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1 Introduction

Eliciting private information to guide social decisions is a classic problem of economic theory. For

the private-values case, the pioneering work of Vickrey (1961), Clarke (1971), and Groves (1973)

shows that if each agent’s preferences depend only on his own information and if the budget need

not balance, externality payments make honest revelation a dominant strategy. However, Green

and Laffont (1977, 1979) show that dominant strategy implementation is generally incompatible

with the requirement that transfers balance the budget. If the solution concept is weakened,

positive results are possible. For example, d’Aspremont and Gérard-Varet (1979, 1982) show in

the private-values environment that if agents’ beliefs about other agents’ types satisfy a certain

condition, which they call compatibility, then for any efficient decision rule there exist balanced

Bayesian incentive-compatible transfers that implement it.1 Later, d’Aspremont, Crémer, and

Gérard-Varet (1990) show that when there are three or more agents, the compatibility condition

is generically true, and hence that for generic distributions of agents’ types there exists a Bayesian

incentive-compatible Pareto-optimal mechanism.

The mechanism design problem has proved more challenging in the case of interdependent val-

uations, i.e., when one agent’s private information affects other agents’ preferences. Dasgupta and

Maskin (2000) study auctions with interdependent valuations and show that a generalized Vickrey

auction is efficient if bidders’ types are one dimensional and satisfy a single-crossing property. In

general mechanism-design problems, positive results have been mostly limited to the case where

agents’ types take on only finitely many values. Work in this area includes Johnson, Pratt, and

Zeckhauser (1990); Matsushima (1990; 1991); and McLean and Postlewaite (2004). Crémer and

McLean (1985; 1988) study the related question of when it is possible for the designer to earn as

much profit as if he were able to observe the agents’ realized private information, the so-called full

surplus extraction problem, and show that full extraction is possible when agents’ types are suitably

correlated. Aoyagi (1998) considers a model with finite type sets and interdependent valuations

and shows that if the distribution of agents’ types satisfies a dependence condition similar to ours,

then for any decision rule there exists a balanced, Bayesian incentive-compatible mechanism that

1Unlike its use in implementation theory (see Jackson, 2001), throughout the paper we use “implement” to refer
to the case where there is an outcome of the game that agrees with the decision rule.
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implements it.

When types are multidimensional and continuous and valuations are interdependent, the prob-

lem becomes even more difficult. After their possibility result for the one-dimensional case, Das-

gupta and Maskin (2000) go on to show that when bidders’ types are multidimensional and indepen-

dently distributed there may be no efficient auction. In a general mechanism design framework, Je-

hiel and Moldovanu (2001, henceforth JM) explore the difficulties of Bayesian incentive-compatible

(BIC) implementation of efficient decision rules when types are multidimensional and continuous

and valuations are interdependent. They show that when agents’ types are independently distrib-

uted, efficient BIC design is possible only when a certain “congruence condition relating the social

and private rates of information substitution is satisfied” (JM, p. 1237). In effect, this congruence

condition requires that there be one agent whose relative preference over any two alternatives re-

mains constant for all values of that agent’s information that make the social planner indifferent

between those alternatives. They then show that when types are multidimensional the set of payoff

functions that satisfy this condition is non-generic, implying that efficient BIC design is generally

impossible.2

The present paper addresses the mechanism design problem in environments in which agents’

private information is continuous, multidimensional, and mutually payoff-relevant (i.e., valuations

are interdependent). However, we relax the JM assumption that agents’ private information is

independently distributed. Our primary interest is to show that when there are three or more agents

and agents’ types are stochastically dependent it is possible to design a system of budget-balanced

transfer payments that induces agents to (nearly) truthfully reveal their private information and

that (nearly) implements any decision rule. In our first result (Theorem 1), we show that under a

mild dependence condition on the distribution of agents’ types, which we call Stochastic Relevance,

there exist budget-balanced transfers such that for any ε > 0 truthful revelation is an ε-best response

to other agent’s truthful announcements, and thus that telling the truth is a Bayesian ε-equilibrium.

In our second result (Theorem 2), we show that a slightly stronger version of Stochastic Relevance,

which we call Uniform Stochastic Relevance, ensures that there are balanced transfers under which,

2Although Jehiel and Moldovanu (2001) focuses on the impossiblity of efficient BIC design, much of the importance
of the result lies in the fact that it implies that robust mechansim design using belief-free concepts such as ex post
equilibrium is also impossible. We return to this point in Section 5.
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for any δ > 0, there is a Bayesian Nash equilibrium (BNE) of the announcement game in which the

distance between agents’ equilibrium announcements and their true types is no more than δ, i.e.,

that there is a nearly truthful BNE. Thus our results provide a complement to those of JM. When

the distribution of agents’ types satisfies our dependence assumptions, then incentive-compatible

design is possible. Further, our implementation results place very few additional requirements on

agents’ preferences.3 In particular, we do not require a single-crossing property.

Mezzetti (2004) considers implementation of efficient decision rules in a model in which the

social planner bases transfers on agents’ reports of both their types and the utility they realize from

the social decision. The paper shows that implementation of efficient decision rules is generally

possible using a two-stage Groves mechanism. However, since agents may not realize the utility

from a social decision until long after the decision is made, this framework presupposes, among

other things, that the planner is able to make long-term commitments to make transfers in the

future. Even in circumstances where the two-stage mechanism is feasible, Mezzetti’s results apply

only to efficient decision rules, whereas the results of this paper apply to all decision rules. Further,

this present paper imposes a more stringent form of budget balance than Mezzetti.4

McAfee and Reny (1992, henceforth MR) consider the full surplus extraction problem in the case

of continuous, multidimensional, and mutually payoff-relevant types with stochastically dependent

information. Taking the game played by the agents as given, they show that it is possible to

construct for each agent a finite menu of participation fee schedules that extracts almost all of

the agent’s rent from playing the game. However, they do not directly address the issue of

which decision rules can be implemented, the primary concern of this paper. For example, with

multidimensional types and interdependent values, there is, in general, no ex post efficient auction

mechanism unless additional assumptions are made that ensure that the agents’ multidimensional

information can be summarized by a one-dimensional type (Maskin (1992), Dasgupta and Maskin

(2000), Krishna (2002)). Therefore, in such environments, the MR mechanism cannot extract the

full information rent (i.e., the rents that would be generated if the auctioneer knew the agents’

3Specifically, we require only that agents’ direct returns from the center’s decision be bounded and suitably smooth.
4We adopt the standard definition in the literature that balanced transfers must sum to zero for any possible

choice of actions by the agents. Mezzetti’s transfers satisfy the weaker requirement that the transfers sum to zero
on the equilibrium path when all players play truthful strategies.
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types), since the MR construction depends on the existence of an ex post efficient mechanism to

which the participation fees can be appended. The present paper fills this gap by showing how to

construct an ex post efficient mechanism in this environment. Appending the MR mechanism to

ours then makes it possible to fully extract the agents’ surplus.

Positive results on incentive-compatible implementation as well as full surplus extraction (e.g.,

Crémer and McLean (1985, 1988), MR, Aoyagi (1998)) rely on constructing a menu of lotteries for

each agent such that the agent maximizes his expected utility when he chooses the lottery intended

for his type. Intuitively, this is possible whenever learning an agent’s type provides information

about the distribution of the other agents’ types. Our analysis follows in the same spirit.

