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ABSTRACT 

 

Ideals in Sequential Bargaining Structures 
 

Ana Paula Martins 
 

This note suggests possible extensions of the baseline Rubinstein sequential bargaining 
structure - applied to the negotiation of stationary infinitely termed contracts - that incorporate a 
direct reference to the “ideal” utilities of the players. This is a feature of the Kalai-Smorodinsky 
cooperative solution – even if not of the generalized Nash maximand; it is usually not 
encountered in non-cooperative equilibria. 

Firstly, it is argued that different bargaining protocols than conventionally staged are 
able to incorporate temporary all-or(and)-nothing splits of the pie. We advance scenarios where 
such episodes are interpreted either as – out of bargaining - war or unilateral appropriation events, 
or free experience contracts.  

Secondly, we experiment with some modifications to the Rubinstein infinite horizon 
paradigm allowing for mixed strategies under alternate offers, and matching or synchronous 
decisions in a simultaneous (yet, discrete) bargaining environment. We derive solutions where the 
reference to the winner-takes- it-all outcome arises as a parallel – out-of-the-protocol - outside 
option to the status quo point. 

In some cases, we thrived to derive the limiting maximand for instantaneous bargaining.  
 

July 2004, Revised August 2006 
 

JEL Classification: C72; C78; C44; H56; D74 (K42). 
Keywords : Sequential Bargaining under Compensating Protocols; (Product) 

Promotions; Apprenticeship; Infinite Horizon, Mixed Strategy Games; Mixed Strategies under 
Perfect Information Games; Simultaneous Sequentia l Bargaining; Matching Equilibrium under 
Sequential Bargaining; Synchronous (Decisions) Equilibrium under Sequential Bargaining; 
Delay; Hold-up. 
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Ideals in Sequential Bargaining Structures 
 

“This is the sign of the covenant which I make between me and you 
and every living creature that is with you, for all future generations…” 
In Genesis 9: 12. 

 
Introduction 
 
Rubinstein’s (1982) structure has become a major reference in game theory and wage 

bargaining literature, possessing in its most well-known form the agreeable characteristic of 
generating – under perfect information, rational players and a realistic bargaining protocol – an 
immediate settlement and a unique equilibrium with no time loss, illustrating both the first-mover 
and patience advantages. Moreover, it provided, after Binmore, Rubinstein and Wolinsky (1986), 
a rationale for the cooperative solution implied by the generalized Nash (1950, 1953) maximand. 
In its solution, no direct reference to the maximal utility that each player can attain is usually 
found – a feature possessed by the Kalai-Smorodinsky (1975) result. Elsewhere – Martins (2004) 
-, we attempted an inclusion of such reference in plausible cooperative maximands; in this 
research, we search for bargaining structures where it could also be accommodated. 

In all scenarios, at stake is the split of an infinite flow of benefits, periodically available 
at subsequent, equally distant, discrete points in time. For simplicity, it is assumed that only 
stationary divisions of the cake are contractually acceptable, and enforceable, once agreed upon, 
ad infinitum – a context akin to wage bargaining, but also realistic for other settings, namely 
rental - tenancy and leasing – agreements, and barter of capital or durable goods. 

In a first class of models, we advance bargaining protocols where the party receiving the 
offers has the right to a full periodic “cake” in case of acceptance. Such settings may reproduce 
promotion policies by a seller, conceding free initial consumption to a potential buyer. And 
conversely, we contemplate the opposite case where the making of an acceptable proposition 
entitles/requires the full consumption of the periodic bargained endowment by the individual – 
possibly an incumbent, with some “hold-up” rights; the scenario can apply to long-term labor 
contracts with an initial apprenticeship period with very low pay (even if we could argue that it is 
accompanied by exchanges in kind – in human capital). 

In a second setting, the possibility of one party actually “stealing” the periodic bargained 
object – and attaining the maximum utility – is addressed. This stage has two methodological 
interests: it allows for an immediate visualization of negotiations break-down; the underlying 
model encompasses the negotiation-bargaining vs. war-stealing decision internally. 

The basic context of negotiations has been enlarged to encompass outside options – see 
Haller and Holden (1990) and Fernandez and Glazer (1991) - under which some of the standard 
equilibrium properties are lost. To some extent, the second type of bargaining models inspected in 
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this research subscribe to the outside-option literature, even if in our case the “outside option” 
may be an out-of-the-protocol take-over of the “inside opportunities”. We derive the properties of 
a stationary equilibrium allowing the players to decide whether to negotiate or not, and also to 
play mixed (i.e., random) strategies. These are known to exist for familiar bargaining games, even 
if not necessarily called for to assure equilibrium 

1
; given the complexity introduced by the 

additional alternative, they become crucial to allow for interior equilibrium solutions under 
particular parameter ranges. 

