)

f(·)

(
C ′(q(θ̂i, ·))− p(q(θ̂i, ·), ·)

) ∂q

∂θ−i
(θ̂i, ·)

]
.

Inserting into the maximand of (4) gives us finally:

Φ(θ̂i, θi) = Eθ−i

[(
θiq(θ̂i, ·)−

1− F (·)

f(·)

(
C ′(q(θ̂i, ·))− p(q(θ̂i, ·), ·)

)) ∂q

∂θ−i
(θ̂i, ·)

]
−t(q(θ̂i, θ), θ̂i).

(A1)

Using (A1), we get the following first-order derivative of Φ(·) with respect to θ̂i:

∂Φ

∂θ̂i
(θ̂i, θi) = Eθ−i

[(
θi −

1− F (·)

f(·)

(
C ′′(q(θ̂i, ·))−

∂p

∂q
(q(θ̂i, ·), ·)

))
∂q

∂θi
(θ̂i, ·)

∂q

∂θ−i
(θ̂i, ·)

]

−Eθ−i

[
1− F (·)

f(·)
(C ′(q(θ̂i, ·))− p(q(θ̂i, ·), ·))

∂2q

∂θi∂θ−i
(θ̂i, ·)

]

−p(q(θ̂i, θ), θ̂i)
∂q

∂θi
(θ̂i, θ)−

∂t

∂θi
(q(θ̂i, θ), θ̂i). (A2)

Integrating by parts the second term yields

Eθ−i

[
1− F (·)

f (·)
(C ′(q(θ̂i, ·))− p(q(θ̂i, ·), ·))

∂2q

∂θi∂θ−i
(θ̂i, ·)

]

28In case, there are several maximizers of t(q, θi) + t(q, θ−i) − C(q) the argument applies also to any
selection of the correspondence.
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= (1− F (·))(C ′(q(θ̂i, ·))− p(q(θ̂i, ·), ·))
∂q

∂θi
(θ̂i, ·)

∣∣∣∣
θ̄

θ

−Eθ−i

[
1− F (·)

f (·)

∂q

∂θi
(θ̂i, ·)

(
∂q

∂θ−i
(θ̂i, ·)

(
C ′′(q(θ̂i, ·))−

∂p

∂q
(q(θ̂i, ·), ·)

)
+
∂p

∂θi
(q(θ̂i, ·), ·)

)]

+Eθ−i

[
C ′(q(θ̂i, ·))− p(q(θ̂i, ·), ·)

]

= −p(q(θ̂i, θ), θ̂i)
∂q

∂θi
(θ̂i, θ)

−Eθ−i

[
1− F (·)

f(·)

{(
C ′′(q(θ̂i, ·))−

∂p

∂q
(q(θ̂i, ·), ·)

)
∂q

∂θi
(θ̂i, ·)

∂q

∂θ−i
(θ̂i, ·) +

∂q

∂θi
(θ̂i, ·)

∂p

∂θi
(q(θ̂i, ·), ·)

}]

+Eθ−i

[
C ′(q(θ̂i, ·))− p(q(θ̂i, ·), ·)

]
. (A3)

where the last equality comes from (2) for θ1 = θ̂i and θ2 = θ.

By Lemma 4 below, it must be that the agent’s payoff with type θ̂i when θ−i = θ is

zero. This gives:

U(θ̂i, θ) = t(q(θ̂i, θ), θ̂i) + t(q(θ̂i, θ), θ)− C(q(θ̂i, θ)) = 0, for all θ̂i. (A4)

Differentiating w.r.t. θ̂i yields:
(
p(q(θ̂i, θ), θ̂i) + p(q(θ̂i, θ), θ)− C

′(q(θ̂i, θ))
) ∂q
∂θi
(θ̂i, θ) +

∂t

∂θi
(q(θ̂i, θ), θ̂i) = 0

and thus using (2),
∂t

∂θi
(q(θ̂i, θ), θ̂i) = 0, for all θ̂i. (A5)

Inserting into (A2) yields:

∂Φ

∂θ̂i
(θ̂i, θi) = Eθ−i

[
∂q

∂θi
(θ̂i, ·)

(
θi + p(q(θ̂i, ·), ·)− C

′(q(θ̂i, ·))−
1− F (·)

f(·)

∂p

∂θ−i
(q(θ̂i, ·), ·))

)]
.

(A6)

For θ̂i = θi to be the optimal report, i.e.,
∂Φ

∂θ̂i
(θi, θi) = 0, the first-order condition (5) must

hold. The second-order condition for the principal’s problem is

∂2Φ

∂θ̂
2

i

(θ̂i, θi)

∣∣∣∣
θ̂i=θi

≤ 0.

Using (A6), the Envelope Theorem and taking the total derivative of (A5) with respect

to θ̂i, we get
∂2Φ

∂θ̂
2

i

(θi, θi) = −Eθ−i

[
∂q

∂θi
(θi, ·)

]
.

Hence, (6) holds.

• Non-Negative Contributions and the Agent’s Participation Constraints: We

want to show that (1) always holds. We proceed with two lemmata.
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Lemma 3 : In any SMP equilibrium, U(θ1, θ2) ≥ Û(θ1) at any (θ1, θ2) if U(θ, θ2) ≥ Û(θ)

for any θ2.

