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Abstract. In this paper, we consider a finite population of boundedly

rational agents whose preferences differ. The interaction level among agents

allows us to partition the population into local networks. In each local network,

there exists a fixed agent, as defined by Glaeser and al. [8], who shares, directly

or indirectly, her information with all agents within the local network. Time

is discrete and in each period agents are paired to play a battle of the sexes

game. We show that in the short run, all fixed agent plays a particular strategy,

but only neighboring fixed agents need to coordinate on the same strategy. In

the long run however, all fixed agents coordinate on the same strategy, leading

to a uniform convention, as defined by Young [22]. Our main result shows

that location leads to information access and distribution which in turn leads

to coordination. In particular, it shows that the outcome that prevails in a

population of heterogeneous agents facing asymmetric information is decided

by those agents who share the most widely their information.
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1. Introduction

Numerous studies have shown the importance of social interactions and neighbor-

hoods effects in explaining phenomenon such as education, income, production, crime,

gangs, ghettos and, in a lighter register, restaurant pricing1. Therefore, the incorpo-

ration of social influences on behavior in theoretical frameworks must be of primary

interest. In particular, the influence that some agents exert on others can have a

profound impact on the selection of an economic outcome. As Glaeser and al. [8] put

it: “There are two classes of agents: (1) agents who influence and are influenced by

their neighbors; and (2) agents who influence their neighbors, but who cannot them-

selves be influenced (Fixed agents)”. These fixed agents are of particular interest

when one considers games that are characterized, in accordance with Schelling [19],

by a ”mixture of mutual dependence and conflict, of partnership and competition”.

In this paper, we show how these fixed agents lead a population of individuals who

exhibit different preferences and access different information to coordinate in a battle

of the sexes game. We also demonstrate why the definition of fixed agents introduced

by Glaeser and al. [8] should incorporate the possibility that these agents do get

influenced by their peers2. Our main result establishes the importance of the mecha-

nisms by which information spreads and explains how the outcome that prevails in a

1See e.g Becker [3], Benabou [4], Glaeser and al. [8], Jankowski [12], Venkatesh [21] among many
others.

2A peer being defined as another fixed agent.
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population of heterogeneous agents facing asymmetric information is decided by those

fixed agents who share the most widely their information. Whereas in evolutionary

game theory literature most coordination problems are solved in environments with

homogenous agents, with the exception of Young [23] [24], this paper is the first to

address the question of coordination among heterogeneous agents in an evolutionary

framework with asymmetric information.

More specifically, we consider an evolutionary model with many populations, each

of which with a distinct preferred strategy. By preferred strategy we mean that if

two agents from the same population are paired to play a coordination game, they

reach Pareto Efficiency if they both play this preferred strategy. Thus, an agent’s

membership to a population is solely determined by her preferences. This means that

agents are homogenous within a population but heterogeneous between populations.

Contrarily to what is commonly assumed in the literature on social interactions, we do

not impose that neighbors share common preferences. In fact, we do not impose any

restriction on the preferences that neighbors have. This is the reason why we make

a clear distinction between what we call a population and what we refer to as a local

network. Whereas a population is a group of agents who share common preferences, a

local network reflects the level of interaction among agents. More precisely, an agent

and her neighbors belong to the same local network, as well as the neighbors of her

neighbors, and so on. Our definition of a neighbor is similar to the one by Bala and
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Goyal [1] and Masson [15]. Hence, a neighbor is an agent from whom one can observe

history; whereas a stranger is an agent one does not have any information about. A

convenient way to represent these relationships among individuals is as follows. A

directed link from agent i to agent j is an information flow from agent i to agent

j, as in Bala and Goyal [2]. It means that agent j considers agent i as a neighbor.

It also means that agent i considers agent j a stranger. If the link between agent i

and agent j is mutual, as in jackson and Wolinsky [11], it simply represents the fact

that both agents consider each other as neighbors. Within each local network, there

exists at least one fixed agent who shares her information, directly or indirectly, with

all agents within the local network, like the royal family member of Bala and Goyal

[1]. In this paper, we show how these fixed agents play a crucial role in the analysis

of a coordination game.