Two types of sequential bargaining protocols were inspected, both with the salient 
property of generating measurable expected waiting times until agreement is reached. A first one, 
where a simple extension of the Rubinstein structure is introduced: at a player’s turn to “make a 
move”, he can chose not to make any, enjoying a pay-off different from the one he gets when 
refusing an offer, and wait for next period’s decision of the opponent concerning the same choice. 
In a second class of models, an equilibrium with simultaneous (but still sequential) bargaining – 
i.e., with simultaneous offer exchange - is forwarded. 

Simultaneous bargaining has been studied in the literature to obviate the dependence of 
Rubinstein’s results on the order and timing of offers. Usually, it is staged in a sequential set-up 
where time is assumed to be continuous and minimum delays between offers to exist - see Perry 
and Reny (1993) and Sákovics (1993). Instead, we keep the discrete time and forward the notion 
of “matching” or synchronous equilibrium, defined relying on each player using a mixed 
(probabilistic) strategy conditional on (and statistically independent of) the other player’s action; 
a probabilistic measure of the likelihood of each player being the first to make offers can be 
generated with it. 

Comparisons to the baseline Rubinstein structure under linear utility functions are 
provided. Inspection of potentially applicable instantaneous maximands to each case is also 
carried out for some of the models. 

The exposition proceeds as follows: Rubinstein bargaining framework is forwarded in 
section 1. Potential maximal temporary payoffs for each of the players are introduced as an initial 
exchange in section 2. Uncertain attainment of the ideal utility is introduced as a permanent 
outside option under an alternate offers setup in section 3. Mixed strategies under an alternate 
sequentia l bargaining structure where a recurrent outside option is available till contract closure 
are introduced in section 4. In section 5, properties of simultaneous, yet sequential, equilibria are 
inspected. The exposition ends with some concluding remarks. 

 
 

                                                 
1
 See Admati and Perry (1985), for example. 
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1. Notation: Rubinstein (R) Sequential Bargaining Structure  
 
. A description of the sequential bargaining prototype can be found in several articles. 

We lie down the structure of an infinite horizon, two-sided offer game with a simple recurrent 
contract being bargained 2: let a “pie” of fixed size, normalized to 1, be made available to the two 
individuals every period, each with per period utility function – a discrete, well-behaved, 
“felicity” function - ui(z), with z denoting the share obtained by i, which they discount at factor 

δi. 

For simplicity, assume that the bargaining protocol is such that an agreement on the 
share of the pie is binding for eternity: if an agreement is reached about the split of the pie for a 
particular period, the same split will hold forever 3. Also, individuals make offers – proposals – 
on alternating periods, in which the opponent either accepts – and the split is settled – or rejects; 
in this case, the pie is lost and the “haggling” reinitiates next period with the opponent making the 
offer. 

A (the) sub-game perfect equilibrium is derived as follows: 
Denote by x the share accruing to player 1 when he is the first to make an offer – in 

which case (1 – x) is the share going to 2; and by y, the share accruing to player 1 when 2 is the 
first to propose – in which case (1 – y) is the share going to 2.  

Assume individual 1 receives an offer y this period. He may accept, in which case he 
will obtain an accumulated discounted utility of: 

 

 1 1
0

( )t

i

u yδ
∞

=
∑   =  1

1

( )
1
u y

δ−
 

 
If he rejects the offer, this period he will get u1(0) or, in general, d1; if he makes an 

acceptable proposition x* next period, he will obtain the stream u1(x*) of utilities from next 

period on, i.e., accumulating as: 
 

 d1 + 1 1
1

( *)t

i

u xδ
∞

=
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1

( *)
1
u xδ

δ−
 

 
Player 1 will only accept the offer y iff: 
 

                                                 
2 See Manzini (1998), for a survey of similar structures and results, including finite horizon 

games. Also, Busch and Wen (1995), Muthoo (1995) and Muthoo (1999).  

3 We will contrast some implications with those of other type of contracts forwarded in the 

bargaining literature below in this section. This condition/assumption restricts the relevant strategies to 

the players to be stationary in the long-run. 
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or  u1(y) – d1  ≥  δ1 [u1(x*) – d1] 

 
Comparisons with other hypothetical later settlements is useless: every two periods 

while an agreement is not reached, each player’s position repeats itself and would generate the 
same solution for a contract settlement – only delay with loss of “cake” would have been passed. 

