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Abstract

We study the effect of downstream horizontal mergers on the upstream producer’s capacity
choice. Contrary to conventional wisdom, we find a non-monotonic relationship: such mergers
induce a lower upstream capacity if the cost of capacity is high; a higher upstream capacity if
this cost is low. We explain the result by decomposing the total effect into two distinct effects:
a change in hold-up and a change in bargaining erosion.
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1 Introduction

A raising debate in the antitrust arena concerns the negative long term effects of downstream
horizontal integration on upstream producers’ investment incentives. For example, the position
held by the European Commission in two recent decisions on the merger of leading retailers,
Kesko/Tuko and Rewe/Meinl, created jurisprudence in merger control: competitive assessment
should no longer be restricted to the downstream market but also look for adverse effects on input
markets. This concern is also present in the European Commission’s guidelines on purchasing
agreements.1

The present paper studies how a downstream horizontal merger affects the capacity choice of
an upstream producer. It seems intuitive that following a merger the producer will choose a lower
level of capacity since he will be more exposed to the hold-up problem. Perhaps surprisingly then,
working from fundamentals, we find a non-monotonic relationship between downstream horizontal
integration and upstream equilibrium capacity.

We study a two stage game: in the first stage, the producer chooses capacity and pays for
its cost. In the second stage, the producer bargains with downstream firms over input supply.
Since the allocation of the bargaining surplus, and therefore investment incentives, depend on the
chosen solution concept, this choice is a crucial step. Like other authors studying the effects of
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81 (2001).
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integration, we use the Shapley value (e.g. Hart and Moore, 1990; Inderst and Wey, 2003; Segal,
2003).

Our main result is that the cost of capacity provides a simple criterion to evaluate claims about
the effect of a downstream horizontal merger on the producer’s capacity choice: a downstream
merger induces a higher equilibrium capacity if the cost of capacity is low; it induces a lower
capacity if this cost is high.

We explain this result by decomposing the total effect into two distinct effects. On the one
hand, as expected, the merger increases the extent to which downstream firms are able to hold-up
the producer, i.e. the share of the surplus accruing to the producer decreases.

On the other hand, for any given market configuration, increasing capacity erodes the bar-
gaining power of the producer–”competition” for the input becomes weaker as it becomes more
abundant. A downstream merger reduces the rate at which this bargaining erosion takes place.
The latter effect counteracts the increase in the hold-up, and will dominate when cost of capacity
is low.

This result is valid when downstream firms sell on independent markets and on interrelated
markets alike, even when ”competitive externalities” are taken into account.

Surprisingly, while the hold-up literature has largely studied the effects of vertical integration,
there exists little formal analysis on the investment effects of downstream horizontal integration–
the growing literature on buyer power has mainly focused on its distributive consequences.

The paper closest to ours is Hart and Moore (1990) which studies similar issues to the one we
address here. Assuming that marginal contributions are independent of the level of investment,
they find that ”..as one might expect, if two competing traders merge, this will worsen the incen-
tives of the owner-manager of a firm that trades with them” (Hart and Moore, 1990, p. 1148).
Other papers studying (continuous) investment choices have found a similar negative relationship
between downstream mergers and upstream investment, e.g. less product diversity (Chae and
Heidhues, 1999; Inderst and Shaffer, 2005). The present paper shows precisely that this result
may change significantly in a setting where the just mentioned assumption is not verified.

A few other papers look at (discrete) technology choices. Stole and Zwiebel (1996a, 1996b) find
that a firm dealing with independent workers has a preference for technologies which give rise to
more concave surplus functions since this leverages its bargaining power–this bias is absent when
the workforce is unionized. Downstream horizontal mergers reduce a similar bias for an upstream
producer and may result in a larger equilibrium surplus (Inderst and Wey, 2003, forthcoming).

While our work shows that downstream horizontal mergers may result in more upstream
investment–a meaningless statement for a discrete choice–the potential welfare benefit has a
similar cause: the merger reduces a strategic bias and induces the producer to focus on value
creation itself. (Our paper is also distinct by extending the analysis to a setting with ”competitive
externalities”).

Most of the above mentioned literature uses linear bargaining solutions–e.g. the Shapley
value. Recent work showed that results derived using a linear bargaining solution may not be
robust in settings which implement nonlinear bargaining solutions (e.g. Chiu, 1998; deMeza and
Lockwood, 1998; Inderst and Wey, 2005).

While our results remained valid in examples with nonlinear bargaining solutions, the present
paper is, to our knowledge, the first using a linear bargaining solution which finds that integration
of ”competing” players may actually increase the level of investment made by a complementary
player.

The remainder of the paper is organized as follows. In section 2 we illustrate the main ideas of
this paper with a simple example. We present the model in section 3 and the analysis in section
4. In section 5 we extend the model to a setting where markets are interrelated. We conclude in
section 6. Proofs can be found in the appendix.
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2 A simple example

Suppose a producer p chooses, at date 0, a capacity Q ∈ {0, 1, 2}. The cost of each unit of capacity
is c. There are two outlets, each in a distinct market. At date 1, in each outlet one unit can be
sold for a net value of 1, but there is no demand for a second unit. Denote the maximal revenue
obtained with m outlets a capacity of Q by φ(Q,m) (e.g. φ(1, 1) = φ(1, 2) = 1).

There is no discounting and no contracts are signed at date 0. At date 1, gains from trade are
split according to each player’s Shapley value. Denote the producer’s Shapley value by SZ(Q)–
subscripts denote the industry configuration. We will compare two situations, A and B, so
Z ∈ {A,B}.

The producer maximizes its date 1 revenue minus date 0 costs

Max {SZ(Q)− cQ} with Q ∈ {0, 1, 2}

He will choose an additional unit of capacity at stage 0 if his incremental benefit, defined as

∆SZ(Q) ≡ SZ(Q)− SZ(Q− 1)

is larger than the cost c.
A well known interpretation of the Shapley value has all players in the game being randomly set

in an ordered sequence, with each sequence being equally likely. Once a sequence is realized, each
player gets his marginal contribution to the coalition formed by those players who precede him
in that sequence. The Shapley value is simply the expectation taken over all possible sequences.

In situation A, each of two retailers, i and j, serves one outlet. There are six possible sequences:
pij, pji, ipj, jpi, ijp and, jip. In two of them the producer comes first, so his marginal contribution
is 0. In two other he comes second and therefore his marginal contribution is equal to φ(Q, 1)–
the value of allocating all capacity to a single outlet. Finally, there are two sequences where the
producer comes last in the ordering and he gets φ(Q, 2).