The game development is as follows: time is discrete and in each period agents

from all local networks are randomly paired to play a K × K coordination game,

where K corresponds to the number of populations. Note that since each population

has its own preferred strategy, the number of pure strategies available to each agent is

also K. Once matched, each agent faces an opponent who may or may not belong to

her population. If the agent considers the opponent as a neighbor, she knows whether

or not her opponent shares her preferences. She also knows her opponent’s history

and can therefore play using a myopic best-response as in Young [22][24]. On the
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other hand, when the opponent is a stranger the agent does not know anything about

her opponent’s history, nor does she know whether they share common preferences.

In this latter case, the only option an agent has is to refer to her own history or her

neighbors’, and use the data she collects in order to choose which strategy to play. In

this paper we assume that she imitates some of her neighbors who belong to her pop-

ulation. In the case where there is no neighbor from her population within the local

network, she considers her own past experiences and imitates the strategy that gave

her the highest payoff. The idea that an agent imitates her local network is derived

from previous use of the imitation rule in evolutionary game theory, as in Robson

and Vega-Redondo [17] or Josephson and Matros [13]. It is also justified by what has

been observed in an experiment conducted by Hück and al. [10]. Nonetheless, the

imitation rule has been modified to take into account heterogeneity among agents.

In particular, an agent imitates other agents only if they share common preferences.

Given this environment, we show that in the short run each fixed agent plays

a particular strategy, but all fixed agents need not to play the same strategy. More

precisely, only neighboring connected fixed agents need to agree on the strategy choice.

This therefore leads to the existence of segregated local networks reminiscent of the

segregated neighborhoods presented by Schelling [20]. In the long run however, all

fixed agents coordinate on the same strategy, thus leading the population to follow a

uniform convention as defined by Young [22].
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The paper is organized as follows: Section 2 illustrates the nature of the argument

by an example. The detailed description of the model is given in Section 3. Short

run predictions are presented in Section 4. Section 5 describes the long run outcome

and Section 6 concludes.

2. Example

We illustrate the nature of our argument by the means of an example, regarding

the choices of typesetting systems in two economics departments, each having two

professors. Let us consider the situation where two of these professors belong to

the “TEX Lovers” population, whereas the two others are members of the “SWP

Lovers Society”. Each economics department contains one member of each group.

This means that we consider two populations of homogenous agents, and two local

networks of heterogeneous agents, local networks and departments being analogous.

Time is discrete, and in each period, professors are randomly paired to co-author

a paper. Denote by T the strategy which consists in using TEX, and by S, the

strategy which consists in writing in SWP. If both agents belong to the “TEX Lovers”

population, they play the following coordination game:

T S

T 10, 10 3, 0

S 0, 3 5, 5

Figure 1. TEX is matched with TEX.
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On the other hand, if they are both members of the SWP Lovers Society, the

coordination game becomes:

T S

T 5, 5 0, 3

S 3, 0 10, 10

Figure 2. SWP is matched with SWP.

Finally, assuming that the row agent belongs to the TEX Lovers population and

that the column agent is a SWP Lovers Society member, the coordination game they

face is the following:

T S

T 10, 5 3, 3

S 0, 0 5, 10

Figure 3. TEX is matched with SWP.

This example illustrates the tension faced by agents in coordinating in order to

generate a good outcome, and the temptation to defect in order to influence the

outcome toward one’s preference. Each of these games contain two strict Nash equi-

libria: (T, T ) and (S, S). Note that coordination on the preferred strategy within a

population leads to the efficient outcome; whereas coordination on either equilibria is

enough to insure Pareto Efficiency, between agents from different populations. Sup-

pose that, up to now, all the professors have always used SWP, leading to a history
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containing payoffs of 5 for the TEX Lovers and 10 for the SWP Lovers Society. This

is a convention as defined by Young [24], and the only way to leave this convention

is that one or more agents make the voluntary or involuntary mistake of using TEX

instead of SWP. Therefore, suppose that two professors, who do not work in the same

department, but who do share the same preferences over TEX are paired and that

both use TEX instead of SWP. This gives each of them a payoff of 10, which is better

than what they obtained before. If they meet again next period, they might as well

play strategy T again since it turned out to be the best strategy for them in the past.