Proof : Note that
∂U

∂θ1
(θ1, θ2) =

∂t

∂θ1
(q(θ1, θ2), θ1)

and
∂Û

∂θ1
(θ1) =

∂t

∂θ1
(q̂(θ1), θ1)

where q̂(θ1) = argmax
q

t(q, θ1) − C(q) ≤ q(θ1, θ2) and where the last inequality follows

from the fact that marginal contributions are non-negative. Then, we have:

∂U

∂θ1
(θ1, θ2) ≥

∂Û

∂θ1
(θ1)

from SMP and the lemma is proved.

Lemma 4 : In any SMP symmetric equilibrium, U(θ, θ) = 0 > Û(θ) for any θ.

Proof : When p(q, θ) ≥ 0 for all q in the range of q(·, θ), one has q̂(θ) = q(θ, θ). Then,

Û(θ) = t(q(θ, θ), θ)− C(q(θ, θ)) = −
C(q(θ, θ))

2
< 0

in a symmetric equilibrium.

Putting together Lemmas 3 and 4 ensures that the relevant binding participation con-

straints in a SMP equilibrium are (A4). Given that (1) holds, contributions are necessarily

non-negative.

Proof of Lemma 2:

• Agent’s Problem: We show that the local conditions (2), the monotonicity conditions

(8) and the SMP property are enough for global optimality of the agent’s problem. Fix q

such that q ≤ q(θ1, θ2) (the case q ≥ q(θ1, θ2) can be treated similarly). We have:

2∑

i=1

t(q(θ1, θ2), θi)−C(q(θ1, θ2))−

(
2∑

i=1

t(q, θi)− C(q)

)
=

∫ q(θ1,θ2)

q

(
2∑

i=1

p(x, θi)− C
′(x)

)
dx.

For any x ∈ [q, q(θ1, θ2)], define ψ(x, θ1) from the first-order condition (2) such that

p(x, θ1)+p(x, ψ(x, θ1)) = C ′(x). Note that (8) and the definition of ψ imply that ψ(x, θ1)

is weakly increasing in x. Then, we have:

∫ q(θ1,θ2)

q

(
2∑

i=1

p(x, θi)− C
′(x)

)
dx =

∫ q(θ1,θ2)

q

(p(x, θ2) − p(x, ψ(x, θ1)))dx ≥ 0
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since ψ(x, θ1) ≤ ψ(q(θ1, θ2), θ1) = θ2 and SMP holds. This shows that the local second-

order condition (4) is implied by SMP and the monotonicity conditions (8).

• Principal’s Problem: We show that the schedule satisfying (7) and (8) is not only

locally incentive compatible but also globally. From (A6) and (8) we have

Φ(θi, θi)− Φ(θ̂i, θi) =

∫ θi

θ̂i

∂Φ

∂θ̂i
(x, θi)dx =

∫ θi

θ̂i

[
∂Φ

∂θ̂i
(x, θi)−

∂Φ

∂θ̂i
(x, x)

]
dx

=

∫ θi

θ̂i

Eθ−i

[
∂q

∂θi
(x, θ−i)

]
(θi − x)dx.

By (8) this last expression is always non-negative.

Proof of Proposition 2: Let us fix any strictly increasing output schedule Q(θ) such

that Q(θ̄) = q∗(θ̄, θ̄). Define also θ̃ such that Q(θ̃) = q for any q in the range of Q(·).

• System of Differential Equations: From (18) taken when θ is replaced by ψ(q, θ),

we have:
1− F (θ)

f(θ)

∂p

∂θ
(q, θ) = ψ(q, θ)− p(q,ψ(q, θ)). (A7)

Using (17), we get (22). Now differentiating (17) with respect to θ yields:

∂p

∂θ
(q, θ) = −

∂p

∂θ
(q, ψ(q, θ))

∂ψ

∂θ
(q, θ).

Using (18), we get (23).

Using (17) at θ = θ̃, we obtain the initial conditions (19) of the system of differential

equations. Note that this system is locally Lipschitz around θ̃ for any θ̃ < θ̄. Hence,

from Theorem 1 p. 162 in Hirsch and Smale (1974), the solution to this system is locally

unique in a neighborhood on the left of θ̃.29

The issue is that (23) fails to be Lipschitz at all pairs (θ, p) because of the denominator

on the right-hand side. To solve this difficulty and prove global uniqueness of the solution,

we may rewrite (22)-(23)30 as a system of autonomous differential equations parameterized

with some x ∈ R+:

∂p

∂x
(q, x) = (ψ(q, x) + p(q, x)−C ′(q))(θ(x)− p(q, x)), (A8)

∂ψ

∂x
(q, x) = −

1− F (ψ(q, x))

f(ψ(q, x))
(ψ(q, x) + p(q, x)− C ′(q)), (A9)

dθ

dx
(x) =

1− F (θ(x))

f(θ(x))
(θ(x)− p(q, x)), (A10)

29The case θ̃ = θ̄ is degenerate since then (17), (18) and (A7) altogether imply that q = q∗(θ̄, θ̄).
30Slightly abusing notations.
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with the initial conditions

p(q, 0) =
C ′(q)

2
and ψ(q, 0) = θ(0) = θ̃. (A11)

This system is now Lipschitz everywhere when 1−F (θ)
f (θ)

is itself Lipschitz. Hence, from

Theorem 1 p. 162 and Lemma p. 171 in Hirsch and Smale (1974), its solution is globally

unique on a maximal interval belonging to R+.

