
 

The article explores joint consumption equilibrium environments. It illustrates 

network formation through one-to-one directional synapses. Family (couple) arrangements, 
spontaneously generated under a decentralized general equilibrium price system are suggested 
- involving link and direction-specific transfer prices along with standard resource one. The 
research also inspects preference characteristics able to generate monogamous choices and 

assortative matching and mating. Assortative mating (and income pooling) is clarified, related 
to exclusivity or taste-for unicity at the utility level with respect to shared good, with optimal 
assignment connected to equalization of the marginal benefit of the match - adequately defined 
- across individuals in the economy.  

Contrast with a multiple external effect good - one-to-many communication; (or) 
shared by a fixed number of, more than two, individuals; common property - and with a pure 
public good is also provided. If paired consumption with end-point specificity generates (or 
may generate), under reasonable assumptions, a unique decentralized equilibrium solution, 

supporting an efficient allocation, multiple agent sharing among more than two individuals and 
individual types requires, along with excludability, perfect differentiation of a larger number of 
consumption - partnership - roles.  
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ABSTRACT 
 

Calls and Couples: Communication, Connections, Joint – 

Consumption and Transfer Prices 
 

This research proceeds to the  formal characterization of general equilibrium and 
efficient allocation of an exchange economy where individuals value a pure private good and 

mixed one(s) the fractions of which must be shared wholly and unilaterally with one and only 
one other individual in the community. Such “shared” good – not necessarily attached to an 
externality: both individuals may have to pay or spend resources to enjoy it – involves joint 
consumption and reproduces private calls, one-to-one communication or information sharing. 

The initiating – “proposing” - party is identified, (potentially) not irrelevantly valued by 
individuals, and there is continuous veto power at the end-side of a match. A decentralized 
equilibrium requires two general prices – adding up to a uniquely determined full-price -, and 
pair-(and direction-)specific transfer prices between intervening consumers for the shared 

good. Efficiency requires the Samuelson condition over marginal utilities. 
Agent multiplicity – utility patterns and corner solutions - sheds light on endogenous 

match rank pricing, making and mating. Specific functional forms (two and three-stage CES 
special cases, allowing for taste for variety as for unicity) generate interpretable conclusions, 

namely, regarding the qualification of assortative mating. 
Contrast with a multiple external effect good – one-to-many communication; (or) 

shared by a fixed number of, more than two, individuals; common property - and with a pure 
public good is also provided. If paired consumption with end-point specificity generates, 

under reasonable assumptions, a unique decentralized equilibrium solution, supporting an 
efficient allocation, multiple agent sharing among more than two individuals and individual 
types requires, along with excludability, perfect differentiation of a larger number of 
consumption – partnership - roles. 

Principles behind the theory are also applicable to input and cost sharing and pricing 
in partnerships, co-operative societies and joint-ventures. 

February 2006, Revised August 2006 
 

JEL: D11; D23; L14; D71; D62; H23; J12; J13. C78. L86; L87; L91; L96. 

Keywords : Shared Goods; Joint Consumption, Cost-sharing. Communications; 
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Calls and Couples: Communication, Connections, Joint – 
Consumption and Transfer Prices 

 
“2 and as they were drinking wine on that second day, the king again asked, "Queen 

Esther, what is your petition? It will be given you. What is your request? Even up to half 

the kingdom, it will be granted." 3 Then Queen Esther answered, "If I have found favor 
with you, O king, and if it pleases your majesty, grant me my life - this is my petition. And 
spare my people - this is my request. 4 For I and my people have been sold for 
destruction and slaughter and annihilation. If we had merely been sold as male and female 

slaves, I would have kept quiet, because no such distress would justify disturbing the 
king.” In Book of Esther 7: 2-4.  

 
 

Introduction. 
 
Mutual agreement is required for a large number of everyday transactions. Some are 

over a pure private good or service, and standard marginal pricing insures efficient allocations. 

Others, generate partial externalities or are even totally public, requiring superseding 
judgement. A fringe (…) are social in nature, its consumption implying benefits for two - or a 
given number of - affected agents. They may or may not require direct costs from those 
traders (e.g., time) – they may or may not involve an externality -, they are identifiable both by 

the initiating and ending side of the transaction and require complete consensus regarding its 
consumption/expenditure level. 

The requirement of mutual agreement – involving excludability - allows a 
decentralized price system to insure an efficient allocation, provided discrimination between 

the two consumption sides is perfect: then, effectively, it is as if the two roles would distinguish 
themselves as two (times the number of individual types in the economy) different goods but 
not sold separately. The argument resembles the one applied to club goods – yet, here, the 
externality status is minor to qualify equilibrium properties 1, confined to a given or fixed 

number of people 2, and stresses the requirement of equal consumption of a total common 
“property” or durable; optimal pricing is (can be) achieved through transfers – or implicit 
consumption price discrimination –, which are due even if agents are homogeneous as long as 
they value differently the two roles (making and attending calls) in the “call society”. 

                                        
1 Or we could say that we would fall under Coase’s theorem… 
2 Say, total congestion is achieved with a fixed or maximum number of partners. 
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Understandably, a similar modelling framework has been applied in the economics 

of family and family formation: early examples 3 are Manser and Brown (1980) and McElroy 
and Horney (1981), suggesting marriage for allowing joint consumption by two agents - that 
bargain with each other while possessing, maintaining well-defined, “selfish” 4, individual 
preferences and budget constraints 5 - of special - household - public goods. Even if similar, 

our formalization presents a crucial difference: excludability by either side, and “family role” 
definition for each potential match; then, under the usual ideal assumptions 6, a decentralized 
general equilibrium can be expected to promote efficient mating.  

In family economics, two agent bargaining – interaction - is generally assumed. One 

can propose functional forms that are able to generate monogamy as polygamy – the later 
reproducing multi-(even if one-to-one)-connections. Assortative matching and mating can be 
studied with reference to the properties of the uncompensated individual demands and indirect 
utility functions 7 – which now also depend on partner(s) income and preferences - generated 

under exclusivity conditions. Then, transferable utility, or income – this mimicking, or 
effectively originating, budget pooling by the couple -, leads to the emergence of dowry 
systems.  

The framework can also encompass more complex societies – allow common 

property to be shared by more than two agents. In principle, network formation could be 
simulated by assuming that each connection between any two nodes is unique, with a node – 
as a neuron – having a life of its own. In the limit, joint-consumption by more than two 
individuals leads to a similar environment as that in the presence of a public good. With 

excludability, the only difficulty for a decentralized equilibrium arises from lack of competition 
and the leading (as others) role definition. 

Also, productive factors – as outputs – can be shared by different divisions or plants 
of a firm… The theory suggests the adequate properties of an internal pricing scheme able to 

generate an efficient decentralized system management. 

                                        
3 That also include, more recently, Lam (1988) and Lundberg and Pollak (1993) – see Bergstrom 

(1996) and Weiss (1997) for a recent survey. 
4 Even if we can argue that some degree of altruism – and partner-specific inclination - can always 

be reflected in preferences for goods that are or must be shared with other individuals. 
5 Most of these family models end up by assuming pooled income. 
6 Which, of course, rule out imperfect information or foresight, ex-post contract default, etc… The 

absence of the ideal conditions is what makes bargaining models of the family so appealing. 

7 See Becker (1973), Lam (1988). The analysis here differs both because budget constraints are 

never pooled, nor objective functions altered by connection establishment. 
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The exposition proceeds as follows: notation and individuals’ utility functions are 

defined in section I. Section II states the properties of an efficient allocation, and section III 
those of a decentralized equilibrium. In section IV, we proceed to the derivation of demands, 
indirect utilities and equilibrium configurations for specific functional forms and in section V, 
assortative mating is qualified under different transferability environments. Contrast with 

multiple emission entities is dealt with in section VI. In section VII, input sharing is modelled 
according to the same principles. The exposition ends with a brief summary in section VIII.  
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I. Notation: Preferences and Shared Goods. 
 
. There are n consumers in the economy. Each consumer, i, enjoys utility from the 

consumption of a private good, the quantity of which is denoted by x
i
, from the quantity of 

“calls” he makes to individual j, z
i
j – the consumption of z proposed by i and accepted by j - 

and from those he receives from that same individual, y
i
j – the consumption of z proposed by 

j and accepted by i: 
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2,…, z
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i-1, z

i
i+1, ..., z
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i
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∂
……∂  = i

y j
U .  Ui(x

i
,  z

i
j,  y

i
j) is assumed to exhibit the 

usual properties – continuity, twice-differentiability and quasi-concavity. 

The consumption of z requires feedback: it implies that: 
 
(2)  z

i
j  =  y

j
i  ,   i ≠ j, i, j = 1, 2, …, n 

 
The distinction between z

i
j and y

j
i has two purposes: on the one hand, it represents 

the fact that there is perfect discrimination of the two consumption roles, and that i (may) faces 
a different net price for z

i
j than that charged to j for y

j
i; (but…) as we assume that there is 

mutual excludability between the i and j in the consumption of (both) z
i
j and y

j
i (z

j
i and y

i
j), i 

has the ability to control both z
i
j and y

i
j. These two conditions will allow for an efficient price 

system to develop. It would appear to apply well to calls, and it suggests the natural arising of 
gender differentiation – further stressed in economic dwelling by the requirement of definition 
of “head of household” status, of individual responsible for the child education… 

On the other, it allows us to explore and understand similarities and differences 

between a pure externality (i.e., z
i
j and y

j
i are completely non-rival) and mere joint-

consumption at equal levels - suggesting generalizations reproducing economies of scale in 
joint-consumption. 
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If i gets the same satisfaction from calling as from getting a call from j, then the utility 

has the special form: 
 

(3) Ui(x
i
, z

i
1+ y

i
1, z

i
2 + y

i
2, …, z

i
n + y

i
n) = Ui(x

i
, z

i
j + y

i
j) , i = 1, 2, …, n 

 
Also, if calls to and from any individual type are valued similarly, even if receiving 

and answering calls differentiated: 
 

(4)    Ui(x
i
, z

i
1+z

i
2+…+z

i
i-1+ z

i
i+1+ ...+ z

i
n, y

i
1+ y

i
2+…+ y

i
i-1+ y

i
i+1+ ...+ y

i
n)  

 =  Ui(x
i
, z

i
 + y

i
)  

  i = 1, 2, …, n 
 

Of course, such additivity may occur in sets, with individual types arising distinctively 
for each i at the utility level. 

 
. Each individual is endowed with amount W

x
i of good x and W

z
i of good z. We will 

consider two scenarios: 

- one in which only z
i
j requires W

z
 – on a one-to-one basis -, with y

i
j being a 

(almost) complete externality 

- another in which both z
i
j as y

i
j require the use of W

z
. 

Yet, (2) – i.e., agreement from interlocutor -, must always be insured. And, of 
course, whether an externality or pure joint-consumption at the same level for both sides 
applies (or other – see below), it must recognized by every individual in the economy.  

A link between i and j requires no “fixed” costs, i.e., independent from the amount 

of z
i
j (or y

i
j) traded 8. Network access (or set-up) costs – pure access to the markets where 

z and y are trade - are also assumed negligible 9. 
 
. A complex decentralized price system is proposed: p

x
 is the unit price of good x. 

The price of a call from i to j is composed of three parts: a general “call tariff” p
z
, an 

                                        
8 These could justify the emergence of monogamous couples even with preferences exhibiting taste 

for variety... And of dowries and bequests in the market independent of household quantity. 
9 They would not affect the general conclusions in what concerns marginal properties of interior 

solutions, provided that they are independent of network quantities aggregation… They would then 

justify an access pricing fixed fee independent of the use intensity. 
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answering tariff p
y
, and a specific unit transfer from i to consumer j for attending the call, t

i
j. 

I.e., the consumption of z
i
j by i requires an additional “service” from j, priced at t

i
j. 

Then the (exhausted) budget constraint of individual i is: 
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Summing (5) over i, as ∑∑
=

=
≠

n

i

n

j
ij

j
iz

1
1

 = ∑
=

n

i

i
zW

1

, we conclude that the general tariffs 

must add up to the operating cost of a call p
z
’, at which W

z
 is traded. 

 
(7)  p

z
’  =  p

z
 + p

y
   

 
Notice that once we allow for transfers, payment can be collected on one-side of 

the call – charging (p
z
 + p

y
) to z – only: in practice, the actual individual transfers would also 

include the recovery of p
y
.  

For example, for common calls, p
z
 = p

z
’ and p

y
 = 0. Child allowance schemes - see 

Lundberg and Pollak (1993), p. 1001 –, or merely nature’s assignment of child-bearing and 
rearing costs, illustrate other unbalanced arrangements.  

 
. If y is non-rival with respect to z, p

z
’ is split between both sides of the call 

according to (7). Off-springs would appear to work as such. But a diner in a restaurant by a 
couple would involve twice the resources a solitary diner would – and (but) just require the 
same level of expenditure by the two individuals, the leveling of the quantity purchased by 

each of the two partners. In this type of cases, because now ∑∑
=

=
≠

n

i

n

j
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j
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=
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1
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1

, (aggregating (5)) p
z
’ = 

2
yz pp +

 would price W
z
 – the average price 

paid by both i and j10 - or rather p
z
 + p

y
 would price one double unit of z

i
j-cum-y

j
i – given 

                                        
10 Allowing the price to still differ in both ends…  
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that it involves consumption duplication, nobody would want to buy or sell one of the two 

sides of the match separately. With joint-consumption, there will be a sort of sale 
complementarity; p

z
’ will then be the average price of the unit of i

zW , sold in pairs.  

A straight-forward generalization would allow for an intermediate state where 

2
1

)(
δ+

+ i
j

j
i yz  of zW , 0 ≤ δ  ≤ 1, is required to produce the “consumable” pair z

i
j-cum-y

j
i – 

2
1 δ+j

iz  purchased by i, 
2

1 δ+i
jy  by j - a value of δ  smaller than 1 representing economies 

of scale in household consumption; then 
δ+

+

1
yz pp  would price W

z
 11. Or – allowing z

i
j to 

stand for half the total joint purchase so that p
z
’ = 

2
yz pp +

 - assume utility functions are of 

the form Ui(x
i
, 

δ+1
2 j

iz , 
δ+1

2 j
iy ), requiring z

i
j = y

j
i, allowing or not differentiated pricing of z

i
j and 

y
j
i – hypothetically, δ  could be pair specific, δ i

j; such formulation would certainly be useful in 

the study of labor supply – if x
i
 denotes leisure, priced at W

i
, Ii = Vi + W

i
 Ti - full-income - 

where Vi and Ti are exogenous non-labor earnings and time endowment of i respectively, and 
pure private goods using W

z
,  g

ij
, j ≠ i, are also allowed such that we can write anybody’s 

utility function as Ui(x
i
, g

ij
 + 

δ+1
2 j

iz , 
δ+1

2 j
iy ) or Ui(x

i
, 

2
ijg

 + 
δ+1

2 j
iz , 

2
ijg

 + 
δ+1

2 j
iy ) (and corner 

solutions naturally arise). 
 

                                        
11 Of course, δ is assumed to be known by all market characters. 
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II. Efficient Allocation.  
 
. Admit an efficient allocation is sought. Then, one wants to maximize an individual’s, 

say i, utility, subject to the existing endowments and limiting utility levels of all other 
consumers. Assume first that the receiver actually gets an externality. Then: 
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In lagrangean form and replacing (8b): 
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Interior FOC require: 
 
(10) i

xU  - xµ   =  0  (1 equation) 

(11) - jλ  j
xU  - xµ   =  0  ,   j ≠ i, j = 1, 2, …, n  (n-1 eqs.) 

(12) i
z j

U  - jλ  j
yi

U  - zµ   =  0  ,   j ≠ i, j = 1, 2, …, n  (n-1 eqs.) 

(13) i
y j

U  - jλ  j
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U  - zµ   =  0  ,   j ≠ i, j = 1, 2, …, n  (n-1 eqs.) 

(14) - jλ  j
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y j
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(15) - jλ  j
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U  - lλ  l
z j

U  - zµ   =  0  ,   j ≠ i, l ≠ j, l = 1, 2, …, n  

 
along with (8a) (8c) and (8d) in equality. (12) to (15) include n x (n – 1) different 

equations – the number of existing z
i
j’s. 

(10) and (11) imply the usual 
 



 

- 13 - 

(16) jλ  =  - 
j

x

i
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U
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Replacing in (12) and (13) and equating the two (and (10)): 
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Finally, from (14) and (15): 
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. If the second consumer does not obtain an externality, then (8d) is replaced by 
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The last term of the lagrangean (9) becomes zµ  (∑
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(17) and (18) are replaced respectively by: 

 

(20) 
i
x

i
z

U

U
j  + 

j
x

j
y

U

U
i  = 

i
x

i
y

U

U
j  + 

j
x

j
z

U

U
i   (= 2 

i
x

z

U
µ ) = 2 

x

z

µ
µ  ,   j ≠ i, j = 1, 2, …, n 

and 

(21) 
j

x

j
z

U

U
l  + 

l
x

l
y

U

U
j  =  

j
x

j
y

U

U
l  + 

l
x

l
z

U

U
j  (= 2 

i
x

z

U
µ ) = 2 

x

z

µ
µ , j ≠ i, l ≠ j, l = 1, 2, …, n 

 
(17) and (18) reproduce the well-known condition that the sums of the marginal 

rates of substitution of consumption partners must equate the marginal rate of transformation in 

the economy. (20) and (21) – in absence of externality - require that the average of those 
marginal rates of substitution equals the marginal rate of transformation. 

Notice that the efficiency (Samuelson-type) condition, implying equalization of the 
sum (or averages if just joint-consumption) of the marginal rates of substitution between the 

shared and private good at the two consumption ends across the economy, is immune to 
mating or transferability considerations: it applies to any given welfare – ex-ante or ex-post 
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transfers, as appropriate – utility levels of other individuals, j ≠ i, we supply to the generic 

problem. 
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III. Supporting General Equilibrium. 
 
. Let each individual be subject to the general linear price conditions stated in section 

I: in the economy, one unit of x costs p
x
; one unit of z costs p

z
’ being jointly purchased and 

split between a caller and a receiver, accompanied by a consumer set/couple-specific unit 
transfer t

i
j. Any individual, i, solves: 
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i
j, y

i
j)   

s.t.:  (23)   p
x
 x

i
 + ∑

=
≠

+
n

j
ij

j
i

j
iz ztp

1

)(  + ∑
=
≠

−
n

j
ij

j
i

i
jy ytp

1

)(  = p
x
 W

x
i + p

z
’ W

z
i = Ii  

 
The lagrangean will take the form: 
 

(24)       
µ,,, j

i
j

ii yzx
Max    Ui(x

i
, z

i
j, y

i
j) +  

 + µ  [p
x
 W

x
i + p

z
’ W

z
i  - p

x
 x

i
 - ∑

=
≠

+
n

j
ij

j
i

j
iz ztp

1

)(  - ∑
=
≠

−
n

j
ij

j
i

i
jy ytp

1

)( ] 

 
and FOC for i = 1,2,…, n: 
 
(25) i

xU  - µ  p
x
  =  0 

(26) i
z j

U  - µ  )( j
iz tp +   =  0  ,   j ≠ i, j = 1, 2, …, n 

(27) i
y j

U  - µ  )( i
jy tp −   =  0  ,   j ≠ i, j = 1, 2, …, n 

 
with the budget constraint. Notice that as i can veto and ends up paying for y

j
i, 

optimization in it is due – and (27) arises - whether its consumption by i and j is completely 
non-rival (i.e., works as a complete “externality”) or not: there is mutual excludability 

between the i and j in the consumption of (both) z
i
j and y

i
j. For a perfect externality, (27) 

would not take place – case that will be contrasted with the current one in section VI… 
Then: 
 

(28) 
i
x

i
z

U

U
j  = 

x

j
iz

p
tp +  ,   j ≠ i, j = 1, 2, …, n (n – 1 eqs. for each i) 

and 
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(29) 
i
x

i
y

U

U
j  = 

x

i
jy

p

tp −
 ,   j ≠ i, j = 1, 2, …, n (n – 1 eqs. for each i) 

 
The conditions are valid for any consumer. Equilibrium requires additionally mutual 

consent on the call, (8b), with the price share, (7), that supplies and demands equate, i.e., 
(8c) and (8d) in equality. 

 
(30) z

i
j  =  y

j
i  ,   i ≠ j, i, j = 1, 2, …, n  (n x (n – 1) eqs.) 