Suppose now that the matching is such that every individual faces her own neighbor.

The TEX lovers should go back playing S given the history of their neighbors, but

their neighbors on the other hand should choose to play T , even though they prefer

S. If the matching stays the same next period, one can see that it is possible for the

TEX Lovers to impose their preferences on their neighbors, thus leading the whole

population to follow the TEX convention.

3. The Model

Suppose that there exist K finite populations of nk agents such that n1+...+nK = 2n

and nk ≥ 2, for k = 1, ...,K. Time is discrete, and in each period, agents are randomly

paired to play a K×K coordination game. Each population i has a preferred strategy

i that leads to Pareto Efficiency when two agents from this population are matched.
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More precisely, we assume that if two individuals from the same population i are

matched to play the game, they face the following payoff matrix:

Player from population i

1 2 · · · i · · · K

1 ai11, a
i
11 ai12, a

i
21 · · · ai1i, a

i
i1 · · · ai1K, aiK1

Player 2 ai21, a
i
12 ai22, a

i
22 · · · ai2i, a

i
i2 · · · ai2K, aiK2

from
...

...
...

. . .
...

...

population i i aii1, a
i
1i aii2, a

i
2i · · · aiii, a

i
ii · · · aiiK, aiKi

...
...

...
...

. . .
...

K aiK1, a
i
1K aiK2, a

i
2K · · · aiKi, a

i
iK · · · aiKK, aiKK

where aikk > ailk for all i, k, l = 1, ...,K, k �= l; and aiii > aikk for any k �= i.

Otherwise, if an agent from population i is matched with an agent from population

j, they play the following coordination game:
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Player from population j

1 2 · · · i · · · K

1 ai11, a
j
11 ai12, a

j
21 · · · ai1i, a

j
i1 · · · ai1K, ajK1

Player 2 ai21, a
i
12 ai22, a

i
22 · · · ai2i, a

i
i2 · · · ai2K, ajK2

from
...

...
...

. . .
...

...

population i i aii1, a
j
1i aii2, a

j
2i · · · aiii, a

j
ii · · · aiiK, ajKi

...
...

...
...

. . .
...

K aiK1, a
j
1K aiK2, a

j
2K · · · aiKi, a

j
iK · · · aiKK, ajKK

where aikk > ailk and ajkk > ajlk for all i, j, k, l = 1, ..., K, k �= l; and aiii > aikk for any

k �= i; and ajjj > ajkk for any k �= j.

The first condition aikk > ailk insures that coordination is favored over defection by

every agent. The second condition aiii > aikk stipulates that an agent from population

i prefers to coordinate on strategy i. Thus, an agent is better off coordinating, but she

prefers doing so using her preferred strategy. Therefore, Pareto Efficiency is reached

when agents coordinate their actions, which means that there exist many possible

efficient outcomes (as long as each pair of agents plays such that the outcome belongs

to the diagonal of the payoff matrix, the outcome is efficient for all the agents). But
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populations are not indifferent in which efficient outcome arises.

At time t, each agent from population i chooses a strategy xti from the set

X = {1, ..., K} according to some behavioral rules (described below) based on past

plays’ available information. Therefore, the play at time t can be defined as xt =

(xt1, x
t
2, ..., x

t
2n), and the history of plays up to time t can be represented by the se-

quence ht = (xt−m+1, ..., xt) of the last m plays.

The information structure we use is similar to Bala and Goyal [1] and Masson[15].

We will call agents from whom agent q can access past plays neighbors of agent q,

and any other agent a stranger to agent q. We denote by Nb(q) the set of neighbors

of agent q; St(q) is the set of agents considered by agent q as strangers; and A(q) is

the set of agents who can access agent q’s past plays. Note that agents in Nb(q) need

not to share common preferences.