•Monotonicity Properties ∂ψ

∂θ
(q, θ) < 0 and ∂p

∂θ
(q, θ) > 0: Note that, for θ̃, ∂ψ

∂θ
(q, θ̃) =

−1 from (23) and thus ∂ψ
∂θ
(q, θ) < 0 in the neighborhood of θ̃. Similarly, we get ∂p

∂θ
(q, θ̃) =

θ̃−
C′(q)
2

1−F(θ̃)

f(θ̃)

> 0 since q = Q(θ̃) < q∗(θ̃, θ̃).

Suppose that there exist values of θ such that ∂ψ

∂θ
(q, θ) > 0. Denote then by θ1 the

highest value of θ < θ̃ such that ∂ψ

∂θ
(q, θ) = 0. Of course θ1 < θ̃. Then, from (22) and

(23), either ψ(q, θ1) = θ̄ or
∂p

∂θ
(q, θ1) = 0.

In the first case, we are done because the upper part of the isoquant is already com-

pletely defined on [θ1, θ̃] only. In the second case, note that we must have ψ(q, θ1) +

p(q, θ1) − C
′(q) = 0. Observe that, at such θ1, the system of differential equations (22)-

(23) is Lipschitz unless θ1 = p(q, θ1). When it is Lipschitz, its solution is thus locally

unique. But then the pair of constant functions ψ(q, θ) = ψ(q, θ1) and p(q, θ) = p(q, θ1)

is a solution on the right of θ1, a contradiction with the definition of θ1 and the fact that
∂ψ

∂θ
(q, θ) < 0 on the right of θ1.

Is it possible that θ1 = p(q, θ1)? To prove the converse, first note that (22) can be

rewritten as:
∂

∂θ
[(1− F (θ))p(q, θ)] = (ψ(q, θ)− C ′(q))f(θ).

Integrating yields

(1− F (θ))p(q, θ) = k +

∫ θ

θ̃

ψ(q, x)f(x)dx+ C ′(q)(1− F (θ))

where k is a constant of integration.

But using the initial conditions (19), we get k = −C′(q)
2
(1− F (θ̃)) and thus:

p(q, θ) = C ′(q)

(
1−

1− F (θ̃)

2(1− F (θ))

)
+

1

1− F (θ)

∫ θ

θ̃

ψ(q, x)f(x)dx. (A12)

Integrating by parts on the right-hand side and manipulating, we get

θ − p(q, θ) = θ + ψ(q, θ)− C′(q)
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+

(
C ′(q)

2
− θ̃

)(
1− F (θ̃)

1− F (θ)

)
−

1

1− F (θ)

∫ θ

θ̃

∂ψ

∂θ
(q, x)(1− F (x))dx. (A13)

For θ1 such that θ1 = p(q, θ1), the integral on the right-hand side of (A13) is positive since
∂ψ

∂x
(q, x) < 0 on [θ1, θ̃] by definition of θ1. Moreover, 2θ̃ > C

′(q) by definition of Q(·).

Hence, we find

θ1 + ψ(q, θ1)− C
′(q) > 0

which leads (from (23)) to a contradiction with the fact that ∂ψ

∂θ
(q, θ1) = 0.

• Constructing Equilibria: The solution {ψ(q, θ), p(q, θ)} starting from the initial

condition (19) allows us to construct an equilibrium if the second-order condition of the

agent’s problem is satisfied.

Differentiating (17) with respect to q, we get:

∂p

∂q
(q, θ) +

∂p

∂q
(q, ψ(q, θ))− C ′′(q) = −

∂p

∂θ
(q, ψ(q, θ))

∂ψ

∂q
(q, θ). (A14)

Given that ∂p

∂θ
(q, θ) > 0, the condition ∂ψ

∂q
(q, θ) > 0 ensures that the right-hand side of

(A14) is negative, ensuring local concavity of the agent’s problem. From Lemma 2, this

ensures also global concavity of the agent’s problem.

Note that θ = ψ(Q(θ), θ). Differentiating with respect to θ and taking into account

that Q(θ) is increasing, we find ∂ψ

∂q
(Q(θ), θ) > 0.When θ̄− θ is small enough, this positive

sign holds on the whole domain and thus ∂ψ

∂q
(q, θ) > 0.

Similarly, p(q, θ) > 0 when θ̄ − θ is small enough by continuity since p(q, θ̃) > 0.

Proof of Corollary 1: Since ∂p

∂θ
(q, θ) > 0 on [θ, θ̃], we immediately obtain that ψ(q, θ) ≥

p(q, ψ(q, θ)) on that interval (the inequality is strict when θ < θ̃ ≤ θ̄) and thus θ > p(q, θ)

on [θ̃, θ̄] (except possibly when ψ(q, θ) = θ̄ where this is an equality). We could as well

have studied (22)-(23) over the interval [θ̃, θ̄] and get similarly ∂p

∂θ
(q, θ) > 0 on that interval,

i.e., ψ(q, θ) ≥ p(q, ψ(q, θ)) on [θ̃, θ̄] or θ ≥ p(q, θ) on [θ, θ̃].