We capitalize on the literature in statistical decision theory on strictly proper scoring rules,

which considers how an informed expert can be induced to truthfully reveal his beliefs about the

distribution of future random events.5 A scoring rule assigns payoffs to the expert based on his

announced probabilities for various future events and the event that actually occurs. A strictly

proper scoring rule has the property that the decision maker maximizes his expected score when he

truthfully announces his beliefs about the distribution. Our incentive-compatibility results rely on

payments based on a proper scoring rule to drive agents toward truthful revelation of their private

information.6

The paper proceeds as follows. Section 2 presents the model. Section 3 constructs scoring-

rule payments that render truthful reporting a Bayesian ε-equilibrium. The basic construction

is adapted in Section 4 to show that under a slightly stronger correlation condition similarly con-

structed payments ensure that there is an exact BNE in which agents’ strategies are arbitrarily close

to truthful. Section 5 discusses limitations of the approach in the paper, and Section 6 concludes.

All proofs are presented in the Appendix.

2 The Model

Suppose N ≥ 3 agents, indexed by i = 1, ..., N , interact with the mechanism designer, whom we

will call the center. The center’s task is to elicit agents’ private information in order to choose an

5See Cooke (1991) and the references therein for a discussion of scoring rules and their uses.
6Johnson, Pratt, and Zeckhauser (1992) employs a similar technique in the case of finite type and action spaces.
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alternative g from a set of alternatives G.

Each agent i has private information or type ti ∈ Ti. Agent i’s type space Ti is a non-empty,

compact, convex subset of di-dimensional Euclidean space. For each i, di is a positive integer, and

di may be different for different agents. We use T = ×Ti to denote the product space of the N

agents’ type spaces. Following the standard notation we use t = (t1, ..., tN ) for the vector of types,

t−i for the vector of all but agent i’s type, and t−ij for all but the types of agents i and j.

Each agent’s utility is quasilinear in his direct return from the social alternative, g, and money,

x, taking the form: ui (t, g, x) = Vi (t, g) + x. Note that agent i’s direct return from alternative g

depends on all agents’ types. Hence valuations are interdependent.

A decision rule g : T → G maps a type for each agent to a social alternative. For simplicity,

we assume that g (t) is single valued. For g (t) that is not single-valued, our implementation

result applies to any selection from g (t), and therefore this restriction is without loss of generality.

Although we will impose a degree of smoothness on g (t), we will not otherwise restrict it. In

particular, we do not require that g (t) be efficient.

We consider direct mechanisms in which each agent sends a message (announcement) to the

center consisting of an element from his type space. We denote these announcements by ai ∈ Ti,

and let a, a−i, and a−ij refer respectively to the full announcement vector, the announcement vector

leaving off agent i, and the announcement vector leaving off agents i and j. The remainder of

the mechanism consists of a transfer function xi (a) for each i and a decision rule g (a), with the

standard interpretation that the agents announce a, social alternative g (a) is realized and transfer

xi (a) is made to agent i.

An announcement strategy for agent i is a function si (·) : Ti → Ti that specifies agent i’s

announcement in the message game as a function of his information. We will use the notation

si (·) to refer to a strategy for agent i and si (ti) to denote to the announcement agent i makes

under strategy si (·) when his type is ti. Thus, si (·) is an element of a function space, while si (ti)

resides in di-dimensional Euclidean space. We will use τ i to denote the identity function on Rdi ,

i.e., agent i’s truthful strategy.

Denote the vector of transfer rules to all agents by x (a), which we call a transfer scheme.

A transfer scheme is balanced if its transfers sum to zero for all possible announcement vectors:
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i=1 xi (a) = 0 for all a. If a decision rule is implemented by a balanced transfer scheme, it

requires no outside subsidy.

Since our mechanism is essentially the same for any decision rule and depends on the decision

rule only through the direct return function, we integrate the decision rule into the direct return

function, and then write Vi (t, g (a)) as vi (t, a). If there exists a transfer scheme that satisfies a

particular solution concept with payoffs vi (t, a), then those transfers implement g (a) under that

solution concept. We make the following assumption regarding vi (t, a):

Assumption 1 (Smooth Direct Returns): For each i, expected direct returns are twice con-

tinuously differentiable in ai and ti.

Assumption 1 is not innocuous since it implies restrictions on the continuity of the underlying

decision rule, g (a), and on the set of possible decisions, G. Nevertheless, continuity seems to

be a reasonable restriction in any situation that is appropriately modeled using continuous types.

Further, discontinuous decision rules can often be approximated by continuous ones, and the results

below would generalize to the case of decision rules that can be approximated by continuous rules.

Since vi (t, a) is continuous and T is compact, Assumption 1 implies that direct returns are

bounded. Let M̄ ≥ 0 denote the bound. That is, for any i, ti and a, |E {vi (t, a) |ti}| ≤ M̄ .

Types are distributed according to commonly known prior distribution F (t). Let f (tj |ti)

be the density of agent j’s private information conditional on agent i’s private information, ti,

and let f (t−i|ti) be the density of all other agents’ private information conditional on agent i’s

private information. We impose two assumptions on agents’ beliefs, a smoothness condition and a

correlation condition.

Assumption 2 (Smooth Conditional Distributions): For each i and j 6= i, conditional

densities f (tj |ti) and f (t−i|ti) are continuous in tj and t−i, respectively, and twice continuously

differentiable in ti.

We assume that the agents’ private information is not independently distributed, which departs

from the JM model. Specifically, our informativeness assumption, which we call Stochastic

Relevance, is that the conditional distribution of the center’s information be different for different

values of each agent’s private information.
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Assumption 3 (Stochastic Relevance): For each i, there exists an agent j 6= i such that for

any distinct types ti and t0i there exists tj such that:

f (tj |ti) 6= f
¡
tj |t0i

¢
.

Let k·kR denote the Euclidean norm, ktkR =
³P

k (tik)
2
´1/2

, and k·k2 denote the L2 norm,

kfk2 =
³R
|f |2 ds

´1/2
. We will write fj (·|ti) when we wish to denote agent i’s beliefs about the

distribution of tj considered as a function. Lemma 1 follows as an immediate consequence of

Assumptions 2 and 3.

Lemma 1: Assumptions 2 and 3 imply that for each i, for any δ > 0 there exists μ > 0 such that:

°°ti − t0i
°°
R
≥ δ implies

°°fj (·|ti)− fj
¡
·|t0i
¢°°
2
≥ μ.

Taken together, Assumptions 2 and 3 and Lemma 1 imply that f (tj |ti) and f (tj |t0i) differ on

an open subset of Tj and that fj (·|ti) and fj (·|t0i) are close together (as functions in L2) if and

only if ti is close to t0i. Thus they capture the idea that types should have similar beliefs if and

only if they are close together.7

3 Existence of Nearly Bayesian Incentive Compatible Transfers

We begin by considering the question of whether there exist transfers that make the truth nearly a

best response, provided that all other agents announce truthfully. Considering this question allows

us to illustrate our construction in the simplest setting. In the next section, we go on to show that

a similarly constructed payments establish that there is a nearly truthful BNE of the game.

7Although it would add significant notational burden, Stochastic Relevance could be relaxed to allow for the case
where agent i’s beliefs about the joint distribution of a group of agents’ types depends on ti even though the marginal
distribution for any other agent’s type does not. Aoyagi (1998) presents such a condition (Assumption 2) for the
finite case.
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We begin with the notion of ε-Bayesian Incentive Compatibility.8 Transfer scheme xi (a) is

ε-Bayesian Incentive Compatible (ε-BIC) if for any i, ti, and ai:

E {vi (t, t−i, ti) + xi (t−i, ti) |ti} ≥ E {vi (t, t−i, ai) + xi (t−i, ai) |ti}− ε.