(31) p
z
’  =  p

z
 + p

y
   

(32) ∑
=

n

i
ix

1

  =  ∑
=

n

i

i
xW

1

 

(33) ∑∑
=

=
≠

n

i

n

j
ij

j
iz

1
1

  =  ∑
=

n

i

i
zW

1

 

 
It is straightforward to conclude that under common assumptions, provided we fix 

either 
x

z

p
p  or 

x

y

p

p
, there will be an and a unique equilibrium relative price vector, 

(
x

z

p
p ,

x

y

p

p
,

x

z

p
p ' ,

xp
t 2
1 , ... ,

x

n

p
t1 ,…,

x

n

p
t 2

,...,
x

n
n

p
t 1−

) – with n x (n – 1) + 3 elements: we have 2 (n – 

1) equations of form (28) and (29) and the budget constraint per consumer (generating the n 

+ 2 n (n – 1) = n (2 n – 1) individual demands), and the n (n – 1) + 3 composed of (30), (31) 
and aggregate market equilibrium ones – n (3 n – 2) + 3 equations – yet, the sum of the 
budget constraints together with (32) and (33) imply (31) and only n (3 n – 2) + 2 would be 
independent; on the other hand, the relative prices and the allocations z

i
j and y

j
i together 

include the same number of unknowns: n x (n – 1) + 3 relative prices and n (2 n – 1) 
quantities. 

In other words, the price system has now two degrees of freedom: not only (and as 
usual) may p

x
 be supplied, or x fixed as numeraire, as an exogenous convention about the 

splitting of the full price p
z
’ between the two “end-sides” of the deal – proposing and 

accepting parties - must also be agreed upon and supplied by society – usually taking the form 
p

y
 = 0…  

 
. One can show that such system supports an efficient solution. Every consumer j 

will solve a similar problem and choose baskets such that  
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(34) 
j
x

j
z

U

U
l  = 

x

l
jz

p

tp +
    ,    l ≠ j, l = 1, 2, …, n 

and  

(35) 
j

x

j
y

U

U
l  = 

x

j
ly

p
tp −

    ,    l ≠ j, l = 1, 2, …, n  

 

Considering the relations towards l = i: (28) plus (35), and (29) plus (34) generate: 
 

(36) 
i
x

i
z

U

U
j  + 

j
x

j
y

U

U
i   =  

i
x

i
y

U

U
j  + 

j
x

j
z

U

U
i   =  

x

yz

p

pp +
 ,   j ≠ i, j = 1, 2, …, n 

 

which reproduces (17), with 
x

yz

p

pp +
 having correspondence with 

x

z

µ
µ . As it must 

be valid for any consumer pair, it encompasses (18). 
Then, effectively, unit transfers are set such that: 

 

(37) 
x

j
i

p
t   =  

i
x

i
z

U

U
j  - 

x

z

p
p   =  

x

y

p

p
 - 

j
x

j
y

U

U
i   

 

Notice that t
i
j > 0 and a transfer is due from i to j for the former’s call if i 

appreciates (relative to consuming x) making calls to j more than its direct payment (i.e., 
x

z

p
p ); 

and if j appreciates (relative to consuming x) receiving calls from i less than people have to 

pay to receive calls (i.e., 
x

y

p

p
).  

No “lump-sum” transfers from i to j, are required or fit to insure equilibrium - a 
“dowry” would be here proportional to the bridal value: each link is free and everybody 
expected to be linked with everybody… They would be if there were (physical, i.e., in terms 
of the available resources, W

x
 and W

z
) “fixed costs” associated with the establishment of 

each particular link. 
However, once linkages are person-specific, the described equilibrium may be 

difficult to emerge due to lack of competition in unit transfer price formation; then, the 

exogeneity and constancy of the net of transfers prices as faced by individuals – required for 
(28) and (29) to apply - becomes questionable. One can claim that links are interchangeable, 
and/or that other links provide interpersonal-link comparisons – nevertheless, the argument 
remains… 
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. Let us explore a little more deeply the demand formation in the economy. 

Problem (24) generates conventional individual demands x
i
(Ii, p

x
, 1

iz tp + , 2
iz tp + , 

…, n
iz tp + , i

y tp 1− , i
y tp 2− , …, i

ny tp − ) = x
i
(

x

i

p
I , 1, 

x

iz

p
tp 1+ , 

x

iz

p
tp 2+ , …, 

x

n
iz

p
tp + , 

x

i
y

p
tp 1− , 

x

i
y

p
tp 2− , …, 

x

i
ny

p
tp − ) and z

i
j(Ii, p

x
, 1

iz tp + , 2
iz tp + , …, n

iz tp + , i
y tp 1− , 

i
y tp 2− , …, i

ny tp − ) = z
i
j(

x

i

p
I , 1, 

x

iz

p
tp 1+ , 

x

iz

p
tp 2+ , …, 

x

n
iz

p
tp + , 

x

i
y

p
tp 1−

, 
x

i
y

p
tp 2−

, …, 

x

i
ny

p

tp −
) – where Ii = p

x
 W

x
i + p

z
’ W

z
i - enjoy standard properties. And z

i
j must equal y

j
i(Ij, 

p
x
, 1

jz tp + , 2
jz tp + , …, n

jz tp + , j
y tp 1− , j

y tp 2− , …, j
ny tp − ) = y

j
i(

x

j

p
I , 1, 

x

jz

p
tp 1+

, 

x

jz

p

tp 2+
, …, 

x

n
jz

p

tp +
, 

x

j
y

p

tp 1−
, 

x

j
y

p

tp 2−
, …, 

x

j
ny

p

tp −
), which is also a consumer demand, 

but of another individual.  
Systems of Marshallian or uncompensated demands x

i
(I1, I2, …, Ii, …, In, p

x
, p

z
 + 

p
y
) and z

i
j(I1, I2, …, Ii, …, In, p

x
, p

z
 + p

y
) independent of transfer prices can be derived 

from (36) and, replacing (34) and (35) in the budget constraint, from: 
 

(38) x
i
 + ∑

=
≠

n

j
ij

j
ii

x

i
z z

U

U
j

1

 + ∑
=
≠

n

j
ij

j
ii

x

i
y y

U

U
j

1

 =  
x

i

p
I   =  W

x
i + 

x

yz

p

pp +
 W

z
i ,  i = 1,2,…,n 

 
Those demand functions would be homogeneous of degree 0 in I1, I2, …, Ii, …, In, 

p
x
 and p

z
 + p

y
 but would not exhibit all of the other usual properties. They are independent of 

transfer prices because they already internalized its formation (rule). Moreover, each 

individual’s demand – including that of the purely private good – is expected to be a function 
of everybody else’s income, and not independent of its particular distribution, the same being 
true for indirect utility functions. 

Compensated effects of an individual i’s demand can be derived at fixed utility of all 

individuals, x
i
(U1, U2, …, Ui, …, Un, p

x
, p

z
 + p

y
) – obeying (36) and Uj(x

j
, z

j
l, z

l
j) = Uj, j 

=,1,2…,n -, and at fixed utility of i and fixed income of all others, x
i
(I1, I2, …, Ui, …, In, p

x
, 

p
z
 + p

y
).  

Of equal relevance for private goods, demands conditional on the common 

purchases, x
i
(Ii, p

x
, z

j
l, y

j
l) = x

i
(Ii, p

x
, z

j
l, z

l
j) would come from solving (38) with respect to x

i
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(with more private goods, it would also imbed equality of their common marginal rate of 

substitution to their relative prices) for individual i. For compensated demands, x
i
(Ui, p

x
, z

j
l, 

y
j
l) = x

i
(Ui, p

x
, z

j
l, z

l
j) would arise then from the traditional conditions (here, just inverting the 

utility function; with more private goods, MRS between them should equal the corresponding 
price ratio), yet i’s conditional expenditure function would be generated according to the left 
hand-side of (38). 

Requiring the sum (over all i) of Marshallian demands x
i
(I1, I2, …, Ii, …, In, p

x
, p

z
 + 

p
y
) = x

i
(

xp
I1

,
xp

I 2

, …, 
x

i

p
I , …, 

x

n

p
I , 1, 

x

yz

p

pp +
) to equalize available resource endowment 

(supply) in the economy – and replacing the Ii’s by the corresponding definition - would allow 

us to infer the general equilibrium relative full price, 
x

yz

p

pp +
. 

 
. If the second consumer does not obtain an “externality”, then (33) is replaced by 
 

(39) ∑∑
=

=
≠

n

i

n

j
ij

j
iz

1
1

 + ∑∑
=

=
≠

n

i

n

j
ij

j
iy

1
1

 =  ∑
=

n

i

i
zW

1

 

or, given (31): 

 2 ∑∑
=

=
≠

n

i

n

j
ij

j
iz

1
1

  =  ∑
=

n

i

i
zW

1

 

 
With the same preferences and endowments, the equilibrium allocation will differ 

from the one before, but share all other mathematical properties except for the optimal 
endowment price: now, (p

z
 +  p

y
) is the price of a pair of units of i

zW  and (31) is (also) 

replaced by: 
 

(40) p
z
’  =  

2
1  (p

z
 + p

y
)  

 

. Finally, if consumers are homogeneous (have the same preferences and 
endowments) but receiving and making calls are valued differently so that the typical utility 
function is of type (4), there is only a need for two prices – potentially, p

z
 and p

y
 - to 

characterize equilibrium, yet z
i
j is sold to (in if there is no externality) pairs.  

If form (3) is applicable – and there were indifference (perfect substitutability) 
between z

i
j and y

i
j at the utility level and at both consumption sides, as the marginal utility for i 
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of consuming one extra unit of j
iz  is equal to that of consuming j

iy , the net price he will pay 

for either, say j
ip , would equalize in an interior solution; then, simply adjusting j

iz  by not 

answering some, or prolonging a call by calling after a hang-up would insure an adequate 
distribution of expenses: choosing then j

iz  such that j
ip ( j

iz + j
iy ) = p

z
’ j

iz , would also 

insure that p
z
’ i

jz   =  i
jp ( i

jz + i
jy ), both adding the full expenditure on the resource. Then, 

again, unit transfers are really redundant – the argument of potential lack of competition in unit 
transfer price formation removed - but, in general, not otherwise… 

With agent types multiplicity and some set additivity of form (4) at the utility level, 
the exogenous splitting rule of the total p

z
’ and perfect individual type identification – 

discrimination – and consumer replication, a uniquely decentralized equilibrium can arise, 
produce a unique equilibrium relative full price(s), a type-to-type specific transfer, and it is 
efficient. Then, it would be as if i buys z

i
j for p

z
 + p

y
 and then j buys y

i
j from (individuals of 

type) i for )( i
jy tp − ; replication – for competition – implies that some t

i
j’s equalize.  

Or, in a different light but representing the same structure, if we assume that n is a 
fixed number of possible connections, coinciding with the number of agent types in the 
economy, provided that calls with each type may accumulate – i.e., an individual of type i can 

receive calls from more than (as a fraction of those made by) one individual of type j –, the 
previous price system is sufficient. If they cannot, and only one individual of each type (that is, 
income and preferences, identifying i and j) can be connected to another to allow z

i
j, a lump-

sum transfer system for each connection – with i receiving net (K
i
 – K

j
) from a connection 

with an individual of type j, j ≠ i, j = 1,2,..,n -, may emerge, leaving identical individuals 

indifferent in equilibrium. 
Likewise, in family couples, (4) would hardly imply monogamy; if we allow for (3) 

and assume that there are fixed – n – individual types (characterized both by preferences and 
income level) in the economy and z

i
j represents a potential joint consumption of an individual 

of type i with another of type j, partner selection and stable family establishment could arise 
from extensive corner solutions, multiple marriages from less extensive ones. Gender (or 
“head of household” status) naturally distinguishes each side of the partnership and provides 
the required end-side discrimination – type identification should also be perfect -, and 

conditions for an efficient decentralized equilibrium are therefore staged.  
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A corner solution for z
i
j = 0 will require that also y

i
j = 0; it will occur iff, at the 

prevailing relative price level, 
i
x

i
z

U

U
j  + 

j
x

j
y

U

U
i  < 

x

yz

p

pp +
 12 at z

i
j = y

j
i = 0 at positive 

consumption of the other goods (and budget constraint multipliers in the appropriate 
lagrangean – according to Khun – Tucker conditions). If i and j are not connected, in the 

optimal solution, z
i
j = y

j
i = 0 and also z

j
i = y

i
j = 0. The equilibrium relative full price may be 

expected to go down while the inequality condition is not met as long as demand and supply 
allow, and exclusion – as in a purely private good does – would (could) occur spontaneously. 

For any interior solution, Ui(x
i
*, z

i
j*, y

i
j*) > Ui(

x

i

p
I , 0, 0); it must also supersede the utility 

that the individual can obtain paying in full any of the arguments other than x
i
, say r, – 

consuming zero of the others – if shared consumption is allowed but not a psychological sine 

qua non. That is, for the solution for which (28), for j = r, is replaced by: 
 

(41) 
i
x

i
z

U

U
r  = 

x

yz

p

pp +
    

Or (29) by 

(42) 
i
x

i
y

U

U
r  = 

x

yz

p

pp +
   

 

(or both...) If marginal utilities are non-negative, these are the maximum individual 
net prices ever observed – a potential adoption by i of r’s offspring.  

 
If we impose exclusivity – or other exogenous discrete congestion threshold -, yet 

interchangeable connectivity (one can have but one mate, but any pair is possible… Again, 
this may solve for the lack of competition in what transfer price formation is concerned…), a 
more complex price exchange is required to insure equilibrium, now at the matching stage – 
which or may not feedback to the relative full price level of the shared resource in the 

economy. (Dowries are a type of transfer known in history, off-springs – involving 
expenditure - an obvious common good to parents.) Its study is deferred to section V. 

 

                                        
12 Corner solutions are commonly generated with linear functional forms – a special case of the 

CES. 
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IV. Specific Functional Forms: Multi-Level CES Utility 
Functions 

 
. In this section, we want to illustrate the impact of preferences on the network 

equilibrium formation. This is determined by utility function shapes and their, along with 

income, distribution; we therefore assume a general nested CES technology but allow 
individual specific characteristic coefficients. 

We shall assume that individuals maximize utility subject to prices and an exogenous 

income Ii = p
x
 W

x
i + p

z
’ W

z
i. Ii, p

x
, p

z
, and p

y
 are externally fixed – replacing, for simplicity, 

the fixed individual endowments, p
x
, and p

y
 (or p

z
) of the previous section. An equilibrium will 

consist of individual allocations, a relative equilibrium full price, 
x

yz

p

pp +
, and net of unit 

(relative) transfer prices. For later convenience, we will present the marshallian demands and 

indirect utilities as a function of Ii, i = 1,2,…,n, p
x
 and p

z
’ – say, applicable to a small 

economy that interconnects internally but takes international prices as given -, along with the 

autarky equilibrium price level – then replaced in demands and indirect utility. 

Allocations can be determined from (36), y
i
j = z

j
i, and individual budget constraints 

(replaced by): 
 

(43) x
i
 + ∑

=
≠

n

j
ij

j
ii

x

i
z z

U

U
j

1

 + ∑
=
≠

n

j
ij

j
ii

x

i
y y

U

U
j

1

 = 
x

i

p
I  ,  i = 1,2,..., n 

 

Unit transfers can later be inferred from (37) – and net-of-transfers prices from (34) 
and (35) - but redundant to determine equilibrium. 

 
. For simplicity, let us consider an economy with a small number of consumers – let 

n = 3 13. Utilities – that we assume separable in the set [(x
i
), (z

i
j, y

i
j), (z

i
j’, y

i
j’)] - take the 

form: 
 

(44) Ui(x
i
, z

i
j, y

i
j, z

i
j’, y

i
j’)  =  

=  A {a
i
 i

ix ρ  + a
ij
 ij

i

ijij j
iij

j
iij ybzb λ

ρ
λλ

])1([ −+  + a
ij’

 ''' ])1([ '
'

'
'

ij

i

ijij j
iij

j
iij ybzb λ

ρ
λλ

−+ } i

i

ρ
µ

  

                                        
13 A competitive equilibrium would hardly be expected; but it allows us to derive explicit solutions 

highlighting the impact of preferences and income on the equilibrium. 
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  a
i
 + a

ij
 + a

ij’
 = 1,   a

i
, a

ij
, a

ij’
 > 0,   0 < b

ij
, b

ij’
 < 1,   ρ

i
, λ

ij
, λ

ij’
 ≤ 1  

 

Then, σi
 = 

iρ−1
1  denotes the elasticity of substitution between (among…) x

i
 and 

the two composites, ikikik k
iik

k
iik ybzb λλλ

1

])1([ −+ , in each of which σ
ik

 = 
ikλ−1

1  is the 

elasticity of substitution between z
i
k and y

i
k within the composite k = j, j’.  

(Even if we depart from this general functional form, we will only derive the full 
equilibrium for special cases. Features implied by some of the first-order optimization 
conditions are, nevertheless, inspected in general…) 

The relevant ratios in the economy are then for i = 1,2,3 and k = j, j’: 

 

(45) 
i
x

i
z

U

U
k   =  

)1(

)1(1

])1([
−

−−

−+
i

ikik

i

ikik

ii

k
i

k
iik

k
iikikik

xa
zybzbba

ρ

λλ
ρ

λλ

  

and 

(46) 
i
x

i
y

U

U
k   =  )1(

)1(1

])1([)1(
−

−−

−+−
i

ikik

i

ikik

ii

k
i

j
iik

k
iikikik

xa
yybzbba

ρ

λλ
ρ

λλ

  

 
Given the strong separability, the ratios of marginal utilities of i with respect to j are 

independent of goods other than x
i
 and (z

i
j, y

i
j), i.e., of (z

i
j’, y

i
j’). Yet, the general equilibrium 

system remains highly nonlinear; special cases for the link consumption sub-utility allow us to 
derive some conclusions: 

 
i) λik

 = ρi
, k = j, j’: the sub-function embeds in the second-stage general CES 

formulation. 

(47) 
i
x

i
z

U

U
k   =  )1(

)1(

−

−

i

i

ii

k
iikik

xa
zba

ρ

ρ

  

and 

(48) 
i
x

i
y

U

U
k   =  

)1(

)1(
)1(

−

−
−

i

i

ii

k
iikik

xa
yba

ρ

ρ

  

Then:    

(49) 
)1(

)1(

−

−

i

i

ii

k
iikik

xa
zba

ρ

ρ

 + 
)1(

)1(
)1(

−

−
−

k

k

kk

k
ikiki

xa
zba

ρ

ρ

 = 
x

yz

p

pp +
, i = 1,2,3; k = j, j’ 
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A solution would be obtained combining the last expressions with the three budget 

constraints, leading to a nonlinear system: 
 

(50) p
x
 x

i
 + p

x
 [

)1( −i

i

ii

j
iijij

xa

zba
ρ

ρ

+
)1(

'
''

−i

i

ii

j
iijij

xa

zba
ρ

ρ

+
)1(

)1(
−

−
i

i

ii

i
jijij

xa

zba
ρ

ρ

+
)1(

''' )1(
−

−
i

i

ii

i
jijij

xa

zba
ρ

ρ

] =  Ii 

 
Reciprocity of some sort requires ikik ba  = )1( kiki ba − . With reciprocity and 

constant ρ
i
, (50) simplifies to: 

 

(51) p
x
 x

i
 + p

x
 {[1+

ρ−










 1
1

ijij

jiji

ba

ba
]

)1( −ρ

ρ

ii

j
iijij

xa

zba
 +[1+

ρ−










 1
1

''

''

ijij

ijij

ba

ba
]

)1(

'
''

−ρ

ρ

ii

j
iijij

xa

zba
} =  Ii 

 

Allow: 
1) ρ

3
 = 1; ρ

1
 = ρ

2
 = ρ (but otherwise free parameters. Then:  
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For x
i
 > 0, (for values of ρ such as 0) then 

x

yz

p

pp +
 > 

3

33

a
ba ii  and 

x

yz

p

pp +
 > 

3

33 )1(
a

ba ii − , i = 1,2.  

If b
3i

 = b
i3

 = 0,5, then z
i
3 = z

3
i, i = 1,2. 

The higher ρ (the higher the elasticity of substitution σ between the two composites 
for individuals 1 and 2), the lower the connections with 3 relative to the private good, i.e., the 
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lower 
i

i

x
z3  iff 

x

yz

p

pp +
 > 

3

33

a
ba ii  + 

i

ii

a
ba )1( 33 − ; and the lower 

i

i

x
z3

 iff 
x

yz

p

pp +
 > 

i

ii

a
ba 33  + 

3

33 )1(
a

ba ii − . 