Proof of Proposition 3: Postulating ∂p

∂θ
(q, θ) = k for some k, the equilibrium condition

for principal P1 yields:

θ1 − p(q, θ1) = (β(θ̄ − θ2) + γ)k. (A15)

Summing with a similar equation coming from principal P2’s best response yields:

C ′(q(θ1, θ2)) = (θ1 + θ2)(1 + βk)− 2βkθ̄ − 2γk. (A16)

Expressing θ2 = ψ(q, θ1) from (A16) and inserting into (A15) yields an expression of

p(q, θ) whose derivative w.r.t. θ must be equal to k. This yields k = 1
1+β

and, finally,

equations (24) and (25).
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Finally, the condition θ ≥ 1
1+β
(β(θ̄ − θ) + γ) ensures that marginal contributions are

positive.

Proof of Proposition 4: For equilibria where ∂t−i
∂θ−i

(q, θ−i) ≥ 0, U(θ−i|θi) is increasing

and (28) is binding at θ−i = θ provided that the marginal contribution ∂t−i
∂q
(q, θ−i) is

positive. Integrating by parts, we obtain:

Eθ−i [U(·|θi)] = Eθ−i

[
1− F (·)

f(·)

∂t−i

∂θ−i
(q(·|θi), ·)

]
.

Inserting into (29), we have to optimize pointwise with respect to q the following

expression of the virtual surplus of principal Pi:

Si(q, θi, θ−i) = θiq + t−i(q, θ−i)− C(q)−
1− F (θ−i)

f (θ−i)

∂t−i

∂θ−i
(q, θ−i).

This expression is concave in q when

∂2Si

∂q2
(q, θi, θ−i) =

∂p−i

∂q
(q, θ−i)−C

′′(q)−
1− F (θ−i)

f(θ−i)

∂2p−i

∂θ−i∂q
(q, θ−i) ≤ 0.

Define now ψ−i(q, θ−i) from (31). Differentiating (31) with respect to q yields that the

virtual surplus is strictly concave if and only if
∂ψ

−i

∂q
(q, θ−i) > 0.

Optimization of the virtual surplus leads then to an output q(θ−i|θi) which satisfies

∂Si

∂q
(q(θ−i|θi), θi, θ−i) = 0.

This is the pointwise optimality condition (7) at a symmetric equilibrium. Provided that
∂q

∂θ−i
(θ−i|θi) ≥ 0, we have indeed the solution to (Pi).

Differentiating (7) with respect to θ−i, we have:

∂2Si

∂q2
∂q

∂θ−i
=
1− F (θ−i)

f (θ−i)

∂2p−i

∂θ2−i
−

(
1−

d

dθ−i

(
1− F (θ−i)

f (θ−i)

))
∂p−i

∂θ−i
. (A17)

Differentiating (31) with respect to θ−i allows to simplify (A17) to get

∂2Si

∂q2
∂q

∂θ−i
=
∂ψ−i
∂θ−i

.

At a symmetric equilibrium characterized in Proposition 2, given that P−i makes the

offer t(q, θ−i) defined through its non-negative margin p(q, θ−i) (up to a constant), Pi

cannot do better than offering a direct revelation mechanism which allows to reconstruct

the nonlinear schedule t(q, θi) itself.
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Simple Identifications Fail to Achieve Interim Efficiency: We express first the

slope of the agent’s indifference curve in two different ways:

∂q

∂θ1
∂q

∂θ2

=

∂p

∂θ1
(q, θ1)

∂p

∂θ2
(q, θ2)

=
1− α̃(θ1)

1− α̃(θ2)
. (A18)

Using the expression of q(·) as an interim efficient outcome coming from (32), we get also:

∂q

∂θ1
∂q

∂θ2

=
ḃ(θ1)

ḃ(θ2)
. (A19)

Identifying (A18) and (A19), we get:

ḃ(θ1)

1− α̃(θ1)
=

ḃ(θ2)

1− α̃(θ2)
(A20)

which must be true for any pairs (θ1, θ2). This leads to set:
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ḃ(θ1) = 1− α̃(θ1). (A21)

This yields the following differential equation solved by α̃(·):

α̃(θ) =
d

dθ

(
1− F (θ)

f(θ)
(1− α̃(θ))

)
.

Setting z(θ) = θ − b(θ) = 1−F (θ)
f (θ)

(1− α̃(θ)), we have z(θ) = z(θ̄) = 0 and

ż(θ) = 1−
f(θ)

1− F (θ)
z(θ). (A22)

Finally, taking into account the initial conditions, the solution writes as:

z∗(θ) = (1− F (θ))

∫ θ

θ

dx

1− F (x)
and b∗(θ) = θ − (1− F (θ))

∫ θ

θ

dx

1− F (x)
. (A23)

This leads to find:

∂p

∂θ
(q, θ) = 1− α̃(θ) = 1− f(θ)

∫ θ

θ

dx

1− F (x)
. (A24)

From which, we derive

p(q, θ) = b∗(θ) + φ(q) (A25)

where φ(·) is a constant of integration. Using the fact that

p(q(θ1, θ2), θ1) + p(q(θ1, θ2), θ2) = C
′(q(θ1, θ2)) = b(θ1) + b(θ2)

31Alternatively, we may set µḃ(θ1) = 1−α̃(θ1) for some µ > 0. The proof of the impossibility is similar.
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we deduce that φ(q(θ1, θ2)) = 0 for all (θ1, θ2). Hence, we obtain

p(q, θ) = b∗(θ). (A26)

From writing principal 1’s best-response, we get for any pair (θ1, θ2):

θ1 − p(q(θ1, θ2), θ1) = (1− F (θ2))

∫ θ2

θ

dx

1− F (x)
.

