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Abstract

This paper is a study of bounded memory in a reputation game.
In particular, in a repeated cheap talk game with incomplete informa-
tion on the sender’s type. The receiver is assumed to be constrained
by a finite number of memory states and the memory rule is itself
part of his strategy. The first result of this paper shows that in this
reputation game the updating rule will be rather simple: monotonic
and increasing. The second main result of this paper shows that when
memory constraints are severe the updating rule will involve random-
ization before reaching the extreme states. The key intuition is that in
a two-player game with incomplete information randomization is used
as a memory saving device and also as a strategic element: to test
the opponent and give incentives for types to be revealed early in the
game. The results in this paper extend to general reputation games
where the normal type is a zero-sum player and the commitment type
is playing a pure strategy.
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1 Introduction

The behavioral constraints of an individual might prevent him from realizing
the history of a game and from updating according to Bayes’ rule. Memory
constraint is an example of such cognitive restrictions and this paper studies
the role of bounded memory in a strategic context.
The study of the implications of an imperfect memory has taken two

different modelling strategies in the literature. One approach is to make
explicit assumptions on the way that memory works while assuming that
the agent is not aware of these limitations. The goal is then to look for the
implications of this particular memory process in different contexts. This
memory process could be, for example, bounded recall, where the agent is
only able to record the information of the last k periods, or it could be based
on memory decay, such as described by Mullainathan (2002) and Sarafidis
(2001).
The other approach in modeling memory restrictions is to assume con-

straints on the agent’s memory, but such that the agent is fully aware of these
limitations and can decide on the optimal strategy given this constraint. The
memory rule itself becomes part of the player’s strategy. The absentminded
driver model of Piccione and Rubinstein (1997) is a representative paper on
this second view. Particularly important papers also include Dow (1991) and
Wilson (2004).
I take the latter approach in this paper. Memory is assumed to be a

finite set of states and the player has to decide on a transition rule and on a
map from states to actions. At every point in time all the player’s memory
about the history of the game must be contained in one of the states. The
information in the current period is known by the player, but he is forgetful
between periods. Memory can be interpreted as a collection of agents where
at each stage game a different agent plays the game, and their payoff takes
into account the payoffs of all future agents as well. The equilibrium in the
bounded memory model is the equilibrium between this collection of agents
and the opponent. This way, memory is a metaphor for an organization where
the workers don’t communicate perfectly, but through a limited number of
messages. Given this equilibrium concept, the bounded memory model differs
substantially from an automata. In the latter, the ex-ante optimal solution
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might not be an interim equilibrium as is required in the former. I discuss
this issue further in section 5.
Bounded memory as modeled in this way has been studied in single player

games only. The results are well understood and briefly discussed below, but
the effects of this particular memory restriction in multi-player games is still
an open problem1. In this paper I tackle this question in the context of a
repeated cheap talk game with incomplete information.
Wilson (2004) was the first paper in economics to model the player’s

memory as a finite set of states2. She had an extensive game in which a
decision maker receives signals about the true state of the world and has to
make a decision after receiving a very long sequence of signals. However, the
decision maker cannot recall all the sequence and has, instead, to choose the
best way to store information given his finite set of memory states. A key
result of Wilson’s paper for a binary signal case is that the transition rule
is random only at the extreme states, which implies that the decision maker
will ignore information only when he is as convinced as his finite memory
allows. A similar problem had been studied before by Hellman and Cover
(1970). Their model describes the best way (ex-ante optimal) to keep track
of the signals received for the two-hypothesis testing problem using a finite
automaton. Again, the transition rules are random at the extreme states and
the interpretation is that, perhaps counter intuitively, randomization is used
as a memory saving device.
In this paper the analysis is of a two-player game, where one of the play-

ers (the receiver) exhibits the same type of memory constraint as Wilson’s
decision maker, while the other player (the sender) is unconstrained.
The unbounded sender will condition his strategy on the entire history

of the game, but the bounded memory receiver will choose an action rule
given his memory constraint and how to update the beliefs after verifying
the true state of the world. This model aims to capture the heuristics on
how agents keep track of information in this context. I describe the neces-

1There are papers on multi-player games with bounded recall (Lehrer (1988) and Huck
and Sarin (2004), for example), which is different from bounded memory. While the
updating rule is the crucial aspect of the present study, in the bounded recall literature
the memory rule is exogenously given.

2Mullainathan (2001) and Fryer and Jackson (2003) also study models where agents
are restricted to hold a finite set of posteriors. However, in their models the updating rule
(categorization) is given exogenously, and is not part of the player’s strategy, it falls in
the “first approach” in modeling memory that I discussed before.
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sary conditions for this updating rule to be an equilibrium and show some
properties of the equilibrium strategies. In particular I present necessary
and sufficient conditions on the parameters for the bounded memory player
to play a pure strategy and thus mimic a Bayesian updating rule, with no
loss of information.
In other words, if the prior on the opponent’s type is sufficiently high,

then memory will not be binding and the bounded memory player uses a
pure strategy: his updating rule mimics Bayes rule.
There is yet another threshold on the prior such that receiver will still use

deterministic transition rules whenever the prior falls short on the “Bayesian
threshold”, but is above this second cutoff. In this case, there will be infor-
mation loss only in the extreme state. The receiver is fulled by his memory
in the exact moment that his belief is the highest one.
When the prior is low relatively to the size of the player’s memory (prior

lower than the second threshold discussed above), such that the player will
require a long sequence of signals before being convinced about the oppo-
nent’s type, then the receiver will use random transition rules in the initial
states. In this last case, it will involve testing before updating. Knowing that
it is very likely that the sender is of a bad type, and that his memory will not
allow him to store all the information before being sufficiently convinced, the
receiver will choose to ignore good signals for part of the time, while waiting
to catch the sender whenever he lies.
This result suggests that randomization in the transition rule is needed

as a memory saving device in much the same way as in Hellman and Cover
(1970 and 1971), and Wilson (2004)3. However, unlike these single player
models, here there is also a strategic reason for random transition rules: test
the opponent and give incentives for types to be revealed early in the game.
The repeated cheap talk game studied in this paper is taken from Sobel

(1985). At every stage game of Sobel’s model the sender observes the true
state of the world in that period and sends a message to the receiver. The
receiver then takes an action and the payoffs are realized. Payoffs depend
only on the true state of the world in the current period and on the action
taken by the receiver. At this point the state of the world is verified and the
receiver knows whether the sender has lied to him or not. The receiver then
updates his belief (Bayesian updating in Sobel’s paper) on the sender’s type.

3Kalai and Solan (2003) also emphasize the role of randomization when agents are not
fully rational (bounded complexity).
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The results of this game extend to any finite game where the behavioral
type is committed to playing a pure strategy and the normal type (or the
strategic type) is playing a zero-sum game with the bounded memory player.
I chose this reputation game to study the role of memory because there are
several papers studying the issues of bounded memory in a single player
context, but none in a game setting. This would better be done in a game in
which memory plays a central role, and a reputation game critically depends
on the memory of the uninformed player (receiver). Thus, by constraining
the receiver’s memory I can give a sharp characterization of the implications
on beliefs and updating rules.
The reason why the repeated cheap talk model was chosen among the

class of reputation games with zero-sum normal types is the fact that there
are several possible applications to this particular model. One interpretation
is in the context of a policy maker that listens to a different informed advisor
in every different area. Each advisor can be one of two types. He could be an
honest type, a loyal employee that will always inform the policy maker about
the true state of the world (a behavioral type), or he could be an advisor
with a secret interest in becoming the next election’s running up candidate
(a strategic type). This strategic type of advisor gains whenever the policy
maker is worse off. Since the policy maker has to deal with a huge amount
of information for different matters, it becomes hard to keep track of all the
signals that the advisors have send. I describe a rule of thumb on how this
policy maker will keep track of the information received given his memory
imperfection4.
The study of bounded memory in a repeated game with incomplete in-

formation is such that the information structure of the restricted player has
two dimensions: a belief about the opponent’s type and a belief about the
current time period. In the model studied in this paper the decision of which
of these two aspects of information is to be stored is very clear on the player’s
decision. I show that for a minimal memory, the time period dimension is
completely ignored and the memory is used only to keep track of the oppo-
nent’s type. It is as if the receiver started the game with long run beliefs.
This result remains as we increase the memory size of the player: the long
run beliefs of the receiver in the Bayesian version of this game will always
be the same as the extreme beliefs of the bounded memory player. However,

4Several interesting applications of repeated cheap-talk games can be found in Sobel
(1985), Benabou and Laroque (1992), Frisell and Lagerlof (2005), and Morris (2001).
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as memory increases there will be extra storage space to partially keep track
of time, and updating becomes more frequent. The information structure in
this paper is asymmetric and one of the signals (a lie) will always be remem-
bered, even for a minimal memory, but for small memories there is no storage
capacity to keep all the signals, thus the other signal (truth) will often be
ignored.
The paper is organized as follows. The basic structure of the model and

the definitions of memory and strategies in this game are in section 2 where I
also present a discussion about the equilibrium concept and the assumptions
of the model. The case with two memory states is shown in section 3, where
I compare my results with the equilibrium in the Bayesian world. I start
with two periods and then extend to an infinite horizon. Section 4 shows the
condition for the receiver to have deterministic transition rules in an N state
memory and the properties of the memory rule when this condition is not
met. In section 5 there is a discussion of the incentive compatibility concept
and a comparison with the issues in a single player game. Also there is a
comparison of this paper with an automata model in a reputation context.
Section 6 concludes the paper. Most of the proofs are in the appendix.

2 Model

This is a repeated cheap talk game with incomplete information on the
sender’s type. The model is based on Sobel (1985). The sender can be
one of two possible types. With probability ρ the sender is a behavioral
type that always tells the truth. This behavioral type will be denoted H
as in “honest type”. Nothing will be said about the preferences or strategy
of this behavioral type of sender, it will just be assumed that at every pe-
riod of the game the message send by this type is equal to the true state of
the world. With probability (1− ρ) the sender is a “strategic type” S, with
utility opposite to the receiver’s, as will be described below.5

The timing of every stage game is the following. Nature draws a state
of the world in the period, ωt ∈ Ω = {0, 1} each happening with probability
1
2
. The sender observes ωt and sends a message mt ∈ {0, 1} to the receiver.
This message has no direct influence on the player’s payoffs, thus a cheap talk
game. The receiver then observes this message and takes an action. After he
takes the action, the payoffs are realized and the states are verified. At this

5Sobel (1985) calls the honest type the “Friend” and the strategic type, the “Enemy”.
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point, the receiver can tell whether the sender has lied to him or not about
the state of the world. Based on this information, the receiver updates his
belief on the sender’s type.
For every stage game the payoff of the receiver is a quadratic loss function:

UR = − (at − ωt)
2 while the utility of the strategic sender is US = (at − ωt)

2 .
With this particular functional form of utility the receiver has a unique best
response for every message send, the action rule will be uniquely determined
given the message. The use of a different functional form for the utility would
require randomization in the equilibrium actions. This would take the focus
out of our main concern, which is to characterize the updating rule, rather
than the action rule.