That is, if for each agent i, announcing truthfully is an ε-best response to the other agents’ truthful

announcements.

As discussed earlier, the mechanism we propose draws on the decision-theoretic literature on

proper scoring rules. In particular, we employ the quadratic scoring rule. Suppose that agent j

is using the truthful announcement strategy, sj (·) = τ j , and player i is being scored based on how

well he predicts agent j’s announced type. The quadratic score assigned to type tj when agent i

announces ai is given by:

Q (tj |ai) = 2f (tj |ai)−
Z
Tj

f (tj |ai)2 dtj .

Lemmas 2 and 3 establish basic properties of the quadratic scoring rule that will be used in the

subsequent analysis.

Lemma 2: For agent i, choose an agent j according to Assumption 3, and suppose agent j

truthfully announces his type, sj (·) = τ j. Truthful revelation uniquely maximizes agent i’s expected

quadratic score:

ti = arg max
ai∈Ti

Z
Tj

Q (tj |ai) f (tj |ti) dtj .

As Selten (1988) notes, the proof that truthful revelation uniquely maximizes the expected

quadratic score also shows that the expected loss from agent i’s announcing ai 6= ti instead of his

true type ti is equal to the square of the L2-distance between agent i’s beliefs when his type is ai

and when his type is ti. Lemma 3 exploits this property.

Lemma 3: For agent i, choose an agent j according to Assumption 3. For any δ > 0 there exists

8ε-Bayesian Incentive compatiblity appears, for example, in d’Aspremont and Gérard-Varet (1982).
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ε > 0 such that the expected quadratic score for the distribution of agent j’s type from announcing

ai 6= ti with kai − tikR > δ is at least ε worse than announcing truthfully:

kai − tikR ≥ δ implies
Z
Tj

Q (tj |ai) f (tj |ti) dtj −
Z
Tj

Q (tj |ai) f (tj |ai) dtj ≥ ε.

Lemma 2 establishes that if the agents care only about the transfer, truthful announcement

is agent i’s unique best response when other agents’ tell the truth. Lemma 3 ensures that there

is no sequence of announcements far away from the truth whose expected scores converge to the

expected score of the truth. This is needed in order to establish a uniform lower bound on the loss

from an announcement that is far from truthful.

Our first main results shows that there exist ε-BIC, balanced transfers. The intuition is that

in choosing whether to announce his true type or some other type the agent weighs the effects of

lying on the expected transfer and on the expected direct return. If transfers are based on the

quadratic scoring rule, then telling the truth maximizes the agent’s expected transfer. However,

since announcing truthfully does not necessarily maximize the expected direct return, the agent

may have an incentive to deviate from truth-telling, sacrificing expected transfer in order to enjoy

a personally superior social alternative. Of course, the agent’s willingness to do so depends on

how quickly the expected transfer declines relative to the increase in expected direct return. By

scaling up the scoring-rule based payments to the agent, the center can increase the importance of

the transfer loss relative to the direct return gain, making anything but a small deviation from the

truth unprofitable.

Theorem 1: Under Assumptions 1 - 3, for any decision rule and any ε > 0 there exist ε-BIC,

balanced transfers.

The essence of the proof is to divide agent i’s announcements into two groups — those that

are within δ of the truth and those that are not. Under the quadratic scoring rule, the expected

transfer is maximized by telling the truth. Thus announcements that are within δ of the truth yield

a smaller expected transfer but a possibly larger direct return. However, by choosing δ sufficiently
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small we ensure that the direct return gain from any announcement within δ of the truth must be

less than ε. On the other hand, Assumptions 2 and 3 ensure that the loss in expected transfer

from moving from a truthful announcement to one that is more than δ from the truth must be

uniformly bounded away from zero, and thus scaling up the transfers increases the minimum loss

in transfer from an announcement at least δ from the truth. Since direct returns are bounded,

a sufficient scaling of the transfers ensures that the gain direct return gain cannot outweigh the

transfer loss, and thus that announcements that are at least δ from the truth must involve a total

expected utility loss of at least ε.

The transfers are balanced using a permutation construction. That is, if agent 1 is given

incentives to report truthfully by comparing his announcement to that of agent 2, then the transfer

to agent 1 can be funded by a third agent (e.g., agent 3) without affecting any agent’s incentive to

report truthfully. Repeating this process for all agents balances the budget. Thus, while three or

more agents are needed in order to balance the budget, if budget balance is not a concern, ε-BIC

transfers exist with only two agents.

4 Existence of a Nearly Truthful Bayesian Nash Equilibrium

Theorem 1 establishes that compensating agents using a sufficiently large scaling of the quadratic

scoring rule renders truthful revelation an ε-best response, provided that the other agents announce

truthfully. Although this idea has some intuitive appeal and makes the role of the quadratic

scoring rule transparent, the introduction of satisficing behavior is somewhat arbitrary, and it begs

the question of whether this limited rationality is necessary or merely a convenience. To address

this concern, we next argue that, under reasonable conditions, payments based on a scaling of the

quadratic scoring rule can be used to induce a BNE in which agents’ strategies are arbitrarily close

to the truth.

For a fixed transfer scheme x (a), a BNE of the announcement game is a vector of strategies

(s1 (·) , ..., sN (·)) such that for each i and ti:

si (ti) ∈ argmax
ai

Et−i {vi (t, ai, s−i (·)) + xi (ai, s−i (·)) |ti} .
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We endow the space of announcement strategies with the sup norm:

ksi (·)− ŝi (·)ksup = sup
ti

Ã
diX
n=1

(sin (ti)− ŝin (ti))
2

!1/2
.

For δ > 0, we call an announcement strategy, si (·), δ-truthful if ksi (·)− τ iksup ≤ δ. That is, a

δ-truthful announcement strategy is one in the agent’s announcement is always within distance δ

of his true type. We say that transfer scheme δ-implements a decision rule in BNE if under

those transfers there exists a BNE in which all agents’ strategies are δ-truthful.9 Note that the

concept of δ-implementation in BNE allows for the existence of BNE that are not δ-truthful.

Let Ci denote the space of continuous announcement strategies for agent i. For δ > 0,

let Ci (δ) the space of continuous, δ-truthful announcement strategies for agent i: Ci (δi) ≡n
si (·) ∈ Ci : ksi (·)− τ iksup ≤ δ

o
. Let C (δ) be the product space ×Ci (δ), and C−i (δ) be de-

fined in the usual way as the product space of Cj (δ) for all agents except i, each endowed with the

appropriate product topology.

The key step in constructing a δ-truthful BNE is ensuring that a version of Stochastic Relevance

remains true even when agents’ announcements are only δ-truthful. In order to ensure this we

strengthen stochastic relevance as follows:

Assumption 4 (Uniform Stochastic Relevance): There exists φ > 0 such that for each i,

there exists an agent j 6= i such that for any distinct types ti and t0i there exists an open ball

θj

³
ti, t

0
i

´
⊂ Tj with radius φ such that f (tj |ti) 6= f

³
tj |t

0
i

´
for all tj ∈ θj

³
ti, t

0
i

´
.