The dichotomy neighbor/stranger can be represented by a directed graph, where

a directed link from agent q to agent g, {q → g} , means that agent g can access

information about past plays of agent q, or q ∈ Nb (g) and g ∈ A (q). We will assume

that q ∈ Nb (q) for any q.

Any directed graph is a set of disjoint directed subgraphs, where any subgraph

(local network) is connected in the following sense.

Definition 1. A local network, Lz, is a list of ordered pairs of agents, where
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{q → g} ∈ Lz indicates that q ∈ Nb (g) and g ∈ A (q); and if {q1 → g1} , {q2 → g2} ∈

Lz, then there exists a sequence of agents f1, ..., fk such that {fm → fm+1} ∈ Lz or

{fm+1 → fm} ∈ Lz, m = 1, ..., k − 1 or both and g1 = f1 and q2 = fk.

The following example illustrates the definition.

Example 1. Local network of four agents.

1 −→ 2 ←→ 3 ←− 4

Figure 1

For each agent i = 1, 2, 3, 4 we can define a set of neighbors Nb(i); a set of agents

who can access agent i’s information about past plays A(i); and a set of strangers,

St(i).

Nb (1) = {1} , A (1) = {2} , St (1) = {2, 3, 4} ;

Nb (2) = {1, 2, 3} , A (2) = {3} , St (2) = {4} ;

Nb (3) = {2, 3, 4} , A (3) = {2} , St (3) = {1} ;

Nb (4) = {4} , A (4) = {3} , St (4) = {1, 2, 3} .

All agents can straightforwardly be divided in disjoint local networks, where each

local network Lz contains n (Lz) ≥ 1 agents. Since the number of agents is finite, there
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is a finite number of local disjoint networks. Denote the number of local networks as

L. Then there is no directed link between any two local networks

Lz ∩ Ly = ∅ for any z �= y

and
K∑

k=1

nk =
L∑

z=1

n (Lz) = 2n.

It is important to note that each agent has her own preferences (belongs to a

particular population) as well as her own amount of information (from a set of neigh-

bors). Any two agents can be paired in each round. Each agent chooses her strategy

as follows. Fix integers s and m, where 1 ≤ s ≤ m. At time t+1, each agent q inspects

a sample (xt1, ..., xts) of size s taken without replacement from her neighbors and her

history of size m of plays up to time t, where t1, ..., ts ∈ {t−m + 1, t−m + 2, ..., t}.

We assume that samples are drawn independently across agents and time.

If an agents is matched with one of her neighbors, she has information about her

opponent past plays and plays the best reply against the distribution of strategies

in the sample. This approach is rather intuitive: agents are boundedly rational and

expect the play of the game to be “almost” stationary. See Kandori, Mailath, and

Rob[14] and Young[22] for discussions.
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However, the situation is different if an agent is matched with a stranger. Since

no information is available about the opponent, we assume that the agent imitates

a strategy which gave the highest payoff in the past to an agent with the same

preferences (one from the same population).3,4

This approach is inspired by Josephson and Matros[13], who consider an evolu-

tionary framework where agents do not have information about their opponents. We

believe that imitation among agents sharing common preferences is natural especially

in view of the limited amount of information an agent has access to. Of course, one

may argue that “Imitation is suicide”, as Emerson, or that “No man ever yet became

great by imitation”, according to Dr. Samuel Johnson, but this type of argumenta-

tion is way beyond the scope of this paper. We simply argue that some experimental

evidences support that imitation is a sensible rule to use when access to information

is limited. See Hück and al. [10] for details.

More formally, let the sampling process begin in period t = m + 1 from some

arbitrary initial sequence of m plays, hm. We define a finite Markov chain (call it

BIm,s,0) on the state space (X)2n = H of sequences of length m drawn from the

strategy space X, with an arbitrary initial state hm. The process BIm,s,0 moves from

the current state h to a successor state h′ in each period, according to the following

3Since an agent can sample from herself, this is always possible.
4Our results will still hold if the agents imitate the stategy with highest average payoff.