2.1 Memory and Strategies

I define the memory of the receiver to be a finite set where each element cor-
responds to a different memory state. Let M be the memory of the receiver.
Thus,M = {1, 2, ..., N} means that the receiver is constrained to N memory
states.
The transition rule is a map from the memory and the signal (true or

lie) received, to a subset of the memory. In other words, the transition rule
σ :M × {T,L}→ ∆ (M) is the receiver’s updating rule. Let si represent an
element from the set M .
It is also part of the receiver’s strategy to decide at time t = 0, before

the first period starts, at which memory set he will start the game. Let g0
be this initial distribution over the memory states: g0 ∈ ∆ (M) .
Finally, the receiver’s strategy also includes an action rule, a map from

memory and messages to actions: a : M × {0, 1} → R. I call the tuple
(σ, a, g0) the memory rule of the receiver.
To define the sender’s strategy I need two additional assumptions. First,

assume that at every period of the game the sender knows in which memory
state the receiver is. This assumption will simplify the analysis. To drop
this assumption, I would have to condition the sender’s strategy on a subset
of the receiver’s memory according to the equilibrium transition rule rather
than on the exact memory state that the receiver is in. Note, however, that
because of the action taken by the receiver, the sender would be able to infer
the memory state that he was in the previous period. His beliefs would then
be restricted to the states that have positive probability of being reached
by the equilibrium strategy. For the purpose of this paper, assume that
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there is a mechanism through which the sender would be able to find out the
exact memory state that he is in. Although it seems a strong assumption, it
will be innocuous in the deterministic cases. In the cases of non-deterministic
transition rules, the transition rule would be different under this assumption,
but the shape of the memory rule, which is one of the insights of this paper
will be the same regardless of this assumption. This assumption is also
innocuous in the two memory state case described next section.
The second assumption is that the sender’s strategy will be symmetric

with respect to the state of the world, i.e. after any history in the game
we have that Pr (mi = 1|ωi = 1) = Pr (mi = 0|ωi = 0). Together these two
assumptions imply that the strategy of the sender is q : H ×M → [0, 1],
where H is the set of all possible histories. Under this symmetry assump-
tion, the payoffs are also symmetric with respect to the state of the world:
UR (mi = 1|ωi = 1) = UR (mi = 0|ωi = 0) .

2.2 Incentive Compatibility and Games with Imper-
fect Recall

To find the equilibrium we use the notion of incentive compatibility as de-
scribed by Piccione and Rubinstein (1997)6 and Wilson (2004). A strategy is
incentive compatible if an agent cannot gain by one shot deviation from his
equilibrium strategy, given the beliefs induced by this strategy and assuming
that all other selves are playing the equilibrium strategy. The assumption
in this definition is that the interim player can remember the equilibrium
strategy, but cannot remember deviations during the game.
As usual in games with imperfect recall7, the equilibrium strategy might

not be time consistent in the usual sense: in the middle of the game the player
might find it in his best interest to revise his entire strategy. I take the view
that in games with imperfect recall the player is not allowed to change his
entire strategy, since he cannot control his future selves’ actions. The crucial
assumption here is that the player will not recall his deviation, thus he cannot
revise his entire strategy, but only make local deviations. When deciding on

6Piccione and Rubinstein (1997) refer to this condition as “modified multiself consis-
tency”.

7Absentmindedness as defined in Piccione and Rubinstein (1997) is a special case of
imperfect recall. In this paper the bounded memory player is in fact absentminded. The
issues of games with absentminded players discussed in this section applies more generally
to games with imperfect recall as well.
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an action to take, the interim player assumes that his future selves will play
the equilibrium strategy regardless of his current decision. For a further
discussion of imperfect recall, time consistency and incentive compatibility,
see Aumann et al (1997), Gilboa (1997) and Piccione and Rubinstein (1997).
The equilibrium in this model is defined as a strategy that is a best

response for the unbounded player given the equilibrium strategy of the
bounded memory player and accordingly this strategy of the bounded mem-
ory player must be incentive compatible given the opponent’s actions. In
other words the strategies of both players must form an equilibrium between
the unbounded player and all the interim selves of the boundedly rational
player.
The result of Piccione and Rubinstein that in single player games with no

discounting ex-ante optimality of a strategy implies incentive compatibility
(Piccione and Rubinstein (1997), Proposition 3) will be of no use in the
context of a two player game. Their result shows that in single player games
if memory is modeled as we suggest in this paper, then the optimal solution
ex-ante will be the same as the interim equilibrium. This is the reason why
the automata described in Hellman and Cover (1970) is the same as Wilson’s
(2004) decision maker. In this paper, however, assuming that an automata
is playing the game and disconsidering incentive compatibility constraints is
the same as assuming that the receiver can credibly commit to actions, which
could change the sender’s behavior. I take the view that the equilibriummust
be incentive compatible, and a strategy profile that is a Nash equilibrium
ex-ante but not for the interim players is not an equilibrium in this game,
because it would involve credible commitment on the part of the bounded
memory player. I present some results and a further discussion on this topic
in section 5.
In games with imperfect recall it must be made clear the assumptions of

the modeler. There might be multiple equilibria even in one person games,
and whereas the ex-ante decision maker will coordinate his actions in the
most profitable equilibrium is something that should be made explicit by the
modeler. In a two player game these issues are also present and typically
there are multiple equilibria. I will take the view that in this paper there
are compelling reasons to assume that the receiver can coordinate on the
most profitable equilibrium, since the memory rule will describe the agents’
heuristics on updating beliefs, and coordinating on a second best would rule
out any evolutionary argument. Thus, one way to think about this problem
is of a mechanism design, where the principal is the ex-ante player and the
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agents are the unbounded opponent and all the interim selves (each self
correspond to a decision node) of the bounded memory player. The principal
must choose the optimal mechanism given the set of equilibria between the
interim agents and the unbounded player.

3 Two Memory States

The goal of this section is to show through the simplest possible case how
beliefs are updated in this world with finite memory. The intuition obtained
in this section will carry on to more general memories.

3.1 Two Periods

In this section I study the case where the game described above is played for
two periods. I want to compare the results of a game in which the receiver
is constrained to two memory states only with the results of a game where
the receiver performs Bayesian updating. For this two period case, consider
no discounting on the periods.
The proposition below shows the equilibrium when the receiver is updat-

ing his beliefs on the sender’s type using Bayes rule. For the proof of this
proposition see Sobel (1985).8

Proposition 1 For each prior ρ there is a unique equilibrium in the two
period game with a Bayesian receiver. Moreover, for any ρ > 1

4
the equilib-

rium is such that in the initial period the receiver believes the sender with
probability greater than 1

2
.

The equilibrium is the following. If the probability of a behavioral type
is very high, ρ ≥ 7

8
, the receiver will have a very high belief that the truth

will be told in the first period and therefore it will be very costly for the
strategic sender to build a reputation. This implies that the best response
for the sender is to lie on the first period, q1 = 0.
If the prior on the sender’s type is instead very low, ρ ≤ 1

4
, then the

receiver believes with high probability that he is dealing with a strategic
type. Therefore the only possible equilibrium is babbling in both periods.

8In fact, Sobel shows that this result holds more generally and not only for the two
period case.
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The equilibriumwith reputational concerns occurs for intermediate priors,
in particular for ρ ∈

£
1
4
, 7
8

¤
. In this case, the proposition above shows that

there will also be a unique equilibrium. On the first period the sender will be
mixing with some probability q > 0. This implies that the probability that the
receiver thinks that the message is true is π1 ≡ Pr (T |t = 1) = ρ+ (1− ρ) q,
from now on let T denote true and L denote lie. On the second period after
having observed a true signal, the sender will lie with probability 1, q2T = 0,
since it will be the last period and there will be no reputational concern
in the last period. The belief in the second period following a true signal
in the first period is the proportion of behavior type in the last period, i.e.
π2T =

ρ
ρ+(1−ρ)q . Finally, on the second period after observing a lie, babbling

is the only possible outcome (q2L = 1
2
, and π2L =

1
2
).

Note that if I had a two period game and a receiver with bounded memory
but restricted to three memory sets, I would be able to exactly reproduce
the equilibrium described above. To see this, denote the initial state by state
2, and attach the belief ρ + (1− ρ) q to that state. To the state labeled 3,
attach the belief ρ

ρ+(1−ρ)q and finally state number 1 is associated to babbling.
Formally, if the memory of the receiver is M = {1, 2, 3} then consider the
following transition function: σT (1, 1) = 1, σT (2, 3) = 1, and σT (3, 3) = 1
together with σL (i, 1) = 1,∀i ∈ M. This memory, with this transition rule
together with g0 (2) = 1 (i.e. the probability of starting the game at memory
state 2 is equal to 1) will reproduce the equilibrium above.
In fact, the result above holds for any finite or infinite horizon game: a

bounded memory player is always capable to reproduce the Bayesian equi-
librium, as long as he is given enough memory states.

Lemma 1 For any hΓ, (H,S) , (ρ, 1− ρ) , (US, UR)i ∃ M , |M | < ∞, such
that the equilibrium is identical to the one with a Bayesian receiver (no mem-
ory constraints).

Proof. If ΓT is finite, with T periods, then let |M | = N + 1 , with
deterministic transition rules. The argument then goes exactly as described
for the two state case. For an infinite horizon game Γ∞, there always exist
T ∗ such that πT∗ = 1 (Sobel (1985)). At this point, both types are revealed
and the game is over. If |M | = T ∗+1, with deterministic transition rules we
have the same equilibrium as in the Bayesian case.
Thus, the interesting cases arrive when the player is not only bounded

in his memory, but also has a “short” memory, |M | < T ∗ + 1. This will be
discussed further in section 4.
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In this section I restrict attention to the two memory states and two
periods case, since this is the simplest setting where you depart from the
Bayesian updating. Denote this game with only two periods and allowing
the receiver to use only two memory states by Γ2.
The updating rule in this context is the probability of switching out of

the initial state after receiving a true signal and another probability after
receiving a false signal, as depicted in figure 1.

Fig. 1: Updating Rule

There are two questions in this setting: which are the possible equilibria
in this game? Also, among these equilibria, which one gives the receiver a
higher ex-ante expected payoff?
The first issue in this game before I can answer the questions above is

how to compute the beliefs on the memory states. Given the equilibrium
strategies, I can compute the beliefs in each state and the posterior on the
sender’s type. Let M = {A,B} and denote πi as the probability of truth
given that the receiver is in memory state i. In this case we have that
πA ≡ Pr (T |A) and πB ≡ Pr (T |B).
For the posterior on the sender’s type, denote pHi as the probability that

the receiver believes that the sender is a behavioral type after verifying if the
sender lied or told the truth in state i

¡
pHA ≡ Pr (H|T,A)

¢
. Note that since

there is no noise on the sender’s information structure, whenever the receiver
observes a lie, he can be sure that the sender is a strategic type.
To compute the beliefs in each memory set, the agent uses Bayesian

updating given his beliefs on the information set, which is the same approach
as in Piccione and Rubinstein (1997). The intuition here is to think of the
probabilities of time periods as long run frequencies.
Consider as an example the case where the transition rule is: σT (A,A) =

1 and σL (A,B) = 1. This transition rule is depicted in figure 2. If this is the
transition rule, the best response for the sender is to lie right away (qA = 0)
since he will not be able to build reputation by telling the truth.
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Fig. 2: Separate the Liars

Since the transition rule is completely separating the liars in the second
period, whenever the receiver reaches memory set B he can be sure that he
is dealing with a strategic type of sender, thus the only possible belief in that
state is the one associated to babbling: πB = 1

2
.