Likewise, when player 2 ponders an offer (1-x) of individual 1, he will accept it iff 
 

 2

2

(1 )
1
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δ
−

−
  ≥  d2 + 2 2

2
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1
u yδ

δ
−

−
 

or  u2(1-x) – d2  ≥  δ2 [u2(1-y*) – d2] 

 
If player 1 does not accept today’s offer, both players wait for tomorrow’s reasoning of 

player 2 according to the last expression and vice-versa.  
The first to play – to make an offer - will always push the offer in his own favor till the 

other player’s inequality barely holds – but strictly holds, to guarantee acceptance. He is 
constrained by the fact that, as the second to play is – with such strategy - indifferent between 
acceptance or not, the latter can wait for tomorrow and replicate the reasoning towards the first 
player. Then, the mutual acquiescent solution will entail a pair (x*, y*), x* being the share 
accruing to 1 if he is the first to make an offer, y* if 2 is the first to make the offers – or rather, 
(x*-ε, y*+ε’), where ε and ε’ are infinitesimal quantities, guaranteeing that the accepting part 
will, in fact, accept and not wait for the other’s turn; or assume that in case of indifference, the 
game ends -, such that the two previous conditions are met as equalities: 

 
(1) u1(y*) – d1  =  δ1 [u1(x*) – d1] 

and  
(2) u2(1-x*) – d2  =  δ2 [u2(1-y*) – d2] 

 
It must be the case that in that solution: u1(x*), u1(y*) > d1;  u2(1-x*), u2(1-y*) > d2. 

This will also guarantee that the first to play is better-off making the offer than waiting to be 
made one, i.e.: 
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No delay in reaching the settlement is observed and no loss of “cake” either and, in 

general, the two equations possess a unique solution pair. From the first (second) equality, (1) 
((2)), given that δ1 < 1 (δ2 < 1), y* < x* (1-x* < 1-y*) and the share accruing to 1 (2) is larger 

when he is the first to make the offer: the problem exhibits a “first-mover advantage”.  
 
Under linear utility functions ui(z) = z; without loss of generality, let di, an alternative in 

case no agreement is reach in the period, be available to each player i. Then: 
 

(3)     x*  = 2 1 1 2 2

1 2

(1 ) (1 )(1 )
1
d dδ δ δ

δ δ
− + − −

−
    ;     y*  = 1 1 1 2 2

1 2

(1 ) (1 )(1 )
1

d dδ δ δ
δ δ

− + − −
−

   

 1 - x*  = 2 1 1 2 2

1 2

(1 )(1 ) (1 )
1

d dδ δ δ
δ δ

− − + −
−

    ;  1 - y*  = 1 1 1 2 2

1 2

(1 )(1 ) (1 )
1
d dδ δ δ

δ δ
− − + −

−
   

 
For an interior solution to be valid: 
 
(4) x*, y* > d1; 1 – x*,1 – y* > d2     which require     d1 + d2 < 1  

 
In interior solutions (provided d1 + d2 < 1), 1’s shares in either case decrease with his 

impatience – increase with δ1 – and increase with the opponent’s impatience – decrease with δ2.  

Also, player i’s shares increase with his “outside option”, di, and decrease with the 
opponent’s, dj: having alternatives, improves a player’s bargaining position. 

Under equal discount rates:  
 

(5) x*  = 1 2(1 )
1

d dδ
δ

+ −
+

      ;     y*  = 1 2(1 )
1

d dδ
δ

+ −
+

   

 
If the alternatives to the  bargaining yield no utility, i.e., di = ui(0) = 0, the “pure split” 

bargaining problem is established. In general, this is the benchmark case with which we will want 
to compare our solutions: while no agreement is reached, the periodic “pie” is completely lost – 
and no “crumbs” accrue to any of the players: x and y are shares of a surplus the generation of 
which also depends upon the players reaching (previous) agreement over its division. Then:  

 

(6) x*  = 
21

2

1
1

δδ
δ

−
−

              ;               y*  = 
21

21

1
)1(

δδ
δδ

−
−

   

 

The general conclusions do not change, but there will always be an interior solution. 
And under equal discount factors:  
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(7) x*  = 
1