Taking expectations we get SA(0) = 0 and,

SA(1) = 2
1

6
(0) + 2

1

6
(1) + 2

1

6
(1) =

2

3

SA(2) = 2
1

6
(0) + 2

1

6
(1) + 2

1

6
(2) = 1

In situation B retailer i serves both outlets. In this case there are only two possible sequences:
pi and ip. So SB(0) = 0 and,

SB(1) =
1

2
(0) +

1

2
(1) =

1

2

SB(2) =
1

2
(0) +

1

2
(2) = 1

To study the extent to which the retailer(s) is(are) able to ”hold-up” the producer we also
define the share of the industry surplus accruing to the producer as

αZ(Q) ≡
SZ(Q)

φ(Q, 2)

We have

αA(1) =
2

3
and αA(2) =

1

2

and
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αB(1) = αB(2) =
1

2

As expected, the share of date 1 surplus accruing to the producer is (weakly) higher in situation
A, so the hold-up is more severe in situation B. We could therefore expect the incremental benefit
to be larger in A than in B. While this is true from Q = 0 to Q = 1 since

∆SA(1) =
2

3
and ∆SB(1) =

1

2

it is not true from Q = 1 to Q = 2 since

∆SA(2) =
1

3
and ∆SB(2) =

1

2

The table below represents the equilibrium choice of capacity as a function of c: a downstream
horizontal merger may lead to a higher capacity when the cost of capacity is low–and to a lower
one when this cost is high.

c Q∗A Q∗B
≥ 2

3 0 0

∈
[
1
2 ,
2
3

]
1 0

∈
[
1
3 ,
1
2

]
1 2

∈
[
0, 13

]
2 2

To understand why the producer’s incremental benefit is lower in A than in B from Q = 1 to
Q = 2, we start by decomposing the incremental benefit as follows:

∆SZ(2) = αZ(2) · φ(2, 2)− αZ(1) · φ(1, 2)

We also write the surplus difference as ∆φ(2, 2) = φ(2, 2)−φ(1, 2) and the change in the share of
the surplus accruing to the producer as ∆αZ(2) = αZ(2)− αZ(1). We have:

∆αA(2) = −
1

6
< 0 and ∆αB(2) = 0

We will call bargaining erosion to this (weakly) negative effect of increasing capacity on the
producer’s share. We now write

∆SZ(2) = ∆φ(2, 2) · αZ(1) + ∆αZ(2) · φ(2, 2)

and look at how the incremental benefit changes from situation A to situation B, i.e.

∆SB(2)−∆SA(2) = ∆φ(2, 2)[αB(1)− αA(1)]︸ ︷︷ ︸
� Hold-up

+ [∆αB(2)−∆αA(2)]︸ ︷︷ ︸
� Bargaining erosion

φ(2, 2)

⇔ ∆SB(2)−∆SA(2) = 1 · (−
1

6
) +

1

6
· 2 =

1

6
> 0

We find that while downstream horizontal integration increases the hold-up (the first negative
term), it also induces the producer to focus more on increasing the industry surplus and less on
the effect of the capacity choice on its bargaining position (the second positive term). From Q = 1
to Q = 2 the second effect dominates the first. Below, we establish these results in a much more
general setting.
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3 The Model

3.1 Setup

We consider a generic industry with one upstream producer p, a set N = {1, ..., n} of downstream
firms and mN identical outlets. Let Z denote a generic allocation of outlets across firms. Each
downstream firm i is the single owner of mi(Z) outlets, so

∑
i∈N

mi(Z) = mN

The net revenue at each outlet is described by R(qx), where qx is the quantity sold in outlet
x–net meaning it accounts for any costs of delivery, transforming the intermediate good into a
final good, or both. Without loss of generality, R(0) is normalized to zero. R is twice continuously
differentiable with R′′ < 0, R′(0) > 0 but R′(qx) < 0 for all large qx, so there is a unique

argmax
qx

R(qx) ≡ q

Here each single market revenue is independent of the quantities allocated to the remaining
outlets. This allows us to focus on the vertical interaction aspects of the game and is a good
description of environments where downstream firms compete only on the input market–e.g.
downstream firms produce in turn different final goods or sell in distinct geographical markets.

The timing of the game is the following. At stage 0 the producer chooses a capacity Q (or
stock) and pays its cost described by C(Q) = cQ where c > 0. (We discuss affine and convex cost
functions in the text.)

At date 1, the producer can produce up to Q at some non-negative constant marginal cost
which, without loss of generality, is assumed to be zero. Date 1 bargaining determines the quan-
tities and transfers between the producer and each downstream firm.

The assumption that no supply contracts are signed at date 0 tries to capture the fact that,
in general, contracts do not cover the overall economic life of investment.2 Our model concerns
situations where the producer’s revenue and investment incentives are mainly determined in post
investment bargaining.

3.2 Bargaining

Extensive-form bargaining games between a producer and downstream firms over supply contracts
can be found, for example, in Inderst and Wey (2003) and deFontenay and Gans (2004, 2005);
equilibrium payoffs of these games coincide with the Shapley value. For brevity and to avoid
redundancy, we take here a cooperative approach to bargaining and use as well the Shapley value
as our solution concept.3

A cooperative game consists of two elements: a set of players Y (with a typical subset Y ) and
a function v(Y ) specifying the value created by different subsets of players.

In our game Y = N ∪ p. We will write Y ∪ i for Y ∪ {i} and Y \i for Y \ {i}. We denote the
cardinality of Y by |Y |.

2While long term contracts covering the full economic life of capital are used in some energy markets (e.g. Joskow,
1987), the absence of empirical evidence in other markets suggests that this is not the norm. Supply contracts longer
than twelve months duration tend to be rare; most capital goods have a longer life. We are unaware of empirical
work tying the two aspects together.

3With both non-cooperative and axiomatic foundations, the Shapley value has been a benchmark in multilateral
bargaining situations (for a general survey see e.g. Winter (2002)).
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We derive now the value of our game. The highest revenue achieved with m outlets and a
capacity of Q is described by

φ(Q,m) ≡ max

{
x=m∑
x=1

R(qx)

}
subject to

x=m∑
x=1

qx ≤ Q

The objective is globally concave in the vector of quantities–the Hessian is diagonal with negative
elements since R is strictly concave. At the optimum each outlet sells the same fraction of Q. We
thus have

φ(Q,m) =





mR(Qm) if Q < qm

mR(q) if Q ≥ qm

(1)

which is strictly concave in Q if Qm ≤ q, otherwise linear in m and constant in Q.
Denote by L ⊆ N a generic subset of downstream firms and, with abuse of notation, we will

denote the number and the set of outlets owned by L by

mL(Z) =
∑
i∈L

mi(Z)

For a given Z and capacity Q, the value of the game is

v(L ∪ p|Q,Z) = φ(Q,mL(Z)) (2)

v(L\p|Q,Z) = φ(0,mL(Z)) = 0

Moreover, for any Z we have
v(N ∪ p|Q,Z) = φ(Q,mN )

that is, the value of the industry is independent of how outlets are allocated across firms. It
attains a maximum at Q = qmN .

Player i’s Shapley value is the following linear combination of his marginal contributions4

Si =
∑

Y⊆Y |i∈Y

(|Y | − 1)!(|Y | − |Y |)!

|Y |!
[v(Y ∪ i)− v(Y \i)]

Since the value of our game is conditional onQ and Z, we denote the dependence of the Shapley
value on this pair of variables by SZ(Q). With (2), the producer’s Shapley value simplifies to–for
brevity, we also omit the superscript p

SZ(Q) =
∑

L⊆N

ωLv(L ∪ p|Q,Z) where ωL =
|L|!(n− |L|)!