To compute the belief in memory state A we have to compute the prob-
abilities of the time periods.

πA = Pr (t = 1|A) Pr (T |t = 1, A) + Pr (t = 2|A) Pr (T |t = 2, A) (1)

We can think of these probabilities as long run frequencies. First note
that Pr (t = 2|A) = ρPr (t = 1|A) but we also have that the probabilities
of the time periods should sum to 1. Solving for these two equations we
get that: Pr (t = 1|A) = 1

1+ρ
and Pr (t = 1|B) = ρ

1+ρ
. Moreover, the prob-

ability of truth in the initial period is the proportion of behavioral types
Pr (T |t = 1, A) = ρ, while in the second period, we have Pr (T |t = 2, A) = 1,
which means that if the receiver reaches the second period and is still in state
1, then it must mean that he is dealing with the behavioral type of sender,
therefore he may expect to receive a true signal with probability one. Thus,
equation (1) gives us πA =

2ρ
1+ρ

.
The equilibrium in this game is a strategy for the sender that is a best re-

sponse for him, together with an incentive compatible memory rule (σ, a, g0) .
Where incentive compatibility means that the interim receivers find it in their
best interest to follow the memory rule given the sender’s strategy and given
that his future selves are also following it (as discussed in section 2.2).
There are three classes of equilibria in this two state game with deter-

ministic initial state. Below we show the definition of incentive compatibility
for the transition rule σ in this game Γ2. Define pHi ≡ Pr(H|T, i, t = 1) and
similarly pSi ≡ Pr(S|T, i, t = 1), then we have the following definition for an
incentive compatible strategy.
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Definition 1 (Incentive Compatibility in two-period games)
A transition rule σ in Γ2 is said to be incentive compatible if:

σT (i, j) > 0 =⇒ −pHi (1− πj)
2 − pSi π

2
j ≥ −pHi (1− πj0)

2 − pSi π
2
j0

σL (i, j) > 0 =⇒ −π2j ≥ −π2j0

For ∀i, j, j 0 ∈M = {A,B} .

If, in equilibrium πA = πB then a deterministic transition rule σT (A,B) =
σL (A,B) = 1 can support this equilibrium. This result extends to a more
general case with an N− state memory: there will always be a trivial equi-
librium in which the states have equal beliefs. In this trivial equilibrium,
the receiver is in fact wasting memory sets. The more interesting cases come
when we look at memory rules where the receiver is not wasting memory
states. One rationale for focusing in memories without redundant states is
that I believe that memories with useless memory states would likely have
been ruled out by evolution and competition. Memory as studied here is
finite, so the bounded memory player will choose a memory rule that does
not waste more of his already scarce resources. Next section I show a result
that allows us to concentrate on memories without identical states.

Proposition 2 The equilibrium rules in Γ2 when πA 6= πB involve only
deterministic transition rules.

For ρ ≤ 1
3
,babbling in both states is the only possible equilibrium. Where

babbling is characterized by a belief of 1
2
in both states and with the strategic

sender telling the truth with probability 1
2
in both periods.

In equilibrium with two memory states and two periods there are no
random transition rules. In fact this will be true for the infinite horizon case
as well. The interesting property of the equilibrium in which the receiver
starts at the highest belief (which corresponds to the transition rule depicted
in figure 2) is that the receiver keeps track of the liars. Worth noting that
the strategic sender will gain not because the receiver will forget in case he
lies, but because the receiver doesn’t know the period that he is in when
he starts the game. In other words, the receiver is confused about the time
period when he is in state A, so he doesn’t know if he has already separated
all the liars or not. This inflates the belief in state A and gives the sender a
high payoff in the initial period.
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3.2 Infinite Horizon

To proceed in the analysis and study the infinite horizon game we make a
slight modification on the game. I assume that at every period there is an
exogenous probability η that the game will end. This assumption will be
helpful since as we depart from the finite horizon case, we need well defined
priors over the time periods. This death rate will give us this distribution.
The analysis here is to the case where η → 0, so that the players still expect
the game to continue for a very long period before it is over. Assume also a
discount factor δ on the time periods.
The first result in the paper is that the receiver will hold the “extreme”

beliefs, that completely separate the types.

Proposition 3 For the two memory state game and infinite horizon, the
unique non trivial equilibrium is such that: π1 = 1

2
and lim

η→0
π2 = 1.

Proof. π2 = Pr (t = 1|s2) ρ + Pr (t = 2|s2) + Pr (t = 3|s2) ... Where the
probabilities of time periods are given by:

Pr (t = 1|s2) =
1

1 + (1− η) ρ+ (1− η)2 ρ+ ...
=

η

η + (1− η) ρ

Thus: π2 =
ρ

η+ρ−ρη , which leads us to:

lim
η→0

π2 =
ρ

η + ρ (1− η)
= 1 (2)

The interpretation is that having a very short memory, the receiver will
start the game with “long run beliefs”. The result above follows from the
fact that in an infinite horizon game, the only way that the message received
in state 2 can be a false one is if it comes from a strategic sender, and this
can only be true if the period is the first one, since the babbling state is
absorbing. However, the probability of being at period 1 goes to zero as the
exogenous death rate η → 0.
The equilibrium is such that the receiver starts at state 2 if his prior is high

enough and at state 1 otherwise and the transition rules are deterministic:
σL (i, 1) = 1, σT (1, 1) = 1, and σT (2, 1) = 0.
From now on the results in the paper refer only to the infinite horizon

case. The assumption on the exogenous death rate creates a stationary envi-
ronment for the players, such that the expected continuation payoffs at every
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memory state, given the sender’s type, are the same regardless of the time
period.

4 N Memory States

To analyze the general setting with N memory sates and infinite horizon I
need extra notation to proceed in the analysis. The expected continuation
payoff for the receiver at memory state i given that the sender is a behavioral
type is denoted by vHi , where v

H
i is equal to:

vHi = − (1− πi)
2 + (1− η)Σj∗σ

T (i, j∗) vHj∗

The expected continuation payoff for the receiver given a strategic sender
is denoted by vSi . Since we don’t know the behavior of the strategic sender, the
only thing that we can tell is that vSi = −US (i). Where US (i) is the expected
continuation payoff for the strategic sender andUS (i) = max {US (T |i) , US (L|i)} .
In this section I define incentive compatibility for a general memory with

N memory states. It is a generalization of the definition presented on the
previous section.

Definition 2 Incentive Compatibility
The memory rule is incentive compatible if for ∀i, j we have that:

σT (i, j) > 0 =⇒ pHi v
H
j + pSi v

S
j ≥ pHi v

H
j0 + pSi v

S
j0 , ∀j0

σL (i, j) > 0 =⇒ vSj ≥ vSj0 , ∀j0

The action rule of the receiver is:

max
a
−P (ω = 1|m) (a− 1)2 − P (ω = 0|m) a2

ai (m) = P (ω = 1|m)

Equilibrium in this game is defined as an incentive compatible memory
rule for the receiver together with a strategy for the sender that is a best
response for him.
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Definition 3 Equilibrium
An equilibrium is a tuple (σ, a, g0; q) that satisfies the following conditions:
For every state i and history h, qih is such that9:

qih < 1 =⇒ US (L|i) ≥ US (T |i) (E1)

qih > 0 =⇒ US (T |i) ≥ US (L|i)

The memory rule (σ, a, g0) is incentive compatible, given q. (E2)

4.1 Deterministic Transition Rules

When the receiver’s memory is not binding, we say that the receiver is up-
dating his belief’s using Bayes rule, with no bias whatsoever. In this case,
the receiver is using deterministic transition rules. There are cases, though,
in which the transition rule is deterministic, but the updating differs from
Bayesian because of the last state. The memory of the receiver will confuse
him in this extreme state and there will be biases in information process-
ing in that point. In this section I show the conditions on the parameters
under which the receiver will play pure strategy, i.e. will use deterministic
transition rules (the algorithm uses the same reasoning whether you want to
compute the threshold for Bayesian updating or for deterministic rules only).
The following result shows that there is at most one equilibrium in which

the receiver is using a pure strategy.

Lemma 2 Fix N and ρ. There is at most one equilibrium in pure strategies
for the receiver without redundant states.

However, we need to investigate whether such an equilibrium will exist
at all, and also under what conditions. Thus, I present two results. The
first one shows that given a memory of size N , there is a threshold in the
prior space such that if the prior is smaller than the threshold the receiver
will not play pure strategy. This is a necessary condition for the receiver
to use deterministic transition rules. We then prove another result showing
that this is in fact also sufficient for equilibrium with deterministic transition
rules. This sufficient condition is in fact a strong result by itself, saying that
if the sender is using a best response and the transition rules are not random,

9We omit the subscript h from the sender’s utility since for all i, US (·|i, h) is the same,
regardless of the history h.
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the receiver will find it in his best interest to follow the specified transition
rules. Given this result, one can relate it to Bayesian updating: if we describe
Bayesian updating as an updating rule with an infinite number of memory
states and deterministic transition rules, the player will find it in his best
interest to keep playing this strategy, i.e. it will be incentive compatible as
well. Thus, in this context, Bayesian updating is consistent with an infinite
number of memory states.

Lemma 3 Given a memory size N , there exists a threshold ρ∗N such that if
the prior is smaller than this threshold: ρ < ρ∗N then there is no equilibrium
in pure strategy.

The proof of this lemma is by induction. The first step is to note that
the last state will have belief 1, following the intuition of the two state case.
The receiver will use pure strategy only if the belief in state N-1 is at least
as high as some threshold π∗N−1, which depends on the parameters δ,N and
η. If the belief is lower than this threshold, the sender will prefer to tell the
truth and be updated with probability one to the highest state. Moreover, by
incentive compatibility there is a lower bound on the posterior state N − 1,
i.e. if the posterior on the sender’s type is lower than this lower bound, the
receiver will find it in his best interest to remain in that state after a true
signal for an additional period. Together, this implies that there is a lower
bound on the prior on the sender’s type at that stage game. However, the
prior on state N−1 is the posterior of state N−2. Using the same reasoning
backwards we find that there must be a lower bound on the prior for the
receiver to play pure strategy. In the appendix I show how to compute this
lower bound given the parameters δ,N and η.
Next lemma shows a sufficient condition for deterministic transition rules.

Lemma 4 Let the transition rules be deterministic: σT (i, i+ 1) = 1, the
posterior on the sender’s type be computed as: pHi =

ρi−1
πi−1

and the strategy for
the sender be a best response for him. Then it will be incentive compatible
for the receiver to move only one state after a true signal:

pHi−1v
H
i +

¡
1− pHi−1

¢
vSi ≥ pHi−1v

H
s +

¡
1− pHi−1

¢
vSs , ∀s > 0

Therefore, given a memory of size N , as long as the prior ρ is higher than
the threshold ρ∗N , which is shown in the appendix, the receiver will be able
to reproduce Bayesian updating and there will be no information loss.
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4.2 Non Deterministic Transition Rules

When the condition on the threshold described on the previous section is
not met, there are no equilibria with deterministic transition rules anymore
(besides the trivial one) and randomization is needed.
Before I present the main result of the section, the lemma below shows the

implications on beliefs of a game that is arbitrarily long. I will be interested
in the cases where the exogenous death rate η → 010, and I first show the
following results:

Lemma 5 As η → 0, we have that:

1) π1 =
1
2
, moreover state 1 is absorbing.