1 δ+
               ;               y*  = 

1
δ

δ+
   

 
. In standard games, the size of the pie is traditionally normalized to 1. The hypothesis 

does not alter the general conclusions under most contexts. Say the periodic bun has size D and 
define x and y as the proportions of D allocated to 1: D x is the parcel accruing to player 1 when 
he is the first to make an offer – in which case D (1 – x) is the part going to 2; and D y is the 
parcel accruing to player 1 when 2 is the first to propose – in which case D (1 – y) is the one 
going to 2. One could develop the equilibrium solution for linear utility functions and conclude 

that in (3), di , i=1,2, would just be replaced by id
D

: general comparative statics for the players’ 

shares relative to any parameter but size D itself would remain unaltered – and therefore, indeed 
without loss of generality, we will stick to the normalized case. We could then write: 
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Interestingly, x* rises with D iff 2

2

1 δ
δ
−

 d2 > (1 - δ1) d1; 1 – y* rises with D iff 1

1

1 δ
δ
−

 d1 

> (1 - δ2) d2. Hence, being i the first player, his relative share rises with the size of the pie iff: 
 

(9)  (1 - δ i) di  <  
1 j

j

δ

δ

−
 dj  

 

Consequently, under identical (and fixed absolute) alternatives and discount factors, the 
size of the pie benefits relatively more the first mover. In the general case, a large discount factor 
(patience) and a small alternative will make it more likely that a player’s (relative) share will 
increase with the size of the bargained item. 

Finally, if the available alternatives after disagreement are indexed to D and i receives D 
di (instead of di) in such case, or if they are inexistent and di = 0, i=1,2 (a commonly used 

assumption), we revert to the normalized solution (3) – and the relative shares x* and y* are 
independent of the size of the pie. 

 
. A note should be added with respect to the interplay with the capital market. The 

previous conclusions were derived under the assumption that lending or borrowing is absent. 
Assume perfect capital markets and that the traders can switch part of their equilibrium settlement 
zi*, say, ∆, by a perpetuity at the market interest rate mr i, then maximizing:  
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∆

    ui(zi* - ∆) + 
*( )

1
i i i i
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u z mrδ
δ
+ ∆

−
 

 

F.O.C. with respect to ∆ would then imply – replacing δ i by 
1

1 ir+
 - that: 

 

 ui’(zi* - ∆) = i

i

mr
r

 ui’(zi* + mri ∆) 

 
If a player is risk-averse and the player’s felicity function is concave – insuring that 

S.O.C. hold -, he is a perpetual lender/renter – ∆* > 0 – iff mr i > r i, that is, he discounts the future 
utility less intensely than the market discounts future revenues. In the opposite case – if mri < ri –, 

∆* < 0 and he will be a perpetual borrower.  
One could advance or hypothesize that under perfect capital markets, the solution of the 

game between the players – whatever their utility functions are – would be represented instead by 
the linear utility solution where the discount rates are replaced by the market interest rates that 
they face, mri, provided that this solution yields higher utility streams when borrowing is then 

allowed for; such behavior of the players would then mimic maximization of the net present value 
of the game for them. The subject is left for further inspection. 

 
. The previous bargaining protocol posited offers as binding long-term – infinite-term -

splits. Indeed, labor contracts, for example, are set for several periods. Nevertheless, a one period 
“pie” could be at stake from one point in time till eternity 

4
. Under such circumstances, one can 

claim that 1 accepts an offer y if the gains he expects by accepting it today are larger than those 
he expects if he does not accept and makes a reasonable proposition tomorrow: 

 
 u1(y) – d1  ≥  0  + δ1 [u1(x*) - d1] 

 
In other words, it is as if he weights consuming u1(y) today and d1 tomorrow, in which 

case he gets  u1(y) + δ1 d1 , with enjoying d1 today and u1(x*) tomorrow (at best), getting  d1 + 

δ1 u1(x*) – and, in both cases, d1 ever since the day after tomorrow 
5
. For 2: 

 
 u2(1 - x) +  δ2 d2  ≥  d2 + δ2 u2(1 – y*)  

 

                                                 
4
 See, for example, Kennan and Wilson (1989), modelling labor contract settlements. 

5
 Hence, comparing accumulated utility flows for the same time horizon. 
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The equilibrium split is guaranteed by the same x* and y* as above, provided the same 
d1 and d2 apply. One cannot, however, superimpose easily a sequence of alternating games in 

which the conditions of this problem would replicate eternally. We will therefore stick to the 
long-term contract structure. 

 
. Binmore et al (1986) suggest that the solution to the game above if both δ1 and δ2 tend 

to 1 due to a decreasing time interval between offers, can be seen to yield the Nash maximand. 