(n+ 1)!
(3)

It can be checked, with (1), that SZ(Q) is strictly concave for all Q ∈ [0, qmN ] and constant for
all Q larger than qmN . As a remark, note that the weights add up to unity.

3.3 The producer’s problem

The producer’s program is

Max
Q

{SZ(Q)− C(Q)}

4 Y ⊆ Y | i ∈ Y represents a set Y ⊆ Y such that i belongs to Y .
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Since SZ is concave, first order conditions are necessary and sufficient to determine the optimal
capacity. Let the superscript (′) denote the partial derivative of a function with respect to Q.
The optimal capacity level, denoted by Q∗Z , satisfies

S′Z(Q
∗
Z) = c

Two remarks are in order here. First, note that the producer’s returns to investment are lower
than the industry return, i.e.

φ′(Q,mN) > S′Z(Q) > 0 for Q ∈ [0, qmN )

φ′(Q,mN) = S′Z(Q) = 0 for Q ≥ qmN

So we will always have underinvestment. Without loss of generality, we focus on the relevant
range Q ∈ (0, qmN). Second, write SZ(Q) as the share αZ(Q) of the industry surplus φ(Q,mN ),
i.e.

SZ(Q) = αZ(Q) · φ(Q,mN)

The marginal return to capacity can thus be written as

S′Z(Q) = φ′(Q,mN ) · αZ(Q) + α′Z(Q) · φ(Q,mN) (4)

This equation shows two effects from increasing capacity: it increases date 1 revenue but it will also
erode the bargaining power (share) of the producer–we show in proposition 1 that α′Z(Q) ≤ 0.

Consider a premerger structure A and a postmerger structure B. Using the specification in
(4), we decompose the total effect of a downstream horizontal merger on the producer’s investment
incentives into two effects: the change in hold-up and the change in bargaining erosion, i.e.

S′B(Q)− S′A(Q) =

φ′(Q,mN)[αB(Q)− αA(Q)]︸ ︷︷ ︸
� Hold-up

+
[
α′B(Q)− α′A(Q)

]
︸ ︷︷ ︸
� Bargaining erosion

φ(Q,mN) (5)

In proposition 2 we find that a merger increases the hold-up, so the first right hand term
is negative. Proposition 3 states that the a merger reduces the rate at which the bargaining
erosion takes place, so the second right hand term is positive. The overall effect on the producer’s
investment incentives and equilibrium capacity depends on the magnitude of these two effects.

In propositions 4 we find that the producer’s marginal investment incentives are lower after a
merger if Q is low, and higher if Q is high. It follows that a downstream merger induces a higher
(lower) equilibrium capacity if the cost of capacity is low (high).

We illustrate these results in the context of a simple example in figures 1 and 2. The example
looks at linear pricing in an industry with three outlets. When

φ(Q, 3) =

{
(1−Q)Q if Q ≤ 1

2
1
4 if Q > 1

2

each outlet has a linear inverse demand given by px = 1 − 3qx. In situation A, each outlet is
owned by a distinct downstream firm. In situation B, two outlets are owned by a single firm
while another firm owns the remaining one.
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3.4 Ownership structures

To study the effect of an exogenous change in the outlet ownership structure, such as a merger,
we use the concept of downstream horizontal integration. A typical integration contract gives one
player control over the assets owned by another player.

Definition 1 An integration contract allocates those outlets owned by any two firms i and
j, with mi > 0 and mj > 0, to a single firm i, while the ownership structure of the remaining
outlets is left unchanged.

It can be understood as a merger, an acquisition, or a purchase agreement between two firms.
An integration contract changes the game by changing mL(Z), thereby changing the value of the
game. It results in the following relationship:

v(L ∪ p|Q,B) =





v(L ∪ j ∪ p|Q,A) if i ∈ L ∧ j /∈ L

v(L\j ∪ p|Q,A) if i /∈ L ∧ j ∈ L

v(L ∪ p|Q,A) otherwise

More generally we have:

Definition 2 B is an integrated ownership structure of A if B can be obtained from A by
successive integration contracts.

Note that integration is transitive, i.e. if C is an integrated structure of B, and if B is an
integrated structure of A, then C is also an integrated structure of A. Finally, we present a
definition that will prove useful below.

Definition 3 A ownership structure is symmetric if mi =
mN

n for each i ∈ N

4 Analysis

4.1 The bargaining erosion effect

We first look at equation (4), namely at the effect of increasing capacity on the producer’s bar-
gaining position. The negative relation we find, named bargaining erosion, reduces the producer’s
incentive to invest in capacity–the second right hand term of (4) is negative. As we will see, this
effect is ultimately driven by the concavity of R.

Proposition 1 Bargaining erosion: If mi(Z) �= mN for all i we have

α′Z(Q) < 0

a) for all Q sufficiently close to qmN .
b) for all Q ∈ (0, qmN ) if φ is log-supermodular.

If mi(Z) = mN for some i we have

α′Z(Q) = 0 for all Q
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The accompanying intuition builds on the following sequence of arguments. In a bargaining
situation power is determined by the relative marginal contributions. We measure the marginal
contribution of a subset of firms N\L to the industry N ∪ p with a first-order difference operator
defined as

�N\L(Q,Z) ≡ φ(Q,mN )− v(L ∪ p|Q,Z)

We add and subtract φ(Q,mN) to SZ(Q) (see (3)) and divide the result by φ(Q,mN ). Since
the weights of the Shapley value add up to unity, rearranging the expression we get:

αZ(Q) = 1−
∑

L⊆N

ωL
�

N\L
(Q,Z)

φ(Q,mN )
(6)

Increasing capacity reduces the bargaining power (share) of the producer when this increases the
normalized marginal contribution of each subset of downstream firms.

This last condition is verified if φ(Q,m) is log-supermodular at Q.5

Definition 4 φ(Q,m) is log-supermodular at Q if when m1 < m2 ≤ mN and φ′(Q,m2) �= 0,
we have

φ′(Q,m1)

φ(Q,m1)
<

φ′(Q,m2)

φ(Q,m2)

First, φ(Q,m) is log-supermodular at Q sufficiently close to qmN–φ′ continuous and zero for
Q ≥ qm due to the concavity assumptions on R. Second, φ is log-supermodular if the elasticity
of R is decreasing in qx, i.e.

6

∂

∂qx

(
R′(qx)

R(qx)
qx

)
< 0 for all qx ∈ (0, q) (7)

In other words, when the percentage increase in R(qx) achieved with a one percent increase of qx
decreases as qx increases. Developing (7) shows that this is the case if R is sufficiently concave.

4.2 Integration and hold-up

This subsection looks at the first effect of integration we identified in (5): the change in holdup.
Intuition tells us that following a downstream merge the scope the producer has for playing a
downstream firm off against another will be reduced, so the first right hand side element of (5)
should be negative. This is proven correct. However, when the industry is not capacity constrained
(Q ≥ qmN) the producer’s pay-off is independent of the allocation of outlets across firms, since
in this case they do not have to compete for the input.