Stochastic Relevance (Assumption 3) implies that, for any distinct types ti and t
0
i, f (tj |ti) and

f
³
tj |t

0
i

´
differ on an open set of types for agent j. Uniform Stochastic Relevance (Assumption

4) strengthens Stochastic Relevance by requiring that there be a lower bound on the size of the

open set on which f (tj |ti) and f
³
tj |t

0
i

´
differ that is independent of the particular pair of types ti

and t
0
i that is chosen. It is straightforward to show that, by virtue of compactness, Assumption 3

implies the existence of such a uniform bound provided that ti and t
0
i are bounded away from each

other, i.e.,. as long as there exits δ > 0 such that kti − t0ikR ≥ δ. Thus, to the extent that Uniform

9We may, on occasion, refer to single announcements as δ-truthful if for a particular ti, ||si (ti)− ti||R ≤ δ or to
strategy profiles as being δ-truthful if each individual strategy is δ-truthful.
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Stochastic Relevance is stronger than Stochastic Relevance, it only restricts the behavior of beliefs

as types ti and t
0
i become (arbitrarily) close together.

Since agent i’s beliefs are continuous in ti, as ti and t
0
i become very close, the two types’ be-

liefs must also become very close. Uniform Stochastic Relevance rules out the case in which

as t
0
i converges ti the Lebesgue measure of the set of tj where their associated beliefs differ,

{tj ∈ Tj |f (tj |ti) 6= f (tj |ti)}, converges to zero. In other words, under Uniform Stochastic Rel-

evance it cannot be that as t
0
i approaches ti, f

³
tj |t

0
i

´
approaches f (tj |ti) by becoming equal to it

on an ever-larger set of tj . Seen in this way, it is clear that many of the natural families of beliefs

will satisfy Uniform Stochastic Relevance.

For an example of a family of beliefs that does not satisfy Uniform Stochastic Relevance, consider

Ti = Tj = [0, 1]
2. Suppose that f (tj |ti) is uniformly distributed on a disk centered at tj = ti and

having radius 1/10 (for ti suitably distant from the boundary of Tj). Consider ti = (1/2, 1/2).

Let λ (·) denote Lebesgue measure. Since

lim
kt0i−(1/2,1/2)kR−→0

λ
³n

tj ∈ Tj |f (tj |ti) 6= f
³
tj |t

0
i

´o´
= 0,

these beliefs violate Uniform Stochastic Relevance. This is because f (tj |ti) and f (tj |t0i) are equal

on their common support, and as t0i converges to ti, the supports of f (tj |ti) and f (tj |t0i) converge

as well.10

The existence of a uniform lower bound on how often the beliefs of two different types of agent

i differ is important because Theorem 2 considers δ-truthful strategies. If f (tj |ti) and f
³
tj |t

0
i

´
are

equal except for a very small set of tj , then it is possible that, even though f (tj |ti) and f
³
tj |t

0
i

´
differ, the distribution of agent j’s announcements resulting from a particular δ-truthful strategy

(e.g., the δ-truthful strategy that is constant over the set of tj where f (tj |ti) and f
³
tj |t

0
i

´
differ) is

the same for ti and t
0
i. Lemma 4 shows that Uniform Stochastic Relevance ensures that different

types ti and t
0
i have different beliefs about the distribution over a set of discrete events comprised

of groups of announcements for some agent j 6= i, and that this difference remains even if agent j

10On the other hand, if f (tj |ti) is distributed as a cone with a circular base of radius 1/10 and peak at ti, these
beliefs would satisfy Uniform Stochastic Relevance since the set of points where the densities of f (tj |ti) and f tj |t

0
i

are equal remains small (i.e., has Lebesgue measure zero) even as ti and t
0
i become arbitrarily close together.

12



distorts his announcement slightly.11,12

Lemma 4: Assumptions 2 and 4 imply that there exists δ∗ > 0 such that for any 0 < δ < δ∗

and any agent i, there is an agent j 6= i such that Tj contains a finite set of disjoint balls Bij =n
bij1 , ..., b

ij
M

o
with radius at least δ such that for any ti, t

0
i with ti 6= t

0
i there is at least one b

ij
M such

that f (tj |ti) 6= f
³
tj |t

0
i

´
for all tj ∈ bijm.

To see the role that Lemma 4 will play in the proof of Theorem 2, consider two distinct types

ti and t
0
i for agent i. By Lemma 4, let bijm be the ball in agent j’s announcement space satis-

fying Lemma 4 that distinguishes these types. If agent j announces truthfully, types ti and t
0
i

assign different probabilities to event tj ∈ bijm, and so a scoring rule based on whether agent j’s

announcement is in bijm can be used to truthfully elicit whether agent i’s type is ti or t0i.

The lower bound on the size of the balls in Bij ensures that there is a partition of events that

distinguishes any two types even if j is allowed to distort his announcements using a δ-truthful

strategy (for δ < δ∗). To see how, let bijm be the ball in Bij to which ti and t0i assign different

probabilities to the event tj ∈ bijm. Let rm be the radius of bijm, and let b̂
ij
m be the ball with the

same center and radius rm − δ.

If j’s strategy is δ-truthful, then the set of types that announces aj ∈ b̂ijm must be contained in b
ij
m.

Hence whenever sj (·) ∈ Cj (δ), types ti and t
0
i, assign different probabilities to the event aj ∈ b̂ijm

conditional on sj (·). To see why, consider Figure 1, which illustrates the one-dimensional case.

Suppose that bijm =
h
t−j − δ, t+j + δ

i
. According to Lemma 4, the densities for some ti’s are drawn

in such that they don’t cross over this region. Now, look at the smaller event, b̂ijm =
h
t−j , t

+
j

i
⊂ bijm.

Note that since types can only distort their announcements by δ or less, if tj δ-truthfully announces

aj ∈ b̂ijm, then tj ∈ bijm. However, since the densities for these values of ti are ranked over the entire

set bijm, conditional on sj (·) ∈ Cj (δ), two distinct types whose densities do not cross over b
ij
m cannot

assign the same probability to j’s announcement being in b̂ijm. In Figure 1, the heavy black lines on
11Since Uniform Stochastic Relevance implies Lemma 4, it is a stronger condition. However, it is also more

straightforward to verify than Lemma 4. Alternatively, we could have assumed the weaker condition (Lemma 4)
directly.
12Lemma 4 is also useful for a more technical reason. When sj (·) ∈ Cj (δ), player j’s announcement can be

constant over an open interval. Hence, even though tj has a density, the distribution of j’s announcements can
have point masses. While virtually the same theory of proper scoring rules applies either to discrete or continuous
distributions, to our knowledge there is no theory of proper scoring rules for mixed distributions. Therefore we move
to using a scoring rule for the distribution over discrete events.
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Figure 1: δ-truthful strategies assign different probabilities to
n
aj ∈

h
t−j , t

+
j

io
.

the horizontal axis indicate the set of types tj that make announcements in b̂
ij
m for some hypothetical

sj (·) ∈ Cj (δ). Looking at the shaded regions above the tj in this set, the densities for the various

values of ti do not cross. Thus for any two ti whose densities do not cross over bij , the one with the

higher density must assign higher probability to the event aj ∈ b̂ijm for any possible announcement

strategy sj (·) ∈ Cj (δ).

If, as asserted by Uniform Stochastic Relevance and Lemma 4, there is a finite set of balls Bij

such that for each possible pair of types there is one ball over which their densities do not cross,

then we can use the sets b̂ij1 , ..., b̂
ij
M along with b̂ij0 ≡ Tj\∪ b̂ijm (i.e., “everything else”) as a partition

of events that distinguishes every pair of types for every possible strategy sj (·) ∈ Cj (δ). That is,

conditional on sj (·), different types ti have different beliefs about the distribution over events in

B̂ij =
n
b̂ij0 , b̂

ij
1 , ..., b̂

ij
M

o
. Thus, transfers based on the quadratic scoring rule applied to the events

in B̂ij (conditional on sj (·)) are strictly proper. If agent i only cared about the transfer, his best

response to sj (·) under these transfers would be to announce his true type. When agent i also

cares about the direct return from the social choice, basing transfers on a sufficiently large scaling

of the quadratic scoring rule ensure that agent i’s best response is close to truthful.