But, using (A26), this gives: (1−F (θ2))
∫ θ2
θ

dx
1−F (x)

= (1−F (θ1))
∫ θ1
θ

dx
1−F (x)

, which cannot

hold for all (θ1, θ2).

Proof of Proposition 6: The expression of the social weights is obtained by identifying

(25) and (32). This yields: 1−F (θ)
f (θ)

1
1+β

= 1−F (θ)
f (θ)

(1− α̃(θ)) so the result.

Proof of Proposition 7: First, we now provide an alternative description of the equilib-

rium allocations. This characterization provides a direct way of checking whether a given

output schedule arises at equilibrium or not.32

Proposition 9 : An output schedule q(·) is a symmetric equilibrium of the common

agency game only if there exists a function p̃(θ1, θ2) such that the following system holds:

p̃(θ1, θ2) =
θ1

(
1−F (θ1)
f (θ1)

)
∂q

∂θ1
+ (C ′(q(θ1, θ2))− θ2)

(
1−F (θ2)
f(θ2)

)
∂q

∂θ2(
1−F (θ1)
f (θ1)

)
∂q

∂θ1
+
(
1−F (θ2)
f(θ2)

)
∂q

∂θ2

, (A27)

and
∂p̃

∂θ1
−
∂p̃

∂θ2

∂q

∂θ1
∂q

∂θ2

=
(θ1 + θ2 − C

′(q(θ1, θ2)))
∂q

∂θ1(
1−F (θ1)
f (θ1)

)
∂q

∂θ1
+
(
1−F (θ2)
f (θ2)

)
∂q

∂θ2

. (A28)

Proof: From the Envelope Theorem, we have

∂U(θ1, θ2)

∂θ1
=
∂t

∂θ1
(q(θ1, θ2), θ1).

Differentiating again and using Schwarz Lemma for U(·) twice differentiable, we obtain:

∂2U(θ1, θ2)

∂θ1∂θ2
=

∂2t

∂q∂θ1
(q(θ1, θ2), θ1)

∂q(θ1, θ2)

∂θ2
=

∂2t

∂q∂θ2
(q(θ1, θ2), θ2)

∂q(θ1, θ2)

∂θ1

or using previous notations:

∂p

∂θ1
(q(θ1, θ2), θ1)

∂q(θ1, θ2)

∂θ2
=
∂p

∂θ2
(q(θ1, θ2), θ2)

∂q(θ1, θ2)

∂θ1
. (A29)

32In particular, it is easy to check on (A27) and (A28) that the first-best output cannot be implemented
as an equilibrium.
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Using

θ1 − p(q(θ1, θ2), θ1) =
1− F (θ2)

f(θ2)

∂p

∂θ2
(q(θ1, θ2), θ2), (A30)

we get
(
θ1 − p(q(θ1, θ2), θ1)

1−F (θ2)
f(θ2)

)
∂q(θ1, θ2)

∂θ1
=

(
θ2 − p(q(θ1, θ2), θ2)

1−F (θ1)
f (θ1)

)
∂q(θ1, θ2)

∂θ2
. (A31)

Using now that

p(q(θ1, θ2), θ1) + p(q(θ1, θ2), θ2) = C
′(q(θ1, θ2)) (A32)

we obtain that p(q(θ1, θ2), θ1) = p̃(θ1, θ2) solves (A27).

Still using (A27) and (A30), we get

θ1 − p(q(θ1, θ2), θ1) =
(θ1 + θ2 − C

′(q(θ1, θ2)))
1−F (θ2)
f(θ2)

∂q

∂θ2(
1−F (θ1)
f (θ1)

)
∂q

∂θ1
+
(
1−F (θ2))
f(θ2)

)
∂q

∂θ2

=
1− F (θ2)

f (θ2)

∂p

∂θ2
(q(θ1, θ2), θ2).

But, simple algebra shows that

∂p

∂θ2
(q(θ1, θ2), θ2) =

∂p̃

∂θ2
(θ2, θ1)−

∂p̃

∂θ1
(θ2, θ1)

∂q

∂θ1
∂q

∂θ2

which, permuting θ1 and θ2 and using the symmetry of q(·), yields (A28).

Take now q(·) defined by (35). Using (A27), this output corresponds to p̃(θ1, θ2) =

θ1 − λ which satisfies (A28).

To derive the expression of the social weights, note that solving λ = 1−F (θ)
f(θ)

(1− α̃(θ))

leads to α̃(θ) = 0.

Let us now suppose that there exists another interim efficient allocation corresponding

to a function b(·). Using (A27) and substituting into (A28) yields (after manipulations)

the following partial differential equation in q(·):

(θ1 + θ2 − 2λ− q)
∂q

∂θ1

∂q

∂θ2

(
∂q

∂θ1
+
∂q

∂θ2

)
(A33)

= (θ1 + θ2 − q)

(
−2

∂q

∂θ1

∂q

∂θ2

∂2q

∂θ1∂θ2
+
∂2q

∂θ21

(
∂q

∂θ2

)2
+
∂2q

∂θ22

(
∂q

∂θ1

)2)
.