2) πN = 1.

The intuition for the results above is straightforward. At state N there
are no reputation incentives and the bad type of sender will lie right away,
thus, the only chance of having a strategic sender in this state is if the receiver
reaches the state for the first time. However, if the sender is an honest type,
the state is absorbing. Thus, the probability of being there for the first time
goes to zero as the death rate goes to zero. Also, the same happens at state
1. If it is not the initial state, then only the strategic type of sender reaches
that state, in which case the result is obvious. If it is the initial state, the
probability of having a strategic sender at that state goes to one as the death
rate goes to zero11.
Proposition 5 below is the main result of this paper. As I have pointed

out, there are multiple equilibria in this game, in particular, there are many
rules in which the receiver has redundant states. In the appendix I wrote
a variation of the proposition below to allow for these bad equilibria, but
the most intuitive way to understand the proposition is to have in mind
a rule without the redundant states, i.e. with N different memory states
(holding different beliefs in equilibrium). As we will see later in this section,
there are compelling reasons to focus only on the equilibria that gives the
receiver the highest payoff, and in this case lemma 6 below shows that we
can ignore the redundant states without loss of generality. The result on
redundant states tells us that any equilibrium in which the receiver is using

10Again, the proposition in the appendix holds for any η, and not only for when η → 0.
11Since this state is absorbing, in equilibrium it will not be the initial state.
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a redundant state can be reproduced with a memory without redundant
states. Therefore, when searching for the equilibrium that gives the receiver
the highest expected payoff, we can focus only on rules where all states have
different beliefs.

Lemma 6 If a receiver has memory M with N states and (σ, a, g0, q) gives
the receiver a payoff U∗R and is such that πi = πj, then there ∃ (σ, a, g0, q)0
for memory M 0with N − 1 states and that gives the receiver utility U∗R.

From now on, label the states in non-decreasing order. I.e. if, in equilib-
rium, the beliefs of the receiver on the sender’s messages are πj > πi then
label the states j > i.
The main result is stated below, ignoring the redundant states and as-

suming that η → 0.

Proposition 4 If (σ, a, g0, q) is an equilibrium, then:

1) After Lie: σL (j, 1) = 1 (there is always a dumping state)

2) If US (L|i) > US (T |i) =⇒ σT (i, N) = 1

3) After True: πj > πi =⇒ σT (j, i) = 0 (don’t go back after a True
signal)

4) g0 (2) = 1

The proposition above shows that any memory rule, in equilibrium, has
to be such that the receiver separates the liars after a lie is observed. This
state is absorbing, which means that the receiver will not forget if one has
ever lied to him.
Another result is that while the receiver might ignore true signals, by not

updating after receiving them, he will never update to a worse belief after
a true. One interpretation of this result is that the receiver might not pay
attention (update) to some signals, but he will never forget the information
that he already holds.
At this point, we have ruled out some memory rules that could never be

played in equilibrium. In particular, rules with loops and rules that don’t
separate the liars.
However, we still want to understand how this bounded memory receiver

updates after true signals. the lemma below tells us part of the story. All
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the results in this direction depend on a condition that the posteriors on the
sender’s type are different on the states. To weaken this restriction, in the
appendix we prove the following lemma: πj > πi =⇒ pHj ≥ pHi . Thus, we
only have to worry about the cases where πj > πi but pHj = pHi .

12

Lemma 7 Consider only memory states where pHi 6= pHj

1) Single crossing

σT (i, k) > 0 ,σT (i,m) > 0 and σT (j, k) > 0 =⇒ σT (j,m) = 0.
∀k,m such that πk 6= πm and ∀i, j such that pHi 6= pHj

2) No Jumps

σT (i, k − 1) > 0 ,σT (i, k + 1) > 0 =⇒ σT (j, k) = 0 ∀i, j such that
pHi 6= pHj

3) Monotonicity

If σT (i,m) > 0 =⇒ σT (j,m0) = 0 (∀ m0 < m),∀i, j such that pHj > pHi

5 Related Models

5.1 Incentive Compatibility and the Absent-minded
Driver Revisited

We are back to the well known model of Piccione and Rubinstein. The story
is the following. A driver leaves the bar late at night, after a few drinks
and little consciousness. He hits the road in the hope of getting back home,
which is in the second exit of the road. However, in the first exit there is a
bad outcome and there is no coming back. If he never exits, he reaches a safe
hotel, which is better than the first exit, but worse than home. Whenever he
reaches a point where he can either exit or continue, he cannot recall whether
he has faced the exact same decision minutes ago or not. What shall he do?
In this problem the driver has a very severe memory constraint: he will

not remember if he is in the first or second point in the road. In other words,

12It can be easily shown that forN ≤ 4 πj > πi ⇒ pHj > pHi , in which case the properties
in lemma 6 hold without any additional restrictions.
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he has only one memory state. His choice is confined to figure out an action
rule in his unique memory state.
Assume that the driver is incapable of designing a strategy, but only of

checking whether it is a best response or not. There is a friendly bartender
that will choose the best strategy for the driver and will tell him what to do
before he leaves the bar13. If the bartender chooses optimally, it will turn
out that the driver will not have any incentive to deviate from it in either of
the nodes. This result is formally proved in Piccione and Rubinstein (1997).
Now lets add a twist. Consider another situation where this drunk driver

faces a very long road. In this road there are two exits: a good one in one
side of the road and a bad one on the other side. After every mile the drunk
driver receives a signal about the true side of the good exit, the signal might
be a sign posted by the city patrol, a tree that he can vaguely recall being in
the true side, or any other sign. The driver can’t recall all the signals (that
would be impossible after the drinks!), but again, the benevolent bartender
has taught him a rule of thumb on how to keep track of these signals.
In the model described above the driver has several memory states and

decides on an updating rule as well as on an action rule. He will recall the
bartender’s instructions at every point in the road14, and will always find it
in his best interest to follow the suggested rule of thumb, both in the bar
and at the road.
Lets change the environment once again. The drunk driver will leave the

bar with what he thinks is his wife. The woman next to him is not drunk
at all and knows the way home perfectly well. The way home is very long,
and includes infinitely many turns. Assume that every correct turn increases
the driver’s payoff, whereas a wrong turn decreases it. Assume also that the
initial turns have a higher value for both the driver and the woman. At every
mile the woman will tell him where to turn.
Before leaving the bar the, now worried, bartender warns the drunk men

that the woman might be his wife or his evil mistress. The mistress wants to
force the driver out of his way home. The bartender will now give the driver
a rule of thumb on how to keep track of the woman’s suggestions (given that
keeping track of all of them is not an option after the drinks). The driver is
drunk, but like in the other cases above, he can check the optimality of the

13One can eliminate the bartender and assume instead that the driver decided himself
on a rule before he started drinking (knowing that in the way back he would be drunk).
14Think of this as a rule of thumb on updating beliefs that he has adopted in many

other similar situations.
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rule of thumb at every point. If at some point he believes that the strategy
is not ‘optimal anymore’ he will deviate.
The bartender knows this and will give a suggestion that the driver will

always want to obey. If the woman tells him the wrong path, he will dump
her and keep driving alone, with no clue about the way back. The bartender’s
suggestion if the driver is very drunk (memory constraints are severe) will be
to ignore that the woman has told the truth for part of the time. This will
give the evil mistress additional incentives to lie faster, and get some benefit
from it in the beginning of the road. At some point, he will start thinking
of her as his true wife, but if his memory is very restricted, chances are that
what he thinks is his true wife is in fact his evil mistress.
This story of the absentminded driver illustrates the differences between

the models and the results on incentive compatibility for different settings.
There are two key points here. The first difference is in the memory of the
driver in the three games. In the first model, with the two exits, the driver
is constrained to one memory set only, thus, updating rule didn’t make sense
in that context. The driver did not decide on the transition rule, but only
on the action rule. On the other two models, memory is finite but with more
than one state. Thus, the memory rule involved not only an action rule, but
also a transition between states.
The second key difference between the three examples refers to the ex-

ante choice of the memory rule. In both the first and second model, the
memory rule is chosen optimally by the ex-ante player (the bartender), but
with no conflict between what the bartender chooses and what the driver will
decide to do at every decision node given the bartender’s choice.
In the third model, which is the one studied in this paper, the bartender’s

suggestion will be constrained to a subset of all possible ‘rules of thumb’.
There will be rules in which the drunk driver would rather deviate in the
middle. The bartender takes that into account and chooses the best rule for
the driver, given this additional constraint.
To build a bridge between my model and the automata literature, con-

sider a forth example of this story. We take the third example and add a
further constraint on the driver: that he is so drunk that he cannot check
for best responses, thus he will simply follow the bartender’s suggested ‘rule
of thumb’. In this case, we wouldn’t have to worry about incentive compati-
bility issues, instead we would have an automata model as will be described
below. Worth mentioning that with this additional constraint the driver can
in fact perform better than the bounded memory player. Bounded rationality
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is playing the role of credible threat as in Gilboa (1988).

5.2 Automata

The automata models are in many ways similar to a bounded memory player.
An automaton, like a bounded memory player, is a finite set of states with a
transition rule and an action rule. It has been used in economics mostly to
capture bounded rationality in implementing a strategy.
It was studied in the context of finite memory by Hellman and Cover

(1970). When we model the memory of the player as an automaton, we
ignore incentive compatibility constraints and the memory is designed to be
the ex-ante optimal one. As it turns out, however, in single player games with
no discounting this distinction is inexistent: Piccione and Rubinstein (1997)
show that the ex-ante optimal strategy will also be incentive compatible.
In this paper there are two reasons of why an automaton could differ

from a bounded memory player. The first one is the same as in a single
player game with discounting. An automaton would allow an individual to
commit to actions and avoid ‘temptations’ of his future selves to deviate.
The second reason is the ability to commit against an opponent, in much
the same way as a Cournot oligopolist would benefit from committing to a
level of output. Thus, modeling the player’s memory as an automaton would
require a further assumption. Namely that the player can credibly commit
to his strategy15. This could be the case of an institution where different
workers control the memory states and are obliged to comply with a set of
rules, without calculating the best response at that point in time.
I take the view that both approaches have their own interest, but this

paper is only about the case where incentive compatibility is indeed an issue.
I show that in some situations the automaton can do better than the bounded
memory player, while in others they do just as well (obviously, the automata
can never do worse, since the set of incentive compatible memory rules is
a subset of the memory rules described by an automaton). In fact, I show
some results for the three state case, where the automaton does better than
the bounded memory player.

15Since in this paper the strategic sender is playing a zero-sum game with the receiver,
it is not clear whether commitment would increase the receiver’s payoff absent discounting
effects. Further research is needed to understand the role of commitment in this particular
reputation game.
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To find the results for a game with a player restricted to 3 memory states
only I use proposition (5) where we have that: the belief in the lowest state
is equivalent to the babbling state π1 = 1

2
, moreover this lowest state is ab-

sorbing. Also, the belief in the highest state is one (π3 = 1) and finally, the
receiver will start at the intermediate state g (2) = 1. Remains to calculate
π2 and the transition rules, σT (2, 2) and σT (2, 3) , as well as the strategy for
the sender. In order to compute this equilibrium, lets focus on Markov equi-
librium only, i.e. when the strategy of the sender depends only on the current
memory state q :M → [0, 1] . The picture below shows the equilibrium rule,
and table 1 shows the results for different parameter values.