Theorem 2 establishes that there is a transfer scheme that δ-implements any decision rule in

BNE. The main tool employed is Schauder’s fixed point theorem (see Zeidler, 1985), and our proof

14



draws heavily on Meirowitz’s (2003) general existence result for equilibria in Bayesian games with

infinite type and action spaces.

Theorem 2: Under assumptions 1, 2, and 4, for any decision rule and any δ > 0 there exist

balanced transfers that δ-implement that decision rule in BNE.

The intuition for the proof begins by noting that each agent’s payoff is a linear combination of

his direct return and transfer. Thus, the situation where the transfers are multiplied by a large

(positive) constant is one where the agent puts small relative weight on his direct return, which is

similar to the case where the agent puts zero weight on his direct return. When agents care only

about their transfers, transfers based on the quadratic scoring rule ensure that truthful revelation is

a strict equilibrium. If we knew that this equilibrium changed smoothly with the relative weight put

on agents’ direct returns, then games with nearby payoffs would have a nearby equilibrium. Thus,

games in which the relative weight on transfers was very high would have an equilibrium in which

agents’ strategies were nearly truthful. Unfortunately, this smooth dependence property, which

is related to lower hemi-continuity of the equilibrium correspondence, does not hold in general.

Nevertheless, by exploiting the fact that the truthful equilibrium of the transfers-only game is

strict, we are able to show that when agents’ strategies are nearly truthful, nearby games satisfy

the requirements for the application of Schauder’s fixed point theorem, and thus that games where

agents’ put small relative weight on their direct returns have a nearly truthful equilibrium.13

Theorem 2 establishes the existence of an equilibrium in which agents play nearly truthful

strategies. The question remains whether, under the transfers that induce the δ-truthful equi-

librium, other equilibria exist as well and, if so, whether those equilibria are also δ-truthful. In

general, there is no reason to rule out such equilibria. Given that agents’ incentives are primarily

driven by their desire to maximize the transfer they receive, and that these transfers are deter-

mined by how well each agent predicts the announcements of the other agents, it is easy to imagine

that there could be equilibria in which all agents permute their announcements in such a way that

announcements are no longer close to truthful but still predict other agents’ announcements well.

13The key step is to establish that agents’ best responses to any δ-truthful opponents’ strategies are unique, which
requires conditioning transfers on the other agents’ strategies.
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There is, however, one circumstance in which it is possible to establish that all equilibria must

be nearly truthful. This is the case in which the center receives a signal of its own that is

stochastically related to the agents’ types.14 In effect, for each agent i, the center’s information

plays the role of the agent j whose information is used to score agent i. Since no agent’s behavior

can affect the distribution of the center’s information, the expected payment from transfers based

on the quadratic scoring rule applied to the center’s information is uniquely maximized by telling

the truth regardless of the other agents’ strategies. The argument in Theorem 2 then establishes

that for any δ > 0 there exists a δ-truthful equilibrium. Further, since payments can be scaled up

sufficiently that all best responses are δ-truthful, all equilibria must be δ-truthful.

Returning to the case where the center does not receive an informative signal, while Theorem

2 establishes that agents’ strategies are nearly truthful, from the perspective of the social planner

our real interest is not whether agents are telling the truth, but rather whether the resulting social

choice rule is close to that implied by the planner’s desired rule, and whether realized social welfare

is close to the planner’s desired welfare level. These desirable properties follow, however, because

transfers are balanced and agents’ payoffs are assumed to be continuous conditional on the social

choice function (Assumption 1).

MR shows that when agents’ types are correlated, for any game the center can extract from each

agent nearly all of the rents that agent earns by participating in the game.15 Their mechanism offers

agents a finite menu of participation fee schedules such that, when the agent selects his preferred

schedule and then plays the game, he is left with a rent that, though positive, is arbitrarily small.

While MR shows that for a given game, a participation fee schedule can ensure that agents’

interim participation constraints can be satisfied at (nearly) no cost to the center, they do not

address the question of whether, for a given decision rule, a game exists that implements that

decision rule. In particular, the center cannot extract the full information rent (i.e., the rent that

would be generated if the center could observe agents’ types and make ex post efficient decision)

unless there exists a mechanism that implements the ex post efficient decision rule. Prior to this

paper, there have been no results that show the general existence in the standard mechanism design

14 If the Center’s information has a density, then the center’s information must satisfy the player j role in Assumption
3.
15Their required condition (*) is strictly stronger than our Assumption 3.
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framework of an ex post efficient mechanism when agents have multidimensional, continuous types

and interdependent valuations.16 To the extent that ex post efficient mechanisms have been shown

to exist, these results typically require additional assumptions on the form of agents’ direct returns

functions, e.g., single crossing. The results in this paper do not impose any restrictions on direct

returns functions beyond smoothness (Assumption 1).

We show that if agents’ types are correlated, then any decision rule, including the ex post

efficient decision rule, can be implemented arbitrarily closely (i.e., δ-truthfully). Provided that

beliefs satisfy MR’s condition (*), our result, coupled with the MR result, establishes that the

center can extract (approximately) the full information rent and satisfy agents’ interim participation

constraints by first offering agents a menu of participation fees and then running our scoring-rule

based system.

5 Limitations of Quasilinear Mechanism Design

This paper employs the quasilinear mechanism design framework, and as such it suffers from the

well-known limitations of the approach.17 These include, first, that the transfers needed to induce

(near) truth-telling may be very large, and thus for small δ our mechanism may be infeasible if

agents face limited liability constraints. Second, the quasilinear framework assumes that agents

are risk neutral with regard to the transfers. If agents are risk averse over the transfer, then it will

not generally be possible to (nearly) implement any decision rule with budget balance. However,

if the center is interested in inducing (nearly) truthful revelation without budget balance, then

redefining the transfers in terms of utilities instead of monetary amounts will accomplish this goal.

Recently, Neeman (2004) and Heifetz and Neeman (2006) have launched another line of criticism

against the literature on mechanism design with correlated information. They argue that, although

the correlation requirements employed in the literature appear rather reasonable, they have the

common feature that an agent’s beliefs uniquely determine his preferences, which they term the

BDP property. Stochastic relevance, as embodied in Assumptions 3 and 4 of this paper, implies

16As discussed earlier, Mezzetti’s (2004) mechanism operates in a slightly different framework than the standard
models and uses a weaker form of budget balance.
17Crémer and McLean (1988) discuss the limited liabiltiy and risk neutrality assumptions in the context of their

full extraction result.
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the BDP property. Heifetz and Neeman (2006) show that the BDP property is a non-generic

property of the universal type space. Thus, while correlation seems like a reasonable assumption,

the set of BDP beliefs is, in a sense, “small.”

Another line of criticism regarding Bayesian mechanism design is that Bayesian equilibrium is

belief-based. As such, incentive compatible mechanisms are highly sensitive to the information

structure of the problem. MR observes that such dependence casts doubt on whether such results

teach us much about real-world asymmetric information problems. This criticism has led to the

search for “robust” mechanisms that do not depend on agents’ beliefs about others’ information,

usually employing the concept of ex post equilibrium. In light of this, the JM result on the

generic impossibility of efficient BIC design with independently distributed types also implies the

impossibility of ex post incentive compatibility. Our results provide a counterpoint to JM by

showing that BIC design is possible in their environment if the independence assumption is relaxed.