Location, Information and Coordination 15

transition rule. For each xi ∈ X, let pi(xi | h) be the conditional probability that

agent i chooses xi, given that the current state is h. We assume that pi(xi | h) is

independent of t and pi(xi | h) > 0 if and only if there exists a neighbor and a sample

s such that xi is a best reply to the sample drawn from this neighbor, or there exists

a sample s such that xi is the action which gave the highest payoff in the sample.

The perturbed version of the above process can be described as follows. In each

period, there is a small probability ε > 0 that any agent experiments by choosing a

random strategy from X instead of applying the described rule. The event that one

agent experiments is assumed to be independent from the event that another agent

experiments. The resulting perturbed process is denoted by BIm,s,ε. As we will see

below, the resulting process BIm,s,ε is ergodic, making the initial state irrelevant in

the long run.

4. Short Run

In order to characterize the short-run outcomes of the model, we need to adopt some

terminology. In particular, we want first to explicitly define what a fixed agent is in

our context. Formally,

Definition 2. q∗ is a fixed agent, if

(i) {q∗} = Nb (q∗), or

(ii) if there exist an agent g and a sequence of agents g1, ..., gk such that {gm → gm+1} ,
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m = 1, ..., k − 1, and q∗ = gk and g = g1, then there must exist a sequence of agents

f1, ..., fl such that {fm → fm+1} , m = 1, ..., l − 1, and q∗ = f1 and g = fl.

Fixed agents propagate information within local networks. For example, agents 1

and 4 are fixed agents and agents 2 and 3 are not in Figure 1. Indeed, Nb(2) = {1, 3}

and Nb(1) and Nb(3) = {2, 4}. Therefore, in order for agent 2 to be a fixed agent,

there must be a sequence of directed links from agent 2 to agents 1, 3 and 4. But

such sequence does not exist from agent 2 to agent 1. Such sequence does not exist

either from agent 3 to agent 4, even though Nb(3) = {2, 4}, which means that agent

3 is not a fixed agent. On the other hand , agents 1 and 4 are fixed agents since they

do not have any neighbors.

We establish that there must be at least one fixed agent for each local network.

Lemma 1. Each local network has a fixed agent.

Proof. Since each local network is finite, the claim follows immediately. End of

proof.

Some local networks can have several fixed agents. For example, all agents are

fixed agents in complete networks.5 Therefore, two fixed agents are connected if they

share some information with each other. Formally,

5Each agent is a neighbor of every other agent in the complete network.
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Definition 3. Two fixed agents q∗ and g∗ in local network Lz are connected, if there

exists a sequence of agents f1, ..., fk such that {fm → fm+1} ∈ Lz, m = 1, ..., k − 1,

and q∗ = f1 and g∗ = fk.

It is obvious that each agent in the sequence of agents f1, ..., fk from the previous

definition is a fixed agent too. The following example illustrates the definition.

Example 2. Agents 2 and 3 are two connected fixed agents in Figure 2.

1 ← 2 ←→ 3 → 4

Figure 2

It is of importance to note that there may exist many distinct groups of connected

fixed agents within the population. We therefore need to make a distinction between

these groups, by introducing the following definition:

Definition 4. Two connected fixed agents are neighboring connected fixed agents

if there exists a direct link between them.

Whereas the previous definitions were focused on the informational structure, the

following definitions describe the actions played by the fixed agents or the entire

population of agents.

Definition 5. A partial convention is a state where:
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(1) All neighboring connected fixed agents play the same unique strategy.

(2) Fixed agents who are not connected play a unique strategy. All fixed agents

who are not connected do not have to play the same strategy.

The definition of partial convention describes a state where all fixed agents always

play the same strategy, but fixed agents do not have to agree on the strategy played,

as long as they are not neighboring connected fixed agents.

Definition 6. A convention is a state where all agents in each local network play

the same strategy.

Our definition of a convention is similar to Young [22] [24], but at a local level.

However, the next definition will be proven later to correspond exactly to what Young

defines as a convention.

Definition 7. A uniform convention is a state where all fixed agents play the

same strategy.

Note that there exist K uniform conventions. Using the terminology that we have

introduced, we are now in position to characterize all recurrent classes - short-run

outcomes.