When C ′(q) = q, interim efficiency implies that ∂2q

∂θ1∂θ2
= 0. Expressed in terms of b(·),

(A33) yields

(θ1 + θ2 − 2λ− b(θ1)− b(θ2))ḃ(θ1)ḃ(θ2)(ḃ(θ1) + ḃ(θ2)) (A34)

= (θ1 + θ2 − b(θ1)− b(θ2))
(
b̈(θ1)ḃ

2(θ2) + b̈(θ2)ḃ
2(θ1)

)
.
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Taking θ = θ1 = θ2, we find that b(·) must solve the following differential equation:

(θ − λ− b(θ))ḃ(θ) = λ(θ − b(θ))b̈(θ). (A35)

Inserting this expression for b̈(θ1) and b̈(θ2) into (A34) yields (after manipulations) the

condition:

ḃ(θ1)ḃ(θ2)(θ2 − b(θ2)− θ1 + b(θ1))

(
ḃ(θ1)

(θ1 − b(θ1))
−

ḃ(θ2)

(θ2 − b(θ2))

)
= 0.

A first possibility is to set θ− b(θ) = µ for any θ for some real number µ but using (A35),

we have necessarily λ = µ as requested. The second possibility is to set (θ− b(θ))ḃ(θ) = µ

for any θ. But, using (A35) yields to a contradiction.

Proof of Proposition 8: The proof proceeds with a sequence of lemmata:

Lemma 5 : Under Assumption 3, T [p] ∈ B, for all p ∈ B.

Proof : Observe that for all p ∈ B, E
θ̃
(G(p(q, θ) + p(q, θ̃) − C ′(q))) and E

θ̃
(g(p(q, θ) +

p(q, θ̃) − C ′(q))) are continuous functions of θ because p(·) is continuous and bounded.

Moreover, if E
θ̃
(g(p(q, θ) + p(q, θ̃) − C ′(q))) is null, then E

θ̃
(G(p(q, θ) + p(q, θ̃) − C ′(q)))

is also null. In this case, one may then use the convention T [p](q, θ) = θ. More generally,

it is immediate to see that T [p](q, θ) ≤ θ.

Finally, note that the monotone hazard rate property d
dx

(
G(x)
g(x)

)
≥ 0 (to be shown in

Remark 1 below) implies that:

θg(p(q, θ) + p(q, θ̃)− C ′(q))−G(p(q, θ) + p(q, θ̃)− C ′(q))

≥ g(p(q, θ) + p(q, θ̃)− C ′(q))

(
θ −

G(θ + θ̄ − C ′(q))

g(θ + θ̄ − C ′(q))

)

from Assumption 3. Taking expectations over θ̃ yields T [p](q, θ) ≥ 0.

We want now to show the existence and uniqueness of the fixed-point of T [·]. Moreover,

we have to prove that the necessary first-order condition (36) is also sufficient.

Consider first the function L(·|·) defined on I2 as: L(y|x) = G(y)g′(x) − g(y)g(x).

Lemma 6 : Under Assumptions 1 and 2, we have:

0 ≥ L(y|x) ≥ L(x|x), for all (x, y) ∈ I2.
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Proof : Taking the derivative of L(y|x) with respect to y, we get:

∂L

∂y
(y|x) = g(y)g′(x)− g′(y)g(x).

Thus, ∂L
∂y
(y|x) ≥ 0 if and only if g

′(x)
g(x)

≥ g′(y)
g(y)

and, by Assumption 1, if and only if y ≥ x.

By Assumptions 1 and 2, L(ε̄|x) = g′(x) − g(ε̄)g(x) ≤ 0 and L(0|x) = −g(0)g(x) ≤ 0.

Therefore, 0 ≥ L(y|x) ≥ L(x|x).

Remark 1 : Observe that Lemma 6 implies the monotone hazard rate property:

d

dx

(
G(x)

g(x)

)
= −

L(x|x)

g(x)2
≥ 0 for all x ∈ I.

Lemma 7 : For all x ∈ I and p ∈ B, we have:

Eθ̃

[
G(p(q, θ) + p(q, θ̃)− C ′(q))

]
g′(x) −Eθ̃

[
g(p(q, θ) + p(q, θ̃)−C ′(q))

]
g(x) < 0.

Proof : It is just a matter of applying Lemma 6 for each y = p(q, θ) + p(q, θ̃)−C ′(q) and

integrating out the inequalities with respect to θ̃.

Lemma 8 : Under Assumptions 1 to 3, T [·] is monotonically decreasing, i.e., p0 < p1 in

B implies T [p0] < T [p1].
33

Proof : Let h = p1− p0 > 0 and define the function ϕ(t, θ) = T [p+ th](q, θ) for t ∈ [0, 1].