However, our BIC mechanism is not ex post incentive compatible. Indeed, Jehiel et al. (2006) show

that only constant decision rules are implementable in ex post equilibrium in generic mechanism

design problems with multidimensional, continuous types and interdependent valuations.

6 Conclusion

This paper extends the mechanism design literature to show the possibility of incentive-compatible

implementation of any decision rule when agents’ types are continuous, multidimensional, and

mutually payoff relevant, provided that agents’ types are suitably correlated. Thus we provide a

complement to the JM impossibility result for the case of independent information. Our results also

complement MR by showing that there is an ex post efficient mechanism in the multidimensional,

continuous, mutually payoff-relevant case.

While we show the existence of transfers that induce a δ-truthful BNE, we have not considered

the question of whether there exist transfers that render the exact truth a BNE. This is a technically

daunting task that remains an open question.

The scoring-rule based approach we adopt has the advantage of being simpler than those com-

monly adopted in the mechanism design literature. Stochastic relevance (as embodied in Assump-
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tion 3 or 4) requires verifying only that distributions are different for different types, which is

substantially easier than verifying the compatibility condition of d’Aspremont and Gérard-Varet

(1979; 1982), the linear independence condition of Crémer and McLean (1985; 1988), or the gen-

eralization of the Crémer-McLean condition found in MR, each of which must hold for all prior

distributions for each agent’s type. In addition to being simpler, stochastic relevance is also slightly

weaker than any of these conditions.18 The scoring-rule-based payments used in our mechanism

are also relatively simple to construct and our proofs provide a blueprint for doing so. This is

an advance over traditional approaches, which generally prove the existence of a mechanism but

provide little guidance as to how to construct it.19

18To be fair, the task of full surplus extraction is more demanding than (nearly) truthful implementation, and so
while these papers employ stricter conditions they also achieve stronger results. Our condition is very similar to that
employed by Aoyagi (1998) in the finite case.
19Frequently, such approches rely on a linear systems approach to demonstrate existence. See d’Aspremont,

Crémer, and Gérard-Varet (1990) for a survey of the use of this method.
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Appendix: Proofs

Proof of Lemma 1: Suppose not. Then there exists δ > 0 such that for all n there exist tin and
t0in such that ||tin − t0in||R ≥ δ and kfj (·|tin)− fj (·|t0in)k2 ≤ 1/n. By compactness,

³
tin, t

0
in

´
has

a convergent subsequence. Let the limit be
³
ti∞, t

0
i∞

´
, and note that ti∞ 6= t0i∞. We have that

lim kfj (·|tin)− fj (·|t0in)k2 = 0, and:

lim
°°fj (·|tin)− fj

¡
·|t0in

¢°°
2
= lim

µZ ¯̄
fj (tj |tin)− fj

¡
tj |t0in

¢¯̄2
dtj

¶1/2
≥ lim

µZ
min

n
1,
¯̄
fj (tj |tin)− fj

¡
tj |t0in

¢¯̄2o
dtj

¶1/2
=

µZ
lim

³
min

n
1,
¯̄
fj (tj |tin)− fj

¡
tj |t0in

¢¯̄2o´
dtj

¶1/2
=

µZ
min

n
1, lim

¯̄
fj (tj |tin)− fj

¡
tj |t0in

¢¯̄2o
dtj

¶1/2
=

µZ
min

n
1,
¯̄
fj (tj |ti∞)− fj

¡
tj |t0i∞

¢¯̄2o
dtj

¶1/2
where the fact that min

n
1, |fj (tj |tin)− fj (tj |t0in)|

2
o
≤ 1 allows us to apply Lebesgue’s Dominated

Convergence Theorem in moving from the second to third line. SinceµZ
min

n
1,
¯̄
fj (tj |ti∞)− fj

¡
tj |t0i∞

¢¯̄2o
dtj

¶1/2
= 0,

|f (tj |ti∞)− f (tj |t0i∞)| = 0 for almost all tj . Since f (tj |ti) is continuous, f (tj |ti∞) = f (tj |t0i∞)
for all tj . However, this violates Assumption 3.

Proof of Lemma 2: The result is standard. This proof follows Selten (1998). Let Υ (ai|ti) =R
Q (tj |ai) f (tj |ti) dtj be agent i’s expected transfer when sj (·) = τ j . Substituting in the definition

of the quadratic scoring rule, we have:

Υ (ai|ti) =
Z
Tj

Ã
2f (tj |ai)−

Z
Tj

f (tj |ai)2 dtj

!
f (tj |ti) dtj .

Rearranging Υ (ai|ti) yields:

Υ (ai|ti) =
Z
Tj

f (tj |ti)2 dtj −
Z
Tj

(f (tj |ai)− f (tj |ti))2 dtj .

Hence:

Υ (ai|ti)−Υ (ti|ti) = −
Z
Tj

(f (tj |ai)− f (tj |ti))2 dtj ,

which is zero when ai = ti and strictly negative otherwise.¥

Proof of Lemma 3: From Lemma 1, for any δ there exists a μ > 0 such that
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||f (tj |ai)− f (tj |ti)||2 ≥ μ for all ai and ti with ||ai − ti|| ≥ δ. Using the notation from the
proof of Lemma 2, ¯̄̄̄

¯
Z
Tj

Q (tj |ai) f (tj |ti) dtj −
Z
Tj

Q (tj |ai) f (tj |ai) dtj

¯̄̄̄
¯

= |Υ (ai|ti)−Υ (ti|ti)|

=

¯̄̄̄
¯−
Z
Tj

(f (tj |ai)− f (tj |ti))2 dtj

¯̄̄̄
¯

=
¡
kf (tj |ai)− f (tj |ti)k2

¢2 ≥ μ2.

Letting ε = μ2 completes the proof.¥

Proof of Theorem 1: Consider agent i, and suppose all other agents announce truthfully,
sj (·) = τ j , ∀j 6= i. Thus for the remainder of the proof we can replace aj with tj in the expression
for agent i’s payoff. Since expected direct returns are continuous in announcements and ×Ti is
compact, expected direct returns are uniformly continuous. Hence for any ε > 0 there exists δ > 0
such that ||ti − ai||R≤δ implies |E (vi (t, t−i, ai) |ti)−E (vi (t, t−i, ti) |ti)| ≤ ε.

Given δ, let T 0i = {(ti, ai) ∈ Ti × Ti : ||ti − ai||R ≥ δ} be the set of type-announcement pairs
that are at least δ apart. For each i, choose j (i) according to Assumption 2. Define the payments
to agent i according to the quadratic scoring rule:

xi (t−i, ai) = 2f
¡
tj(i)|ai

¢
−
Z
Tj(i)

f
¡
tj(i)|ai

¢2
dtj(i). (1)

Since the expected quadratic score is uniquely maximized at ai = ti and T 0i is compact, by Lemma
3 there exists an ε̂ > 0 such that for any (ti, ai) ∈ T 0i :

E
©
xi
¡
tj(i), ai

¢
|ti
ª
≤ E

©
xi
¡
tj(i), ti

¢
|ti
ª
− ε̂. (2)

Next, scale the payments to agent i according to x∗i
¡
t−iq(i), ai

¢
:

x∗i
¡
tj(i), ai

¢
=

¡
2M̄ + 1

¢
ε̂

xi
¡
tj(i), ai

¢
. (3)

Consider the expected utility reaped by a truthful announcement as compared to announcing ai
with (ti, ai) ∈ T 0i .