Fig. 3: Equilibrium for 3 States

One thing to note on table (I) below is that the lower the prior on the
sender’s type, the higher σT (2, 2) which means that the receiver will test
more the sender. These are the equilibria for which the receiver is mixing on
his updating rule. If ρ is very high (in this case the threshold is 0.72), there
will be no randomization. All these equilibria were computed for η = 10−60

and δ = 0.8.
The comparison between the automaton and the bounded memory player

is shown in the table below.
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Bounded Memory Automata
ρ π2 σT (2, 2) UR πA2 σT (2, 2) UA

R

0.1 0.5 1 -1.25 0.5313 0.93588 -1.2415
0.2 0.6135 0.7474 -1.1755 0.5919 0.80077 -1.1730
0.3 0.6534 0.6394 -1.0727 0.6385 0.68141 -1.0716
0.4 0.6892 0.5275 -0.95186 0.6791 0.56073 -0.9514
0.5 0.7232 0.4023 -0.81802 0.7168 0.42747 -0.8178
0.6 0.7571 0.2512 -0.67359 0.7540 0.26638 -0.6735
0.7 0.7925 0.0502 -0.51982 0.7920 0.05320 -0.5198
0.8 0.8 0 -0.36 0.8 0 -0.36
0.9 0.9 0 -0.19 0.9 0 -0.19

(I)

6 Conclusion

This paper is a study of bounded memory in a reputation game. It differs
from the existing literature on imperfect memory by considering the effects of
bounded memory in a game in which the memory rule is chosen by the player.
The equilibrium is such that the memory process must be a best response
for all the interim selves of the bounded memory player. This incentive
compatibility constraint was not yet studied in multi-player games.
I showed that the updating rule is rather simple and will always be

monotonic and increasing. In particular, for any (finite) memory there is a
range of priors such that the bounded memory player will do as well as if
using Bayes’ rule (memory is not binding). There is yet another range for
which the bounded memory player will keep using deterministic transition
rules, but will suffer loss (as compared to a Bayesian player) on the extreme
state, when he gets confused about the time period.
The second important contribution of this paper is to show the updating

rule when memory constraints are severe. In these cases the receiver will not
use pure strategy anymore and will, instead, use random transition rules in
the initial states. Despite the multiplicity of equilibrium that games with
bounded memory have, there are necessary conditions on the updating rule
that suggests a particular updating rule (stay put or go forward) when the
receiver can coordinate on the equilibrium that gives him the highest payoff.
This randomization is used for two different reasons. First to overcome the
memory problem by not storing all the signals. This intuition was also present
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in single player games. Most importantly, however, in a two player game
randomization will be used as a strategic element: to test the opponents.
In a broader sense, this paper is part of an emerging literature in restricted

capacity to deal with information. Agents fail to use Bayes rule due to some
constraint on their technology. This departure from Bayes rule could be
due to a cost on updating new information (Reis (2005)), on a restriction
to acquire new information (Sims (2003)), on a cost to think through the
implications of a particular action (Bolton and Faure-Grimald (2005)), or on
memory constraints. In a repeated interaction, this ability to sort information
is very important due to the substantial amount of data that some equilibria
require, combined with possible cognitive restrictions of the agents.
The results that we see in the recent papers suggest that these constraints

leads to inertia and inattention. Due to a restricted capacity in dealing with
information, agents cannot execute Bayes rule and will choose the informa-
tion to memorize, and to acquire. In other words, the agents will sort the
information received and ignore part of it. This paper confirms this intuition
in the context of a two player game, showing that the agents will ignore
information and update only sporadically when their memory is constrained.
It is still not clear what are the implications of bounded memory in sus-

taining cooperation in repeated interactions. In the model presented, the
strategic sender and the receiver had opposite preferences, and the zero-sum
nature of this relation didn’t leave any room for cooperation when the bad
type of sender was caught. The study of the role of bounded memory and
reputation in a more general environment, without this zero-sum nature is
an open road of research.
An important lesson of this model is that the incentive compatibility

issues are very important in two player games. If they are not considered,
the bounded memory player becomes an automaton, which is equivalent to a
receiver with commitment power. It is a natural and interesting extension to
understand how these models work on the presence of credible commitment,
and I show part of this story in this paper: automata will in general do better
than the bounded memory player.
The application considered in this paper was one of an uninformed player

receiving signals from an informed expert. One is tempted to apply what
was learned here to other situations involving limited storage capacity. For
example, to apply this model to the context of an organization that keeps
track of signals about their clients.
Finally, this paper has focused on a problem of bounded memory in a
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game where the opponent is unbounded. The next step is to study models of
bounded memory when both players are constrained. This way the memory
of one player depends on the payoffs and on the types, but also on the
opponent’s memory. One player’s memory rule will depend on the other
player’s memory rule. In other words, the way agents form beliefs in this
world is endogenous to the model. Beliefs are determined by payoffs in a
way that is not captured by fully rational models.

7 Appendix

7.1 Two Memory States and Two periods

In this section we prove propositions 2 in the paper. It shows that the only
possible equilibria in the two state two period game where the receiver does
not waste memory states are the ones that involve no mixing in the transition
rule.
Proposition 2 If πA 6= πB, then the only rules that are incentive com-

patible are the ones that involve no mixing.
Proof. To prove this lemma, first note that since there are only two

periods, and both states are such that the belief is greater or equal than 0.5,
the strategic sender will lie when he reaches period 2 (or will be indifferent
between lying and telling the truth, if π = 1

2
).

If in equilibrium πi > πj =⇒ σiFj = 1. This comes directly from
the definition of incentive compatibility. Assume that the receiver starts
deterministically in state A and consider the two cases separately, first when
πA > πB and then when πA < πB.
First note that if in equilibrium πA > πB then it must be that q1 = 0.

Since the utilities of the sender given their actions are given by:

US(LL) = π2A + σL (A,A)π2A + σL (A,B)π2B
US(TL) = (1− πA)

2 + σT (A,A)π2A + σT (A,B)π2B

But, π2A ≥ σT (A,A)π2A+σ
T (A,B)π2B and σ

L (A,A)π2A+σ
L (A,B)π2B ≥

(1− πA)
2 . Thus, US(LL) ≥ US(TL) and therefore, q1 = 0. Thus, pHA = 1

which, in turn, implies by incentive compatibility that σT (A,A) = 1.
Finally, we want to show that if in equilibrium πB > πA =⇒ σT (A,B) =

1.
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pHA =
ρ

ρ+(1−ρ)q1 and πB = pHA , since only the behavioral type will tell the
truth in the second period when the state is informative (has a belief higher
than 1

2
). Thus:

Suppose the memory rule is incentive compatible meaning that:

σT (A,A) > 0 =⇒ −pHA (1− πA)
2 − pSAπ

2
A ≥ −pHA (1− πB)

2 − pSAπ
2
B

Using the fact that πB = pHA , we have that:

−πB (1− πA)
2−(1− πB)π

2
A ≥ −πB (1− πB)

2−(1− πB)π
2
B = −πB (1− πB)

Which in turn implies that −πB+2πBπA−πBπ
2
A−π2A+πBπ

2
A ≥ −πB+π2B.

Finally, we have that:

2πBπA − π2A ≥ π2B =⇒ π2B + π2A − 2πBπA ≤ 0 =⇒ (πB − πA)
2 ≤ 0 (3)

Which is a contradiction.
Therefore, if the memory rule is incentive compatible, then it must be

that σT (A,A) = 0.

7.2 N Memory States

This section is divided as follows. First, I show a general version for propo-
sition 4 in the text. This theorem is true regardless if the transition rule is
deterministic (in which case it is trivially true) or not. Then I proceed to
show in which cases the receiver will use deterministic transition rules. The
reason that I have switched the order that was presented in the text is that
I will use the results of proposition 4 to show the case of deterministic rules.
In proposition 4 the equilibrium set is restricted to a set of memory rules,

and the deterministic rules will have to satisfy the properties shown in the
proposition.

7.3 Random Transition Rules

In this section I prove a general version of proposition 416. Define l as the
state with highest expected continuation payoff if the receiver is facing a
strategic sender. Formally: D ≡ {l ∈ M |vSl ≥ vSi ,∀i ∈ M}, similarly define:
U ≡ {u ∈M |vHu ≥ vHi ,∀i ∈M}.

16In this proposition I make no use of lemma 5, that was used in proposition 4.
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Proposition 5 If (σ, a, g0, q) is an equilibrium, then:

1) After Lie: σL (j, l0) = 0 where l0 /∈ {l|πl = mini πi} (there is always a
dumping state)

2) If US (L|i) > US (T |i) =⇒ σT (i, h0) = 0 where h0 /∈ {h|πh = maxi πi}

3) After True: πj > πi =⇒ σT (j, i) = 0 (don’t go back after a True signal)

4) g0 (i) = 0,∀πi > π(2)

The first result comes from incentive compatibility. If Pr (H|i, F ) = 0,
∀i,we must have that after a lie, the receiver moves to a state with highest
expected continuation payoff given that the sender is strategic. As defined
above, the receiver moves to a state where the expected continuation payoff
for the receiver conditional on the bad type of sender is equal to vSl and for
the sender is US (l) .
Before we state the first lemma, denote

j∗ ∈M (j) ≡
½

j ∈M | after a true pHj vHj∗ + pSj v
S
j∗ ≥ pHj v

H
j0 + pSj v

S
j0;

after a lie: vSj∗ ≥ vSj0,∀j0 ∈M

¾
Thus, the payoff of the sender after lying is:

US (L|i) = π2i + (1− η) δ
X
i∗

σL (i, i∗)US (l)

Similarly, the payoff of the sender after telling the truth is:

US (T |i) = (1− πi)
2 + (1− η)

X
j∗

σT (i, j∗)US (j
∗)

Lemma 8 j /∈ D =⇒ σL (i, j) = 0,∀i ∈M.

Proof. By incentive compatibility, σL (i, j) > 0 =⇒ vSj ≥ vSj0 , ∀j0
Therefore we can write the payoff of the sender after lying as:

US (L|i) = π2i + (1− η) δUS (l)

We now show a lemma that will be very helpful in subsequent results.
The lemma is that whenever the sender reaches a state where πi = 1, i.e.,
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the highest possible belief, then the sender will strictly prefer to lie. This
is because by lying the sender gets the highest possible current payoff and
is then placed on the lowest state l. However, lying or telling the truth in
l is strictly better to the sender than telling the truth in a state with belief
higher than 1

2
.

Lemma 9 In the highest state the strategic sender lies with probability one
(except for the trivial equilibrium where all the states are the same):

US (L|N) > US (T |N)

Proof.

US (L|i) = π2N + (1− η) δUS (l)

US (T |i) = (1− πN)
2 + (1− η) δ

X
j∗

σT (i, j∗)US (j
∗)

We can write the expected continuation payoff of the sender as:

US (j) = (1− πj)
2 + (1− η) δ

X
j∗

σT (j, j∗) (1− πj∗)
2 + ...