Theorem 1. If s/m ≤ 1/2n, the process converges with probability one to a partial

convention.
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Proof. It is evident that any convention is a recurrent class. We shall prove that

if s/m ≤ 1/2n, then conventions are the only recurrent classes of the unperturbed

process. The idea behind the proof is simple. First, we show that there is a positive

probability that a fixed agent can play the same strategy s times in a row. Then we

show how she can spread this strategy to the whole local network.

Consider an arbitrary initial state ht = (xt−m+1, ..., xt) and a fixed agent q∗ in a

local network Lz. There is a positive probability that agent q∗ is matched with the

same agent and samples xt−s+1, ..., xt in every period from t + 1 to t + s inclusive.

Without loss of generality, assume that agent q∗ plays a unique best reply, a pure

strategy x∗q. With positive probability, agent q∗ can be matched with one of the

agents in A (q∗) , and this agent samples xt+1q∗ , ..., xt+s+1q∗ in every period from t+ s+ 1

to t + 2s inclusive. Since the agents in A (q∗) samples only strategy x∗q , she plays

strategy x∗q in the coordination game form Figure 2 in every period from t + s + 1

to t + 2s inclusive. In general, for any agent g in the local network Lz there exists

a sequence of agents f1, ..., fk such that {fm → fm+1} ∈ Lz, m = 1, ..., k − 1, and

q∗ = f1 and g = fk. Each of the agents in the sequence of agents f1, ..., fk has a

positive probability to have a string size s of strategy x∗q in her history in the way

described above. Since s/m ≤ 1/2n, there is a positive probability that all agents in

the local network Lz will have a string size s of strategy x∗q in their history before

period t + m. Suppose that all agents (or all but one is the number of agents is odd)
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are matched with the agents from their local network for the next m periods. There

is a positive probability that each agent samples a string size s of strategy x∗q inclusive

for the next m periods. As the result, local convention will be obtained. End of

proof.

The following example illustrates how the strategies of non-fixed agents can vary

in a recurrent class.

Example 3. Assume that m = 2, s = 1, and consider the four agents represented

in Figure 1. Suppose that agents 1 and 2 are from population A, and agents 3 and

4 are from population B. Agents are matched at random to play 2× 2 coordination

games.

Note that agents 1 and 4 are fixed agents. Therefore, they could either play only

strategy A or only strategy B. If both fixed agents coordinate on strategy A, then

the following state is absorbing

h(A,A) = ((A,A) , (A,A) , (A,A) , (A,A)) ,

where the first bracket represents the strategy choices of agent 1 in the last two

periods, the second bracket shows the strategy choices of agent 2 in the last two

periods, and so on. If both fixed agents coordinate on strategy B, then the following
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state is absorbing:

h(B,B) = ((B,B) , (B,B) , (B,B) , (B,B)) .

Fixed agents do not need to coordinate between them in order for the process to be

in an absorbing state. For example, agent 1 played strategy A in the last two periods,

and agent 4 played strategy B in the last two periods, the following vector of plays

is a recurrent class:

{((A,A) , (w, x) , (y, z) , (B,B))} ,

where w, x, y, z ∈ {A,B} . Analogously, if agent 1 played strategy B in the last two

periods, and agent 4 played strategy A in the last two periods, the following is also

a recurrent class:

{((B,B) , (w, x) , (y, z) , (A,A))} ,

where w, x, y, z ∈ {A,B} . Note that non-fixed agents 2 and 3 can switch from strategy

A to strategy B (and vice versa) in the short run. Therefore, only partial coordination

represented by segregated local networks arises in the short run.

In the case where all fixed agents coordinate on the same strategy, we have the

following result.

Proposition 1. In any uniform convention ALL agents will coordinate on the same
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strategy.

Proof. In any uniform convention all fixed agents coordinate on one and the

same strategy. Since only fixed agents can spread information, all other agents must

coordinate on this strategy in the short run. End of proof.