E
©
vi (t, t−i, ai) + x∗i

¡
tj(i), ai

¢
|ti
ª
−E

©
vi (t, t−i, ti) + x∗i

¡
tj(i), ti

¢
|ti
ª

= E {vi (t, t−i, ai)− vi (t, t−i, ti) |ti}+E
©
x∗i
¡
tj(i), ai

¢
− x∗i

¡
tj(i), ti

¢
|ti
ª

< 2M̄ +
¡
2M̄ + 1

¢ "£xi ¡tj(i), ai¢¤
ε̂

−
£
xi
¡
tj(i), ti

¢¤
ε̂

#

< 2M̄ +
¡
2M̄ + 1

¢ ∙
− ε̂
ε̂

¸
< 0.

Hence under payment scheme x∗i
¡
tj(i), ai

¢
, announcing truthfully earns a higher payoff than any

announcement such that (ai, ti) ∈ T 0i . And, by the choice of δ, announcements ai such that
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(ai, ti) /∈ T 0i have lower expected transfers than truthful announcements and have expected direct
returns that exceed those of truthful announcement by less than ε. Hence truthful announcement
is an ε-best response. Since i is chosen arbitrarily, payments can be constructed that make the
truth an ε-best response for all agents.

To balance the budget, for each agent i choose an agent κ (i) /∈ {i, j (i)} with the understanding
that κ (i) will fund i’s transfer. Let Ki = {k|κ (k) = i} be the set of all agents whose transfers i
funds. Agent i’s net transfer is therefore:

xi (t−i, ai) = x∗i
¡
tj(i), ai

¢
−
X
k∈Ki

x∗k
¡
tj(k), ak

¢
. (4)

Since agent i’s announcement does not affect the terms after the summation, his incentives are not
affected, and transfer scheme x (t, a) is ε-BIC and balances the budget.¥

Proof of Lemma 4: For each i choose an appropriate j according to Assumption 4. Overlay a
di-dimensional rectangular grid over Tj by dividing each of the di dimensions into increments of size
β > 0. Thus, the grid divides Tj into hypercubes with sides of length β. The maximum distance
between any two points in a hypercube is β

√
di (i.e., the distance in Rdi between (0, 0, ..., 0) and

(β, β, ...β)). Choose β such that β
√
di < φ. Consider two distinct types ti and t

0
i for agent i.

By Assumption 4, for any ti and t
0
i, there exits a ball θj

³
ti, t

0
i

´
with radius φ such that f (tj |ti) 6=

f
³
tj |t

0
i

´
for all tj ∈ θj

³
ti, t

0
i

´
. Let cj

³
ti, t

0
i

´
be the center of θj

³
ti, t

0
i

´
. Since β

√
di < φ, the

hypercube containing cj
³
ti, t

0
i

´
is contained in θj

³
ti, t

0
i

´
. Since the side length of each hypercube

is β, there is a ball of radius β/3 within this hypercube such that f (tj , ti) 6= f
³
tj , t

0
i

´
for all tj

within the ball of radius β/3. This defines a finite set of disjoint balls Bij satisfying the conditions
of the lemma.

Figure 2 illustrates. The large circle is the ball θj
³
ti, t

0
i

´
of radius φ given by Assumption

4. Point c is the center of this ball. The grid size is β, and so the maximum distance between
two points in the same grid element is β

√
di. This implies that the maximum distance, rm,

between point c and any other point in its grid element is less than β
√
di, and hence less than

φ. Therefore the grid element containing point c is contained entirely within θj

³
ti, t

0
i

´
, as is any

ball contained entirely within this grid element. The dashed circle indicates one such ball. Since
f (tj |ti) 6= f

³
tj |t

0
i

´
for all tj in θj

³
ti, t

0
i

´
, the same is true for all tj in the dashed circle. Since

there are a finite number of grid elements, taking one such ball for every grid element gives a finite
set of balls such that for each distinct ti and t

0
i there is at least one ball on which f (tj |ti) and

f
³
tj |t

0
i

´
are not equal.

Proof of Theorem 2: The proof will employ transfers based on a large scaling of the quadratic
scoring rule. However, rather than working with Ki as the (large) scaling applied to the trans-
fers, yielding payoffs ui (a, t) = vi (t, a) + Kixi (ai, aj), we will instead work with the equivalent
formulation in which γi = 1/Ki and payoffs are given by ũi (a, t) = γivi (t, a) + xi (ai, aj). In this
formulation, the agent’s utility function depends continuously on γi. The game with γi = 0 is one
in which agent i cares only about the transfer, and the game with γi positive but small (which
corresponds a large scaling of the transfers) can be thought of as a slightly perturbed version of
the γi = 0 game. The proof exploits the fact that if the conditions for application of Schauder’s
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Figure 2: Assumption 4 implies Lemma 4

fixed point theorem are satisfied when γi = 0 and best response correspondences are single-valued
and suitably continuous, then they are also satisfied for small-but-positive values of γi.

Without loss of generality, assume δ ≤ δ∗ as specified in Lemma 4.20 For each i choose a
player j satisfying Lemma 4, and let B̂ij =

n
b̂ij0 , b̂

ij
1 , ..., b̂

ij
M

o
, denote the partition of agent j’s

announcement space described above.21 Let

psj(·)
³
b̂ij |ai

´
≡
Z
{tj |sj(tj)∈b̂ij}

f (tj |ai) dtj

be the probability of event b̂ij if agent i’s type is ai, conditional on j’s announcement strategy.
If agent j plays strategy sj (·), let the transfer to agent i be xsj(·)i (ai, aj), which is based on the
quadratic scoring rule applied to the events in B̂ij according to:

x
sj(·)
i (ai, aj) = 2p

sj(·)
³
b̂ij (aj) |ai

´
−

MX
m=1

psj(·)
³
b̂ijm|ai

´2
.

Note that for any sj (·) ∈ Cj (δ), by Lemma 4, transfers x
sj(·)
i (ai, aj) represent a strictly proper scor-

ing rule, and hence for each, i, sj (·) ∈ Cj (δ), and each ti agent i’s expected transfer is maximized
by announcing truthfully (ai = ti).

For any sj (·), for each value of ti agent i chooses ai to maximize:

γi

Z
T−i

vi (t, s−i (t−i) , ai) f (t−i|ti) dt−i +
Z
Tj

x
sj(·)
i (ai, aj) f (tj |ti) dtj . (5)

20 If not, use δ∗ in the following construction. Since it establishes that there is a δ∗-truthful BNE, this BNE is also
δ-truthful.
21We denote the player as j rather than j (i) for notational convenience.
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Since psj(·)
³
b̂ij |ai

´
is continuous in sj (·) (which implies that xsj(·)i (ai, aj) is continuous in sj (·))

and vi (t, a) is continuous in t and a, (5) is continuous in s−i (·), and in particular in sj (·). Further,
our assumptions ensure that (5) is twice continuously differentiable in ai. Note that the transfers
used are constructed for each sj (·) in order to render truthful reporting a best response when γi = 0
(and thus nearly truthful reporting a best response when γi is positive but sufficiently small).

Let BAi (ti, s−i (·) , γi) denote agent i’s best announcements (i.e., announcements that maxi-
mize (5)) given his type, the other agents’ strategies, and the weight i places on his direct return.
BAi (ti, s−i (·) , γi) may be multi-valued. Let BRi (s−i (·) , γi) denote the best response correspon-
dence for agent i. That is, BRi (s−i (·) , γi) maps s−i (·) and γi to best-action correspondences
BAi (ti, s−i (·) , γi). Let BR (s (·) , γ) = (BR1 (s−1 (·) , γ1) , ..., BRN (s−N (·) , γN)) denote the best
response correspondence for all agents, where γ = (γ1, ..., γN ). The goal is to establish the exis-
tence of a δ-truthful fixed point of this operator. Such a fixed point is a δ-truthful BNE of the
announcement game.