+(1− η)t δtπ2k + (1− η)t+1 δT+1US (l)

Note also that telling the truth in any state gives the strategic sender a
lower current payoff than the babbling payoff and lying at state N gives the
strategic sender the highest current payoff among all other states.

(1− πj)
2 ≤ π2l ,∀j

π2j ≤ π2N , ∀j

US (L|N) = π2N + (1− η)t δtπ2l + (1− η) δπ2l + ...+ (1− η)t+1 δt+1US (l)

(1− πj)
2 + (1− η)t δtπ2k <

1

4
+ (1− η)t δtπ2N

< π2N + (1− η)t δt
1

4
≤ π2N + (1− η)t δtπ2l

Thus, we have that:
US (j) ≤ US (L|N) ,∀j =⇒In particular this holds for j = N.
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Corollary 1 If the state has belief 1 then the sender strictly prefers to lie:

πi = 1 =⇒ US (L|i) > US (T |i)

Lemma 10 Sender weakly prefers to lie in all the states:

US (L|i) ≥ US (T |i) ,∀i

Proof. Suppose US (T |i) > US (L|i) =⇒ qi = 1 =⇒ πi = 1.
By the corollary above, we have a contradiction.
We show that the best state to place a strategic sender are the states

with lowest beliefs. In other words, that πl = π1. The proof is by showing
that by placing a strategic sender on state 1 gives the receiver a higher payoff
than if the sender is placed on state l (l > 1) . Remember that after a lie, the
receiver knows with probability one that the sender is strategic.
From now on, we write qi instead of qit. We do this w.l.o.g. because the

argument has to hold for any time period.
Sending the bad sender to vSl gives the receiver the following payoff:

vSl = ql
©
− (1− πl)

2 + (1− η) δΣj∗σ
T (l, j∗) vSj∗

ª
+ (4)

+(1− ql)
©
−π2l + (1− η) δvSl

ª
However, in this state i the strategic sender weakly prefers lying than

telling the truth. For if is this not the case, qi = 1 =⇒ πi = 1, which implies
that lying is actually better for the sender. So we have to consider only the
case where (1− πi)

2 + (1− η) δΣj∗σ
T (i, j∗)US (j

∗) ≤ π2i + (1− η) δUS (i)
Thus equation (4) can be written as:

vSl = −π2l + (1− η) δvSl (5)

Now consider a deviation where the receiver receives a lie and decides to
place the sender in the lowest belief state instead of moving to the state where
the expected continuation payoff is vSl . This deviation gives the receiver a
payoff of:

vS1 = q1
©
− (1− π1)

2 + (1− η) δΣj∗σ
T (1, j∗) vSj∗

ª
+(1− q1)

©
−π21 + (1− η) δv̄Si

ª
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Again, we have only to consider the case where:

(1− πi)
2 + (1− η) δΣj∗σ

T (i, j∗)US (j
∗) ≤ π2i + (1− η) δUS (i)

For if this is not true then q1 = 1 and state 1 would not be the lowest belief
state. Thus, again we can write:

vS1 = −π21 + (1− η) δvSl (6)

However we can compare the expected payoff on equations (5) and (6) to
see that: vS1 ≥ vSl , since :−π21+(1− η) δvSl ≥ −π2l +(1− η) δvSl . This means
that after a lie, the receiver always prefers to place the bad sender on state
1. σL (i, 1) = 1,∀i.
Lemma 11 Memory state 1 has highest expected payoff given a strategic
sender:1 ∈ D.

Proof.

vSl = ql
©
− (1− πl)

2 + (1− η) δΣj∗σlTj∗v
S
j∗
ª
+ (1− ql)

©
−π2l + (1− η) δvSl

ª
However,(1− πl)

2 + (1− η) δΣj∗σlTj∗US (j
∗) ≤ π2l + (1− η) δUS (l) , for

if the sender strictly prefers to tell the truth in state l, then we would have
that πl = 1 and lying would be strictly preferred as we saw in corollary (1),
which would be a contradiction.
Thus we can write vSl as :

vSl = −π2l + (1− η) δvSl

Now consider the expected continuation payoff of placing a strategic
sender on state 1. Again, we need only to consider the case where

(1− π1)
2 + (1− η) δΣj∗σ

T (1, j∗)US (j
∗) ≤ π21 + (1− η) δUS (1)

Thus, we can write vS1 as:

vS1 = −π21 + (1− η) δvSl

However, π1 ≤ πl =⇒ −π21 ≥ −π2l , and finally:
−π21 + (1− η) δvSl ≥ −π2l + (1− η) δvSl

Thus, vS1 ≥ vSl . Since by definition of v
S
l , v

S
1 ≤ vSl , we proved this lemma.

The corollary below shows an immediate consequence of this lemma is
that unless there is a state π2 such that π2 = π1 and vS2 = vS1 , we must have
that σiF1 = 1.
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Corollary 2 All the states with lowest expected continuation payoff for the
sender must have the same belief:

i ∈ D =⇒ πi = π1

Proof. Since we ordered the states by πi, by definition π1 ≤ πl. Suppose
πl > π1. As shown in the lemma above:

vSl = −π2l + (1− η) δvSl
vS1 = −π21 + (1− η) δvSl

If πl > π1 =⇒ vSl < vS1 . Which is a contradiction.

Corollary 3 For any state j such that πj > π1 then by incentive compati-
bility it must be true that σL (i, j) = 0.

Proof. Since Pr (H|i, L) = 0, ∀i =⇒ Then by incentive compatibility:
pSi v

S
1 > pSi v

S
j =⇒ σL (i, j) = 0.

In the following lemma we show that, in equilibrium, the order of the
states is exactly the opposite of the order by vSi . This means that a state with
higher belief has lower expected continuation payoff given that the sender is
strategic. The proof relies on the fact that after lying the sender is placed to
a state where his expected payoff is vS1 . Again, this lemma relies on the first
result of this section, that says that lying is always weakly preferred by the
sender.

Lemma 12 πi and vSi have the exact opposite ordering.

Proof. vSi = −π2i + (1− η) δvS1 , ∀i
If πj > πi (<) then

−π2i + (1− η) δvS1 > −π2j + (1− η) δvS1 =⇒ vSi > vSj

This lemma leads us to the following corollary: the order of states will be
the same as the order by vHi . This means that states with higher beliefs have
higher expected continuation payoff for the receiver given that the sender is a
behavioral type. The proof of this corollary relies on incentive compatibility.
If a state is reached with positive probability, than there must not exist
another state that has higher expected continuation payoff for the receiver
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for both types of sender (i.e. higher vSi and vHi ). Since a state with lower
belief has higher vSi it must be that this state with lower belief has lower
vHi , otherwise for whatever posterior the receiver holds, it is always strictly
better to move to this lower belief state than to the original state.

Corollary 4 For the states reached with positive probability, πi and vHi have
the exact same ordering.

Proof. Suppose πk > πj, and vHj ≥ vHk .
If j is reached with positive probability, then ∃ i∗ such that:

pHi∗v
H
j + pSi∗v

S
j ≥ pHi∗v

H
j0 + pSi∗v

S
j0 , ∀j0

Since πk > πj, we already know that vSj > vSk . Thus,

pHi0 v
H
j + pSi0v

S
j ≥ pHi0 v

H
k + pSi0v

S
k , ∀i0 ∈ N

In particular, for i0 = i∗. Thus, it must be that k is never reached with
positive probability.

Lemma 13 If the receiver knows with probability one that the sender is be-
havioral type, she will update to the state with highest expected continuation
payoff given a behavioral type of sender:

US (L|i) > US (T |i) (=⇒ qit = 0,∀t) =⇒ σT (i, h) = 1

Proof. qi = 0 =⇒ Pr (H|i, T ) = 1. Since we know that vHh ≥ vHi0 ,∀i0 and
also that vHi and πi have the same ordering, we must have that:

N = argmax
i0

pHi v
H
i0 + pSi v

S
i0 = argmax

i0
vHi0

Thus, σT (i, N) = 1

Lemma 14 N ∈ U and πh = πN ,∀h ∈ U.

Proof. First we show that vHN = vHh , h ∈ U.
qN = 0. Suppose vHh > vHN =⇒ σT (N,h) = 1 (since qN = 0).

vHh = − (1− πh)
2 + (1− η) δ

X
h∗

σT (h, h∗) vHh∗

≤ − (1− πN)
2 + (1− η) δ

X
h∗

σT (h, h∗) vHh∗

≤ − (1− πN)
2 + (1− η) δvHh = vHN
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Thus, vHh > vHN cannot happen. The proof that πh = πN is analogous to
corollary (2).
The next lemma will be important in order to show that the receiver will

not move to a lower state after a true signal.

Lemma 15 If the sender strictly prefers to lie on state i and is indifferent
in state j, then πi > πj :

US (L|i) > US (T |i) and US (L|j) = US (T |j) =⇒ πi > πj

Proof. Suppose US (L|i) > US (T |i), US (L|j) = US (T |j) and πi ≤ πj.

US (L|i) = π2i + (1− η) δUS (1)

US (T |i) = (1− πi)
2 + (1− η) δUS (h)

π2i + (1− η) δUS (1) > (1− πi)
2 + (1− η) δUS (h) (7)

But, we also have that:

π2j + (1− η) δUS (1) = (1− πj)
2 + (1− η) δΣj∗σ

T (i, j∗)US (j
∗) (8)

Since, πi ≤ πj, we have that:

π2j + (1− η) δUS (1) ≥ π2i + (1− η) δUS (1) > (1− πi)
2 + (1− η) δUS (h)

However: US (h) ≥ US (i) , ∀i and (1− πi)
2 > (1− πj)

2 .Thus,

(1− πi)
2 + (1− η) δUS (h) > (1− πj)

2 + (1− η) δΣj∗σ
T (i, j∗)US (j

∗)

Finally, from (7) and (8) we have that:

π2j + (1− η) δUS (1) > (1− πj)
2 + (1− η) δΣj∗σ

T (i, j∗)US (j
∗)

Which is a contradiction with equation (8).
The lemma below shows that the receiver will not walk backwards after

receiving a true signal. This is true because after receiving this true signal,
the receiver does better staying in the same place rather than degrading the
sender. The current payoff is higher and also the future payoff.