Taking the derivative of ϕ(·) w.r.t. t, we get:

∂tϕ(t, q, θ) =
Eθ̃ [G(·)]Eθ̃

[
g′(·)h(θ̃)

]
− Eθ̃ [g(·)]Eθ̃

[
g(·)h(θ̃)

]

(
E
θ̃
[g(·)]

)2

for all q and θ ∈ Θ and t ∈ [0, 1] such that ϕ(t, q, θ) > 0 (otherwise the derivative is zero,

when it exists), where the arguments of the functions are pt(q, θ) + pt(q, θ̃) − C
′(q) with

pt(q, θ) = p(q, θ)+th(θ). By Lemma 7, ∂tϕ(t, q, θ) < 0 for h > 0. Therefore, T [p0] > T [p1]

33We are using the following convention:

p0 ≤ p1 if and only if p0(θ) ≤ p1(θ), for all θ ∈ Θ

p0 < p1 if and only if p0 ≤ p1 and p0(θ) < p1(θ), for some θ ∈ Θ.
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Lemma 9 : Assume that Assumptions 1 to 3 hold and let 0 and I be respectively the null

and the identity function. The following properties hold for all n ∈ N:

1. T 2n[0] ≤ T 2n[I] and T 2n+1[I] ≤ T 2n+1[0];

2. T 2(n−1)[0] ≤ T 2n[0] ≤ T 2n+1[0] ≤ T 2n−1[0] and T 2n−1[I ] ≤ T 2n+1[I ] ≤ T 2n[I] ≤

T 2(n−1)[I].

Proof : 1) This is easily obtained by induction (observing that 0 ≤ I implies that T [I ] ≤

T [0] and T 2[0] ≤ T 2[I], by Lemma 8).

2) We give the proof only for 0 (the proof for I is similar). Let us first show that the

result holds for n = 1. We have that 0 ≤ T [0], T 2[0]. Thus, by Lemma 8, T 2[0] ≤ T [0]

and T 3[0] ≤ T [0] and applying T [·] again, we get T 2[0] ≤ T 3[0] by Lemma 8. Therefore,

0 ≤ T 2[0] ≤ T 3[0] ≤ T [0]

which is the claim for n = 1. Suppose that the result holds for some n ∈ N, i.e.,

T 2(n−1)[0] ≤ T 2n[0] ≤ T 2n+1[0] ≤ T 2n−1[0]. Applying T [·] to these inequalities and using

Lemma 8 we get: T 2n[0] ≤ T 2(n+1)[0] ≤ T 2n+1[0] ≤ T 2n−1[0]. Doing the same with the first

and second inequalities of these last inequalities we get: T 2(n+1)[0] ≤ T 2n+3[0] ≤ T 2n+1[0].

Plugging these inequalities into the previous ones we finally get:

T 2n[0] ≤ T 2(n+1)[0] ≤ T 2n+3[0] ≤ T 2n+1[0]

which is the result for n+ 1. This concludes our proof by induction.

Lemma 10 : Assume that Assumptions 1 to 3 hold. The sequences (Tn[0])n∈N and

(T n[I])n∈N converge pointwise towards the unique fixed-point of T [·].

Proof : By 2) in Lemma 9, the sequences (T 2n[0])n∈N and (T 2n+1[I])n∈N converge increas-

ingly pointwise towards 0̄e and Īo, respectively. Similarly, (T
2n+1[0])n∈N and (T

2n[I ])n∈N

converge decreasingly to 0̄o and Īe, respectively. Thus, these functions are fixed-points of

T 2. Moreover, by Lemma 9, these functions satisfy

0̄e ≤ Īe, Īo ≤ 0̄o, 0̄e ≤ 0̄o and Īo ≤ Īe.

Since, T 2[·] is a strictly increasing operator, these four functions should be the same,

say p̄. In particular, the sequences (Tn[0])n∈N and (T n[I])n∈N converge pointwisely to p̄

(because subsequences of even and odd index have the same adherent point). Therefore,

p̄ is a fixed-point of T [·] and since every fixed-point of T [·] is in between 0 and I, it should

coincide with p̄, i.e., T [·] has a unique fixed-point.
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Lemma 11 : Assume that Assumptions 1 to 3 hold. The fixed-point p̄ of T [·], belongs

to B and is a non-decreasing function. Moreover, p̄ has for degree of differentiability the

minimum of that of g and C ′ in a neighborhood of θ.

Proof : Observe that for each θ ∈ Θ such that p̄(q, θ) > 0, the derivative of the function

ϕ(x) = x+
Eθ̃

[
G(x+ p̄(q, θ̃) −C ′(q))

]

E
θ̃

[
g(x+ p̄(q, θ̃)− C ′(q))

]

at x = p̄(q, θ) is given by

ϕ′(p̄(q, θ)) = 1 +

(
E
θ̃
[g(·)]

)2
− E

θ̃
[G(·)]E

θ̃
[g′(·)]

(
E
θ̃
[g(·)]

)2 > 0

by Lemma 7, where the argument of the functions is p̄(q, θ) + p̄(q, θ̃) − C ′(q). By the

Implicit Function Theorem, we have:

∂p̄

∂θ
(q, θ) = [ϕ′(p̄(q, θ))]

−1
> 0.

Therefore, the result follows.

Now, we establish the proof of Proposition 8. The remaining things to prove are:

(i) the first-order condition (36) is also sufficient for the principal’s problem; (ii) the

consistency condition (38).

To prove (i), note that the second-order condition of the principal’s objective function

amounts to:

E
θ̃

[
G(p+ p̄(q, θ̃) −C ′(q))

]
E
θ̃

[
g′(p+ p̄(q, θ̃)− C ′(q))

]
− 2

(
E
θ̃

[
g(p+ p̄(q, θ̃)− C ′(q))

])2

(
E
θ̃

[
g(p+ p̄(q, θ̃)− C ′(q))

])2 ≤ 0

for all p ∈ p̄(q, θ) for some θ ∈ Θ (where we are using the first-order condition (36)). This

is true by Lemma 7.