Proposition 2 Integration aggravates the hold-up: If B is an integrated structure of A then

αB(Q) < αA(Q) ∀Q ∈ (0, qmN )

and

αB(Q) = αA(Q) =
1

2
for Q = qmN

5 In another interpretation, if the instantaneous growth rate of the industry revenue with respect to Q is increasing
in the number of outlets.

6Condition under which the cross derivative of (1) with respect to Q and m is positive. With linear pricing,
(7) is verified for all concave and linear inverse demand functions. There exists as well a subset of convex inverse
demand functions verifying this condition. It contains several commonly used functions.
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This result is driven by the substitutability of downstream firms. We capture the notion of
substitution with the following second-order difference operator:

∆2ijv(L ∪ p|Q,Z) ≡ (8)

v(L ∪ i ∪ j ∪ p|Q,Z)− v(L\i ∪ j ∪ p|Q,Z)− v(L\j ∪ i ∪ p|Q,Z) + v(L\i\j ∪ p|Q,Z)

Firms i and j are substitutes at Q and L if ∆2ijv(Q,mL(Z)) is negative, complements otherwise.
We find that downstream firms are substitutes.

Lemma 1 For any two downstream firms i and j we have
a) if mi(Z) �= 0 and mj(Z) �= 0 then

∆2ijv(L ∪ p|Q,Z)





< 0 if Q ∈ (0, qmL∪i∪j)

= 0 if Q ≥ qmL∪i∪j

(9)

b) if mi(Z) = 0 for some i then ∆2ijv(L ∪ p|Q,Z) = 0 for all Q.

Segal (2003) finds that the integration of ”two complementary (substitutable) players helps
(hurts) players who are indispensable to either” integrating player–here the producer is always
indispensable since v(L\p|Q,Z) = 0 for all L. Formally:7

Lemma 2 If B can be obtained from A by an integration contract we have

SB(Q)− SA(Q) =
∑

L⊆N |j∈L∧i/∈L

ωL ·∆
2
ijv(L ∪ p|Q,A) (10)

Since downstream firms are substitutes, an integration contract reduces the producer’s bar-
gaining surplus, and hence his share. Since integration is transitive, Proposition 2 follows directly
from Lemma 1 and 2.

4.3 Integration and bargaining erosion

We now turn to the second effect we identified in (5): how the magnitude of the bargaining erosion
changes with integration. We find that the rate at which this effect takes place decreases with
integration, so the second right hand side element of (5) is positive.

Proposition 3 Integration softens the bargaining erosion: if B is an integrated structure
of A, there exists a critical value Q̃AB < qmN such that

−α′B(Q) < −α
′
A(Q) for all Q ∈

(
Q̃AB, qmN

)

Q̃AB = 0 when B can be obtained by an integration contract from a symmetric structure A and φ
is log-supermodular.

Figure 1 shows the relationship between Q and αZ(Q), illustrating the previous propositions,
in the context of the example introduced in subsection 3.3.

7Adapted from Segal (2003, p. 452-453); our integration contract corresponds to his collusive contract.
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4.4 Integration and capacity choice

Proposition 2 and 3 show that the two effects we identified in (5) counteract each other. Here
we look at the total effect of integration on the producer’s investment incentives and equilibrium
capacity choice.

We find that marginal returns always cross. So no single ownership structure provides unam-
biguously higher investment incentives. Moreover, the producer’s investment incentives are lower
in an integrated ownership structure if Q is low, and higher if Q is high.

Proposition 4 Marginal returns to capacity are non-monotonic: if A is an integrated
structure of B there exists a critical value Q

AB
such that

S′B(Q)− S′A(Q) < 0 for Q ∈
[
0, Q

AB

)

and critical value QAB ≥ Q
AB

such that

S′B(Q)− S′A(Q) > 0 for Q ∈
(
QAB, qmN

)

Figure 2 shows this relationship between Q and marginal investment incentives in the context
of the example introduced in subsection 3.3.

We look now at the optimal choice of capacity. Let

c = S′A(0), c̃ = S′A(QAB) and c = S′A(QAB)

Solving for the producer’s investment problem we find that marginal cost of capacity provides a
simple criterion to determine the effect of capacity in the equilibrium capacity:

Proposition 5 Integration induces a higher (lower) equilibrium capacity if the cost of
capacity is low (high):

Q∗A = Q∗B = 0 if c ≥ c

Q∗A > Q∗B if c ∈ (c̃, c)

Q∗A < Q∗B if c ∈ (0, c)

lim
c→0

Q∗A = lim
c→0

Q∗B = qmN

11



With affine and convex capacity cost functions we still find that the equilibrium capacity
is higher after integration if fixed costs are low and marginal costs of capacity remain low for
all Q ∈ [0, qmN ]. Only when the cost of capacity is high–but not too high, profits must be
positive–will the conventional wisdom go through, and the hold-up effect dominate.

It is important to highlight that consumers may benefit from downstream integration when
the cost of capacity is low, since higher output levels are associated with lower prices and a higher
consumer surplus.

5 Interrelated markets

In this section we look at the case where each outlet’s revenue depends negatively on the quantities
sold in the remaining outlets, as when firms compete on both the input and output market.

We consider two cases. In the first bargaining results in an efficient outcome. In the second
we take into account the problem of ”competitive externalities”. In both cases we find, once
again, that if the cost of capacity is low (high), a downstream merger induces a higher (lower)
equilibrium capacity.

5.1 Setup

The setup is similar to the one presented in section 3, except that outlets’ revenue is now described
by a function R(qx,Q−x), where qx is the quantity sold in outlet x and Q−x the aggregate quantity
sold in the remaining outlets, i.e.

Q−x =
∑

y∈mN\x

qy

R is twice continuously differentiable, decreasing in the quantities sold in the remaining outlets8

R2

{
= 0 if qx = 0
< 0 if qx > 0

R(0, Q−x) = 0 for all Q−x, R1(0, 0) > 0 but R1 < 0 for sufficiently large qx, Q−x or both.
R11, R12 and R22 are such that, for all non-negative qx and Q−x, the Hessian matrix of

∑
x∈mL(Z)

R(qx, Q−x)

is negative definite for all L ⊆ N .
A well known example satisfying the above conditions is the case of linear pricing with a linear

inverse demand at each outlet given by

a− b(qx + γQ−x) (11)

where a, b > 0 and γ ∈ (0, 1)measures the degree of differentiation–outlets are perfect substitutes
for γ = 1. We will call it the linear model (and invariant linear model to the particular case
where the first best level of capacity is invariant in γ, i.e. when b = mN

a+γ(mN−1)
).