 
2) ρi

 = ρk
= ρ.  (We have a regular CES). Reciprocity: a

ik
 b

ik
 = a

ki
 (1 – b

ki
). Then: 

Common elasticity of substitution requires: 
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ρ
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Reciprocity implies that, regardless of income: 
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Assume further identical relative preferences for calls such that 
i

ikik

a
ba  = 

k

ikik

a
ba  = 

θ, constant in the economy. Then: 
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For each consumer i – because z
i
k = y

i
k -, p

z
 + t

i
k = p

y
 – t

k
i = p

x
 θ )1(

)1(

−

−

ρ

ρ

i

k
i

x
z . p

x
 x

i
 

+ (p
z
 + t

i
j) 2 z

i
j + (p

z
 + t

i
j’) 2 z

i
j’ = Ii. Then the three equations: 
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allow us to retrieve the x

i
’s – the demands.  



  

- 26 - 

If income distribution is homogeneous, x
i
 = x

k
 and  
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p
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and 
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Then, z
i
k – as 

i

k
i

x
z  - increases with ρ (and σ) iff θ

yz

x

pp
p
+

2  > 1 or 2 θ  = 2 

i

ikik

a
ba  > 

x

yz

p

pp +
 - if the relative preference for the jointly consumed good is high. 

i
i

I
v

∂
∂  =  

µ v
i
 

iI
1  > 0; as 

2

2

i

i

I

v

∂

∂  = (µ - 1) µ v
i
 

2

1
iI

, the whole economy “overly” rejoices - 
2

2

i

i

I

v

∂

∂  > 0 - 

with an increase in everyone’s endowment provided the utility function exhibits non-
decreasing returns to scale. Also, the price of z is shared equally by any two partners:  

 

(60) p
z
 + t

i
j = p

y
 – t

j
i = 

2
yz pp +

 

 
Departing from (57) and summing both sides, multiplied by p, over the n individuals 

in the economy, equalizing to the total resource existence of x, we could solve for the general 

equilibrium relative full price level as: 
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(61) implies that the equilibrium relative price of z will decrease with the resource 

relative availability, 

∑

∑

=

=
n

l

l
x

n

l

l
z

w

w

1

1  (n = 3, the total number of individuals in the economy); and it will 

increase with the relative preference for the jointly consumed good, θ.  
(61) could then be replaced in (57) to (60), using also the income definition, but 

there is not much insight to gain with that exercise. 

 
Admit that income can differ across individuals but ρ = 0, i.e., of Cobb-Douglas 

format. Then, from (55), we conclude that individual demands are linear in income 14: 
 

 p
x
 x

i
 + 4 p

x
 θ  xi = Ii 

 
This implies, on the one hand, the independence of the individual demand for the 

private good of income levels other than that of i itself; on the other – see (66) below -, and 
(also due to preference symmetry) the independence of the equilibrium relative full price of z 

of the income distribution in the economy. 
 

(62) x
i
 = 

x

i

p
I  (1 + 4 θ)-1 

(63) z
i
k = )( ki

yz

x xx
pp

p +
+

θ  = z
k
i = θ

yz

ki

pp
II

+
+ (1 + 4 θ)-1 

 
Replacing in the utility function, we obtain i’s indirect utility function, v

i
: 

 

                                        
14 Gorman polar forms – to which the Stone-Geary (and Cobb-Douglas), generating a linear 

expenditure system, subscribes - are known to generate public goods effects, or aggregate demands 

independent of individual income distributions (see Deaton and Muellbauer (1980), p. 144.) – because the 

form (quasi-homothetic utility function) implies linear individual Engel curves (exact aggregation also 

requires these to exhibit constant slopes across individuals – see Deaton and Muellbauer (1980), p. 150 -, 

satisfied then if  individuals share common preferences). Quasi-linear functional forms – see Bergstrom and 

Cornes (1983), Lam (1988), Batina and Ihori (2005), p. 89 – are commonly used alternatives in public goods 

demand modelling for allowing (because the ratio of individual’s marginal utilities of the public to the 

private good are linear and with constant slope across individuals in the latter) aggregation across 

individuals. 
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From (63), 
ki

k
i

II
z
∂∂

∂ 2

 = 0 – there will be no assortative “matching” – nor positive, nor 

negative. 
j
i

I
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∂
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, (the equivalent to) positive 

assortative mating – subject explored in the next section - is expected - 
ji

i

II
v
∂∂

∂2

 > 0 - with 

CRS or IRS (µ
i
 ≥ 1) at the utility level. 

Also: 
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I pays a fraction of the price of the good(s) shared with j equal to the weight of his 

income relative to the pooled income of the two partners. 

And given the Cobb-Douglas format of the utility, consuming something of all the 
goods is always worthwhile. 

Internalizing equilibrium price formation in the Cobb-Douglas case: 
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The equilibrium relative price of z will decrease – here, being proportional to its 

inverse - with the resource relative availability, 

∑

∑

=

=
n

l

l
x

n

l

l
z

w

w

1

1 ; and it will increase with the relative 

preference for the jointly consumed good, θ. We can now replace them in the demands and 
indirect utility: 
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With fixed coefficient technologies – ρ tends to -∞ -, x
i
 = z

i
k = z

k
i = 

)(63

321

yzx ppp
III
++

++  and v
i
 = A 

µ













++
++

)(63

321

yzx ppp
III . With perfect substitutability - ρ tends 

to 1 -, consumption pairs could be expected. 
 
ii) λik

 = 0, k = j, j’: the sub-function is of the Cobb-Douglas type: 
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Then:   



  

- 30 - 

)1(

)1()]1)(1[(

−

−−−

i

ikiiik

ii

bk
i

bi
kikik

xa
zzba

ρ

ρρ

 + 
)1(

]1)1([)]1([
)1(

−

−−−
−

k

kikkki

kk

bk
i

bi
kkiki

xa
zzba

ρ

ρρ

 = 
x

yz

p

pp +
, i = 

1,2,3; k = j, j’ 
 
iii) λ

ik
 = 1, k = j, j’: the sub-function is linear in the arguments. 
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For interior solutions to be possible: 
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If b
ik

 = 0.5, z
i
k > 0 and y

i
k = z

k
i = 0 iff b

ki
 < 0.5; z

i
k = 0 and y

i
k = z

k
i > 0 iff b

ki
 > 

0.5. If z
i
k > 0 and y

i
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i = 0: 
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If b
ik

 = 0,5 for all i,k, we fall under (3) and there will be multiple values of z
i
k and 

y
i
k but a unique total (z

i
k + y

i
k) = (z

k
i + y

k
i) satisfying equilibrium, including the corners 

represented by (75) in equality.  

Admit a constant θ = 
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ba kρ)1( −  for “active” links and ρ
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 = ρ for all i. 

Connections with all individuals require: 
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Then, we reached a similar expression to (55). Demands will be similar. 

 
iv) λ

ik
 = - ∞, k = j, j’ and the sub-function is of the fixed coefficient, Leontief, type – 
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k
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i yzMin . Then, at efficient consumption levels, both 

items equalize and: 
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z
i
k = y

i
k: there is perfect complementarity between calls made or received by i from 

each k.  
For interior solutions:  
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k
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,  i = 1,2,3; k = j, j’ 

 
with half of the conditions (compatible and) redundant, and 
 

(80) p
x
 x

i
 + 2 p

x
  [ )1( −i

i
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j
iij
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ρ

ρ

 + 
)1(

'
'

−i

i

ii

j
iij
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ρ

ρ

]  =  Ii,  i = 1,2,3 

 
For special cases, we arrive at solutions with similar properties as before. 
 

. Other interesting formulations would allow for a different degree of substitution 

between the two composites, say: 
 

(81) Ui(x
i
, z

i
j, y

i
j, z

i
j’, y

i
j’)  =  A (a

i
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ix ρ  + (1 - a
i
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 ij

i

ijij j
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j
iij ybzb λ

θ
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])1([ −+  + a
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i
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j
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θ
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θ
ρ
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ρ
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i
, a

ij
, a

ij’
, b

ij
, b

ij’
 < 1,  a

ij
 + a

ij’
 = 1,  ρ

i
, θ

i
, λ

ij
, λ

ij’
 ≤ 1  

 
FOC require: 
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(82) 
i
x

i
z

U

U
k   = (1 - a

i
) 

)1(

)1(1

])1([
−

−−

−+
i

ikik

i

ikik

ii

k
i

k
iik

k
iikikik

xa
zybzbba

ρ

λλ
θ

λλ

  

  {a
ij
 ij

i

ijij j
iij

j
iij ybzb λ

θ
λλ

])1([ −+  + a
ij’

 ''' ])1([ '
'

'
'

ij

i

ijij j
iij

j
iij ybzb λ

θ
λλ

−+ }
1−

i

i

θ
ρ

 = 
x

j
iz

p
tp +  

and 
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Monogamous family formation can then be adequately modeled with reference to 

the threshold value of θ
i
 = 1 or larger – representing taste for unicity…  

In the limiting case where θ
i
 tends to + ∞, {a

ij
 ij

i

ijij j
iij

j
iij ybzb λ

θ
λλ

])1([ −+  + (1 – a
ij
) 

''' ])1([ '
'

'
'

ij

i

ijij j
iij

j
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θ
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−+ } iθ
1

 tends to Max{ ijijij j
iij

j
iij ybzb λλλ

1

])1([ −+ , 

'''

1

'
'

'
' ])1([ ijijij j

iij
j

iij ybzb λλλ
−+ } – note that Min(x, y, z) = Max(x-1, y-1, z-1)-1 as well as Min(x-1, 

y-1, z-1)-1 = Max(x, y, z) and use the fact that the CES tends to Leontief - and only pair-wise 
connections are formed. (Provided that SOC can still apply). Let us then consider such 
limiting case. 

With three individual types, only 1 pair will be formed, let us say i and j. Then: 
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or 
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j’ either may consume only x, and x
j’
 = 

x

j

p
I '

 - that occurring if ρ
j’
 is large (certainly 

larger than 0). Or, he will pay his connections to only one of the other k’s – either to i or to j, 
for whom the marginal utility of consumption of joint goods with j’ is 0 - in full so that: 
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and 
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His budget constraint becomes: 
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An equilibrium may then arise in which any of the three individuals pays its 
connections in full to one and only one individual, “free-riding” on the connections with 
other(s) – eventually, with an individual not paying.  

In sum, with taste for unicity, a mating equilibrium mechanism must additionally 

arise… 
 
Consider λ

ik
 = ρ

i
. Then, for the pair i j, we fall back into 
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Budget constraints require for the pair i,j: 
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Let reciprocity of some sort require b

ij
 = (1 – b

ji
). The traits of the general solution 

of (49) but now for two agents only are recovered. 
For single payers: 
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If we allow for agent multiplicity, interior pairs can be formed only. Monogamy 

would be the rule against polygamy with perfect taste for unicity. Now, mating assorting can 

be studied not through interior consumption – z
i
j and y

i
j, more adequately qualifying 

“matching” -, but from corner solutions patterns – inspecting indirect utility functions 
properties. 

In the symmetric preferences, Cobb-Douglas case (ρ
i
 = 0) for a (mated) individual i: 
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 p
x
 x

i
 + 2 p

x
 θ  xi = Ii 

 

where θ = 
i

iji

a

ba )1( −
. Marshallian demands, x

i
 and z

i
k = z

k
i, and indirect utility, 

v
i
k, of an individual i connected to individual k are given by: 
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Internalizing equilibrium price formation – now allowing for any given number of 

individuals in the economy, n, where each of them mates one and only one individual: 
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Given the special form of the utility function – the linearity of demands for the private 

good, with fixed (for all i) marginal increment, in 
x

i

p
I  (and independence of mate’s income – 

even if linearity with fixed marginal increment also in the latter would imply the same result) -, 
the relative full price level is independent of resource distribution. Also due to the uniformity of 
the direct utility functions, it is also independent of the particular mating arrangement that 
should come to develop in the economy.  

Nevertheless, out of similar special cases, mating dynamics are expected to 
feedback to it. 
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V. Assortative Mating and Transferability. 
V.1. Introduction.  

 
In this section, we are going to suggest some of the expected mating arrangements in 

an economy where individual i (i = 1,2,…, n) possesses utility potential v
i
k(Ii, Ik), where Ii(k) 

is i(k)’s income, if paired with k≠ i, and the equilibrium devices involved in its determination. 

Obviously, v
i
k(Ii, Ik) may represent an indirect utility function of individual i arising from a 

direct utility function exhibiting taste-for-unicity and an optimization involving shared-
consumption – say, such as (96). 

We will further assume that v
i
k(Ii, Ik) = v

i
(Ii, Ik), all k and i, that the same general 

indirect utility function form applies for all potential mates, only differing and increasing in their 

income level – i.e., 
k

ki
i

I
IIv

∂
∂ ),( > 0 for all i, k, and all the individuals I - with the first sub-index 

i left in the indirect utility function just to indicate the individual to which it belongs to. This is a 
simplifying assumption 15: we might as well just require that any potential mate k is preference 
ordered – ranked – similarly by any i in the economy. 

Everybody wants to mate with the highest income. He can just mate one 
individual… as also the second lowest income: mating types will constitute a relatively scarce 
resource, the usual setting under which pricing systems naturally develop. But for pricing to 
occur, one must be able to pay in some other resource – i.e., to trade. Given the context - 

v
i
(Ii, Ik) -, a plausible “numeraire” would then be income Ii16. Another, often encountered in 

the family economics literature, is utility – utility units – itself: utility is then invoked to be 
transferable between the couple.  

If neither utility nor endowments (income…) are transferable – individuals “must” 

obtain utility according to v
i
(Ii, Ik), because 

k
i

I
v

∂
∂ > 0 for all i, - more generally,  because the 

ranking of potential mates in the economy is uniform -, we expect positive assortative mating 
in the economy: higher income (more highly preferred as mate) individuals will cluster together 

starting at the highest level.  
In other cases, different assignments may be generated. Some contexts have been 

thoroughly studied in the literature, namely, transferable utilities – see Legros and Newman 
(2002) for recent references. However, not all cases; and when efficiency was analyzed, 

                                        
15 Form (96) obeys it due to the uniformity of direct preferences in the economy of the special 

case… 
16 We might as well consider one of the two endowments… We are assuming that any of them can. 
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connection with the implicit supporting price system was missing. We therefore proceed to 

both. 
 

V.2. Transferable Utilities. 
 

. One can find in Becker (1973) a proof that, in the presence of transferable 
utilities, positive (negative) assortative mating is optimal in the sense that it maximizes the sum 
of individuals’ utilities, positively dependent on the income of each of the individuals forming a 

pair, iff 
ki

i

II
v
∂∂

∂2

 > (<) 0. The condition was later generalized to the requirement of super (sub) 

modularity – see for instance, Legros and Newman (2002) for a definition. In this sub-section, 

we provide an intuition (an alternative proof) for the result, when 
k
i

I
v

∂
∂  > 0 for all i, after 

characterizing a first-order condition principle for efficient matching and relate it to the 
supporting (general equilibrium) pricing system. We further digress on the spontaneous mating 
arrangement arising when matching pairs are formed with individuals of distinct groups. 

 

. The marginal benefit obtained by individual i, with income Ii, by mating with 

individual k of income Ik, call it d
i
k, is the utility gain he obtains by mating with k instead of 

with the individual k-1 when potential mates are ordered by ascending order of income. I.e.: 
 

(102) d
i
k  =  v

i
(Ii, Ik) - v

i
(Ii, Ik-1) 

 
In a decentralized economy, mating changes are expected to occur till equality of the 

marginal benefit of the match – the price (in utility units) that individuals would pay for the last 
match improvement - across the economy, i.e., for all the i’s that mated; in the optimal 

assignment scheme: 
 

(103) d
i
k* = v

i
(Ii, Ik*) - v

i
(Ii, Ik*-1) = p

MF
  ,   i = 1,2,…, n 

 
Such rule would stem from first-order conditions for efficiency – characterized more 

generally in V.5 -, i.e., maximization of ∑
=

n

i

ki
i IIv

1

* ),( , which, at given individual income 

levels and in the presence utility transferability would appear as the natural maximand: the 

couple formed by i has joint utility maximized for (n/2-1) given levels of sum of couple utilities 
we assign to other couples. 



 

- 39 - 

. Let then the n individuals that are mated be ordered ascendingly according to their 

own income level, i (k) = 1,2…,n. Then, i pays a “net” dowry 17 to k*: 
 

(104) D
i
k* = p

MF
 (r

k*
 – r

i
) ≈ p

MF
 (k* – i) 

 
where r

i
 (r

k
) 18 represents the rank order of individual i (k) by individual k (i)’s 

preferences – and of all individuals above k (i). I.e., i obtains “net-of-transfers” utility:  

 

(105)  v
i
k* = v

i
(Ii, Ik*) - D

i
k* = v

i
(Ii, Ik*) - p

MF
 (k* – i) 

 
in the optimal match in which he is paired with k*, the one chosen to operate utility 

transfers with. The equalization of the marginal benefit of mating with k to the ranking points 

price arises naturally from FOC of the discrete choice problem facing i of determining the k 

that maximizes vi
k = v

i
(Ii, Ik) - p

MF
 (k – i) – once i, i cannot change…. v

i
k* + v

k*
i = v

i
(Ii, 

Ik*) + v
k
(Ik, Ii*), all i,k*, and therefore transfers are confined to each pair. 

p
MF

 is the price of the income ranking points in the economy for matching purposes. 

Those points are attributed according to a classification that ranges from 1 to n 19, (i.e., even 
if there is income replication, in which case the rank of equally endowed individuals could be 

                                        
17 See Botticini and Siow (2003) for a recent overview of other rationales for dowries and bequests. 
18 They can just slightly differ from i (k) – at most, i - ri = 1, k - rk = 1 -, because one cannot mate 

with oneself… 
19 This preference ordering – quantifying quality – of the match with each individual, k, must be 

uniformly accepted and agreed upon in the economy – be independent of i - for the price system 

(competition or market for ranking points – discrete quantities, but nevertheless aggregatable quantities) 
to work. If not, and ij is the preference ordering assessment of individual i by individual j in a scale of 1 

(least preferred) to n-1 (most preferred) – so that i is endowed or rated with ∑
≠
=

n

ij
j

ji
1

 points, uniquely 

appreciated by everybody -, one would speculate that an equilibrium condition could require [v
i
(i, k) – v

i
(i, 

k-1)] / [∑
≠
=

n

kj
j

jk
1

 - ∑
−≠

=

−
n

kj
j

jk
1

1

)1( ] = p to be constant in the optimal assignment, where k is i’s pair – v
i
(i,k) 

i’s utility when paired with k -, (k-1) his next preference, and p the price of all ranking points in the market – 

n ∑
−

=

1

1

n

i

i  = (n-1) n2 / 2 - with Di
k = p  (∑

≠
=

n

kj
j

jk
1

 - ∑
≠
=

n

ij
j

ji
1

). 
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the mid-rank of the individuals in the category) where n is the number of individuals that were 

paired, discrete 20 and consecutive if all incomes differ. Such pricing scheme occurs, or is 
due, because unicity is required at the utility level – matching with j has the opportunity cost of 
not being available to match with somebody else. 

In equilibrium, for individuals that were not mated by the matching market (that 

stayed outside the group of the n mated ones – i.e., such n is, or are, endogenous), it must be 
the case that for unmatched j’s either: 

 

(106) d
j
1* = v

j
(Ij, I1*) - v

j
(Ij, 0) < p

MF
  ,   j = n + 1, n + 2,… 

 

where I1* is the lowest income of the paired individuals. While the reverse is 
occurring – as in any market -, there is excess demand for matching and p

MF
 will be 

increasing while additional matches are being arranged, process that becomes complete only 

when equality holds - because of discreteness, till d
i
k+1* < p

MF
 ≤ d

i
k* - for all the (some…) 

n mated partners. 

Or the closest mated income to the (an) excluded j, say j+1*, is mated with 
someone – k* - that would not change it for j. That is: 

 

(107) d
k
j-1* = v

k
(Ik*, Ij) - v

k
(Ik*, Ij-1*) < p

MF
  ,   j = n + 1, n + 2,… 

 

(106) would apply when lower incomes are not mated – arising with positive 
assortative mating; (107) when middle incomes are not mated, expected with negative 
assortative mating. 