The remainder of the proof proceeds in three steps that adapt the steps in Meirowitz’s (2003,
Proposition 1) existence result for general Bayesian games with infinite type and action spaces to
the present case. Step 1 establishes that under the transfers specified above, when γi is sufficiently
small, each agent’s best response correspondence is single-valued and continuous, and thus that
the best response operator is a continuous map of the space C (δ) into itself. Step 2 establishes
that the range of the best response operator is uniformly bounded and equicontinuous, and thus
that the best response operator is compact. In Step 3 we apply Schauder’s fixed-point theorem to
establish the existence of a δ-truthful BNE of this game.

Step 1: Note that for each i, Ti is a compact, convex subset of a finite-dimensional Euclidean
space with a non-empty interior, and that agent i’s objective function (5) is continuous in ti, ai,
s−i (·), and γi. Thus for any ti, γi, and s−i (·) ∈ C−i (δ), agent i’s best response exists and by the
Theorem of the Maximum (Berge, 1997) BAi (ti, s−i (·) , γi) is an upper hemi-continuous function
of ti.

Next, we show that for γi sufficiently small, BAi (ti, s−i (·) , γi) is single-valued for any s−i (·) ∈
C−i (δ). Fix s−i (·). Let W sj(·)

i (ai, ti) =
R
Tj
x
sj(·)
i (ai, aj) f (tj |ti) dtj . Since these transfers are

strictly proper, for any ti, ai = ti is the unique maximizer of W
sj(·)
i (ai, ti), and so ai = ti solves

the first-order necessary conditions: DaiW
sj(·)
i (ti, ti) = 0. Letting s∗i (ti) ≡ ti and implicitly

differentiating the first-order conditions with respect to ti and evaluating at s∗i (ti) ≡ ti yields the
matrix equation: "

∂2W
sj(·)
i (ti, ti)

∂air∂aic

# ∙
∂s∗ir
∂tic

¸
=

"
∂2W

sj(·)
i (ti, ti)

∂air∂tic

#
,

where
∙
∂2W

sj(·)
i (ti,ti)

∂air∂aic

¸
denotes the di × di matrix with

∂2W
sj(·)
i (ti,ti)

∂air∂aic
in the rth row and cth column

and
h
∂s∗ir
∂tic

i
and

∙
∂2W

sj(·)
i (ti,ti)
∂air∂tic

¸
are similarly defined di × di matrices. Since s∗i (ti) ≡ ti, this

system has a unique solution
h
∂s∗ir
∂tic

i
= I (where I denotes the di × di identity matrix). Therefore

det

∙
∂2W

sj(·)
i (ti,ti)

∂air∂aic

¸
6= 0. Applying the Implicit Function Theorem, for any s−i (·) ∈ C−i (δ) and

any ti there is an open ball of γi around γi = 0 on which BAi (ti, s−i (·) , γi) is single-valued and a
continuously differentiable function of ti and γi. (Differentiability is used in Step 2.)
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Since BAi (ti, s−i (·) , γi) is upper hemi-continuous and single-valued in ti for any s−i (·) ∈
C−i (δ) and γi, this implies that BAi (ti, s−i (·) , γi) is a continuous function of ti, and hence that
BRi (s−i (·) , γi) maps to continuous functions of ti for γi sufficiently small: BRi (s−i (·) , γi) :
C−i (δ) → Ci. Further, since (5) depends continuously on s−i (·) and γi, the Theorem of the
Maximum also establishes thatBRi (s−i (·) , γi) is continuous in s−i (·) and γi (since BRi (s−i (·) , γi)
is upper hemi-continuous and single-valued).

Finally, we show that for γi sufficiently small, best responses are close to truthful. Since (5) is
continuous in γi, for γi sufficiently small, for any ti, ||BAi (ti, s−i (·) , γi)− ti||R < δ. Since we above
established that BRi (s−i (·) , γi) is a continuous function of ti, it follows that BRi (s−i (·) , γi) ∈
Ci (δ) for γi sufficiently small.

For each i, let γ∗i be the largest γi such that BRi (s−i (·) , γi) ∈ Ci (δ)∩C1i for all s−i (·) ∈ C−i (δ),
where C1i is the space of continuously differentiable functions from Ti to Ti. Let γ∗ = mini γ

∗
i .

Thus, when γi < γ∗, the best response operator is continuous and BR (s (·) , γ) : C (δ) −→ C (δ).
For the remainder of the proof, we restrict ourselves to γ < γ∗.

Step 2: We next show that BR (s (·) , γ) is a compact operator on C (δ). An operator is compact
if it is continuous and maps bounded sets to relatively compact sets (Zeidler, 1985, p. 53). Step
1 establishes continuity. By the Arzela-Ascoli theorem, BR (C (δ) , γ) is relatively compact if
for any D ⊂ C (δ), BR (D, γ) ≡ {BR (η, γ) : η ∈ D} is uniformly bounded and equicontinuous.22

Uniform boundedness requires that supη∈BR(D,γ)

³
supt∈T ||η (t)||p

´
< ∞, where ||·||p denotes the

product norm on T .23 Uniform boundedness is straightforward since for each i, Ti is compact and
BRi (s (·) , γ) is continuous in ti. Thus C (δ) is uniformly bounded, and so any subset of C (δ) is
uniformly bounded. To establish equicontinuity, we must show that for any φi > 0 there exists
ψi (φi) > 0 such that

sup
si(·)∈BRi(D,γ)

°°°si ³t0i´− si

³
t
00
i

´°°°
R
< φi whenever

°°°t0i − t
00
i

°°°
R
< ψi (φi) .

SinceBAi (ti, s−i (·) , γi) is continuously differentiable in ti and γi for γi < γ∗ andBAi (ti, s−i (·) , 0) ≡
ti, γi can be chosen sufficiently small as to uniformly bound the ti derivatives of si (·) ∈ BRi (C (δ) , γ),
from which equicontinuity follows. Let γ∗∗i be such that equicontinuity holds for γi < γ∗∗i , and
γ∗∗ = mini γ∗∗i . For the remainder of the proof, consider only γi = γ∗∗∗ ≤ min {γ∗, γ∗∗}. For such
γ∗∗∗, BR (s (·) , γ∗∗∗) is a compact operator.
Step 3: Schauder’s Fixed Point Theorem states that a compact operator that maps a nonempty,
closed, bounded, convex subset of a Banach space into itself has a fixed point.24 Clearly, C (δ)
is nonempty, closed, bounded, and convex, and therefore Schauder’s theorem applies. The fixed
point of the best-response mapping is a δ-truthful BNE of this game, and thus a δ-truthful BNE of
the game where payoffs are given by ui (a, t) = vi (t, a) +Kixi (ai, aj) for Ki = 1/γ

∗∗∗. Transfers
are balanced using the same type of permutation as was employed in the proof of Theorem 1.¥

22See Meirowitz (2003) for a version of the theorem tailored to this environment, or Zeidler (1985, p. 772) for a
more general version.
23Since T is compact, uniform boundedness implies that {η (t) : η ∈ D} is relatively compact in T .
24See Zeidler (1985), Theorem 2A (Schauder’s Fixed Point Theorem (1930), p. 56).
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