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    The two-armed bandit problem is a classical model in which optimal learning can be 
studied. The specific characteristic of bandit problems is that experimentation is crucial 
for optimal learning. To learn about the payoff to some action, the decision maker has to 
experiment with this, or a correlated, action.  
    Optimal Bayesian behavior in two-armed bandit problems is well-understood (Berry 
and Foisted (1985)). The purpose of this paper is to begin the development of an 
alternative to the Bayesian hypothesis. The alternative theory assumes that people use 
strategies for two-armed bandits which are optimal subject to the constraint that they 
need to be simple. We model simplicity by requiring that the strategy be implementable 
by a finite automaton with a small number of states. It seems plausible that real people's 
behavior might be affected by constraints that limit the complexity of behavior.  
    We develop our alternative hypothesis for the simplest example for which interesting 
results can be obtained. For this example, our main findings are: 
 

- An initial bias in favor of some arbitrarily selected action, such as "always try 
out first the alternative to your right" may be optimal. 

- The decision maker may find a randomized experimentation strategy strictly 
better than any deterministic experimentation strategy. 

- The willingness to experiment need not be monotonically increasing in the 
discount factor. 

- A decision maker with a discount factor very close to one may be able to choose 
his experimentation probability so that the payoff loss caused by the complexity 
constraint is almost zero. 

 
         To understand why we obtain the result in the first two bullet points one needs to 
note first that the requirement that an automaton with a very small number of states 
implement the decision maker's strategy implies that the decision maker is "absent-
minded." Here we use this term in the same sense as Piscine and Ruination (1997), that 
is, the decision maker has imperfect recall, and, in particular, he cannot distinguish 
current decision nodes from previous ones. In our model, when considering to abandon 
some current action a, and to experiment with some alternative action a′, the decision 
maker will not be able to tell whether he has already tried out a′ in the past (and 
presumably received a low payoff), or whether he has not yet tried out a′. The more 
general idea is that the decision maker cannot recall exactly how many times he has 
already tried out an alternative.  
    As in Piscine and Ruination's model, an implication of such absent-mindedness is that 
randomized behaviour may be superior to deterministic behavior. This explains the 
second bullet point above. The first bullet point is that an initial bias in favor of some 
action, say A, may be optimal. Such an initial bias implies that, whenever the decision 
maker plays some other action, say B, he knows that he must have tried out A before, 
even if he cannot remember doing so. This is useful because it allows the decision 
maker to infer indirectly information from the fact that he currently playing B. Note that 
here we interpret a "strategy" as a rule that the decision maker always follows when he 
encounters similar decision problems, and we assume that the decision maker always 
remembers this rule. It is only particular instances of application of that rule that he 



does not remember. This assumption underlies to our knowledge all of the literature on 
imperfect recall.  
    Although our work is related to Piscine and Ruination (1997), it is in one important 
respect different. In our model, the particular form of imperfect recall that we study is 
derived from an optimization problem. By constructing the optimal two state automaton 
we are essentially asking how a very small amount of available memory should 
optimally be used. By contrast, in Piscine and Ruination's work, which information will 
be stored, and which will be forgotten, is exogenously given.  
    It should be pointed out that we are assuming in this paper that randomization is 
costless. Technically, randomization is achieved by random transitions of the finite 
automaton. Our measure of complexity is the number of states of the finite automaton. 
This is a standard measure of complexity, but it ignores the complexity of the 
transitions, and thus, in particular, random transitions are regarded as costly. Banks and 
Sundaram (1990) have investigated complexity measures for finite automata which take 
the complexity of the transition rules into account. Intuitively, our work identifies the 
memory that the decision maker needs to allocate to the implementation of his strategy 
as the main cost, and our work ignores other costs. This seems to us a scenario that is 
worthwhile considering, but it is clearly not the only scenario in which one might be 
interested.  
    To see why our third bullet point above is surprising, note that in the classical multi-
armed bandit problem the willingness to experiment increases as the discount factor 
increases. Formally, it is easy to show that the Gittins-Index of a risky arm is a 
monotonically increasing function of the discount factor. The intuitive reason is that 
experimentation generates information, and the value of information increases as the 
discount factor goes up. In our model this intuition needs to be modified. 
Experimentation has downside as well as an upside. The upside is that it may yield 
useful information. The downside is that the decision maker may already have 
experimented before, but does not recall this fact. If he has already experimented in the 
past, and has received a low payoff, then repeated experimentation will yield this low 
payoff more frequently. While a very impatient decision maker, if he experiments at all, 
will typically need to experiment with high probability, so as to reap the benefits of 
experimentation quickly, a more patient decision maker can trade off the upside and 
downside of experimentation more carefully, and this will lead him to reduce the 
experimentation rate in comparison to a very impatient decision maker.  
    We will highlight this effect by demonstrating that asymptotically, as the discount 
factor tends to one, the payoff loss that is due to the complexity constraint in our model, 
tends to zero. A very patient decision maker will be able to experiment sufficiently 
much to find superior action in payoff-relevant time, and on the other hand he will 
experiment sufficiently infrequently so that the negative effects of imperfect recall are 
avoided. This is the fourth bullet point above.  
    Our work is closely related to Kalai and Solan (2003) who have presented a general 
study of optimal finite automata for Markov decision problems. Our work differs from 
theirs in that we assume that there is discounting, whereas they assume that the decision 
maker does not discount the future. However, this is a minor point. The superiority of 
randomized strategies over deterministic strategies was already demonstrated by Kalai 
and Solan. What we present here is an application of Kalai and Solan's general 
framework to two-armed bandit problems.  
    Schlag (2003) has also studied several desirable properties of simple learning 
algorithms. However, he uses minmax criteria, and dominance criteria, whereas we use 
entirely orthodox Bayesian criteria to evaluate different algorithms.  



    This paper is a companion paper to Börgers and Morales (2004). In that paper we 
study an example with two perfectly negatively correlated arms and binary random 
payoffs. We show that the optimal two state automaton is extremely simple, and does 
not involve an initial bias, nor a stochastic transition rule. Rather, the optimal automaton 
plays in each period with probability 1 the action that was successful in the last period. 