 

. For the resulting arrangement to be optimal for individual i – for him to achieve the 
maximum and not the minimum utility with marginal benefit to price equalization -, one requires 

the marginal benefit to be decreasing in the match, i.e., d
i
k* - d

i
k*-1 = v

i
(Ii, Ik*) - v

i
(Ii, Ik*-

1) – [v
i
(Ii, Ik-1*) - v

i
(Ii, Ik*-2)] < 0 – where k* -2 is the next best match to (before income) 

                                        
20 The price will be that of a discrete ranking of potential partners, not of their income: what is as 

stake is a discrete location over a set of ordered alternatives. Of course, the income magnitude affects the 

equilibrium price but through its effect on utility levels. 
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k* - 1. This is satisfied if 
2

2

k

i

I

v

∂

∂  < 0 21 and existing income levels in the economy are equally 

spaced. 
 

. Now, for d
i
k* to be constant in the economy, Ii and the income of the pair, Ik*, 

must change or relate according to (or close…) - differentiating (103): 

 

(108) 
i

k
i

I
d

∂
∂  dIi + 

*k

k
i

I
d

∂
∂  dIk* + 

*k

k
i

I
d

∂
∂  dIk*-1 = [

i

ki
i

I
IIv

∂
∂ ),( *

 - 

i

ki
i

I
IIv

∂
∂ − ),( 1*

] dIi + 
k

ki
i

I
IIv

∂
∂ ),( *

 dIk* - 
k

ki
i

I
IIv

∂
∂ − ),( 1*

 dIk*-1  =  0 

 
Assume that income levels are equally or uniformly spaced in the economy so that 

dIk* = dIk*-1. Then: 

 

(109) [
i

ki
i

I
IIv

∂
∂ ),( *

 - 
i

ki
i

I
IIv

∂
∂ − ),( 1*

] dIi  =  - [
*

*),(
k

ki
i

I
IIv

∂
∂  - 

1*

1* ),(
−

−

∂
∂

k

ki
i

I
IIv ] dIk* 

 

Approximately, 
i

ki
i

I
IIv

∂
∂ ),( *

 - 
i

ki
i

I
IIv

∂
∂ − ),( 1*

 ≈ (Ik* – Ik*-1) 
ki

ki
i

II
IIv

∂∂
∂ ),( *2

 and 

[
*

* ),(
k

ki
i

I
IIv

∂
∂  - 

1*

1* ),(
−

−

∂
∂

k

ki
i

I
IIv ] ≈ - (Ik* – Ik*-1) 

2

*2 ),(
k

ki
i

I

IIv

∂

∂ . Then we expect the 

assignment in the economy to exhibit: 
 

(110) 
ki

ki
i

II
IIv

∂∂
∂ ),( *2

 dIi  =  - 
2

*2 ),(
k

ki
i

I

IIv

∂

∂  dIk*  

 

If 
2

*2 ),(
k

ki
i

I

IIv

∂

∂  < 0 (required by SOC for maximum benefit), then 
i

k

dI
dI *

 > 0 and 

we register positive assortative mating – as income rises, so does that of the partner – iff 

ki

ki
i

II
IIv

∂∂
∂ ),( *2

 > 0. 
i

k

dI
dI *

 < 0 and we register negative assortative mating – as income rises, 

that of the partner tends to decrease – iff 
ki

ki
i

II
IIv

∂∂
∂ ),( *2

 < 0. 

                                        
21 As in conventional continuous optimization, non-convexities – e.g., increasing returns to scale – 

may generate equilibrium failure, as well as validity of interior FOC of the efficient allocation solution. 
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Similar conclusions would be obtained if we reasoned with the marginal loss from 

accepting k* instead of the next upper income, l
i
k* = v

i
(Ii, Ik*+1) - v

i
(Ii, Ik*) = constant, i = 

1,2,…, n. Provided 
2

2

k

i

I

v

∂

∂  < 0 and income is evenly spaced, l
i
k* < d

i
k*. 

 

. If 
2

*2 ),(
k

ki
i

I

IIv

∂

∂  > 0, marginal benefit equalization leads to minimum individual 

(and, thus, aggregate) utility; such minimization would be consistent with assignments such that 

i

k

dI
dI *

 < 0, i.e., negative (positive) assortative mating, iff 
ki

i

II
v
∂∂

∂2

 > (<) 0. But, when SOC fail, 

the marginal equalization principle – and the law of one price – fails: demands for match 

ranking points are no longer negatively sloped. Then, one would expect that if 
ki

ki
i

II
IIv

∂∂
∂ ),( *2

 > 

0, a match with simultaneously high income of partners generates a higher utility surplus, 
transferable within the couple, and there would be positive assortative mating; with 

ki

ki
i

II
IIv

∂∂
∂ ),( *2

 < 0, a match with dissimilar income levels would; i.e., we always (still) expect - 

because utility is transferable - the equilibrium assignment to be the optimal aggregate one. 
But the failure of the market match price equalization would confer bargaining power within 
some range to individuals within each pair – and lead to multiple possible arrangements of 

effective transfers occurring within the couple, eventually colliding with the optimality 
conditions generating the indirect utility functions... 

A numerical illustration of the marginal benefit (and loss) principle is presented in the 
Appendix. 

 
. Admit that mating can only occur between an individual of group M (males, 

1,2,…, n
A

) and another of group F (females, n
A

+1, n
A

+2, …, n). One could think that 

different prices could be formed for rankings of each group, say p
M

 for ranking points of 

males – equalized to the marginal benefit that individuals of group F are deriving from mating 
with those of group M - and p

F
 for those of females - the marginal benefit that males are 

deriving from mating with females 22. An individual of group M (i = 1,2,…, Min(n
M

, n
F
), 

ordered ascendingly by income on group M, where Min(n
M

, n
F
) are individuals that end-up 

effectively mated) would pay to an individual of group F (k = 1,2,…, Min(n
M

, n
F
), ordered 

ascendingly by income on group F) a net transfer D
i
k* = p

F
 k* – p

M
 i, i = 1,2,…, Min(n

M
, 

                                        
22 As equalization of marginal benefit for each group equalizes, cross-derivative correspondence 

with the sign of sorting is still be valid. 
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n
F
); k = 1,2,..., Min(n

M
, n

F
); consistently, an individual of group F (k = 1,2,…, Min(n

M
, n

F
)) 

would pay to an individual of group M (i = 1,2,…, Min(n
M

, n
F
)) a net transfer D

k
i* = p

M
 i* 

– p
F
 k, k = 1,2,..., Min(n

M
, n

F
); i = 1,2,…, Min(n

M
, n

F
); the individual of each group would 

equalize his marginal benefit to the price of the ranking points of the other group. Yet, 
equilibrium would not yet be defined, once it requires additionally an overall appraisal of the 
two groups relative income availability. Moreover, interpersonal comparison with the own 
group rankings end up by being made indirectly, which is not accounted for by that pricing 

system.  
One would therefore speculate that the previous – uniform pricing - rule still applies, 

with marginal benefit and ranking order of individuals – unique and uniquely priced - being 
calculated as if one could also mate with people of the own group; the equilibrium price of 

ranking points now adjusts till k* belongs to the opposite group. Or that, under group-specific 

rankings, p
M

 (p
M

 ∑
∈
=

),(

1

*
FM nnMin

Fi
i

k ) and p
F
 (p

F
 ∑

∈
=

),(

1

*
FM nnMin

Mi
i

k ) will approximate: the marginal benefit of 

a mate in the economy – the price of ranking points for matching purposes - would attempt to 
equalize. 

Under unbalanced groups, the last rule may, again not be sufficient. If there is: 

- positive assortative mating: prices should guarantee that d
j
1* = v

j
(Ij, I1*) - v

j
(Ij, 0) 

< p
F
 if n

A
 > n-n

A
 and only n-n

A
 M’s are mated; to d

j’
1* = v

j’
(Ij’, I1*) – v

j’
(Ij’, 0) < p

M
 if 

n
A

 < n-n
A

 and only n
A

 F’s are mated – with 1* the lowest income mated of the other group - 

for individuals j (of M), j’ (of F) not mated (that preferred not to match in the optimal 
assignment) of each group. Given the positive sorting, low income levels are expected to be 

excluded, and the highest excluded income qualifies the relevant marginal unmated individual, j 
or j’. And due to the evolution of marginal benefit, the price approximation rule may be 
sufficient. 

- negative assortative mating: prices will go up till – guarantee that - d
i
k* = v

j
(Ii*, Ij) 

- v
j
(Ii*, Ik*) < p

M
 if n

A
 > n-n

A
 and only n-n

A
 M’s are mated; to d

i
k* = v

j
(Ii*, Ij’) – v

j’
(Ii*, 

Ik*) < p
F
 if n

A
 < n-n

A
 and only n

A
 F’s are mated – with i* the individual mated with next 

lowest income relative to the excluded (not mated) individuals j (of M), j’ (of F) of each 

group. Given the negative assorting, middle income levels are expected to be excluded, and 
the lowest excluded income qualifies the relevant marginal unmated individual, j or j’, j or j’. 

With positive assortative mating, the effective transfer between the pairs in a couple 
tends to 0. Yet, the ranking points price system must be at least latent – insuring (provided 

SOC hold) equalization of the marginal benefit across the economy and not other (non-
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optimal in the presence of utility transferability) mating rule. With negative assortative mating, 

non-negligible transfers effectively occur between pairs. 
 

V.3. Transferable Income. 
 

If utility is not transferable across individuals but income is, one could advance that 

the marginal benefit equated across individuals would be measured in income terms, i.e., d’
i
k 

such that 23: 
 

(111) v
i
(Ii - D’

i
k*-1 - d’

i
k, Ik* + D’

i
k*-1 + d’

i
k)  =  v

i
(Ii - D’

i
k*-1, Ik*-1 + 

D’
i
k*-1) 

 

that is: 
 

(112) v
i
[Ii – (k* - i) p

MF
, Ik* + (k* - i) p

MF
]  =  v

i
[Ii - (k* - 1 - i) p

MF
, Ik*-1 + 

(k* - 1 - i) p
MF

] 

 

Individual i chooses k maximizing v
i
[Ii – (k - i) p

MF
, Ik + (k - i) p

MF
], which would 

generate FOC implying that the difference between the left and right hand-sides of (112) – the 
marginal net-of-cost benefit - approaches zero. 

p
MF

 is now a price measured in income units and D’
i
k* deducted to the individual 

i’s own resources. It reflects the fact that a couple’s budget constraints or resources can be 
pooled, and it incorporates a measure of the strength of the individual in the household 

allocation decision. 
Using Taylor’s expansion to the first order we can (grossly…) approximate: 
 

(113) d’
i
k*  ≈  

k

ki
i

i

ki
i

ki
i

ki
i

I
IIv

I
IIv

IIvIIv

∂
∂

−
∂

∂
− −

),(),(
),(),(
**

1**

  ≈   

                                        
23 These are also the expected market features if both utility and income are transferable, provided 

that vi(I
i, Ik) is quasi-concave in the two arguments: i chooses k* by making the derivative of vi(I

i, Ik) with 

respect to k* – the difference between the left and right-hand side terms of each of the expressions – equal 

to zero. 
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   ≈   

k

ki
i

i

ki
i

ki
i

I
IIv

I
IIv

IIv

∂
∂−

∂
∂ ),(),(

),(
**

*

 - 

k

ki
i

i

ki
i

ki
i

I
IIv

I
IIv

IIv

∂
∂−

∂
∂ −−

−

),(),(
),(

1*1*

1*

  =  p
MF

 

 
Then, for adequate conclusions on mating one would advance that if the function 24 

 

(114) v’
i
(Ii, Ik) = 

k

ki
i

i

ki
i

ki
i

I
IIv

I
IIv

IIv

∂
∂−

∂
∂ ),(),(

),(
**

*

   

 

- that evaluates i’s utility in terms of income units, positively related to Ik iff 

k

ki
i

I
IIv

∂
∂ ),( *

 > v’
i
(Ii,  Ik)  [

ki

ki
i

II
IIv

∂∂
∂ ),( *2

 - 
2

*2 ),(
k

ki
i

I

IIv

∂

∂ ] (provided that 
i

ki
i

I
IIv

∂
∂ ),( *

 > 

k

ki
i

I
IIv

∂
∂ ),( *

) - is concave in Ik, 
i

k

dI
dI *

 > (<) 0 and we register positive (negative) assortative 

mating iff 
ki

ki
i

II
IIv

∂∂
∂ ),(' *2

 > (<) 0.  

 
V.4. Absence of Transferability. 

 
If neither utility nor income are transferable, we may speculate that willingness to 

form a pair will still be ruled by the previous mechanism – a matching market. Yet, the 
equilibrium is going to press the actual transfer between individuals of each couple to zero - 

not to equalization of marginal benefit, but of its product by the couple ratings differential to 
zero, i.e.: 

 

(115) D
i
k* = [v

i
(Ii, Ik*) - v

i
(Ii, Ik*-1)] (k* - i) = 0  ,   i = 1,2,…, n 

 

Positive assortative mating is then always expected – the absolute value of (k* - i) 
being minimized: 

 
(116) k* ≈ i  ,   i = 1,2,…, n 25 

                                        
24 v’i(I

i, Ik) can be seen as inversely related to “boldness” – see Aumann and Kurz (1977) -, the 

semi-elasticity of the utility with respect to the argument; here, the denominator is deducted from the 

compensating effect through the partner’s income. 
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as forwarded in the beginning of the section. 
Here, n would include all individuals. If there are two groups, then rankings (here 

exogenous and fixed…) go from 1 to n for the largest group, from the difference in elements 
between the two groups plus 1 to n for the smallest. 

Without transferability of any sort, such equilibrium is efficient as well.  
 

V.5. The Efficient Allocation. 
 

Some final appraisal on mating efficiency can be forwarded. Firstly, none of the 
conditions qualifies social efficiency: this requires a social welfare function and also some 
redistribution possibilities over utility, its arguments or through match dictation… With 
transferable utility, a Benthamite – maximizing sum of individuals’ utilities 26 – optimization 

criterion does not guarantee a social optimum for all possible welfare functions either: the 
transfer dictated by the latter, not by the Benthamite one, would also have to effectively take 
place afterwards…  

Also, never do we expect to approach a pure Benthamite result: the transfers occur 

only between members of a couple. On the one hand, the maximization rule of the sum of 
utilities invoked before applies only to the transferable utility case, and on the other, refers to 
the sum of “indirect” utilities... 

An efficient allocation with monogamous matching and transferable utilities – through 

mating but not other - can be linked to a problem of type (8), for monogamous utility 
functions, with (8) replaced by 

jlkzxzx l
jj

j
ii

Max
,,,,,,

)y ,z ,(xU)y ,z ,(xU i
k

i
kk

kk
i

k
ii

i +  and (8a) by 

Uj(x
j
, z

j
l, y

j
l) + Ul(x

l
, z

l
j, y

l
j) ≥ j

U  + l
U  = jl

U ' , j ≠ i,k,l j,l = 1, 2, …, n (and j with l only); 

                                                                                                              
25 If v

i
(i,k) is i’s utility when paired with k and ij is the preference ordering assessment of individual 

i by individual j – in a scale of 1 (least preferred) to n –1 (most preferred) -, one can adventure a simple 

algorithm that under non-transferable utilities would join i and k such that ∑
≠
=

n

ij
j

ji
1

 ≈ ∑
≠
=

n

kj
j

jk
1

, i,k = 1,2…,n - 

that is, minimizing the average absolute distance between the rankings in each duo (provided all i’s are 

considered acceptable to k and vice-versa – i.e., with unacceptability to j of partner i, the algorithm should 
be so constrained, and possibly allow ij to be 0 for such cases, and j choose ij in the scale of 1 to the 

number of acceptable choices to him/her out of the total individuals minus 1 – of the maximum individuals 
in each group, n, if one cannot match with the same group, for which ij would start at the difference plus 1.) 

See Gale and Shapley (1962) and Roth (1984) on optimal assignment. 
26 Which, in any case, it is not our general implicit criterion – only for matching purposes… 
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or in a more complex formulation, with (8) replaced by 
ljkl

jj
j

ii UUUjlkzxzx
Max

,,,,,,,,,
)y ,z ,(xU k

i
k
ii

i + 

k
U  and added of j

U  + l
U  ≥ jl

U ' , jl = 1, 2, …, n/2-1. Or yet, (8) is replaced by 

jlkwwzxwwzx lj
l
jjki

j
ii

Max
,,),(,,),(,, −−

 )y ,z ,(xU k
i

k
ii

i + (w
i
 – w

k
) and (8a) by Uj(x

j
, z

j
l, y

j
l) + (w

j
 – w

l
) ≥ 

j
U  j ≠ i, j = 1, 2, …, n: transfers are adjustable to provide optimal partnership well-being. 

Without transferability, (8) is just replaced by 
jlkzxzx l

jj
j

ii

Max
,,,,,,

)y ,z ,(xU k
i

k
ii

i .  

With transferable endowments to a mate – but not other nor utility -, given that the 
shared good must be consumed at the same level for both partners but not the other, we 
hypothesise that (8) becomes 

jlkwwzxwwzx lj
l
jjki

j
ii

Max
,,),(,,),(,, −−

 )y ,z ,w-w(xU k
i

k
ikii

i +  and (8a) 

Uj(x
j
+w

j
-w

l
, z

j
l, y

j
l) ≥ j

U  j ≠ i, j = 1, 2, …, n: income transferability between partners allows 

any allocations x
i
 + x

j
 = x

i
* + x

j
* where the latter are the solution found for two partners i and 

j – then, transfers are adjustable to provide optimal partnership well-being. (Of course, for 

appropriate j
U ’s, the problem applying to the no transferability case, 

jlkzxzx l
jj

j
ii

Max
,,,,,,

)y ,z ,(xU k
i

k
ii

i , generates the same solution as that of the current paragraph.)   

Transferability of both endowments and utility between individuals in a pair would 

imply replacing (8) by 
jlkzxzx l

jj
j

ii

Max
,,,,,,

)y ,z ,(xU)y ,z ,(xU i
k

i
kk

kk
i

k
ii

i +  and (8a) by Uj(x
j
, z

j
l, y

j
l) 

+ Ul(x
l
, z

l
j, y

l
j) ≥ jl

U ' , j ≠ i,k,l j,l = 1, 2, …, n (and j with l only): no definition of individual 

utility levels would be supplied… 

As noted in section II, the Samuelson condition is expected to hold in any of the 
efficient allocations. 

 
V.6. Cobb-Douglas Preferences: An Example. 

 

. We can apply the previous rules to our utility function 27. Using (95), 
ki

k
i

II
z
∂∂

∂2

 = 0 

– there will be no assortative “matching” – nor positive, nor negative; but the qualification 

relies here on the interpretation of the cross effect only on the level of z
i
k (per couple). To 

conclude about couple formation, one must rely on the indirect utility function properties: 

From (96), 
k
i

I
v

∂
∂  = µi

 (1 – a
i
) v
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ki II +
 > 0; 

2
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∂

∂  = µi
 (1 – a

i
) [µi

 (1 – a
i
) - 1] 
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2)(
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ki II +
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II
v
∂∂

∂ 2
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 (1 – a

i
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i
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k
ii

III
IIa

2)(
)1(

+
−+ µµ  > 0 iff kI  > i

ii

i I
aµ
µ−1 , 

                                        
27 See Becker (1973), p. 826 and 841, and Lam (1988).  
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positive assortative “mating” is expected if the direct utility function exhibits constant or 

increasing returns to scale – and utility is transferable across individuals. 
An individual of any type will prefer to mate an individual with higher income – a 

higher v
i
k. If µ

i
 ≥ 1 (IRS or CRS), there will be correspondence; then linkages will sort 

themselves by decreasing income levels. With DRS, if in the economy, for any i,k, iI  > 
k

i

ii I
a
µ

µ
−1

, negative assorting can occur – with strongly decreasing returns to scale and a low 

relative preference for the individual private good; if the reverse happens, we still observe 
positive assorting in couple formation. 

In sum, with non-decreasing returns to scale, “doubly-good” marriages will be 

popular - but these not necessarily longer or with more children (not involving higher z
i
k’s) 

than just a couple’s pooled income implies – because 
ki

k
i

II
z
∂∂

∂2

 = 0… 

. If utility is not transferable but income is, the mating qualification would rely on the 

cross effects over the function: 
 

(117) v’
i
(Ii, Ik) = 

k

ki
i

i

ki
i

ki
i

I
IIv

I
IIv

IIv

∂
∂−

∂
∂ ),(),(

),(  =  µ
i
-1 a

i
-1 Ii   

 

i
i

I
v

∂
∂ '  = µ

i
-1 a

i
-1 > 0 (

i
i

I
v

∂
∂ '  = 0) and 

ki
i

II
v
∂∂

∂ '2

 = 0: with non-transferable utility and 

transferable income, no assortative mating is expected. 
 