8For the remainder of the section, for a given function f(z1, z2) we denote by fh = ∂f/∂xh; similarly fhg =
∂2f/∂xh∂xg.
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5.2 Bargaining

We take again a cooperative approach to bargaining and the Shapley value as the solution concept.
The new revenue function alters the game by changing its value. We consider two values: a
committed value and an opportunistic value

We start by defining, once again, the value that can be achieved with m outlets for a given Q
as

φ(Q,m) = max

{
m∑
x=1

R(qx, Q−x)

}
subject to

∑

x∈m

qx ≤ Q with qy = 0 for all y /∈ m

Let Qm ≡ argmaxφ(Q,m). Due to our concavity assumptions, φ(Q,m) simplifies to

φ(Q,m) =





mR(Qm , m−1m Q) if Q < Qm

mR(Q
m

m , m−1m Qm) if Q ≥ Qm

φ(Q,m) is increasing in m and, for a given m, increasing and strictly concave in Q for Q < Qm.
To φ(Q,mL(Z)) we will call the committed value, i.e.

v(L ∪ p|Q,Z) = φ(Q,mL(Z))

v(L\p|Q,Z) = φ(0,mL(Z)) = 0

Once again, both v(N ∪ p|Q,Z) and its maximizing capacity QmN are independent of Z. Denote
a vector of quantities available to L downstream firms by

QL = (QL1 , .., Q
L
n) where Q

L
i = 0 if i /∈ L

For a given Z, the vector QL inducing v(L ∪ p|QmL(Z), Z) has

QLi =
QmL(Z)

mL(Z)
for all i ∈ L

At this particular vector, each single retailer can increase its own revenue by negotiating a
higher supply. To see this, note that the derivative of firm i’s revenue with respect to QLi , i.e.

9

R1(
QLi

mi(Z)
,
∑

QLj −
QLi

mi(Z)
) + (mi(Z)− 1)R2(

QLi
mi(Z)

,
∑

QLj −
QLi

mi(Z)
) (12)

is strictly positive when evaluated at this vector for each i ∈ L when mi(Z) /∈ {0,mL}.
This additional revenue comes, in part, at the expense of a lower revenue to the remaining

firms: for each firm j �= i, with mj(Z) �= 0, the derivative of its total revenue with respect to QLi
evaluated at the vector inducing the vertically integrated revenue is strictly negative, i.e.

mj(Z)R2

(
QmL(Z)

mL(Z)
, (
mL(Z)− 1

mL(Z)
)QmL(Z)

)
< 0

So there is scope for opportunistic behavior, a problem addressed in the ”competitive exter-
nalities” literature (e.g. McAfee and Schwartz, 1994; Segal and Whinston, 2003; deFontenay and
Gans, 2004, 2005). As we will see, aggregate revenue may be lower than the committed value.

9Given our concavity assumption, each downstream firm finds it optimal to sell a fraction 1
mi(Z)

of QLi at each
of its outlets.
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deFontenay and Gans (2004, 2005) show that, in our setting, the producer’s pay-off of a
particular bargaining game corresponds to its Shapley value over a value v̂ which is the highest
revenue maximizing the bilateral surplus between each downstream firm and the producer–taking
the remaining quantities as given, i.e.10

v̂(L ∪ p|Z) = max
QL

δ(QL, Z) subject to (12) = 0 for all i ∈ L

where

δ(QL, Z) ≡
∑
i∈N

mi(Z)R

(
QLi

mi(Z)
,
∑
j∈N

QLj −
QLi

mi(Z)

)

Notice that the condition (12) = 0 defines implicitly the best response correspondence of a firm
i in a Cournot setting when the set of firms is L. So v̂(L ∪ p|Z) is simply the highest aggregate
Cournot revenue when the set of downstream firms is L. We assume that, for each L, the Cournot
outcome is unique–this is the case e.g. in the linear model.11

It is important to note that the aggregate Cournot quantity of L for a given Z, which we
denote by CLZ , may exceed the producer’s capacity Q. We extend v̂ to take this constraint into
account (a similar issue is addressed in Segal and Whinston (2003)).

We obtain the value v̂(L ∪ p|Q,Z), which now depends on Q and, which is still the highest
revenue satisfying the condition that the bilateral surplus between each downstream firm and the
producer is maximized–but taking both remaining quantities and capacity as given, i.e.

v̂(L ∪ p|Q,Z) =





φ̂(Q,mL(Z)) if Q < CLZ

max
{
v̂(L ∪ p|Z), φ̂(Q,mL(Z))

}
if Q ≥ CLZ

with
φ̂(Q,mL(Z)) = max

QL

{
δ(QL, Z)

}
subject to

∑
QLj = Q

The vectorQL inducing v̂(L ∪ p|Q,Z) is immune to profitable bilateral renegotiations between
any firm in L and the producer. We call v̂(L ∪ p|Q,Z) the opportunistic value since it captures
the oversupply problem associated with producer’s opportunism: for all Q > QmL(Z) we have

v̂(L ∪ p|Q,Z) < v(L ∪ p|Q,Z) if mL(Z) �= mi(Z) for all i ∈ L

The above mentioned literature suggests that commitment mechanisms may eliminate the
negative effects of producer’s opportunism –e.g. public contracting or assigning downstream
firms nonoverlapping territories. The choice of a particular value should depend on the availability
of such commitment mechanisms. We study both. We denote the Shapley value in the committed
case by SZ(Q), and in the opportunistic case by ŜZ(Q).

5.3 Integration and capacity choice

While SZ(Q) is concave for all Q, and we can use first order conditions to solve the producer’s
problem, ŜZ(Q) is not. Nevertheless, we can still use first order conditions provided that ŜZ(Q)

10deFontenay and Gans (2005, 2006) study Bayesian equilibria of an extensive form bargaining game where
players hold ”passive beliefs” on unobserved actions. The result holds if the bi-core is non-empty.

11The problem becomes a linear system of equations in |L| variables and |L| unknowns. Since the equations are
linearly independent, by Cramer’s rule there is a unique solution (not for publication).
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is concave in Q when ŜZ(Q) is non-decreasing in Q. So we assume that for all L ⊂ N such that
mL(Z) > 0 we have

QmN < CLZ if mL(Z) �= mi(Z) for all i ∈ L

In the context of the invariant linear model this condition is satisfied if product differentiation is
low, i.e. for

γ ≥
2(mN − 2)

3mN − 4

Precisely the case contrasting with the independent market set-up studied in the previous section
(corresponding to γ = 0).

Denote by Q∗Z and Q̂∗Z the equilibrium capacity choice in the committed and the opportunistic
case respectively. With the previous assumption, the optimal capacity levels satisfy

S′Z(Q
∗
Z) = c

and
Ŝ′Z(Q̂

∗
Z) = c

We have once again a problem of underinvestment since

φ′(Q,mN) > S′Z(Q) ≥ Ŝ′Z(Q) ∀Q ∈ [0, Q
mN )

φ′(Q,mN) = S′Z(Q) = 0 ≥ Ŝ′Z(Q) ∀Q ≥ QmN

We therefore focus on the relevant range Q ∈ [0, QmN ]. In this range, we also have that

v(N ∪ p|Q,Z) = v̂(N ∪ p|Q,Z) = φ(Q,mN )

We now look at the overall effect of integration on the producer’s capacity choice. For tractabil-
ity we focus on the case where downstream firms are symmetric before the integration contract.
In this particular case we have:

Lemma 3: If B can be obtained with an integration contract from a symmetric structure A
then, for all Q ∈ [0,QmN ], we have

SB(Q)− SA(Q) =
1

N(N − 1)
(φ(Q,mN)− 2SA(Q))

and
ŜB(Q)− ŜA(Q) =

1

N(N − 1)

[
(φ(Q,mN )− 2ŜA(Q)) +

2

N + 1
(v({i, j} ∪ p|Q,A)− v̂({i, j} ∪ p|Q,A)

]
(13)

The main difference between the committed and the opportunistic case lies in the second
right hand term. This term captures the fact that when L = {i, j}, if these two firms integrate
the opportunism problem disappears–since with a retail monopoly supply level is always expost
efficient. This effect is positive when Q is sufficiently high (Q > Qm{i,j}(A))–it is zero when Q is
low.