Lemma 16 The Receiver will only go up chain after a true signal:

πj > πi =⇒ σT (j, i) = 0.
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Proof. Suppose πj > πi and σT (j, i) > 0. First note that by incentive
compatibility it must be true that:

pHj v
H
i + pSj v

S
i ≥ pHj v

H
j + pSj v

S
j

However, it can also be written as:

pHj v
H
i + pSj v

S
i = pHj

Ã
− (1− πi)

2 + (1− η) δ
X
i∗

σT (i, i∗) vHi∗

!
+ pSj v

S
i

But vSi = −US (i) = US (L|i) ≥ US (T |i) , with strict inequality only if qi = 0.
If US (L|i) > US (T |i) =⇒ σT (i,N) = 1, implying that πi > πj (see

lemma (20) that implies that if qi = 0 and qj > 0 =⇒ πi > πj). Thus, we
conclude that US (L|i) = US (T |i) .
Therefore, vSi = −US (T |i) = −

¡
(1− πi)

2 +
P

i∗ σ
T (i, i∗)US (i

∗)
¢

vSi = − (1− πi)
2 +

X
i∗

σT (i, i∗) vSi∗

pHj v
H
i + pSj v

S
i = − (1− πi)

2 +
X
i∗

σT (i, i∗)
¡
pHj v

H
i∗ + pSj v

S
i∗
¢

If, instead of going to state i after a truth the receiver decides to stay on
state j for one more period, he gains from that:

pHj v
H
j + pSj v

S
j = − (1− πj)

2 +
X
j∗

σT (j, j∗)
¡
pHj v

H
j∗ + pSj v

S
j∗
¢

By incentive compatibility: pHj v
H
j∗ + pSj v

S
j∗ ≥ pHj v

H
i∗ + pSj v

S
i∗ . Thus:

pHj v
H
j + pSj v

S
j ≥ pHj v

H
i + pSj v

S
i

Lemma 17 The receiver always starts either at the lowest memory state or
at the lowest after the babbling state):

g0 (i) = 0,∀πi > π(2)
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Proof. The ex-ante receiver chooses in which memory state to start the
game by finding the solution to maxi ρvHi + (1− ρ) vSi . Given points 1 and 3
in proposition 4, we have that ρ < pHj , ∀j > 1. Thus, if g0 (i0) > 0,for some
πi0 > π(2), then state i0 is not reached with positive probability in the game,
except for time t = 0.
This concludes the proof of proposition 5. To relate this proposition with

the one presented in the text, we need two additional results:

Lemma 5: As η → 0, we have that:

1) π1 =
1
2
, moreover state 1 is absorbing.

2) πN = 1.

Proof. We can calculate the posterior of the sender’s type on any state
l ∈ D as:

pHl =
∞X
k=1

Pr (t = k|l) Pr (H|T, l, t = k) (9)

However, given (1) and (3) from proposition 5 together with the fact that
the strategic senders will either remain on one of the states in D for ever or
will visit it infinitely often, this state, call it l,will be such that i holds. For
this, note in this case we have that as η → 0, Pr (t = 1|l)→ 0 and therefore
Pr (H|l)→ 0. By incentive compatibility it will then imply that σT (l, l) = 1
and consequently πl = 0.5.
The argument for point 2) is essentially the same. As η → 0 we have

that the strategic senders will be locked in the lowest state and also that
US (L|u) > US (T |u) ,∀u ∈ U since in the highest states there are no reputa-
tion incentives. Thus, as η → 0, Pr (H|u)→ 1.
Below I prove the lemma that said that any memory rule with redundant

states can be reduced to a rule with less memory states but non identical.

Lemma 6 If a receiver has memory M with N states and (σ, a, g0, q)
gives the receiver a payoff U∗R and is such that πi = πj, then there ∃
(σ, a, g0, q)

0 for memory M 0with N − 1 states and that gives the receiver
utility U∗R.

Proof. Let πi = πj. This implies immediately that vSi = vSj . Thus, if
both states are reached in equilibrium it must be that vHi = vHj . The receiver
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is always completely indifferent between both states i and j after a truth or
lie.
If pHi = pHj , then the states are identical and we can consider them as

being a single state (just rewrite the transition rules). If pHi > pHj , then they
must have the same transition rules, or else vHi = vHj would not hold, but if
they have the same transition rules then again they are identical and we can
group them as one.
The following results show how the movement up chain should be. We

show the three points in lemma 7.

Lemma 18 Single Crossing (for states where pHi 6= pHj )
σT (i, k) > 0 ,σT (i, l) > 0 and σT (j, k) > 0 =⇒ σT (j, l) = 0.

Proof. Proof of Single Crossing: σT (i, k) > 0 and σT (i,m) > 0 =⇒

pHi
¡
vHk − vHm

¢
+ pSi

¡
vSk − vSm

¢
= 0 (10)

Suppose σT (j, k) > 0 and σT (j,m) > 0

pHj
¡
vHk − vHm

¢
+ pSj

¡
vSk − vSm

¢
= 0 (11)

If pHi 6= pHj then (10) and (11) cannot hold at the same time.
The lemma below shows a “no jump” result for states where pHi and pHj

are different.

Lemma 19 No jumps (for states where pHi 6= pHj ):

σT (i, k − 1) > 0,σT (i, k + 1) > 0 =⇒ σT (j, k) = 0 ∀i, j; pHi 6= pHj

Proof. σT (i, k + 1) > 0 and σT (i, k − 1) > 0 =⇒

pHi
¡
vHk+1 − vHk

¢
+ pSi

¡
vSk+1 − vSk

¢
≥ 0 (12)

pHi
¡
vHk − vHk−1

¢
+ pSi

¡
vSk − vSk−1

¢
≤ 0 (13)

If σT (j, k) > 0 =⇒

pHj
¡
vHk+1 − vHk

¢
+ pSj

¡
vSk+1 − vSk

¢
≤ 0 (14)

pHj
¡
vHk − vHk−1

¢
+ pSj

¡
vSk − vSk−1

¢
≥ 0 (15)

The equations above cannot hold for πk+1 > πk > πk−1 and pHi 6= pHj .
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We now show results on the order of the posteriors, the goal of this section
is to show that the order of beliefs is the same as the order of posteriors.
Consider two sates πi and πj ,∀i, j such that: πj > πi but also such that

in equilibrium the posteriors have different order: pHj < pHi .We want to show
that this is a contradiction. First, I need a lemma on the transition rule of
two states with different posteriors.

Lemma 20 Monotonicity (Let pHi > pHj .)
If σT (j,m) > 0 =⇒ σT (i,m− 1) = 0 (holds for any m0 < m, not only

for m− 1)

Proof. First, note that by incentive compatibility:

σT (j,m) > 0 =⇒ pHj v
H
m + pSj v

S
m ≥ pHj v

H
m−1 + pSj v

S
m−1

This means that:

pHj
¡
vHm − vHm−1

¢
+ pSj

¡
vSm − vSm−1

¢
≥ 0 (16)

Note that
¡
vHm − vHm−1

¢
≥ 0 and

¡
vSm − vSm−1

¢
≤ 0.

Thus, since pHi > pHj (and consequently
¡
pSj > pSi

¢
), we have that:

pHi
¡
vHm − vHm−1

¢
+ pSi

¡
vSm − vSm−1

¢
> 0 (17)

What this monotonicity result is telling us is that for any two states
with different posteriors we must have that the transition rule of both states
might have at most one state in common and this is the highest point on
the support of the transition rule of the lower posterior state. Moreover,
the lower posterior state does not move to any state in the higher posterior
state’s support, except for this first point.
Using the monotonicity lemma, we can prove our result. The intuition is

that if you have a state i with lower belief (π) and at the same time higher
posterior than another state j, then the sender can’t be indifferent between
lying and telling the truth in states i and j.

Lemma 21 The beliefs of the states are weakly ordered according to the pos-
teriors:

πj > πi =⇒ pHj ≥ pHi
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Proof. Consider any two states i and j such that: πj > πi and pHj < pHi .
This implies that US (T |i) = US (L|i) and US (T |j) = US (L|j) cannot hold
at the same time. Recall that

US (T |i) = (1− πi)
2 + (1− η) δ

X
i∗

σT (i, i∗)US (i
∗)

US (L|i) = π2i + (1− η) δUS (1)

Since πis have the same order as US (i) , from the monotonicity lemma
we have that

P
i∗ σ

T (i, i∗)US (i
∗) ≥

P
j∗ σ

T (j, j∗)US (j
∗) .Thus:

US (T |i) = (1− πi)
2 + (1− η) δ

X
i∗

σT (i, i∗)US (i
∗)

> (1− πj)
2 + (1− η) δ

X
j∗

σT (j, j∗)US (j
∗)

= US (T |j)

At the same time we have that:

US (L|i) = π2i + (1− η) δUS (1)

< π2j + (1− η) δUS (1)

= US (L|j)

US (T |i) > US (T |j) and US (L|i) < US (L|j)
Thus, US (T |i) = US (L|i) =⇒ US (L|j) > US (T |j)
However,

US (L|j) > US (T |j) =⇒ qj = 0 =⇒ pHj = 1

Which is a contradiction.
It could alternatively be that:

US (T |j) = US (L|j) =⇒ US (T |i) > US (L|i) =⇒ πi = 1

and again we have a contradiction.

7.4 Deterministic transition rules

This section shows necessary and sufficient conditions for the bounded mem-
ory player to use non random transition rules. The result below shows a
necessary condition on the prior, given a memory size N.
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Lemma 22 Given a memory size N , ∃ ρ∗N such that ρ < ρ∗N there is no
equilibrium in pure strategy.

Proof. This lemma is to show what is the lower bound on the priors so
that the receiver plays a pure strategy. The proof is by induction. Consider
first the two last states, N − 1 and N, we want to compute a threshold on
the prior of that memory state such that the receiver will use σN−1TN = 1.
We know that πN = 1, if π2N−1 + (1− η) δ 1

4
> (1− πN−1)

2 + (1− η) δ1,
then lying is better than telling the truth and qN−1 = 0, implying that
πN−1 = ρN−1. Whereas if the equation above holds with equality π2N−1 +

(1− η) δ 1
4
= (1− πN−1)

2 + (1− η) δ1, then the sender is indifferent between
lying and telling the truth. Rearranging the incentive compatibility of the
sender we have that:

πN−1 =
1

2
+ (1− η) δ

3

8
(18)

Thus, we need to find the lower bound on prior or, equivalently, the
highest q that can support (18) . The intuition is that if q is too high, the
posterior will be low and the receiver will not want to move forward, so we
need to consider the receiver’s IC constraint as well.
To compute the IC of the receiver, note that: vHN = 0; v

H
N−1 = − (1− πN−1)

2 ;

vSN = −1−
(1−η)δ
1−(1−η)δ

1
4
; and vSN−1 = −π2N−1 −

(1−η)δ
1−(1−η)δ

1
4
.

For the receiver’s IC to hold, we need that:

pHN−1
¡
vHN − vHN−1

¢
+ pSN−1

¡
vSN − vSN−1

¢
≥ 0

In this context, it translates to: (rearranging terms and substituting ps and
vs) :

ρN−1
ρN−1 +

¡
1− ρN−1

¢
qN−1

¡
vHN − vHN−1

¢
+

Ã
1− ρN−1

ρN−1 +
¡
1− ρN−1

¢
qN−1

!¡
vSN − vSN−1

¢
≥ 0

Which happens if and only if:
ρN−1 (1− πN−1)

2 +
¡
πN−1 − ρN−1

¢ ¡
π2N−1 − 1

¢
≥ 0 ⇐⇒

(1− πN−1)
£
ρN−1 (1− πN−1)−

¡
πN−1 − ρN−1

¢
(πN−1 + 1)

¤
≥ 0 ⇐⇒

ρN−1 (1− πN−1)−
¡
πN−1 − ρN−1

¢
(πN−1 + 1) ≥ 0 ⇐⇒

ρN−1 ≥
πN−1 + π2N−1

2
(19)
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For any ρN−1 that is smaller than the threshold above, we need more q
to induce the π needed for (18) and this would mean that the posterior is
too low for the receiver to want to go up. If, on the other hand, the prior is
strictly higher than (19) then we need a lower q and (18) is maintained.
We showed that σN−1TN−1 = 0 by incentive compatibility, moving forward

is better for the receiver.
The conclusion of this result is that if we arrive at state N − 1 with

a “prior” ρN−1 <
πN−1+π2N−1

2
then we can’t have a pure strategy, and it

must be that σN−1TN−1 > 0. If we arrive at state N − 1 with a “prior”
ρN−1 ≥

πN−1+π2N−1
2

then using pure strategy is best response for the receiver.
Now lets look at state N − 2 and generalize the argument for states

i = N − 2, N − 3, ...1. The necessary conditions for σN−2TN−1 = 1 are the
following.
Suppose (18) and (19) so that the last two states the receiver plays pure

strategy. We want to find conditions for σN−2TN−1 = 1.
If (18) does not hold with equality, i.e. if it is better for the sender to lie

in state N − 1, then the lower bound is higher , thus we focus on the case
where (18) holds with equality. More on this later.