V.7. Final Discussion. 
 
. Congestion of linkages – say, a fixed number of linkages – would also generate a 

ranking market. Say r links are supported by each individual and indirect utilities are of the 

form v
i
(Ii, Ik1, Ik2, …, Ikr) and utility is transferable; it is possible that, with Iki* ordered 

ascendingly, that the equilibrium will imply that for all individuals (and one relevant group) v
i
(Ii, 

Ik1*, Ik2*, …, Ikr*) - v
i
(Ii, Ik1*-1, Ik2*, …, Ikr-1*, Ikr) = p = constant – i solves 

rr kkkk
Max

,,..., 121 −

 

v
i
(Ii, Ik1, Ik2, …, Ikr) + p r i – p k

1
 – p k

2
 - … - p k

r
 -, where Ik1*-1 is the income of the 

highest income lower to Ik1.  
 

. Illustrating special arrangements, some of social others of engineering interest: 
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Case A. Group Formation.       1        2                 3 

z
1
3 = y

1
3 = 0 and z

3
1 = y

3
1 = 0; z

2
3 = y

2
3 = 0 and z

3
2 = y

3
2 = 0 

Links between 1 (2) and 3 are too expensive. Such case may arise either due to 3’s 
utility function valuing less communication (z’s and y’s) than the others; or by either 1 and 2’s 
(or all…) utility functions embedding strong substitutability between links with different 

individuals (between z
i
j and z

i
j’; z

i
j and y

i
j’; and between y

i
j and y

i
j’; y

i
j and z

i
j’), but not with 

the same (i.e., not between z
i
j and y

i
j; nor z

i
j’ and y

i
j’). 

 

Case B. Transit Sequence.       1        2        3 

z
1
3 = y

1
3 = 0 and z

3
1 = y

3
1 = 0. 

If utility is related to distance – and 1 and 3 are more distant than 2 is to either 1 or 
3 – a transit sequence appears. 

 

Case C. One-Way Transit Sequence.       1        2        3 

z
1
3 = y

1
3 = 0 and z

3
1 = y

3
1 = 0; z

2
1 = y

2
1 = 0; z

3
2 = y

3
2 = 0 

This case may also suggest a multiple layer hierarchy. 
 
Case D. Hierarchic Sequence.            1   

 
 2    3 

z
1
2 = y

1
2 = 0; z

1
3 = y

1
3 = 0; z

2
3 = y

2
3 = 0 and z

3
2 = y

3
2 = 0 

Attention of 1 seems more important than that of all other individuals. Notice that it 
may mean that equilibrium specific-transfers obtained from 1 are relatively higher in 

equilibrium. 
 
Case E. Emission Sequence.              1   
 

 2    3 

z
2
1 = y

2
1 = 0; z

3
1 = y

3
1 = 0; z

2
3 = y

2
3 = 0 and z

3
2 = y

3
2 = 0 

1 may be an advertising point. Or, in a hierarchic chain, it has a leading role with 
respect to the purchase of (decisions over) z. 

 

Case F. One-Way Circular Sequence.            1   
 
 2    3 
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z
2
1 = y

2
1 = 0; z

2
3 = y

2
3 = 0; z

1
3 = y

1
3 = 0 
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VI. Public Good vs. Shared Good.  
 
In this section, we inspect the case where the externality is extended to more than 

one consumer, even if to a fixed number: if the number is not fixed, we would fall under a 
typical club good case. There will be an efficient allocation but the market may no longer 

insure its attainment... 
Assume then that each z is in fact consumed by the whole economy. z

i
j  =  y

j
i = y

j
. 

Then each z
i
j – as y

j
 - is replicated among the n consumers. Let us then admit it is unique or 

uniform. i’s utility takes the form 
 

(118) Ui(x
i
, z

i
, y

1
, y

2
, … , y

i-1
, y

i+1
,…, y

n
)      

 

We will denote it by Ui(x
i
, z

i
, y

-i
). I obtains utility from the private good, x

i
, from its 

own purchases of the public good, z
i
, and from the purchases other consumers make, y

j
, so 

that: 
 
(119) z

j
  =  y

j
  ,   j = 1, 2, …, n 

 
Of course, each z

i
 is then a conventional public good – we have n different public 

goods in the economy. A special case where a common (unique) public good is formed arises 

for Ui(x
i
, z

i
, y

1
, y

2
, … , y

i-1
, y

i+1
,…, y

n
) = Ui(x

i
, z

i
 + y

1
 + y

2
 + … + y

i-1
 + y

i+1
 +… + y

n
) 

with (119) holding. 

Assume (118) – with (119). An efficient allocation will be obtained from the 
problem: 

 

(120) 
jjjiii yzxyzx

Max
,,,,,

           Ui(x
i
, z

i
, y

-i
)      

s.t.:   (121)  Uj(x
j
, z

j
, y

-j
)  ≥  j

U  ,  j ≠ i, j = 1, 2, …, n 

(122) z
i
  =  y

i
  ,   i = 1, 2, …, n 

(123) ∑
=

n

i
ix

1

  ≤  ∑
=

n

i

i
xW

1

 

(124) ∑
=

n

i
iz

1

  ≤  ∑
=

n

i

i
zW

1

 

 
In lagrangean form, embedding (122): 
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(125)      
zxj

l
jj

j
ii zxzx

Max
µµλ ,,,,,,

   Ui(x
i
, z

i
, z

-i
) + ∑

=
≠

n

j
ij

j

1

λ  [ j
U  - Uj(x

j
, z

j
, z

-j
)] + 

 +  
xµ  (∑

=

n

i

i
xW

1

  -  ∑
=

n

i
ix

1

)  +  
zµ  (∑

=

n

i

i
zW

1

  -  ∑
=

n

i
iz

1

)    

 
Interior FOC require: 

 
(126) i

xU  - xµ   =  0  (1 equation) 

(127) - jλ  j
xU  - xµ   =  0  ,   j ≠ i, j = 1, 2, …, n  (n-1 eqs.) 

(128) i
zk

U  - ∑
=
≠

n

j
ij

j

1

λ  j
zk

U  - zµ   =  0  ,  k = 1, 2, …, n  (n equation) 

 

(126) and (127) imply (16) that still holds  
 

(129) jλ  =  - 
j

x

i
x

U
U ,   j ≠ i, j = 1, 2, …, n 

 
Replacing (129) in (128), and equating the two (and (126)) we obtain the familiar 

Samuelson condition(s):  
 

(130) ∑
=

n

j 1
j
x

j
z

U

U
i  (=  

i
x

z

U
µ ) = 

x

z

µ
µ  ,   i = 1, 2, …, n      (n equations) 

 
. Let us consider a price-cum-transfer system analogous to that of the call to 

decentralize that efficient solution. Each consumer i pays p
z
 for z

i
 and p

y
 per unit of y

j
, i.e., by 

z
j
, j ≠ i; he pays t

i
j, j ≠ i, to each of the other n-1 individuals for accepting his choice of z

i
 and 

receives t
j
i from each for per unit he accepts of their choice of z

j
. A typical budget constraint 

is then: 
 

(131)   p
x
 x

i
 + ∑

=
≠

+
n

j
ij

i
j

iz ztp
1

)(  + ∑
=
≠

−
n

j
ij

j
i
jy ztp

1

)(  = p
x
 W

x
i + p

z
’ W

z
i    

 
The lagrangean will take the form: 
 

(132)       
µ,, ii zx

Max   Ui(x
i
, z

i
, z

-i
)  +  
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 + µ  [p
x
 W

x
i + p

z
’ W

z
i  - p

x
 x

i
 - ∑

=
≠

+
n

j
ij

i
j

iz ztp

1

)(  - ∑
=
≠

−
n

j
ij

j
i
jy ztp

1

)( ] 

 

and FOC for i = 1,2,…, n: 
 
(133) i

xU  - µ  p
x
  =  0 

(134) i
zi

U  - µ  ∑
=
≠

+
n

j
ij

j
iz tp

1

)(   =  0   

(135) i
z j

U  - µ  )( i
jy tp −   =  0  ,   j ≠ i, j = 1, 2, …, n 

 
with the budget constraint. Then: 

(136) 
i
x

i
z

U

U
i  = 

x

n

j
ij

j
iz

p

tp ∑
=
≠

+

1  ,  i = 1, 2, …, n (1 eq. for each i) 

and 

(137) 
i
x

i
z

U

U
j  = 

x

i
jy

p
tp −

 ,   j ≠ i, j = 1, 2, …, n (n – 1 eqs. for each i) 

 

Equilibrium requires additionally: 
 
(138) p

z
’  =  p

z
 + (n – 1) p

y
   

(139) ∑
=

n

i
ix

1

  =  ∑
=

n

i

i
xW

1

 

(140) ∑
=

n

i
iz

1

  =  ∑
=

n

i

i
zW

1

 

 

A full price system can be derived: (136) and (137) and individual budget 
constraints generate n x (n + 1) equations that add to (138)-(140): n x (n + 1) + 3 equations 
with (the sum of budget constraints making) one of the last three redundant. We must generate 

2 n individual consumptions, and a vector price (
x

z

p
p ,

x

y

p

p
,

x

z

p
p ' ,

xp
t 2
1 , ... ,

x

n

p
t1 ,…,

x

n

p
t 2

,...,
x

n
n

p
t 1−

) 

– with n x (n – 1) + 3 elements, i.e., n (n + 1) + 3 unknowns. Again if we fix, 
x

z

p
p  or 

x

y

p

p
, a 

determined solution is obtained. 

 



  

- 54 - 

But if under one-to-one communication, replication of individuals of each type may 

insure competitive link-specific transfer price formation – we know who to charge what (even 
if we fix one price) given the actual transfer -, now, such possibility may no longer exist – and 
the natural spontaneity of the equilibrium breaks down… 

I.e., competitive decentralization requires – apart from absence of transaction costs 

– a smaller number of individuals types than the total number of individuals in the economy – 
and responsibility for each part of, or the common purchase to be assigned to someone – 
some type - in particular. With some agent heterogeneity, the final cost shares will be in line 
with marginal utilities. But – as is well-known - perfect information and type discrimination 

must then be insured. 
If i cannot veto – he does not directly obey (134) and, therefore, (136) - but 

authorities guarantee the (adequate) price ∑
=
≠

+
n

j
ij

j
iz tp

1

)(  for the unit of z
i
 and collect as a 

lump-sum Z
i
 = ∑

=
≠

−
n

j
ij

j
i
jy ztp

1

)(  from i, the efficient allocation is also insured ((136) becomes 

redundant) – but then not entirely through the market price system. 
 



 

- 55 - 

VII. Shared Inputs and Network Nodes Transfer Prices. 
 
. Network nodes are passing points. Then, we can admit that there will be reception 

and emission of a given amount that passes through i. Then let z
i
j denote reception from j and 

y
i
j emission to j; we have a multiproduct cost-function of each node: 

 

(141)    Ci(x
i
, z

i
1, z

i
2,…, z

i
i-1, z

i
i+1, ..., z

i
n, y

i
1, y

i
2,…, y

i
i-1, y

i
i+1, ..., y

i
n) 

  i = 1, 2, …, n 

 
There may be, for nodes that are only passing points, the additional restriction: 
 

(142) ∑
=
≠

n

j
ij

j
iz

1

  =  ∑
=
≠

n

j
ij

j
iy

1

         

 

We assume there are no such points. When ∑
=
≠

n

j
ij

j
iz

1

 < ∑
=
≠

n

j
ij

j
iy

1

, i is a net emitter, 

having connections with a group of outside users that on aggregate send more than they 
receive; and vice-versa. 

We want to determine the properties of an allocation which minimizes aggregate cost 

over the n nodes while guaranteeing a total distribution of ∑
=

n

i

i
zW

1

 a fixed level of 

homogeneous output, ∑
=

n

i

i
xW

1

. Or that maximizes ∑
=
≠

n

j
ij

j
iz

1

 subject to minimum costs for j i and 

∑
=

n

i

i
xW

1

 restrictions. 

Let z
i
j denote quantity of demand of transportation from node i to node j and y

i
j 

transportation from node j to node i. p
z
 is the price of a unit distance transportation cost, 

linkage formation would possibly require: 
 

p
x
 ∑

=

n

i
ix

1

 + p
z
 ∑

=
≠

n

j
ij

j
iz

1

 + p
y
 ∑

=
≠

n

j
ij

j
iy

1

 - ∑
=

n

i 1

 Ci(x
i
, z

i
1, z

i
2,…, z

i
i-1, z

i
i+1, ..., z

i
n, y

i
1, 

y
i
2,…, y

i
i-1, y

i
i+1, ..., y

i
n) 

  i = 1, 2, …, n 
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s.t.   ∑∑
=
≠=

n

j
ij

j
i

n

i

z

1
1

  =  ∑∑
=
≠=

n

j
ij

j
i

n

i

y

1
1

         

 

Khun-Tucker conditions would generate active transportation. 
 
. Multiproduct technologies can also benefit from the previous framework. 

Hypothetically, q
i
 = Fi(x

i
, z

i
j, y

i
j) could represent the production function of section or plant i 

– with q
i
 sold at price p

i
 - , which uses x

i
 exclusively and shares input z

i
j, for which i is 

responsible, and y
i
j =  z

j
i, allotted to j’s responsibility, with plant j. Then, joint profit 

maximization would generate similar conditions to the efficiency requirements encountered 

before; transfer prices (unit costs) among manufacturing divisions in the spirit of section III or 
VI would result in optimal allocations of decentralized management – of unilateral profit 
maximization by each of the plants.  

With two plants only, p
1
 

2
1

1

z
F

∂
∂  + p

2
 

1
2

2

y
F

∂
∂  = W

z
 and p

1
 

2
1

1

y
F

∂
∂  + p

2
 

1
2

2

z
F

∂
∂  = W

z
. 

Each two terms represent – as in standard externalities - the internal net prices allocated to the 
divisions for the pertaining joint purchase. 

 
Suppose that to produce the same good z, sold at price W

z
, several, say, n, 

divisions are required – a sort of Leontief technology -, each with production requirements z = 

Fi(x
i
, L

i
). Each section i implies a – standardly inferred from the minimization of W

x
 x

i
 + W

L
 

L
i
 s.t. z = Fi(x

i
, L

i
) – cost function Ci(z, W

x
, W

L
). Optimality requires a split of the marginal 

revenue according to W
z
 = ∑

= ∂
∂n

i

i

z
C

1

 - evaluated at the z* that insures such equality. Or 

according to the Lagrange multipliers of the solution of 
 

     
iii Lxz

Max
λ,,,

       W
z
 z - W
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n

i
ix

1

 - W
L
 ∑
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i
iL

1
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i
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1

λ [z - Fi(x
i
, L
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i.e., insuring W
z
 = ∑

=

n

i
i

1

λ . 
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VIII. Summary and Conclusions. 
 
General equilibrium of a pure exchange economy was proven to be able to generate 

efficient allocations in economies where share goods are present; under special arrangements, 
uniqueness is also guaranteed. Efficient allocations require the Samuelson (public good) rule 

with respect to the ratio of utilities – whether or not sharing takes the form of an externality. 
Optimal pricing involves common reception and emission prices – adding up to a uniquely 
determined quantity - along with link-specific transfers from consumers who value a specific 
“call” more than its charged price. End-specific roles – for adequate general price allocation - 

must also be pre-ordained – achieved with a (much) milder version of (than) the Arrow’s 
dictator. 

With multiple sharing by more than two individuals – because either the good is 
shared by more than one individual or because there are similar links between different pairs -, 

some indeterminacy may arise with respect to the distribution of the general aggregate unit 
cost. Of course, heterogeneity requires more complex identification.  

CES utility functions generate interesting environments. With transferable utility, 
positive assortative mating is likely to arise with linear homogeneity or higher – and negative 

with strong DRS and/or low relative preferences for joint-consumption. Cobb-Douglas 
technologies, generating linear Engel curves, suggest no quantity assorting of household good 
demand. 

Utility functions implying monogamy allowed us to study mating arrangements more 

profoundly. Definition of the marginal benefit of a match - and price of ranking points - was 
forwarded, and mechanics of an adequate (dowry) price system for an endogenous matching 
market explained; with transferable utility, the requirement of equalization of marginal benefit 
of a match across individuals provides the direction of assortative mating. If utility is not 

transferable but income – qualifying assorting – is, then it is the income value of the marginal 
benefit that is expected to equalize in the economy; this suggests the importance of the 
function given by the ratio of utility over the difference between the marginal utility relative to 
own income minus the marginal with respect to the partner’s in determining the outcome of 

decentralized assorting. 
Fruitful extensions are expected in family economic modelling and estimation, both in 

the static as in the intertemporal domain, with household decisions also covering labor market 
participation and supply, allowing for joint family investment – and taxation -, encompassing 

both single and multi-element unit as special cases, possibly assuming single and married, male 
and female (with or without children…), parameter preference differentiation. 
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Appendix. 
 
Tables A1 to A5 contain the results of assignment simulations with two six-agent 

economies. Paired arrangements allow for 15 different scenarios (A to O). Scenario A 
represents perfect positive assortative assignment or mating; scenario O, negative assortative 

assignment. 
Economy I, where individuals, I1 to I6, have income 3, 6, 9, 12, 15 and 18 and 

gender (or other) is irrelevant to allow for mating.  
In Economy II, there are three individual types, with income 3, 6, and 9, i.e., I1 to 

I6 have income 3, 3, 6, 6, 9, 9. One can either interpret the context as one in which mating 
can only be accomplished between individuals of different gender – between an odd (say, 
male, I1, I3 and I5) and an even (female, I2, I4, I6) characters which have the same income 
distribution; then only scenarios (in Tables below) A, C, G, H, M and O are relevant, with H 

and M being quantitatively indistinguishable. Or to an economy where pairs can be formed 
between any two individuals but there is some type replication: we just stage a less sparse 
income distribution; then quantitatively distinguishable scenarios are still only A, C, G, H, O. 
Nevertheless, marginal benefits and losses allowed for combinations – pairs of individuals - of 

the same type (but of the existing six characters in the economy) 28. 
The indirect utility form used was: 
 

(A1) v
i
(Ii, Ik)  =  [ iaiI )1()( iaki II −+ ] iµ

 = iiaiI µ  )1()( ii aki II −+ µ   

 
with a

i
 fixed at 0.3. Several values of µ

i
 were considered: 0.25, 0.75, 1, 1.25 and 

2.25. 
ki

i

II
v
∂∂

∂2

 = µ
i
 (1 – a

i
) v

i
 

iki

i
i

k
ii

III
IIa

2)(
)1(

+
−+ µµ  > 0 for µ

i
 = 1, 1.25 and 2.25, and for 

some income levels in the economies when µ
i
 = 0.75 (when Ik > 1.111 Ii). With µ

i
 = 0.25, 

ki
i

II
v
∂∂

∂2

 < 0 always in the economies because for their income ranges Ik < 10 Ii. Notice also 

that for the last case (µ
i
 = 2.25), as µ

i
 (1 – a

i
) - 1 = 0.575 > 0, 

2

2

k

i

I

v

∂

∂  > 0 (In any case, with 

                                        
28 One could have – possibly more accurately - calculated the marginal benefit as the difference of 

utility obtained from joining k relative to that obtained by linking to k-2 divided by 2 - with the marginal 

benefit from linking to V1 as the difference obtained from joining him relative to staying single divided by 

1.5. Still, adjustments would also be due for individuals that mate with contiguous classes… 
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µ
i
 > 2, marginal utilities of the direct utility function fail to be decreasing, even if not quasi-

concavity). 

Apart from the utilities derived by each of the six individuals (columns V1 to V6), 
we report the average marginal loss (MeanL), the average deviation from the mean of the six 
individual values, marginal losses, (AVDEVL), the average marginal benefit, its average 
deviation (MeanB and AVDEVB) and the average marginal loss plus benefit divided by 2, 

along with the corresponding average deviation (MEAN and AVDEVM). The last 
calculations were repeated using a different procedure (in the former, the marginal benefit of 
individuals mating with individual I1 is calculated as the difference relative to a single status – 
i.e., Ik-1 = 0) to evaluate the individual marginal losses (Mean B1 and AVDEVB1), with 

corresponding average deviations (MEAN1 and AVDEVM1). 
In fact, for µ

i
 < 2, the equalization between marginal benefits across six individuals in 

the economy – the minimum average deviation, AVDEV – seems to occur for a scenario 
close to the one generating the maximum sum of utilities. Differences from such coincidence 

can be attributed to the fact that in the reported calculations of marginal benefits and losses, 
and to the small number of individuals in the economies – and unlike the ranking-pricing 
scheme would suggest – we did not allow mating with one-self(’s income). For µ

i
 = 2.25, 

equalization between marginal benefits suggests the allocation generating the minimum sum of 

utilities.  
Nevertheless, it is always true that the maximum sum of utilities is achieved with 

scenario A – with positive assortative mating – under 
ki

i

II
v
∂∂

∂2

 > 0 and with O for 
ki

i

II
v
∂∂

∂2

 < 

0. 
 