Solving the producer’s investment problem we find:
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Proposition 6 Integration induces a higher (lower) equilibrium capacity if the cost of
capacity is low (high): when B can be obtained with an integration contract from a symmetric
structure A, there exist positive values c+, c̃+ and c+ such that

Q∗A = Q∗B = Q̂∗A = Q̂∗B = 0 if c ≥ c+

Q∗A > Q∗B and Q̂∗A > Q̂∗B if c ∈
(
c̃+, c+

)

Q∗A < Q∗B and Q̂∗A < Q̂∗B if c ∈
(
0, c+

)

lim
c→0

Q∗A = lim
c→0

Q∗B = QmN ≥ lim
c→0

Q̂∗B > lim
c→0

Q̂∗A

In a setting where market revenues are interrelated, and firms are symmetric before the merger,
the cost of capacity provides once again a simple criterion to evaluate claims about the effect of a
downstream merger on the producer’s capacity choice, both in the committed and opportunistic
cases.

To illustrate the role of product differentiation, we consider now the invariant linear model
in the context of the example presented in subsection 3.3. In this case, marginal incentives cross
once and we have:

c̃+(γ) = c+(γ) =
5

2
(
1− γ

7− γ
)

This critical value is decreasing in γ (and converges to 0 as γ → 1), suggesting that an integrated
structure is more likely to induce a lower upstream capacity when product differentiation is low–
and a higher one when product differentiation is high.

6 Conclusion

This paper studied how integration of players who compete for an input affects the capacity
choice (or stock) of a monopolist supplying that input. We showed and explained why there
exists a non-monotonic relationship between downstream integration and the producer’s level of
investment.

We also found that the cost of capacity provides a simple criterion to evaluate claims about
the effect of a downstream merger on the producer’s capacity choice: if the cost of capacity is
low (high), a downstream merger induces a higher (lower) equilibrium capacity. These results are
valid when downstream firms sell on independent markets and in interrelated markets alike.

At a practical level, these results should be useful to merger analyses since they help sign the
effect of downstream integration on the producers’ capacity choice and, indirectly, welfare.

Our work also suggests that further research on the effect of investment on the substitutability
of firms should lead to more general results on investment effects of mergers.

At a more theoretical level, these results provide theoretical support to Galbraith’s (1952) idea
of Countervailing Power. One of the main ideas is that, when competition fails on both sides of
the market, allocative efficiency may be nurtured not by increased competition but by a process
of concentration on the most competitive side. Our results support this idea.

However, Galbraith’s informal argument is that one position of power may be neutralized
by another12. In our model, the mechanism at play is different. Bargaining power arises from
controlling a scarce resource. The producer has therefore a strategic incentive to maintain the
resource he controls relatively scarce in order to leverage his bargaining power. This effect, which

12”The fact that a seller enjoys a measure of monopoly power (..) means that there is an inducement to those
firms from whom he buys or those to whom he sells to develop the power with which they can defend themselves
against exploitation, (..). In this way the existence of market power creates an incentive to the organization of
another position of power that neutralizes it.” Galbraith (1952) p. 119.
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distorts supply downwards, is particularly important when the retail sector exhibits a low level of
concentration.

These results are of interest for other settings. For example, they cast doubt on the usual
claim that unionization reduces a firm’s incentive to invest in labour-complementary capital.
Another application concerns public procurement. As an example, we have in mind Roche’s
recent reluctance to upscale its stock of the Tamiflu antiviral. Our results suggest this decision
could have been made earlier had European governments been negotiating through a single entity.
However, to rigorously address these issues we would have to work with different set-ups.

7 Appendix

Proof Proposition 1: From (6) the share of the surplus accruing to the producer can be written
as follows

αZ(Q) = 1−
∑

L⊆N

ωL
�N\L(Q,mL(Z))

φ(Q,mN )

Thus

α′Z(Q) = −
∑

L⊆N

ωL
∂

∂Q

(
�N\L(Q,mL(Z))

φ(Q,mN)

)
(14)

and for each L ⊆ N

∂

∂Q

(
�N\L(Q,mL(Z))

φ(Q,mN )

)
=

φ′(Q,mN) · φ(Q,mL(Z))− φ′(Q,mL(Z)) · φ(Q,mN )

(φ(Q,mN))2
(15)

We consider first those ownership structures where mi(Z) �= mN for all i (Step 1) and then
those where mi(Z) = mN for some i (Step 2).
Step 1 (mi(Z) �= mN for all i): it follows from (15) together with (14) that α′Z(Q) < 0 if for

all L ⊂ N
φ′(Q,mL(Z))

φ(Q,mL(Z))
≤

φ′(Q,mN )

φ(Q,mN)

and the inequality is strict for at least one L.
Sincemi(Z) < mN , andmL(Z) ≤ mN it follows that α′Z(Q) < 0 if φ(Q,m) is log-supermodular

at Q–see definition in the text. So:
a) α′Z(Q) < 0 for allQ close to qmN , since φ(Q,m) is log-supermodular atQ–φ′(Q,mN ) >

φ′(Q,mL(Z)) = 0 if mL(Z) < mN .
b) α′Z(Q) < 0 for all Q ∈ (0, qmN) if φ(Q,m) is log-supermodular at all Q ∈ (0, qmN).

Step 2 (mi(Z) = mN for some i): for all L ⊆ N we have mL ∈ {0,mN}. The normalized
second order difference operator is constant and equal to either 1 if mL(Z) = 0 or 0 if mL(Z) =
mN . We have α′Z(Q) = 0.

Proof Proposition 2: Lemma 1 (see proof. below) together with lemma 2 (from Segal
(2003)) imply that the share of the surplus accruing to the producer is lower after an integration
contract (note that all the elements of (10) are negative, and strictly negative for L such that
mL∪i∪j(A) = mN . It remains unchanged for Q = qmN ).

We now use transitivity of integration to complete the proof. An integrated structure results
from successive integration contracts. If the share is reduced, for all Q ∈ (0, qmN ), from B to C
and from A to B, then it is also reduced from A to C. It follows that:

a) The share accruing to the producer is reduced after integration for all Q ∈ (0, qmN).
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b) It remains unchanged for all Z when Q = qmN .
When mi(Z) = mN (a bilateral monopoly situation) the producer gets one half of the surplus.

It follows that αZ(qmN) =
1
2 for all Z.