πN−2 =
1

2
+ (1− η)

δ

2

µ
π2N−1 −

1

4

¶
(20)

Together with ρN−1 ≥
πN−1+π2N−1

2
which is the same as ρN−2

πN−2
≥ πN−1+π2N−1

2
.

We can write this condition as:

ρN−2 ≥
µ
πN−1 + π2N−1

2

¶
πN−2 (21)

If ρN−2 is smaller than in equation (21) then when we get to state N − 1
the receiver will rather stay put than go forward.
We can now generalize the argument and we’ll have that for all i ≤ N−2 :

ρi ≥
πN−1 + π2N−1

2

N−2Y
k=i

πk (22)

Corollary 5 As N →∞, ρ∗N → 0.
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The lemma above guarantees that σN−1TN = 1. But what guarantees
that σi−1Ti = 1,∀i, or any other deviation from the specified deterministic
transition rule? Next lemma answers this question. I show that if the re-
ceiver is playing pure strategy σT (i, i∗) = 1, the beliefs are computed through
Bayesian updating and are such that the sender is playing a best response
then it will be incentive compatible for the receiver not to deviate from the
pure strategies.. First we check for a deviation from moving forward to stay-
ing put. Then we generalize this result to any deviation of going backwards.
The second step is to show that going forward one state (equilibrium) is
better than jumping.

Lemma 23 −πj (1− πj) > −πj (1− πj0)
2 − (1− πj)π

2
j0 , ∀j, j0

Proof.

πj (1− πj) < πj (1− πj0)
2 + (1− πj)π

2
j0 ⇐⇒

πj − π2j < πj − 2πjπj0 + πjπ
2
j0 + π2j0 − πjπ

2
j0 ⇐⇒

−π2j < −2πjπj0 + π2j0 ⇐⇒
π2j − 2πjπj0 + π2j0 > 0 ⇐⇒ (πj − πj0)

2 > 0

This holds for any πj, πj0 .

Lemma 24 Let σT (i, i+ 1) = 1, pHi =
ρi−1
πi−1

and the strategy for the sender

is a best response for him. Then: pHi−1v
H
i +

¡
1− pHi−1

¢
vSi ≥ pHi−1v

H
i−s +¡

1− pHi−1
¢
vSi−s, ∀s > 0.

Proof : We need to show that deviating to state i+1−s will not be be a
best reply for the receiver after a true signal is received in state i. Note that
we can write the equilibrium payoff using the q and the discount factors.

Πeq = −ρi

Ã
NX
k=i

(1− πi)
2

!
−(1− ρi)

½
qi
¡
(1− πi)

2 + βUS (i+ 1)
¢
+ (1− qi)

µ
π2i + β

1

4

1

1− β

¶¾
(23)

We want an appropriate way to write (23) so that we can compare with the
payoff from a deviation. Note that we can write ρi+(1− ρi) qiqi+1 = πi+1πi,
ρi+(1− ρi) qiqi+1qi+2 = πi+2πi+1πi, and so on. However, (1− ρi) qi (1− qi+1) =
(1− πi+1)πi; (1− ρi) qiqi+1 (1− qi+2) = (1− πi+2)πi+1πi and so on.
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We can then write (23) as:

Πeq = −πi (1− πi)− β

µ
πiπi+1 (1− πi+1) + (1− πi)

1

4

1

1− β

¶
− (24)

−β2
µ
πiπi+1πi+2 (1− πi+2) + πi (1− πi+1)

1

4

1

1− β

¶
+ ...

The deviation payoff can be written in the same way, but with qdev as
being the best response for the sender after a deviation. Note however,
that US (L|i− 1) = US (T |i− 1) , thus (1− πi−1)

2 + βUS (i) = π2i−1 + β 1
4

1
1−β

and therefore, any qdevi ∈ [0, 1] will not change equation (24). In particular,
consider q̃i = qeqi in fact, consider the samemodification for the entire strategy
for the sender, i.e. q̃j = qeqj ,∀j ≥ i.
Lets rewrite the deviation payoff replacing the qs in the way suggested

above. We want to compare the payoffs period by period. At all periods
before reaching state N − s lemma (23) tells us that the equilibrium payoff
is higher. Remains to show what happens at state N − s. The payoff in
this case is −ρi (1− πN−s)

2− (1− ρi)
QN−1

k=i qkπ
2
N−s which can be written as:

−
QN−1

k=i πk
£
π∗N (1− πN−s)

2 + (1− π∗N) π
2
N−s

¤
.

Πeq (N − s+ 1) > Πdev (N − s+ 1) ⇐⇒
π∗N (1− πN)

2 + (1− π∗N)π
2
N < π∗N (1− πN−s)

2 + (1− π∗N)π
2
N−s

1− π∗N < π∗N − 2π∗NπN−s + π∗Nπ
2
N−s + π2N−s − π∗Nπ

2
N−s ⇐⇒

1− π∗N < π∗N − 2π∗NπN−s + π2N−s ⇐⇒
0 < 2π∗N − 2π∗NπN−s + π2N−s − 1 ⇐⇒
0 < 2π∗N (1− πN−s)−

¡
1− π2N−s

¢
⇐⇒

0 < (1− πN−s) {2π∗N − (1 + πN−s)} ⇐⇒ 2π∗N > 1 + πN−s

However, a necessary condition for equilibrium in pure strategy was that
the it should be incentive compatible for the receiver to update in state N−1
as well and this condition is that ρN−1 ≥

πN−1+π2N−1
2

,knowing that we have

that π∗N = pHN−1 =
ρN−1
πN−1

, but ρN−1 ≥
πN−1+π2N−1

2
, thus π∗N ≥

1+πN−1
2

> 1+πN−s
2

.

Thus, we showed that the equilibrium payoff is greater than the deviation
payoff at every period.
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Lemma 25 Under deterministic transition rules we must have that:

ρiv
H
i + (1− ρi) v

S
i ≥ ρiv

H
i+s + (1− ρi) v

S
i+s

Proof. The equilibrium payoff is again given by (23), and again we
can write as in equation (24). We can further change the q and write (24)
with qN−s = 0,instead. This change in qN−s will not change the value of
Πeq since US (L|N − s) = US (T |N − s) or, (1− πN−s)

2+βUS (N − s+ 1) =
π2N−s + β.The deviation payoff is:

Πdev = −ρi

Ã
NX

k=i+s

(1− πk)
2

!
− (1− ρi) (25)½

qdevi

¡
(1− πi+s)

2 + βUS (i+ s+ 1)
¢
+
¡
1− qdevi

¢µ
π2i+s + β

1

4

1

1− β

¶¾
Replace qdevj for q̃j for all j ∈ {i+ s, ..., N − 1} . Consider q̃i = qeqi in

fact, consider the same modification for the entire strategy for the sender,
i.e. q̃j+1 = qeqj .Once we use q̃ as the deviation probabilities for the sender,
then (25) can be written as:

Πdev = −
£
πi (1− πi+1)

2 + πiπ
2
i+1

¤
− (26)

−β
µ
πi
£
πi+1 (1− πi+2)

2 + (1− πi+1)π
2
i+2

¤
+ (1− πi)

1

4

1

1− β

¶
−

−β2
µ
πiπi+1

£
πi+2 (1− πi+3)

2 + (1− πi+2)π
2
i+3

¤
+ πi (1− πi+1)

1

4

1

1− β

¶
+ ...

We now want to compare the payoffs in (24) but with qN−1 = 0 and
(26) period by period. Note that according to lemma (9) we have that the
payoff in (24) is greater than the payoff in (26) in every period before N − i.
At this period, q̃N−1 = 0. Period N − i we have that −ρi (1− πN−1)

2 −
(1− ρi)

³QN−2
k=i qk

´
π2N−1 whereas in the deviation we have that:−ρi (1− πN)

2−

(1− ρi)
³QN−2

k=i qk
´
π2N .

We want to show that:

−ρi (1− πN−s)
2−(1− ρi)

Ã
N−s+1Y
k=i

qk

!
π2N−s > −ρi (1− πN)

2−(1− ρi)

Ã
N−2Y
k=i

qk

!
π2N
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But this happens if and only if:

−ρi (1− πN−s)
2 − (1− ρi)

Ã
N−s+1Y
k=i

qk

!
π2N−s > − (1− ρi)

Ã
N−2Y
k=i

qk

!

Which can be written as

(1− πN−s)

(
(1− ρi)

Ã
N−s+1Y
k=i

qk

!
(1 + πN−s)− ρi (1− πN−s)

)
> 0

1 + πN−1 − ρi

Ã
N−s+1Y
k=i

qk

!
− ρi

Ã
N−s+1Y
k=i

qk

!
πN−s + ρiπN−s > 0

Finally, this implies that

1− ρi

Ã
N−s+1Y
k=i

qk

!
+ πN−1 + ρiπN−1

Ã
1−

Ã
N−s+1Y
k=i

qk

!!
> 0

which is always true.
In the lemma below we show that there is at most one equilibrium in pure

strategies when there are no identical states.

Lemma 26 Fix N and ρ. There is at most one equilibrium in pure strategies
for the receiver without redounding states.

Proof. Let π and π0 be the vectors of beliefs associated to two different
equilibria in pure strategies (if the beliefs are identical, then we must have
that the equilibria is in fact unique). Assume w.o.l.g. that πi > π0i for
some i ∈ M =⇒ πi+1 > π0i+1, ∀i < N − 1. This result is true by Incentive
compatibility of the sender, for if πi > π0i and πi+1 ≤ π0i+1 then it must be
that either the receiver is not playing a pure strategy or that the sender is
not indifferent between telling the truth or lying in state ι in one of the two
equilibrium. This would imply that the sender is a deterministic transition
rule in state i in one of the two equilibria. Given this result, now lets examine
two possibilities:

πN−1 = π0N−1 =⇒ πN−2 = π0N−2;πN−3 = π0N−3; and so on. This is a
contradiction.
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πN−1 > π0N−1 =⇒ By incentive compatibility of the sender we have
that πN−2 > π0N−2 and so on. Thus, π1 > π01 =⇒ q1 > q01, which in
turn implies that pH1 < p0H1 . We know that π2 > π02 hence q2 > q02.
Following the argument we get that pHN−2 < p0HN−2, but πN−1 > π0N−1
this is a contradiction since in this case it must be that πN−1 = pHN−2
and π0N−1 ≥ p0HN−2.
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