 

 
Table A1 

Assign Pair 1 Pair 2 Pair 3 V1 V2 V3 V4 V5 V6 Sum MeanL AVDEVL MeanB AVDEVB MEAN AVDEVM MeanB1 AVDEVB1  MEAN1 AVDEVM1 

µ
i
 = 0.25                    
A (I1, I2)(I3, I4)(I5, I6) 1.595 1.680 2.009 2.053  2.259  2.290  11.886 0.063 0.047 0.113 0.056 0.088 0.047 0.048 0.035  0.055 0.022 
B (I1, I2)(I3, I5)(I4, I6) 1.595 1.680 2.056 2.185  2.137  2.252  11.906 0.061 0.039 0.095 0.068 0.078 0.054 0.030 0.020  0.045 0.012 
C (I1, I2)(I3, I6)(I4, I5) 1.595 1.680 2.099 2.145  2.181  2.211  11.912 0.066 0.039 0.103 0.063 0.085 0.049 0.037 0.025  0.052 0.017 
D (I1, I3)(I2, I4)(I5, I6) 1.677 1.897 1.821 1.998  2.259  2.290  11.943 0.041 0.027 0.068 0.015 0.055 0.017 0.053 0.023  0.047 0.016 
E (I1, I3)(I2, I5)(I4, I6) 1.677 1.949 1.821 2.185  2.087  2.252  11.972 0.045 0.018 0.060 0.017 0.053 0.017 0.045 0.018  0.045 0.013 
F (I1, I3)(I2, I6)(I4, I5) 1.677 1.995 1.821 2.145  2.181  2.166  11.986 0.050 0.022 0.067 0.021 0.059 0.016 0.053 0.023  0.051 0.016 
G (I1, I4)(I2, I3)(I5, I6) 1.744 1.837 1.894 1.935  2.259  2.290  11.960 0.049 0.033 0.081 0.025 0.065 0.025 0.069 0.034  0.059 0.029 
H (I1, I4)(I2, I5)(I3, I6) 1.744 1.949 2.099 1.935  2.087  2.211  12.026 0.043 0.015 0.056 0.010 0.049 0.012 0.044 0.015  0.043 0.011 
I (I1, I4)(I2, I6)(I3, I5) 1.744 1.995 2.056 1.935  2.137  2.166  12.034 0.042 0.014 0.075 0.029 0.058 0.019 0.062 0.035  0.052 0.020 
J (I1, I5)(I2, I3)(I4, I6) 1.801 1.837 1.894 2.185  2.032  2.252  12.001 0.053 0.024 0.072 0.029 0.062 0.026 0.061 0.036  0.057 0.029 
K (I1, I5)(I2, I4)(I3, I6) 1.801 1.897 2.099 1.998  2.032  2.211  12.038 0.042 0.014 0.055 0.007 0.049 0.011 0.044 0.015  0.043 0.012 
L (I1, I5)(I2, I6)(I3, I4) 1.801 1.995 2.009 2.053  2.032  2.166  12.055 0.048 0.017 0.064 0.017 0.056 0.015 0.054 0.022  0.051 0.018 
M (I1, I6)(I2, I3)(I4, I5) 1.850 1.837 1.894 2.145  2.181  2.116  12.024 0.057 0.027 0.079 0.031 0.068 0.022 0.069 0.038  0.063 0.026 
N (I1, I6)(I2, I4)(I3, I5) 1.850 1.897 2.056 1.998  2.137  2.116  12.054 0.041 0.014 0.054 0.005 0.047 0.008 0.045 0.015  0.043 0.012 
O (I1, I6)(I2, I5)(I3, I4) 1.850 1.949 2.009 2.053  2.087  2.116  12.064 0.048 0.016 0.064 0.017 0.056 0.014 0.054 0.021  0.051 0.018 

                     
A (I1, I2)(I3, I4)(I5, I6) 1.486 1.486 1.767 1.767  1.955 1.955  10.416 0.060 0.040 0.106 0.043 0.083 0.038 0.049 0.033  0.055 0.016 
B (I1, I2)(I3, I5)(I4, I6) 1.486 1.486 1.837 1.837  1.894  1.894  10.434 0.047 0.047 0.080 0.060 0.064 0.051 0.024 0.032  0.035 0.013 
C (I1, I2)(I3, I6)(I4, I5) 1.486 1.486 1.837 1.837  1.894  1.894  10.434 0.047 0.047 0.080 0.060 0.064 0.051 0.024 0.032  0.035 0.013 
D (I1, I3)(I2, I4)(I5, I6) 1.595 1.595 1.680 1.680  1.955  1.955  10.461 0.028 0.038 0.058 0.039 0.043 0.009 0.039 0.039  0.033 0.013 
E (I1, I3)(I2, I5)(I4, I6) 1.595 1.677 1.680 1.837  1.821  1.894  10.505 0.022 0.030 0.051 0.051 0.037 0.014 0.032 0.043  0.027 0.018 
F (I1, I3)(I2, I6)(I4, I5) 1.595 1.677 1.680 1.837  1.894  1.821  10.505 0.022 0.030 0.049 0.049 0.036 0.014 0.030 0.040  0.026 0.017 
G (I1, I4)(I2, I3)(I5, I6) 1.595 1.595 1.680 1.680  1.955  1.955  10.461 0.028 0.038 0.058 0.039 0.043 0.009 0.039 0.039  0.033 0.013 
H (I1, I4)(I2, I5)(I3, I6) 1.595 1.677 1.837 1.680  1.821  1.894  10.505 0.026 0.034 0.045 0.045 0.035 0.012 0.026 0.034  0.026 0.017 
I (I1, I4)(I2, I6)(I3, I5) 1.595 1.677 1.837 1.680  1.894  1.821  10.505 0.026 0.034 0.057 0.057 0.042 0.018 0.038 0.051  0.032 0.021 
J (I1, I5)(I2, I3)(I4, I6) 1.677 1.595 1.680 1.837  1.821  1.894  10.505 0.025 0.033 0.047 0.047 0.036 0.014 0.032 0.043  0.028 0.019 
K (I1, I5)(I2, I4)(I3, I6) 1.677 1.595 1.837 1.680  1.821  1.894  10.505 0.028 0.038 0.041 0.041 0.034 0.011 0.026 0.034  0.027 0.018 
L (I1, I5)(I2, I6)(I3, I4) 1.677 1.677 1.767 1.767  1.821  1.821  10.532 0.036 0.036 0.058 0.038 0.047 0.021 0.043 0.043  0.039 0.027 
M (I1, I6)(I2, I3)(I4, I5) 1.677 1.595 1.680 1.837  1.894  1.821  10.505 0.025 0.033 0.045 0.045 0.035 0.013 0.030 0.040  0.027 0.018 
N (I1, I6)(I2, I4)(I3, I5) 1.677 1.595 1.837 1.680  1.894  1.821  10.505 0.028 0.038 0.039 0.039 0.033 0.011 0.024 0.032  0.026 0.017 
O (I1, I6)(I2, I5)(I3, I4) 1.677 1.677 1.767 1.767  1.821  1.821  10.532 0.036 0.036 0.058 0.038 0.047 0.021 0.043 0.043  0.039 0.027 
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Table A2 

Assign Pair 1 Pair 2 Pair 3 V1 V2 V3 V4 V5 V6 Sum MeanL AVDEVL MeanB AVDEVB MEAN AVDEVM MeanB1 AVDEVB1 MEAN1 AVDEVM1 

µ
i
 = 0.75                    

A (I1, I2)(I3, I4)(I5, I6) 4.058 4.743 8.107 8.649  
11.53

0 
12.01

3 
49.10

1 0.655 0.459 1.069 0.346 0.862 0.285 0.621 0.425  0.638 0.238 

B (I1, I2)(I3, I5)(I4, I6) 4.058 4.743 8.696 
10.43

0 
9.755  

11.42
7 

49.11
0 0.647 0.275 0.852 0.328 0.750 0.302 0.404 0.269  0.526 0.147 

C (I1, I2)(I3, I6)(I4, I5) 4.058 4.743 9.251 9.869  10.37
7 

10.81
2 

49.11
0 0.742 0.376 0.956 0.362 0.849 0.263 0.508 0.338  0.625 0.214 

D (I1, I3)(I2, I4)(I5, I6) 4.720 6.825 6.043 7.977  11.53
0 

12.01
3 

49.10
8 0.431 0.287 0.767 0.156 0.599 0.109 0.625 0.222  0.528 0.129 

E (I1, I3)(I2, I5)(I4, I6) 4.720 7.400 6.043 
10.43

0 9.095  
11.42

7 
49.11

5 0.520 0.173 0.661 0.077 0.591 0.115 0.520 0.173  0.520 0.128 

F (I1, I3)(I2, I6)(I4, I5) 4.720 7.938 6.043 9.869  
10.37

7 
10.16

4 
49.11

1 0.617 0.234 0.763 0.181 0.690 0.169 0.622 0.235  0.619 0.198 

G (I1, I4)(I2, I3)(I5, I6) 5.306 6.202 6.794 7.249  
11.53

0 
12.01

3 
49.09

5 0.533 0.355 0.890 0.278 0.711 0.235 0.756 0.367  0.644 0.261 

H (I1, I4)(I2, I5)(I3, I6) 5.306 7.400 9.251 7.249  9.095  
10.81

2 
49.11

3 0.512 0.171 0.646 0.073 0.579 0.114 0.512 0.171  0.512 0.128 

I (I1, I4)(I2, I6)(I3, I5) 5.306 7.938 8.696 7.249  9.755  
10.16

4 
49.10

7 0.514 0.171 0.863 0.346 0.688 0.205 0.729 0.391  0.622 0.224 

J (I1, I5)(I2, I3)(I4, I6) 5.839 6.202 6.794 
10.43

0 
8.388  

11.42
7 

49.08
1 0.620 0.261 0.781 0.226 0.701 0.236 0.653 0.301  0.637 0.266 

K (I1, I5)(I2, I4)(I3, I6) 5.839 6.825 9.251 7.977  8.388  
10.81

2 
49.09

1 0.510 0.176 0.642 0.072 0.576 0.121 0.515 0.172  0.512 0.131 

L (I1, I5)(I2, I6)(I3, I4) 5.839 7.938 8.107 8.649  8.388  
10.16

4 
49.08

5 0.609 0.249 0.752 0.192 0.680 0.197 0.624 0.267  0.617 0.238 

M (I1, I6)(I2, I3)(I4, I5) 6.332 6.202 6.794 9.869  
10.37

7 
9.475  

49.05
0 0.723 0.340 0.880 0.306 0.802 0.215 0.757 0.388  0.740 0.297 

N (I1, I6)(I2, I4)(I3, I5) 6.332 6.825 8.696 7.977  9.755  9.475  49.06
0 0.519 0.173 0.638 0.070 0.578 0.113 0.515 0.180  0.517 0.148 

O (I1, I6)(I2, I5)(I3, I4) 6.332 7.400 8.107 8.649  9.095  9.475  49.05
9 0.616 0.240 0.749 0.188 0.683 0.188 0.627 0.271 0.621 0.239 

                     
A (I1, I2)(I3, I4)(I5, I6) 3.280 3.280 5.516 5.516  7.477  7.477  32.547 0.488 0.325 0.819 0.121 0.653 0.208 0.485 0.324  0.487 0.162 
B (I1, I2)(I3, I5)(I4, I6) 3.280 3.280 6.202 6.202  6.794  6.794  32.553 0.373 0.373 0.573 0.382 0.473 0.278 0.239 0.319  0.306 0.102 
C (I1, I2)(I3, I6)(I4, I5) 3.280 3.280 6.202 6.202  6.794  6.794  32.553 0.373 0.373 0.573 0.382 0.473 0.278 0.239 0.319  0.306 0.102 
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D (I1, I3)(I2, I4)(I5, I6) 4.058 4.058 4.743 4.743  7.477  7.477  32.556 0.239 0.319 0.509 0.339 0.374 0.036 0.357 0.357  0.298 0.099 
E (I1, I3)(I2, I5)(I4, I6) 4.058 4.720 4.743 6.202  6.043  6.794  32.561 0.239 0.319 0.392 0.392 0.315 0.105 0.240 0.320  0.239 0.160 
F (I1, I3)(I2, I6)(I4, I5) 4.058 4.720 4.743 6.202  6.794  6.043  32.561 0.239 0.319 0.396 0.396 0.317 0.106 0.244 0.325  0.241 0.161 
G (I1, I4)(I2, I3)(I5, I6) 4.058 4.058 4.743 4.743  7.477  7.477  32.556 0.239 0.319 0.509 0.339 0.374 0.036 0.357 0.357  0.298 0.099 
H (I1, I4)(I2, I5)(I3, I6) 4.058 4.720 6.202 4.743  6.043 6.794  32.561 0.235 0.314 0.387 0.387 0.311 0.104 0.235 0.314  0.235 0.157 
I (I1, I4)(I2, I6)(I3, I5) 4.058 4.720 6.202 4.743  6.794  6.043  32.561 0.235 0.314 0.520 0.520 0.378 0.143 0.368 0.491  0.302 0.201 
J (I1, I5)(I2, I3)(I4, I6) 4.720 4.058 4.743 6.202  6.043  6.794  32.561 0.243 0.324 0.381 0.381 0.312 0.104 0.240 0.320  0.241 0.161 
K (I1, I5)(I2, I4)(I3, I6) 4.720 4.058 6.202 4.743  6.043  6.794  32.561 0.239 0.319 0.377 0.377 0.308 0.103 0.235 0.314  0.237 0.158 
L (I1, I5)(I2, I6)(I3, I4) 4.720 4.720 5.516 5.516  6.043  6.043  32.559 0.354 0.354 0.509 0.339 0.431 0.199 0.368 0.368  0.361 0.251 
M (I1, I6)(I2, I3)(I4, I5) 4.720 4.058 4.743 6.202  6.794  6.043  32.561 0.243 0.324 0.385 0.385 0.314 0.105 0.244 0.325  0.243 0.162 
N (I1, I6)(I2, I4)(I3, I5) 4.720 4.058 6.202 4.743  6.794  6.043  32.561 0.239 0.319 0.381 0.381 0.310 0.103 0.239 0.319  0.239 0.160 
O (I1, I6)(I2, I5)(I3, I4) 4.720 4.720 5.516 5.516  6.043  6.043  32.559 0.354 0.354 0.509 0.339 0.431 0.199 0.368 0.368  0.361 0.251 

 
Table A3 

Assign Pair 1 Pair 2 Pair 3 V1 V2 V3 V4 V5 V6 Sum MeanL AVDEVL MeanB AVDEVB MEAN AVDEVM MeanB1 AVDEVB1  MEAN1 AVDEVM1 

µ
i
 =  1                    

A (I1, I2)(I3, I4)(I5, I6) 6.473 7.969 
16.28

6 
17.75

4 
26.04

9 
27.51

3 102.045 1.647 1.182 2.644 0.791 2.145 0.565 1.737 1.158  1.692 0.591 

B (I1, I2)(I3, I5)(I4, I6) 6.473 7.969 
17.88

2 
22.79

0 
20.84

4 
25.73

8 101.695 1.662 0.669 2.058 0.472 1.860 0.479 1.151 0.767  1.407 0.427 

C (I1, I2)(I3, I6)(I4, I5) 6.473 7.969 
19.41

9 
21.16

9 
22.63

5 
23.90

8 101.573 1.956 0.976 2.346 0.732 2.151 0.557 1.439 0.959  1.697 0.635 

D (I1, I3)(I2, I4)(I5, I6) 7.917 
12.94

6 
11.00

8 
15.93

8 
26.04

9 
27.51

3 101.371 1.082 0.721 2.017 0.466 1.549 0.285 1.682 0.684  1.382 0.315 

E (I1, I3)(I2, I5)(I4, I6) 7.917 
14.42

1 
11.00

8 
22.79

0 
18.98

4 
25.73

8 100.857 1.375 0.470 1.720 0.207 1.547 0.332 1.385 0.462  1.380 0.340 

F (I1, I3)(I2, I6)(I4, I5) 7.917 
15.83

4 
11.00

8 
21.16

9 
22.63

5 
22.01

6 100.579 1.688 0.701 2.006 0.470 1.847 0.532 1.671 0.719  1.679 0.670 

G (I1, I4)(I2, I3)(I5, I6) 9.256 
11.39

5 
12.86

9 
14.02

9 
26.04

9 
27.51

3 101.110 1.356 0.936 2.307 0.742 1.832 0.534 1.969 0.967  1.663 0.615 

H (I1, I4)(I2, I5)(I3, I6)9.256 
14.42

1 
19.41

9 
14.02

9 
18.98

4 
23.90

8 100.016 1.379 0.499 1.702 0.252 1.540 0.370 1.364 0.463  1.371 0.364 

I (I1, I4)(I2, I6)(I3, I5) 9.256 
15.83

4 
17.88

2 
14.02

9 
20.84

4 
22.01

6 99.860 1.398 0.512 2.270 0.915 1.834 0.557 1.932 1.038  1.665 0.678 

J (I1, I5)(I2, I3)(I4, I6)
10.51

5 
11.39

5 
12.86

9 
22.79

0 
17.04

2 
25.73

8 100.348 1.647 0.731 2.006 0.485 1.827 0.546 1.666 0.706  1.657 0.653 
K (I1, I5)(I2, I4)(I3, I6) 10.51 12.94 19.41 15.93 17.04 23.90 99.768 1.377 0.519 1.699 0.249 1.538 0.368 1.358 0.486 1.368 0.378 
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5 6 9 8 2 8 

L (I1, I5)(I2, I6)(I3, I4)
10.51

5 
15.83

4 
16.28

6 
17.75

4 
17.04

2 
22.01

6 99.448 1.674 0.742 1.986 0.496 1.830 0.575 1.645 0.754  1.659 0.691 

M (I1, I6)(I2, I3)(I4, I5)
11.71

4 
11.39

5 
12.86

9 
21.16

9 
22.63

5 
20.05

1 99.833 1.995 0.947 2.290 0.753 2.142 0.559 1.949 0.981  1.972 0.787 

N (I1, I6)(I2, I4)(I3, I5)
11.71

4 
12.94

6 
17.88

2 
15.93

8 
20.84

4 
20.05

1 99.375 1.431 0.477 1.694 0.246 1.562 0.338 1.352 0.502  1.392 0.401 

O (I1, I6)(I2, I5)(I3, I4)
11.71

4 
14.42

1 
16.28

6 
17.75

4 
18.98

4 
20.05

1 99.210 1.708 0.705 1.983 0.501 1.846 0.549 1.641 0.750  1.675 0.666 

                     