Proof Lemma 1 (For brevity, we drop here the notational dependence on Z.) For all L, i
and j

mL\i\j +mL∪i∪j = mL∪i\j +mL∪j\i

and therefore exists a λ̂ ∈ [0, 1] such that (adding up vertically the expression below we obtain
the expression above):

λ̂mL\i\j + (1− λ̂)mL∪i∪j = mL∪j\i (16)

(1− λ̂)mL\i\j + λ̂mL∪i∪j = mL∪i\j

If mi �= 0 and mj �= 0 then λ̂ ∈ (0, 1). If mi = 0 for some i then λ̂ = 0. We consider the two
cases in turn.

a) mi �= 0 and mj �= 0: recall from (1) that φ(Q,m) is increasing and concave in m if Qq < m.

It is linear if Qq ≥ m. So for all λ ∈ (0, 1) (and thus for λ̂) and m1 < m2

λφ(Q,m1) + (1− λ)φ(Q,m2) ≤ φ(Q,λm1 + (1− λ)m2) (17)

The inequality is strict if Qq < m2.

From (16) and (17), together with the definition of ∆2ijφ in (8), we have

φ(Q,mL∪i∪j) + φ(Q,mL\i\j) ≤ φ(Q,mL∪j\i) + φ(Q,mL∪i\j)

which is equivalent to
∆2ijv(L ∪ p|Q,Z) ≤ 0

The inequality is strict if Q
q < mL∪i∪j–since mL∪i∪j �=

{
mL∪i\j ,mL∪j\i

}
. It is verified with

equality if Qq ≥ mL∪i∪j .
b) mi = 0 for some i: in this case we have mL∪i∪j = mL∪j\i and mL\i\j = mL∪i\j so by

definition ∆2ijv(L ∪ p|Q,Z) = 0.

Proof Proposition 3: We proceed in 3 steps. In step 1 we show that the rate at which
”bargaining erosion” takes place decreases if the second order difference operator increases with
Q. This is verified if Q is high (step 2). In step 3 we look at the particular case where the
ownership structure is symmetric before the integration contract.
Step 1: Dividing (10) from lemma 1 by φ(Q,mN) we write

α′B(Q)− α′A(Q) =
∑

L⊆N |j∈L∧i/∈L

ωL ·
∂

∂Q

(
∆2ijv(L ∪ p|Q,A)

φ(Q,mN )

)

and we have

∂

∂Q

(
∆2ijv(L ∪ p|Q,A)

φ(Q,mN)

)
=

∂
∂Q∆

2
ijv(L ∪ p|Q,A) · φ(Q,mN )− φ′(Q,mN ) ·∆

2
ijv(L ∪ p|Q,A)

(φ(Q,mN))2

From Lemma 1, for Q ∈ [0, qmN) we have ∆
2
ijv(L ∪ p|Q,A) ≤ 0 for all L. This inequality is

strict for L such that mL∪i(A) = mN (there exists at least one such L). Because φ′(Q,mN) > 0
we have

−α′B(Q) < −α
′
A(Q) if

∂

∂Q
∆2ijv(L ∪ p|Q,A) ≥ 0 for all L ⊆ N | j ∈ L ∧ i /∈ L
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i.e. when the normalized substitutability of i and j in L is decreasing in Q.
Step 2: With (2), we write the derivative of the second order difference operator as

∂

∂Q
∆2ijv(L ∪ p|Q,A) = φ′(Q,mL∪i∪j(A))−φ

′(Q,mL\i∪j(A))−φ
′(Q,mL\j∪i(A))+φ

′(Q,mL\i\j(A))

(18)
From (1), φ′(Q,m2) > φ′(Q,m1) for any m2 > m1 if Q < qm2 and φ′(Q,m) = 0 for all
m if Q ≥ qm (since R has a maximum at q). Because mi(A) �= and mj(A) �= 0, for Q ≥
qmin

{
mL\j∪i(A),mL\i∪j(A))

}
we have:

∂

∂Q
∆2ijv(L ∪ p|Q,A) = φ′(Q,mL∪i∪j(A))− φ′(Q,max

{
mL\i∪j(A),mL\j∪i(A)

}
)

and therefore

∂

∂Q
∆2ijv(L ∪ p|Q,A)

{
> 0 if Q ∈

[
qmin

{
mL\j∪i(A),mL\i∪j(A))

}
, qmL∪i∪j

)

= 0 if Q ≥ qmL∪i∪j

So, for all L ⊆ N such that j ∈ L and i /∈ L we have

∂

∂Q

(
∆2ijv(L ∪ p|Q,A)

φ(Q,mN)

)
≥ 0 for all Q ∈

[
qmin

{
mN\i(A),mN\j(A))

}
, qmN

)
(19)

This inequality is strict for L such that mL∪i(A) = mN . We conclude that

−α′B(Q) < −α
′
A(Q) for all Q ∈ (Q̃AB, qmN )

where qmin
{
mN\i(A),mN\j(A))

}
is an upper bound of Q̃AB. (Once again, by transitivity of

integration, for all Q sufficiently close to Q we have that α′C(Q)−α
′
B(Q) > 0 and α′B(Q)−α

′
A(Q) >

0 so α′C(Q)− α′A(Q) > 0.)
Step 4: Assume A is symmetric. If B can be obtained from A by an integration contract

then (see Lemma 3):

SB(Q)− SA(Q) =
1

N(N − 1)
(φ(Q,N)− 2SA(Q))

therefore

α′B(Q)− α′A(Q) = −
2

N(N − 1)
α′A(Q)

But if φ is log-supermodular

−α′B(Q) < −α
′
A(Q) for all Q ∈ (0, qmN )

since then α′A(Q) < 0 for all Q ∈ (0, qmN) (see Proposition 1).

Proof proposition 4: With Lemma 2, we write

S′B(Q)− S′A(Q) =
∑

L⊆N |j∈L∧i/∈L

ωL ·
∂

∂Q
∆2ijv(L ∪ p|Q,A)

We first show that the producer’s marginal return to capacity is always higher before integra-
tion for Q is close to 0 (step 1). We then show the opposite for Q close to qmN (step 2).
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Step 1: From (1), φ′(0,m) = R′(0) for all m > 0. With (18) we see that

∂

∂Q
∆2ijv(L ∪ p| 0, A)





= 0 if mL\i\j(A) �= 0

−R′(0) if mL\i\j(A) = 0

Since mL\i\j = 0 for L = {j}, we have

S′B(0)− S′A(0) < 0

An integrated structure results from successive integration contracts. If the marginal return
to capacity at 0 is higher in B than in C and in A than in B, then it is also higher in A than in
C. By transitivity and continuity we conclude that for any two ownership structures A and B,
such that B is an integrated structure of A, there exists Q

AB
> 0 such that

S′B(0)− S′A(0) < 0 for all Q ∈
[
0, Q

AB

)

Step 2: From (19), for all L ⊆ N with j ∈ L and i /∈ L we have

∂

∂Q
∆2ijv(L ∪ p|Q,A) ≥ 0 for all Q ∈ (qmin

{
mN\i(A),mN\j(A))

}
, qmN )

The inequality is strict for L such that mL∪i(A) = mN . So the difference in marginal returns in-
duced by an integration contract is strictly negative for allQ ∈ (qmin

{
mN\i(A),mN\j(A))

}
, qmN).