A particular case of interest is when ALL directed edges are double-sided. If

we follow our terminology, ALL agents are therefore fixed agents. But if we follow

Glaeser and al. terminology, the fact that we only have double sided links means

that we have no fixed agent at all. Indeed, if the entire population is composed only

by fixed agents, they all can influence their neighbors, which means that they all can

be influenced. This is the reason why the definition of fixed agents: ”Agents who

influence their neigbors but who cannot themselves be influenced”, should become

”Agents who influence their neigbors but who cannot themselves be influenced by

non-fixed agents”.

5. Long Run

As we saw in the previous section, many conventions are candidates for the long-

run outcome. The following result demonstrates that only K long-run outcomes are

possible. These long-run outcomes are uniform conventions.

Lemma 2. Suppose that the number of any connected fixed agents is less than a half

of the total number of fixed agents. Then there exists a sample size s∗, such that for
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any s ≥ s∗ and for each non-uniform convention, there exists a uniform convention

with lower stochastic potential.

Proof. First, note that conventions are the only recurrent classes from Theorem 1.

Second, it takes at least two mistakes to leave any uniform convention. It is enough

to show now that it takes just one mistake to leave a non-uniform convention. It

becomes obvious once we see how to leave a convention where all but one (connected)

fixed agent(s) coordinate on one strategy.

There is a positive probability that all connected fixed agents who are not coor-

dinated with all other fixed agents are matched with other (coordinated) star agents

for s − 1 periods. As the result, all uncoordinated fixed agents have s − 1 miscoor-

dination play. Suppose that one of this fixed agents, agent i, makes a mistake and

coordinates on the other strategy. There is a positive probability that she and every

member from the set A (i) sample her last s plays for the next s periods. Suppose

all connected fixed agents from A (i) and agent i are matched with fixed agents they

consider strangers. This will lead to a uniform convention. End of proof.

From Lemma 2 it follows that coordination must be reached (a uniform conven-

tion) in the long-run. We can now state the main theorem of this paper.

Theorem 2. Suppose that the number of all connected fixed agents is less than a

half of the total number of fixed agents and among any connected fixed agents there
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exists at least one fixed agent from population i. Then there exists a sample size s∗,

such that for any s ≥ s∗, the perturbed process BIm,s,ε puts a positive probability

on the uniform convention, where all agents play strategy i.

Proof. It takes at least two mistakes to leave a uniform convention, from Lemma

2. Note that it takes exactly two mistakes to leave a uniform convention j, if there

is at least one agent in each of two disconnected local networks from population

i �= j. The underlying reasoning is similar to the proof of the previous lemma and is

therefore omitted.

Hence, following Ellison[5], if there are enough agents (at least one in any set of

connected stars) from population i, the uniform convention i is stochastically stable.

End of proof.

The presence of fixed agents within each local network facilitates the coordination

among all agents, even though they do not share common preferences. Since informa-

tion gathered by fixed agents can be distributed, directly or indirectly, to any agent

within a local network, it appears quite intuitive that the selection of the uniform

convention that prevails in the long run depends on the number of fixed agents each

population has. But since only a fixed agent can influence another fixed agent, the

long-run outcome selection also depends on the links these fixed agents possess with

other fixed agents. Therefore, a population that presents a high number of connected
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fixed agents can easily impose its preferences on other populations.

6. Conclusion

In this paper we show that heterogeneous agents can coordinate on the same strategy

even though they evolve in an asymmetric information environment. The short run

outcome is influenced by all fixed agents whose behavior determines the absorbing

state to which local networks conform. However, the long run outcome is determined

by the number of fixed agents within each population as well as the links these fixed

agents have with other fixed agents. In particular, we show that the long run outcome

is not imposed by the population with the largest number of agents. The long run

outcome is determined by the population that has the largest number of agents who

can influence others (fixed agents connected to other fixed agents).

Our main result shows that location leads to information distribution and access

which in turns leads to coordination. In particular, it shows that the outcome that

prevails in a population of heterogeneous agents facing asymmetric information is

decided by those agents who share the most widely their information.

Possible extensions of this paper include the design of an experiment in order to

test the prediciton of the model. Also, options other than imitation are available, as

for example in Matros [16], and could be considered in future research built upon this

model.
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