A (I1, I2)(I3, I4)(I5, I6) 4.874 4.874 9.747 9.747 
14.62

1 
14.62

1 58.482 1.082 0.722 1.801 0.048 1.442 0.377 1.177 0.784  1.129 0.389 

B (I1, I2)(I3, I5)(I4, I6) 4.874 4.874 
11.39

5 
11.39

5 
12.86

9 
12.86

9 58.274 0.825 0.825 1.209 0.806 1.017 0.480 0.585 0.780  0.705 0.235 

C (I1, I2)(I3, I6)(I4, I5) 4.874 4.874 
11.39

5 
11.39

5 
12.86

9 
12.86

9 58.274 0.825 0.825 1.209 0.806 1.017 0.480 0.585 0.780  0.705 0.235 

D (I1, I3)(I2, I4)(I5, I6) 6.473 6.473 7.969 7.969 
14.62

1 
14.62

1 58.126 0.537 0.716 1.179 0.786 0.858 0.065 0.851 0.851  0.694 0.231 

E (I1, I3)(I2, I5)(I4, I6) 6.473 7.917 7.969 
11.39

5 
11.00

8 
12.86

9 57.631 0.602 0.803 0.835 0.835 0.719 0.240 0.507 0.676  0.555 0.370 

F (I1, I3)(I2, I6)(I4, I5) 6.473 7.917 7.969 
11.39

5 
12.86

9 
11.00

8 57.631 0.602 0.803 0.869 0.869 0.736 0.245 0.541 0.722  0.572 0.381 

G (I1, I4)(I2, I3)(I5, I6) 6.473 6.473 7.969 7.969 
14.62

1 
14.62

1 58.126 0.537 0.716 1.179 0.786 0.858 0.065 0.851 0.851  0.694 0.231 

H (I1, I4)(I2, I5)(I3, I6) 6.473 7.917 
11.39

5 7.969 
11.00

8 
12.86

9 57.631 0.551 0.734 0.879 0.879 0.715 0.238 0.551 0.734  0.551 0.367 

I (I1, I4)(I2, I6)(I3, I5) 6.473 7.917 
11.39

5 7.969 
12.86

9 
11.00

8 57.631 0.551 0.734 1.209 1.209 0.880 0.346 0.881 1.175  0.716 0.477 

J (I1, I5)(I2, I3)(I4, I6) 7.917 6.473 7.969 
11.39

5 
11.00

8 
12.86

9 57.631 0.588 0.784 0.842 0.842 0.715 0.238 0.507 0.676  0.548 0.365 

K (I1, I5)(I2, I4)(I3, I6) 7.917 6.473 
11.39

5 7.969 
11.00

8 
12.86

9 57.631 0.537 0.716 0.885 0.885 0.711 0.237 0.551 0.734  0.544 0.363 

L (I1, I5)(I2, I6)(I3, I4) 7.917 7.917 9.747 9.747 
11.00

8 
11.00

8 57.344 0.859 0.859 1.168 0.779 1.014 0.466 0.833 0.833  0.846 0.606 

M (I1, I6)(I2, I3)(I4, I5) 7.917 6.473 7.969 
11.39

5 
12.86

9 
11.00

8 57.631 0.588 0.784 0.876 0.876 0.732 0.244 0.541 0.722  0.565 0.376 

N (I1, I6)(I2, I4)(I3, I5) 7.917 6.473 
11.39

5 7.969 
12.86

9 
11.00

8 57.631 0.537 0.716 0.919 0.919 0.728 0.245 0.585 0.780  0.561 0.374 

O (I1, I6)(I2, I5)(I3, I4) 7.917 7.917 9.747 9.747 
11.00

8 
11.00

8 57.344 0.859 0.859 1.168 0.779 1.014 0.466 0.833 0.833  0.846 0.606 



  

- 66 - 

 
Table A4 

Assign Pair 1 Pair 2 Pair 3 V1 V2 V3 V4 V5 V6 Sum MeanL AVDEVL MeanB AVDEVB MEAN AVDEVM MeanB1 AVDEVB1  MEAN1 AVDEVM1 

µ
i
 = 1.25                    

A (I1, I2)(I3, I4)(I5, I6)
10.32

5 
13.39

0 
32.71

8 
36.44

5 
58.84

8 
63.01

3 214.738 3.920 2.935 6.306 1.760 5.113 1.138 4.577 3.051  4.248 1.658 

B (I1, I2)(I3, I5)(I4, I6)
10.32

5 
13.39

0 
36.77

3 
49.79

4 
44.53

7 
57.97

1 212.788 4.062 1.746 4.805 0.659 4.434 0.884 3.076 2.051  3.569 1.156 

C (I1, I2)(I3, I6)(I4, I5)
10.32

5 
13.39

0 
40.76

5 
45.40

8 
49.37

2 
52.86

5 212.124 4.911 2.465 5.557 1.409 5.234 1.300 3.828 2.552  4.370 1.954 

D (I1, I3)(I2, I4)(I5, I6)
13.28

0 
24.55

7 
20.05

0 
31.84

6 
58.84

8 
63.01

3 211.594 2.555 1.703 5.042 1.478 3.799 0.794 4.298 2.106  3.427 0.896 

E (I1, I3)(I2, I5)(I4, I6)
13.28

0 
28.10

3 
20.05

0 
49.79

4 
39.62

6 
57.97

1 208.823 3.437 1.337 4.242 0.661 3.840 0.968 3.499 1.347  3.468 1.047 

F (I1, I3)(I2, I6)(I4, I5)
13.28

0 
31.58

6 
20.05

0 
45.40

8 
49.37

2 
47.68

8 207.385 4.371 1.975 4.993 1.412 4.682 1.667 4.249 2.103  4.310 2.039 

G (I1, I4)(I2, I3)(I5, I6)
16.14

4 
20.93

6 
24.37

4 
27.15

0 
58.84

8 
63.01

3 210.464 3.242 2.311 5.678 1.889 4.460 1.190 4.875 2.480  4.059 1.493 

H (I1, I4)(I2, I5)(I3, I6)
16.14

4 
28.10

3 
40.76

5 
27.15

0 
39.62

6 
52.86

5 204.652 3.498 1.406 4.232 0.765 3.865 1.086 3.430 1.332  3.464 1.073 

I (I1, I4)(I2, I6)(I3, I5)
16.14

4 
31.58

6 
36.77

3 
27.15

0 
44.53

7 
47.68

8 203.877 3.582 1.457 5.622 2.259 4.602 1.545 4.819 2.704  4.201 1.895 

J (I1, I5)(I2, I3)(I4, I6)
18.93

6 
20.93

6 
24.37

4 
49.79

4 
34.62

6 
57.97

1 206.635 4.124 2.005 4.876 1.043 4.500 1.348 4.025 1.753  4.074 1.589 

K (I1, I5)(I2, I4)(I3, I6)
18.93

6 
24.55

7 
40.76

5 
31.84

6 
34.62

6 
52.86

5 203.594 3.497 1.420 4.231 0.762 3.864 1.083 3.380 1.322  3.439 1.019 

L (I1, I5)(I2, I6)(I3, I4)
18.93

6 
31.58

6 
32.71

8 
36.44

5 
34.62

6 
47.68

8 201.998 4.322 2.059 4.930 1.306 4.626 1.582 4.079 1.988  4.201 1.866 

M (I1, I6)(I2, I3)(I4, I5)
21.67

0 
20.93

6 
24.37

4 
45.40

8 
49.37

2 
42.43

0 204.189 5.181 2.512 5.626 1.753 5.403 1.378 4.734 2.381  4.957 1.973 

N (I1, I6)(I2, I4)(I3, I5)
21.67

0 
24.55

7 
36.77

3 
31.84

6 
44.53

7 
42.43

0 201.812 3.705 1.288 4.229 0.758 3.967 0.994 3.336 1.313  3.521 1.015 

O (I1, I6)(I2, I5)(I3, I4)
21.67

0 
28.10

3 
32.71

8 
36.44

5 
39.62

6 
42.43

0 200.991 4.445 1.933 4.929 1.303 4.687 1.498 4.037 1.944  4.241 1.738 

                     

A (I1, I2)(I3, I4)(I5, I6) 7.241 7.241 
17.22

2 
17.22

2 
28.58

9 
28.58

9 106.105 2.266 1.510 3.780 0.325 3.023 0.610 2.683 1.789  2.474 0.866 

B (I1, I2)(I3, I5)(I4, I6) 7.241 7.241 
20.93

6 
20.93

6 
24.37

4 
24.37

4 105.101 1.731 1.731 2.437 1.625 2.084 0.770 1.339 1.786  1.535 0.512 
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C (I1, I2)(I3, I6)(I4, I5) 7.241 7.241 
20.93

6 
20.93

6 
24.37

4 
24.37

4 105.101 1.731 1.731 2.437 1.625 2.084 0.770 1.339 1.786  1.535 0.512 

D (I1, I3)(I2, I4)(I5, I6)
10.32

5 
10.32

5 
13.39

0 
13.39

0 
28.58

9 
28.58

9 104.608 1.131 1.508 2.586 1.724 1.859 0.232 1.919 1.919  1.525 0.524 

E (I1, I3)(I2, I5)(I4, I6)
10.32

5 
13.28

0 
13.39

0 
20.93

6 
20.05

0 
24.37

4 102.354 1.423 1.898 1.673 1.673 1.548 0.542 1.007 1.342  1.215 0.810 

F (I1, I3)(I2, I6)(I4, I5)
10.32

5 
13.28

0 
13.39

0 
20.93

6 
24.37

4 
20.05

0 102.354 1.423 1.898 1.799 1.799 1.611 0.560 1.133 1.510  1.278 0.852 

G (I1, I4)(I2, I3)(I5, I6)
10.32

5 
10.32

5 
13.39

0 
13.39

0 
28.58

9 
28.58

9 104.608 1.131 1.508 2.586 1.724 1.859 0.232 1.919 1.919  1.525 0.524 

H (I1, I4)(I2, I5)(I3, I6)
10.32

5 
13.28

0 
20.93

6 
13.39

0 
20.05

0 
24.37

4 102.354 1.213 1.617 1.880 1.880 1.546 0.561 1.213 1.617  1.213 0.809 

I (I1, I4)(I2, I6)(I3, I5)
10.32

5 
13.28

0 
20.93

6 
13.39

0 
24.37

4 
20.05

0 102.354 1.213 1.617 2.645 2.645 1.929 0.793 1.978 2.638  1.596 1.103 

J (I1, I5)(I2, I3)(I4, I6)
13.28

0 
10.32

5 
13.39

0 
20.93

6 
20.05

0 
24.37

4 102.354 1.341 1.789 1.750 1.750 1.546 0.539 1.007 1.342  1.174 0.783 

K (I1, I5)(I2, I4)(I3, I6)
13.28

0 
10.32

5 
20.93

6 
13.39

0 
20.05

0 
24.37

4 102.354 1.131 1.508 1.957 1.957 1.544 0.559 1.213 1.617  1.172 0.781 

L (I1, I5)(I2, I6)(I3, I4)
13.28

0 
13.28

0 
17.22

2 
17.22

2 
20.05

0 
20.05

0 101.106 1.958 1.958 2.514 1.676 2.236 1.025 1.770 1.770  1.864 1.372 

M (I1, I6)(I2, I3)(I4, I5)
13.28

0 
10.32

5 
13.39

0 
20.93

6 
24.37

4 
20.05

0 102.354 1.341 1.789 1.877 1.877 1.609 0.559 1.133 1.510  1.237 0.825 

N (I1, I6)(I2, I4)(I3, I5)
13.28

0 
10.32

5 
20.93

6 
13.39

0 
24.37

4 
20.05

0 102.354 1.131 1.508 2.083 2.083 1.607 0.579 1.339 1.786  1.235 0.824 

O (I1, I6)(I2, I5)(I3, I4)
13.28

0 
13.28

0 
17.22

2 
17.22

2 
20.05

0 
20.05

0 101.106 1.958 1.958 2.514 1.676 2.236 1.025 1.770 1.770  1.864 1.372 

 
Table A5 

Assign Pair 1 Pair 2 Pair 3 V1 V2 V3 V4 V5 V6 Sum MeanL AVDEVL  MeanB AVDEVB MEAN AVDEVM MeanB1 AVDEVB1 MEAN1 AVDEVM1 

µ
i
 = 2.25                    

A (I1, I2)(I3, I4)(I5, I6)66.833
106.70

5 
532.85

5 
647.057

1532.92
6 

1733.67
8 

4620.05
3 

101.51
6 88.747  186.846 105.236  144.181 57.986  169.288 122.795 135.402  66.766 

B (I1, I2)(I3, I5)(I4, I6)66.833
106.70

5 
657.57

7 
1134.78

4 
928.313

1492.02
1 

4386.23
2 

122.51
2 68.905  134.633 57.942  128.572 53.735  117.074 78.050 119.793  62.514 

C (I1, I2)(I3, I6)(I4, I5)66.833 106.70
5 

791.61
1 

961.270 1117.53
1 

1263.88
3 

4307.83
2 

164.53
5 107.814 159.469 79.674  162.002 93.744 141.910 97.232 153.223  102.523 

D (I1, I3)(I2, I4)(I5, I6)
105.14

0 
317.91

2 
220.71

1 
507.577 1532.92

6 
1733.67

8 
4417.94

2 60.678 45.919  163.637 109.926  112.157 41.714  150.234 118.861 105.456  48.415 
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E (I1, I3)(I2, I5)(I4, I6)
105.14

0 
405.27

3 
220.71

1 
1134.78

4 752.241
1492.02

1 
4110.17

0 
108.30

2 67.041  128.315 59.621  118.309 55.798  114.913 73.023 111.607  60.265 

F (I1, I3)(I2, I6)(I4, I5)
105.14

0 
500.13

2 
220.71

1 
961.270

1117.53
1 

1049.88
5 

3954.66
9 

156.68
9 110.947 152.690 81.497  154.690 96.222  139.288 94.899 147.988  102.923 

G (I1, I4)(I2, I3)(I5, I6)
149.41

7 
238.55

9 
313.65

9 
380.883

1532.92
6 

1733.67
8 

4349.12
1 79.157 62.590  173.167 103.573  126.162 37.148  154.355 116.114 116.756  44.776 

H (I1, I4)(I2, I5)(I3, I6)
149.41

7 
405.27

3 
791.61

1 
380.883 752.241

1263.88
3 

3743.30
7 

112.57
7 64.391  125.782 44.280  119.180 50.808  106.971 63.091 109.774  56.878 

I (I1, I4)(I2, I6)(I3, I5)
149.41

7 
500.13

2 
657.57

7 
380.883 928.313

1049.88
5 

3666.20
6 

118.94
1 62.727  161.854 77.852  140.398 68.998  143.043 96.664 130.992  78.403 

J (I1, I5)(I2, I3)(I4, I6)
199.11

8 
238.55

9 
313.65

9 
1134.78

4 
590.087

1492.02
1 

3968.22
8 

126.18
0 81.490  137.241 45.740  131.710 50.187  112.693 65.143 119.436  50.699 

K (I1, I5)(I2, I4)(I3, I6)
199.11

8 
317.91

2 
791.61

1 
507.577 590.087

1263.88
3 

3670.18
7 

111.97
5 64.616  125.178 40.434  118.577 51.049  100.630 57.612 106.303  47.183 

L (I1, I5)(I2, I6)(I3, I4)
199.11

8 
500.13

2 
532.85

5 
647.057 590.087 1049.88

5 
3519.13

4 
144.96

7 85.154  141.609 46.929  143.288 62.313  117.061 68.874 131.014  70.776 

M (I1, I6)(I2, I3)(I4, I5)
253.83

5 
238.55

9 
313.65

9 
961.270 1117.53

1 
850.755 3735.60

8 
181.09

8 96.809  161.057 67.884  171.077 74.733  130.492 81.270 155.795  78.286 

N (I1, I6)(I2, I4)(I3, I5)
253.83

5 
317.91

2 
657.57

7 507.577 928.313 850.755
3515.96

8 
124.87

1 54.127  124.158 38.082  124.514 46.104  93.593 48.903 109.232  39.138 

O (I1, I6)(I2, I5)(I3, I4)
253.83

5 
405.27

3 
532.85

5 647.057 752.241 850.755
3442.01

6 
151.49

9 78.306  141.050 47.197  146.275 58.027  110.485 63.125 130.992  58.314 

                     

A (I1, I2)(I3, I4)(I5, I6)35.289 35.289
167.86

6 167.866 417.992 417.992
1242.29

5 34.079 24.410  62.980 27.569  48.529 14.023  55.165 36.777 44.622  19.233 

B (I1, I2)(I3, I5)(I4, I6)35.289 35.289
238.55

9 238.559 313.659 313.659
1175.01

4 27.903 27.903  35.088 31.155  31.496 13.166  27.273 36.365 27.588  17.074 

C (I1, I2)(I3, I6)(I4, I5)35.289 35.289
238.55

9 238.559 313.659 313.659
1175.01

4 27.903 27.903  35.088 31.155  31.496 13.166  27.273 36.365 27.588  17.074 

D (I1, I3)(I2, I4)(I5, I6)66.833 66.833
106.70

5 106.705 417.992 417.992
1183.05

9 16.578 22.104  48.429 37.914  32.503 13.109  40.035 42.865 28.306  16.665 

E (I1, I3)(I2, I5)(I4, I6)66.833
105.14

0 
106.70

5 238.559 220.711 313.659
1051.60

6 32.880 43.840  20.035 20.035  26.458 15.242  11.642 15.522 22.261  18.040 

F (I1, I3)(I2, I6)(I4, I5)66.833
105.14

0 
106.70

5 238.559 313.659 220.711
1051.60

6 32.880 43.840  25.433 25.433  29.157 15.506  17.039 22.719 24.960  19.703 

G (I1, I4)(I2, I3)(I5, I6)66.833 66.833
106.70

5 106.705 417.992 417.992
1183.05

9 16.578 22.104  48.429 37.914  32.503 13.109 40.035 42.865 28.306  16.665 

H (I1, I4)(I2, I5)(I3, I6)66.833
105.14

0 
238.55

9 106.705 220.711 313.659
1051.60

6 21.876 29.168  30.269 30.269  26.073 13.601  21.876 29.168 21.876  16.399 
I (I1, I4)(I2, I6)(I3, I5)66.833 105.14 238.55 106.705 313.659 220.711 1051.60 21.876 29.168  45.861 45.861  33.868 19.090  37.467 49.956 29.671  23.287 
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0 9 6 

J (I1, I5)(I2, I3)(I4, I6)
105.14

0 66.833
106.70

5 238.559 220.711 313.659
1051.60

6 27.582 36.777  25.044 25.044  26.313 14.672  11.642 15.522 19.612  14.508 

K (I1, I5)(I2, I4)(I3, I6)
105.14

0 66.833
238.55

9 106.705 220.711 313.659
1051.60

6 16.578 22.104  35.278 35.278  25.928 13.159  21.876 29.168 19.227  12.867 

L (I1, I5)(I2, I6)(I3, I4)
105.14

0 
105.14

0 
167.86

6 167.866 220.711 220.711 987.434 39.056 39.056  40.174 27.405 39.615 20.025  26.772 26.772 32.914  26.529 

M (I1, I6)(I2, I3)(I4, I5)
105.14

0 66.833
106.70

5 238.559 313.659 220.711
1051.60

6 27.582 36.777  30.442 30.442  29.012 14.084  17.039 22.719 22.311  17.054 

N (I1, I6)(I2, I4)(I3, I5)
105.14

0 66.833
238.55

9 106.705 313.659 220.711
1051.60

6 16.578 22.104  40.676 40.676  28.627 12.700  27.273 36.365 21.926  15.541 

O (I1, I6)(I2, I5)(I3, I4)
105.14

0 
105.14

0 
167.86

6 167.866 220.711 220.711 987.434 39.056 39.056  40.174 27.405  39.615 20.025  26.772 26.772 32.914  26.529 

 



 

 

Table B1 stages a gender-differentiated Economy I with an unbalanced distribution of income 
between the two groups allowed to match – on average, odd individuals have lower income than even 
ones. Calculations relative to the marginal benefit (calculated allowing the pairs to remain single and 
income of pair to be 0) are reported for total individuals (MeanB and AVDEVB. Also the minimum, 

MinB, and the difference MeanB-MinB; these were hypothetical proxies for prices and distance to be 
minimized, but turned out to be less relevant than the two other measures), for odd individuals 
(MeanBOd and AVDEVBOD; MinBOD and MeanBOd-MinBOd), and even ones (MeanBEven and 
AVDEVBEv; MinE and MeanBEven-MinE).  

One can appreciate that equalization of the marginal benefit, computed not allowing mating 
within each group, and to loose different prices for the two groups does not lead to the same choice 
always – i.e., the minimum of column AVDEVBOD differs from that of column AVDEVBEv in some 
cases. If one computes the marginal benefit as if one could mate own group, then the adequate values 

are those of Tables A1 to A5 but relevant only for pairs A, C, G, H, M, O – where the rule of 
equalization of the marginal benefit would also seem to validate the optimal assignment, as noted. 

The first shaded column of Table B1 registers the mean of the difference between marginal 
benefit of odd and even individuals in each pair – the expected differential in prices. In general, (except 
for µi

 = 2.25, which would not be expected), the minimum absolute value of such magnitudes coincides 

with the optimum assignment. Interestingly, the minimum absolute deviation of the marginal benefit over 
individuals of the lower income (AVDEVBOD) also does. 

The second shaded column reports the average between AVDEVBEv and AVDEVBOd: the 
minimum would equalize marginal benefit to (different…) prices in the two groups. For µi

 = 1.25, the 

minimization of such criterion does not point to the optimal assignment; therefore, a third shaded 
column reports an average of the previous shaded columns. 