An integrated structure results from successive integration contracts. If the marginal return
to capacity is lower in B than in C and in A than in B, then it is also lower in A than in C. By
transitivity and continuity we conclude that for any two ownership structures A and B, such that
B is an integrated structure of A, there exists a QAB < q(mN − 1) such that

S′B(Q)− S′A(Q) > 0 for all Q ∈ (QAB, qmN)

Proof Proposition 5: Since S is strictly concave for Q ∈ [0, qmN ], equilibrium capacity is
given by

SZ(Q
∗
Z) = c

and S′z(Q) is high when Q is low and low when Q is high–and equal to zero for Q = qmN .
For any Z, if c ≥ S′z(0) we have Q

∗
Z = 0. From proposition 4 we know that

S′B(0)− S′A(0) < 0 for all Q ∈
[
0, Q

AB

)

But then, Q∗A = Q∗B for all c ≥ S′A(0) and Q∗A > Q∗B for all c ∈ (S′A(0), S
′(Q

AB
)). Since

S′B(0)− S′A(0) > 0 for all Q ∈ (QAB, qmN )

a similar argument shows that when c ∈ (S′A(QAB), qmN) we have Q
∗
A < Q∗B. Finally, S

′
Z(Q) = 0

for all Z therefore limc→0Q
∗
A = limc→0Q

∗
B = qmN .

Proof Lemma 3: We proceed in three steps. In the first step we restate a known result for
symmetric ownership structures. In the second step we prove the result for S; in the third for Ŝ.
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Step 1: When A is symmetric, the producer’s Shapley value simplifies to

SA(Q) =
h=n∑

h=1

1

n+ 1
φ(Q,h

mN

n
)

since there are n!
(n−h)!h! sets L such that when |L| = h we have

mL(A) = h
mN

n

Step 2: Recall from Lemma 2 that

SB(Q)− SA(Q) =
∑

L⊆N |j∈L∧i/∈L

ωL ·∆
2
ijv(L ∪ p|Q,A) with ωL =

|L|!(n− |L|)!

(n+ 1)!
(20)

With symmetry, for all L such that |L| = h we have

∆2ijv(L ∪ p|Q,A) = φ(Q, (h+ 1)
mN

|N |
)− 2φ(Q,h

mN

|N |
) + φ(Q, (h− 1)

mN

|N |
)

and in A there are
(n− 2)!

(n− h− 1)!(h− 1)!

sets L ⊆ N such that j ∈ L and i /∈ L for which |L| = h.
Since

ωL
(n− 2)!

(n− h− 1)!(h− 1)!
=

h(n− h)

(n+ 1)n(n− 1)

we can write (20) as

SB(Q)−SA(Q) =
1

(n+ 1)n(n− 1)

h=n−1∑

h=1

h(n−h)
[
φ(Q, (h+ 1)

mN

n
)− 2φ(Q,h

mN

n
) + φ(Q, (h− 1)

mN

n
)
]

The sum can be rewritten as

(n− 1)φ(Q,n
mN

n
)− 2(n− 1)φ(Q, (n− 1)

mN

n
) + 2(n− 2)φ(Q, (n− 1)

mN

n
) +

h=n−2∑

h=2

[(n− (h+ 1))(h+ 1)− 2(n− h)h+ (n− (h− 1))(h− 1)]φ(Q,h
mN

n
)

+2(n− 2)φ(Q,
mN

n
)− 2(n− 1)φ(Q,

mN

n
)

Finally, since

(n− (h+ 1))(h+ 1)− 2(n− h)h+ (n− (h− 1))(h− 1) = −2

we write

SB(Q)− SA(Q) =
1

n(n− 1)

[
n− 1

n+ 1
φ(Q,mN )− 2

h=n−1∑

h=1

1

n+ 1
φ(Q,h

mN

n
)

]

21



=
1

n(n− 1)

[
φ(Q,mN )− 2

h=n∑

h=1

1

n+ 1
φ(Q,h

mN

n
)

]
=

1

n(n− 1)
[φ(Q,mN )− 2SA(Q)]

Step 3: We now look at Ŝ. First, we assumed that

QmN < CLZ if mL(Z) �= mi(Z) for all i ∈ L

Thus, for all L such that mi(Z) �= mL(Z) we will have

v̂(L ∪ p|Q,Z) = φ̂(Q,mL(Z)) = mL(Z)R

(
Q

mL(Z)
,
mL(Z)− 1

mL(Z)
Q

)

So the value depends only on the number ofmL(Z), and not on the particular allocation of outlets.
So the proofs of step 1 and 2 apply to Ŝ as well, except for those L such that mi(A) �= mL(A)
when mi(B) = mL(B) for some i. In the case of symmetric firms there is only one such L = {i, j},
where v̂({i, j} ∪ p|Q,A) becomes v({i, j} ∪ p|Q,A). Since this set has a weight

2

N(N − 1)(N + 1)

in the Shapley value, we obtain in this way our result.

Proof Proposition 6: We proceed in two steps. In the first step we prove the result for the
case where c is high; in the second for c low.
Step 1: Note that for Q close to 0 we have

v̂(L ∪ p|Q,Z) = v(L ∪ p|Q,Z) = φ(Q,mL(Z))

So SZ(Q) = ŜZ(Q) and the proof of Proposition 5 applies.
Step 2: For high levels of Q, we still have

v(L ∪ p|Q,Z) = φ(Q,mL(Z))

and proof of Proposition 5 applies as well to SZ(Q). However, this is not true for ŜZ(Q) since

v̂(L ∪ p|Q,Z) �= φ(Q,mL(Z))

for some L when Q is high (except when mi(Z) = mN for some i). In fact for all Z, such that
mi(Z) �= mN , there exists a critical Q̂0Z ∈ (0, Q

mN ) such that

Ŝ′Z(Q)





> 0 if Q < Q̂0Z
= 0 if Q = Q̂0Z
< 0 if Q > Q̂0Z

So, Ŝ′Z(Q
mN ) < 0 and we have lim

c→0
Q̂∗Z < QmN (for Z such that mi(Z) = mN for some i we

still have lim
c→0

Q̂∗Z = QmN ). Moreover, while by definition

Ŝ′A(Q̂
0
A) = 0

from (13) we have that

Ŝ′B(Q̂
0
A) =

1

N(N − 1)

[
φ′(Q̂0A,mN) +

2

N + 1
(v′({i, j} ∪ p| Q̂0A, A)− v̂′({i, j} ∪ p| Q̂0A, A)

]
> 0

since φ′(Q,mN) > 0 and v′({i, j} ∪ p|Q,Z) − v̂′({i, j} ∪ p|Q,Z) ≥ 0 for all Q ∈ (0, QmN ). By
continuity, there exists a c+ ≥ Ŝ′B(Q̂

0
A) such that Q̂∗A < Q̂∗B if c ∈ (0, c+).
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