Observe that (ii) follows from Assumption 3 and the definition of T [·].

Non-Differentiable Equilibria: For completeness, we present now a class of non-

differentiable equilibria. To analyze those equilibria, the most useful procedure is again

based on the supply profile due to Wilson (1993).

Consider a principal Pi with type θi willing to pay a marginal contribution p for q

units of the public good. This principal has to evaluate the probability that principal

P−i is also willing to contribute enough so that this amount is produced. Formally, if
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P−i follows the (symmetric) strategy p(q, ·), the likelihood that q units of public good are

produced is

proba
{
p(q, θ̃−i) + p ≥ C

′(q)
}
= 1−G(C ′(q)− p|q)

where G(·|q) is the cumulative distribution of the marginal contribution of principal P−i

for q units of the public good. Given that residual supply schedule, Pi chooses a marginal

contribution for q units of the public good which solves:

p(q, θi) ∈ argmax
p
(θi − p)(1−G(C

′(q)− p|q)).

These best-responses for each θi induce a distribution of marginal contributionsGi(·|q)

for principal Pi. A symmetric equilibrium of the common agency game is thus a family

of distributions (one for each value of q) G(·|q) which are fixed-points for each q.

To find an interesting class of non-differentiable equilibria, it is in fact enough to

specify marginal contributions having two steps and a threshold θ∗(q) such that:

• for θ ≥ θ∗(q), p(q, θ) = p̄(q);

• for θ ≤ θ∗(q), p(q, θ) = p(q) (< p̄(q)).

As we will see below, the three functions p̄(·), p(·) and θ∗(·) are linked altogether.

Given a function θ∗(q) (satisfying some properties to be made precise below), one can

certainly find a two-step equilibrium (or the marginal contribution associated to it) using

those conditions.

For a two-step symmetric equilibrium, let us describe the probability that q units of

the public good are produced given a marginal contribution p:

G(C ′(q)− p|q) = 0 if p > C ′(q)− p(q)

G(C ′(q)− p|q) = F (θ∗(q)) if C ′(q)− p̄(q) < p ≤ C ′(q)− p(q)

G(C ′(q)− p|q) = 1 if p ≤ C ′(q)− p̄(q)

where in first (last) case q units of the public good are (never) produced and the second

case there is a probability 1− F (θ∗(q)) to be produced.

For each quantity q and type θi, Pi’s best response is to offer a marginal contribution

p̄(q) = C ′(q)− p(q) whenever

θi − C
′(q) + p(q) ≥ max

C′(q)−p̄(q)≤p≤C′(q)−p(q)
(θi − p)(1− F (θ

∗(q))) (A36)

= (θi − C
′(q) + p̄(q))(1− F (θ∗(q))).
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The set of such types θi is thus of the form [θ∗(q), θ̄] as requested by the structure postu-

lated for the equilibrium.

At a symmetric two-step equilibrium, the following two conditions must hold:

p̄(q) + p(q) = C ′(q), (A37)

and θi = θ
∗(q) solves (A36) as an equality, i.e.,

θ∗(q)F (θ∗(q)) = p̄(q)(2− F (θ∗(q)))− C ′(q)(1− F (θ∗(q))). (A38)

For q such that C ′(q)
2
≤ p̄(q) ≤ θ̄, (A38) defines uniquely θ∗(q) in [θ, θ̄]. Alternatively,

given an increasing schedule Q∗(θ) which admits an inverse θ∗(q) which is almost every-

where differentiable, one can reconstruct p̄(q) from (A38) and p(q) from (A37). Note that

p̄(q) is such that p̄(q) ≥ C ′(q)
2
.

Proposition 10 : There exists a multiplicity of equilibria with two-steps marginal con-

tributions. For each Q∗(θ) monotonically increasing with Q∗(θ̄) = q∗(θ̄, θ̄) and Q∗(θ) ≤

q∗(θ, θ), there exists an equilibrium described by (A37) and (A38).

Proof : The only thing to note is that for θ1 < θ
∗(q) ≤ θ2, P2 offers a marginal contribu-

tion p̄(q) whereas P1 offers p(q), leading to the choice of q units. Idem for θ2 ≤ θ
∗(q) < θ1

with the identity of the principals being reversed. When θ1 = θ2 = θ∗(q), note that

both principals are indifferent between paying p̄(q) or p(q) at the margin. Break this

indifference with a lexicographic order in favor of principal P1 who pays indeed p(q) when

both contributions are the same. Then the isoquant for q units cuts the diagonal at

θ1 = θ2 = θ
∗(q). Note that (A38) and p̄(q) ≥ C ′(q)

2
imply that 2θ∗(q) ≥ C ′(q).

It is worth describing the isoquants corresponding to those non-differentiable equilib-

ria. In fact, those curves are the reunion made of the horizontal segment {θ1 ≥ θ∗(q)}

with the vertical segment {θ2 ≥ θ∗(q)}. Those non-differentiable equilibria allow us to

describe settings where isoquants are not strictly decreasing (ψ(q, ·) being not invertible).
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