The last two columns report the difference in the minimum marginal benefit of Odd and Even 

individuals (another proxy for the first shaded column values; it performs very poorly), and the last one 
of the average of the difference between Mean and Minimum of Odd and Even (a proxy for the role of 
the mean of AVDEVBEv and AVDEVBOd.) 
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Table B1 
Assign

Pair 1 Pair 2 Pair 3 V1 V2 V3 V4 V5 V6 Sum MeanB AVDEVBMinB Mean-MinMeanBOddAVDEVBODDMinO Mean-Min
MeaBEv AVDBE

v MinE Mean-Min
Mean(Odd
Even)  

MeanAvDevAVER MinO-MinEMean(Mean
Min) 

i
 =0.25                           

A (I1, I2)(I3, I4)(I5, I6) 1.595 1.680 2.009 2.053  2.259 2.290 11.886 0.131 0.049 0.078  0.053 0.157 0.081 0.078 0.079 0.104  0.017 0.079 0.025 0.053  0.049 0.051 -0.001 0.052 

C (I1, I2)(I3, I6)(I4, I5) 1.595 1.680 2.099 2.145  2.181 2.211 11.912 0.128 0.050 0.090  0.037 0.154 0.083 0.090 0.064 0.101  0.009 0.092 0.009 0.054  0.046 0.050 -0.002 0.036 
G (I1, I4)(I2, I3)(I5, I6) 1.744 1.837 1.894 1.935  2.259 2.290 11.960 0.117 0.040 0.074  0.042 0.130 0.034 0.078 0.052 0.103  0.036 0.074 0.029 0.026  0.035 0.031 0.004 0.041 

H (I1, I4)(I2, I5)(I3, I6) 1.744 1.949 2.099 1.935  2.087 2.211 12.026 0.107 0.020 0.074  0.032 0.120 0.020 0.090 0.029 0.094  0.013 0.074 0.019 0.026  0.016 0.021 0.016 0.024 
M (I1, I6)(I2, I3)(I4, I5) 1.850 1.837 1.894 2.145  2.181 2.116 12.024 0.111 0.032 0.056  0.055 0.121 0.028 0.094 0.027 0.102  0.037 0.056 0.046 0.019  0.032 0.025 0.038 0.036 

O (I1, I6)(I2, I5)(I3, I4) 1.850 1.949 2.009 2.053  2.087 2.116 12.064 0.104 0.016 0.056  0.048 0.113 0.005 0.106 0.008 0.095  0.026 0.056 0.039 0.018  0.015 0.017 0.049 0.023 
 0.75                           

A (I1, I2)(I3, I4)(I5, I6) 4.058 4.743 8.107 8.649 11.530 12.013 49.101 1.293 0.205 0.909  0.383 1.415 0.243 1.153 0.262 1.170  0.174 0.909 0.261 0.244  0.208 0.226 0.244 0.261 
C (I1, I2)(I3, I6)(I4, I5) 4.058 4.743 9.251 9.869  10.377 10.812 49.110 1.278 0.188 0.909  0.369 1.402 0.251 1.143 0.258 1.155  0.164 0.909 0.246 0.246  0.208 0.227 0.234 0.252 

G (I1, I4)(I2, I3)(I5, I6) 5.306 6.202 6.794 7.249  11.530 12.013 49.095 1.243 0.192 0.801  0.442 1.333 0.177 1.153 0.180 1.154  0.235 0.801 0.352 0.179  0.206 0.193 0.352 0.266 
H (I1, I4)(I2, I5)(I3, I6) 5.306 7.400 9.251 7.249  9.095 10.812 49.113 1.200 0.152 0.801  0.399 1.288 0.123 1.143 0.145 1.112  0.207 0.801 0.311 0.176  0.165 0.171 0.342 0.228 

M (I1, I6)(I2, I3)(I4, I5) 6.332 6.202 6.794 9.869  10.377 9.475 49.050 1.220 0.226 0.737  0.484 1.302 0.197 1.025 0.277 1.138  0.268 0.737 0.402 0.164  0.233 0.198 0.289 0.339 
O (I1, I6)(I2, I5)(I3, I4) 6.332 7.400 8.107 8.649  9.095 9.475 49.059 1.191 0.207 0.737  0.454 1.270 0.163 1.025 0.245 1.112  0.250 0.737 0.375 0.158  0.207 0.183 0.289 0.310 

 1                           

A (I1, I2)(I3, I4)(I5, I6) 6.473 7.969 16.286 17.754  26.049 27.513 
102.04

5 
3.267 0.433 1.969  1.298 3.435 0.025 3.414 0.021 3.100  0.754 1.969 1.131 0.335  0.390 

0.362 
1.444 0.576 

C (I1, I2)(I3, I6)(I4, I5) 6.473 7.969 19.419 21.169  22.635 23.908 
101.57

3 
3.250 0.466 1.969  1.280 3.419 0.191 3.133 0.286 3.080  0.741 1.969 1.111 0.339  0.466 

0.402 
1.163 0.699 

G (I1, I4)(I2, I3)(I5, I6) 9.256 11.395 12.869 14.029  26.049 27.513 
101.11

0 
3.187 0.521 2.029  1.159 3.355 0.382 2.783 0.572 3.020  0.661 2.029 0.991 0.335  0.521 

0.428 
0.754 0.782 

H (I1, I4)(I2, I5)(I3, I6) 9.256 14.421 19.419 14.029  18.984 23.908 100.01
6 

3.135 0.523 2.029  1.106 3.300 0.456 2.783 0.517 2.971  0.628 2.029 0.942 0.329  0.542 
0.436 

0.754 0.729 

M (I1, I6)(I2, I3)(I4, I5)11.714 11.395 12.869 21.169  22.635 20.051 99.833 3.145 0.594 2.051  1.094 3.326 0.579 2.458 0.868 2.964  0.609 2.051 0.913 0.362  0.594 0.478 0.407 0.890 
O (I1, I6)(I2, I5)(I3, I4)11.714 14.421 16.286 17.754  18.984 20.051 99.210 3.110 0.599 2.051  1.059 3.286 0.552 2.458 0.828 2.934  0.589 2.051 0.883 0.352  0.571 0.461 0.407 0.856 

 1.25                           

A (I1, I2)(I3, I4)(I5, I6)10.325 13.390 32.718 36.445  58.848 63.013 
214.73

8 
7.940 1.835 3.999  3.941 8.066 1.126 6.377 1.689 7.814  2.543 3.999 3.815 0.252  1.835 

1.043 
2.377 2.752 

C (I1, I2)(I3, I6)(I4, I5)10.325 13.390 40.765 45.408  49.372 52.865 
212.12

4 
7.928 1.827 3.999  3.929 8.057 1.126 6.377 1.680 7.799  2.534 3.999 3.800 0.257  1.830 

1.043 
2.377 2.740 

G (I1, I4)(I2, I3)(I5, I6)16.144 20.936 24.374 27.150  58.848 63.013 
210.46

4 
7.765 1.705 4.816  2.949 8.027 1.472 5.819 2.208 7.503  1.792 4.816 2.687 0.524  1.632 

1.078 
1.003 2.448 

H (I1, I4)(I2, I5)(I3, I6)16.144 28.103 40.765 27.150  39.626 52.865 
204.65

2 
7.732 1.798 4.816  2.916 7.991 1.448 5.819 2.172 7.473  1.975 4.816 2.657 0.518  1.712 

1.115 
1.003 2.414 

M (I1, I6)(I2, I3)(I4, I5)21.670 20.936 24.374 45.408  49.372 42.430 204.18
9 

7.654 1.511 5.354  2.300 8.019 1.662 5.527 2.493 7.288  1.289 5.354 1.934 0.731  1.476 
1.104 

0.173 2.213 

O (I1, I6)(I2, I5)(I3, I4)21.670 28.103 32.718 36.445  39.626 42.430 200.99
1 

7.632 1.616 5.354  2.278 7.992 1.644 5.527 2.466 7.272  1.348 5.354 1.918 0.720  1.496 
1.108 

0.173 2.192 

 2.25                           
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A (I1, I2)(I3, I4)(I5, I6)66.833 106.70
5 

532.85
5 

647.05
7 

1532.9
3 

1733.6
8 

4620.0
5 

245.98
5 

137.80
3 

50.362  195.62
3 

229.86
0 

123.69
0 

54.988 174.87
2 

262.110 141.166 50.362 211.74
9 

-32.251 132.42
8 50.089 

4.626 193.31
0 

C (I1, I2)(I3, I6)(I4, I5)66.833 106.70
5 

791.61
1 

961.27
0 

1117.5
3 

1263.8
8 

4307.8
3 

242.78
9 

126.74
3 

50.362  192.42
8 

226.34
4 

114.23
8 

54.988 171.35
6 

259.234 139.248 50.362 208.87
2 

-32.890 126.74
3 46.927 

4.626 190.11
4 

G (I1, I4)(I2, I3)(I5, I6)149.41
7 

238.55
9 

313.65
9 

380.88
3 

1532.9
3 

1733.6
8 

4349.1
2 

230.97
7 

141.07
9 

82.585  148.39
2 

223.78
1 

127.74
3 

82.585 141.19
6 

238.172 154.415 112.86
8 

125.30
4 

-14.392 141.07
9 63.343 

-30.284 133.25
0 

H (I1, I4)(I2, I5)(I3, I6)149.41
7 

405.27
3 

791.61
1 

380.88
3 

752.24
1 

1263.8
8 

3743.3
1 

223.91
6 

103.19
3 82.585  

141.33
1 

216.92
8 89.562 82.585 

134.34
3 230.904 121.483 

112.86
8 

118.03
5 -13.976

105.52
3 45.774 -30.284

126.18
9 

M (I1, I6)(I2, I3)(I4, I5)253.83
5 

238.55
9 

313.65
9 

961.27
0 

1117.5
3 

850.75
5 

3735.6
1 

212.08
8 85.109 

104.41
8 

107.67
0 

214.35
7 

100.62
2 

104.41
8 

109.93
9 209.819 69.596 

131.85
4 77.965  4.538  85.109 44.823 -27.436 93.952 

O (I1, I6)(I2, I5)(I3, I4)253.83
5 

405.27
3 

532.85
5 

647.05
7 

752.24
1 

850.75
5 

3442.0
2 

208.22
3 

56.715 
104.41

8 
103.80

5 
211.01

9 
71.067 

104.41
8 

106.60
1 

205.426 40.499 
166.71

4 
38.712  5.593  55.783 

30.688 
-62.296 72.657 



 

 

The same calculations were repeated for unbalanced groups – i.e., I6 was discarded from the 
economy. The same criteria proved useful in identifying the equilibrium. Additionally, the marginal 
benefit from mating (joining with I2) of the singleton is also reported (column MBOut): it was expected 
to be lower than the (average) marginal benefit of matched odd individuals (than MeanBOd) – the 

price of even consorts - in the (shaded) equilibrium. However, this rule should apply to positive 
assortative mating situations – when the cross derivative of the indirect utility function is positive - 
reason why it did not work for the first case.  

With negative assortative mating, high income individuals are left unmated. We then expect – 

the cross-derivative of the indirect utility function is negative - that it is the individual that is mated with 
the closest income to the lowest excluded income that is better-off than (has higher marginal benefit 
than he would have by) mating with the excluded one. 
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Table B2 
Assign

Pair 1 Pair 2 Pair 3 V1 V2 V3 V4 V5 SUM MBOut MeanB AVDEVBMinB Mean-MinMeanBOddAVDEVBODDMinO Mean-Min
MeaBEv AVDBE

v MinE Mean-Min
Mean(Odd
Even)  

MeanAvDevAVER MinO-MinEMean(Mean
Min) 

i
 =0.25                           

A (I1, I2)(I3, I4)(I5) 1.595 1.680 2.009 2.053  1.968 9.305 0.119 0.157 0.061 0.115  0.042 0.197 0.082 0.115 0.082 0.116  0.001 0.115 0.001 0.081  0.042 0.061 0.000 0.042 
C (I1, I2)(I3) (I4, I5) 1.595 1.680 1.732 2.145  2.181 9.333 0.162 0.145 0.067 0.092  0.053 0.186 0.093 0.094 0.093 0.104  0.011 0.092 0.011 0.083  0.052 0.067 0.002 0.052 
G (I1, I4)(I2, I3)(I5) 1.744 1.837 1.894 1.935  1.968 9.379 0.119 0.136 0.031 0.074  0.061 0.156 0.006 0.149 0.006 0.116  0.041 0.074 0.041 0.040  0.024 0.032 0.075 0.024 
H (I1, I4)(I2, I5)(I3) 1.744 1.949 1.732 1.935  2.087 9.448 0.162 0.114 0.021 0.074  0.039 0.134 0.015 0.119 0.015 0.093  0.019 0.074 0.019 0.041  0.017 0.029 0.045 0.017 
M (I1) (I2, I3)(I4, I5) 1.316 1.837 1.894 2.145  2.181 9.374 0.279 0.126 0.033 0.092  0.034 0.128 0.034 0.094 0.034 0.125  0.032 0.092 0.032 0.003  0.033 0.018 0.002 0.033 
O (I1) (I2, I5)(I3, I4) 1.316 1.949 2.009 2.053  2.087 9.414 0.279 0.116 0.003 0.111  0.004 0.117 0.002 0.115 0.002 0.114  0.003 0.111 0.003 0.003  0.003 0.003 0.003 0.003 
 0.75                           

A (I1, I2)(I3, I4)(I5) 4.058 4.743 8.107 8.649  7.622 33.180 1.473 1.350 0.239 0.909  0.441 1.546 0.233 1.313 0.233 1.155  0.246 0.909 0.246 0.391  0.239 0.315 0.403 0.239 
C (I1, I2)(I3) (I4, I5) 4.058 4.743 5.196 9.869  10.377 34.244 1.598 1.298 0.240 0.909  0.388 1.531 0.248 1.283 0.248 1.065  0.155 0.909 0.155 0.466  0.202 0.334 0.373 0.202 
G (I1, I4)(I2, I3)(I5) 5.306 6.202 6.794 7.249  7.622 33.174 1.473 1.277 0.252 0.801  0.475 1.423 0.175 1.248 0.175 1.130  0.329 0.801 0.329 0.293  0.252 0.273 0.447 0.252 
H (I1, I4)(I2, I5)(I3) 5.306 7.400 5.196 7.249  9.095 34.246 1.598 1.180 0.189 0.801  0.379 1.360 0.112 1.248 0.112 1.000  0.198 0.801 0.198 0.361  0.155 0.258 0.447 0.155 
M (I1) (I2, I3)(I4, I5) 2.280 6.202 6.794 9.869  10.377 35.522 1.779 1.390 0.139 1.220  0.170 1.440 0.158 1.283 0.158 1.339  0.120 1.220 0.120 0.101  0.139 0.120 0.063 0.139 
O (I1) (I2, I5)(I3, I4) 2.280 7.400 8.107 8.649  9.095 35.531 1.779 1.346 0.091 1.198  0.148 1.393 0.080 1.313 0.080 1.299  0.101 1.198 0.101 0.093  0.091 0.092 0.114 0.091 
 1                           

A (I1, I2)(I3, I4)(I5) 6.473 7.969 16.286 17.754  15.000 63.483 3.984 3.146 0.589 1.969  1.177 3.445 0.028 3.418 0.028 2.847  0.878 1.969 0.878 0.598  0.453 0.525 1.448 0.453 
C (I1, I2)(I3) (I4, I5) 6.473 7.969 9.000 21.169  22.635 67.247 3.869 3.127 0.579 1.969  1.158 3.562 0.089 3.473 0.089 2.692  0.723 1.969 0.723 0.870  0.406 0.638 1.504 0.406 
G (I1, I4)(I2, I3)(I5) 9.256 11.395 12.869 14.029  15.000 62.548 3.984 3.026 0.621 2.029  0.998 3.326 0.543 2.783 0.543 2.727  0.698 2.029 0.698 0.598  0.621 0.610 0.754 0.621 
H (I1, I4)(I2, I5)(I3) 9.256 14.421 9.000 14.029  18.984 65.689 3.869 2.955 0.550 2.029  0.927 3.383 0.601 2.783 0.601 2.527  0.499 2.029 0.499 0.856  0.550 0.703 0.754 0.550 
M (I1) (I2, I3)(I4, I5) 3.000 11.395 12.869 21.169  22.635 71.068 3.473 3.590 0.170 3.415  0.175 3.760 0.109 3.651 0.109 3.420  0.005 3.415 0.005 0.340  0.057 0.198 0.236 0.057 
O (I1) (I2, I5)(I3, I4) 3.000 14.421 16.286 17.754  18.984 70.446 3.473 3.538 0.316 3.026  0.512 3.701 0.283 3.418 0.283 3.376  0.350 3.026 0.350 0.325 0.316 0.321 0.391 0.316 
 1.25                           

A (I1, I2)(I3, I4)(I5) 10.325 13.390 32.718 36.445  29.520 
122.39

7 10.106 7.004 1.816 3.999  3.004 7.360 0.984 6.377 0.984 6.647  2.648 3.999 2.648 0.713  1.816 1.265 2.377 1.816 

C (I1, I2)(I3) (I4, I5)10.325 13.390 15.588 45.408  49.372 
134.08

3 8.785 7.271 2.083 3.999  3.272 8.061 1.685 6.377 1.685 6.481  2.482 3.999 2.482 1.580  2.083 1.832 2.377 2.083 

G (I1, I4)(I2, I3)(I5) 
16.144 20.936 24.374 27.150  29.520 

118.12
3 10.106 6.741 1.424 4.816  1.926 7.302 1.483 5.819 1.483 6.181  1.365 4.816 1.365 1.121  1.424 1.273 1.003 1.424 

H (I1, I4)(I2, I5)(I3) 
16.144 28.103 15.588 27.150  39.626 

126.61
1 8.785 6.977 1.660 4.816  2.161 7.962 2.144 5.819 2.144 5.991  1.176 4.816 1.176 1.971  1.660 1.815 1.003 1.660 

M (I1) (I2, I3)(I4, I5)
3.948 20.936 24.374 45.408  49.372 

144.03
8 6.377 8.760 0.607 7.546  1.214 9.266 0.480 8.785 0.480 8.255  0.709 7.546 0.709 1.011  0.595 0.803 1.239 0.595 

O (I1) (I2, I5)(I3, I4)
3.948 28.103 32.718 36.445  39.626 

140.83
9 6.377 8.728 0.972 7.167  1.561 9.225 0.881 8.344 0.881 8.231  1.064 7.167 1.064 0.994  0.972 0.983 1.177 0.972 

 2.25                           

A (I1, I2)(I3, I4)(I5) 66.833 
106.70

5 
532.85

5 
647.05

7 
442.79

8 
1796.2

5 
309.44

3 
147.68

0 95.005 50.362  97.318 
137.09

2 82.104 54.988 82.104 158.268 107.906 50.362 
107.90

6 -21.176 95.005 36.915 4.626 95.005 

C (I1, I2)(I3) (I4, I5)
66.833 

106.70
5 

140.29
6 

961.27
0 

1117.5
3 

2392.6
3 

173.36
3 

196.21
3 

143.53
8 50.362  

145.85
1 

210.13
9 

155.15
1 54.988 

155.15
1 182.287 131.925 50.362 

131.92
5 27.852 

143.53
8 85.695 4.626 

143.53
8 
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G (I1, I4)(I2, I3)(I5) 149.41
7 

238.55
9 

313.65
9 

380.88
3 

442.79
8 

1525.3
1 

309.44
3 

125.16
7 27.441 82.585  42.583 

127.97
4 45.389 82.585 45.389 122.361 9.493 

112.86
8 9.493 5.612  27.441 16.527 -30.284 27.441 

H (I1, I4)(I2, I5)(I3) 149.41
7 

405.27
3 

140.29
6 

380.88
3 

752.24
1 

1828.1
1 

173.36
3 

167.90
2 70.770 82.585  85.318 

196.01
4 

113.42
9 82.585 

113.42
9 139.791 26.923 

112.86
8 26.923  56.223  70.176 63.199 -30.284 70.176 

M (I1) (I2, I3)(I4, I5)11.845 
238.55

9 
313.65

9 
961.27

0 
1117.5

3 
2642.8

6 54.988 
246.18

0 93.571 
131.85

4 
114.32

6 
269.32

6 95.964 
173.36

3 95.964 223.033 91.179 
131.85

4 91.179  46.293  93.571 69.932 41.508 93.571 

O (I1) (I2, I5)(I3, I4)11.845 
405.27

3 
532.85

5 
647.05

7 
752.24

1 
2349.2

7 54.988 
240.38

2 47.427 
166.71

4 73.668 
264.32

0 45.124 
219.19

6 45.124 216.444 49.730 
166.71

4 49.730  47.876  47.427 47.651 52.482 47.427 



 

 

 
 

 