Let δ i = e-ri∆, where ri denotes the instantaneous interest rate (yet, measured per unit of time) at 

which individual i discounts “felicity” and ∆ the time length of the interval between offers 6; let ∆ 
tend to 0. The two conditions above become: 

 

 u1(y*) – d1  =  e-r1∆ [u1(x*) – d1] 

and  u2(1-x*) – d2  =  e-r2∆ [u2(1-y*) – d2] 

For small ∆, a first-order approximation to δ i is (1 - ri ∆) and is legitimate. Then, we can 

approximate: 
 
 u1(y*) – d1  =  (1 – r1 ∆) [u1(x*) – d1] 

and  u2(1-x*) – d2  =  (1 – r2 ∆)  [u2(1-y*) – d2] 

Re-arranging 
 u1(y*) – u1(x*)  =  – r1 ∆ [u1(x*) – d1] 

 u2(1-x*) – u2(1-y*)  =  – r2 ∆  [u2(1-y*) – d2]  

 

Then  1 1

2 2

( *) ( *)
(1 *) (1 *)
u y u x

u x u y
−

− − −
  =  1

2

r
r

  1 1

2 2
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(1 *)
u x d

u y d
−

− −
  

The left hand-side can be written as  

1 1

2 2

( *) ( *)
* *

(1 *) (1 *)
1 * (1 *)

u y u x
y x

u x u y
x y

−
−

− − −
− − −

 

 
As ∆ tends to 0, x* tends to y*, and the expression tends to the ratio of marginal utilities 

evaluated at x* and 1 – x* in the numerator and denominator respectively. The previous condition 
becomes:  

 

                                                 
6 We follow Cahuc and Zylberberg (2001) exposition. A formal interpretation of discrete time interval 

bargaining of continuous time optimizing players – and the justification of the replacement of δi by e-ri∆ in the 

equilibrium conditions - is developed in Appendix 1. 
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2
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u x−
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2

r
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u x d
u x d

−
− −

  

 
coinciding with the optimal F.O.C. conditions derived under the generalized Nash 

maximand. 
Under an egalitarian possibility set, say G, with respect to utilities, i.e., of the form u1 + 

u2 ≤ U , the solution of 
 
 uNG  =  Arg Max  (u1 – d1)γ1  (u2 – d2)γ2  

 u ∈ G  

where 
1 2

iγ
γ γ+

 represents bargaining power of player i and equals 

1 2

1

1 1
ir

r r
+

 is: 

 

(11) u1
NG – d1  =  1

1 2

γ
γ γ+

 1 2( )U d d− −       or     u1
NG  =  1 2 2 1

1 2

( )U d dγ γ
γ γ
− +

+
   

 

Of course, the features of this solution with respect to utilities translate immediately to 
the arguments for the case of linear utilities. This form – with U  = 1 - can be seen as consistent 
with (3) if we allow – in the solutions x* and y* of (3) - for a first-order approximation to δ i as (1 

- ri ∆) and consider that ∆ goes to 0.  

 
 

2. Bargaining Structures with Compensating Protocols 
 
In certain bargaining situations proposals may only be forwarded after inspection of the 

product. That is, for a recurrent buyer to accept a long-term supplying contract, he may wish or 
(should) be entitled to inspect a one period trial. On other cases, to make a reasonable 
proposition, the proposing part may need to study/consume the bargained object. In this section 
we include such type of hypothesis in protocol design. In the labor market, both can reproduce a 
long-term contract with initial “gift-exchange”; indeed initial low pay is known to occur in some 
professions – taking the form of training or apprenticeship period, hence with other claimed 
functionalities; part of these may, however be attributed to bargaining arrangements. 

In some instances, the scenario may reproduce the effect of “hold-up” rights. And/or in 
others, the existence of an outside option; or yet potential bribe exchange between/to the players. 
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2.1. Experience Rights  
 
Consider that the individual who is assessing the proposal is entitled to a one-period free 

bonus in case he accepts the stream of proposed gains; that is, in that period if he accepts he is 
entitled to the periodic “ideal” utility iu . If he does not accept the bargain, he must return the 
product with no left-over utility (say, he must pay the experience at his own expense) over the 
status quo utility di. 

When 1 is assessing 2’s proposal he compares: 
 

 1u  + 1 1
1

( )t
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u yδ
∞

=
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( )
1
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( *)t
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u xδ
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1
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or:    11 1 1

1

(1 ) ( )
1
u u yδ δ

δ
− +

−
  ≥  d1 + δ1 1 1 1 1

1

(1 ) ( *)
1
d u xδ δ

δ
− +

−
   

 
Even if he makes an acceptable proposal tomorrow, if the latter becomes accepted, 1 

must give the one period experience to player 2 in that next period as well. 
For 2, an identical reasoning is made when he receives an offer 1-x. The sub-game 

perfect equilibrium will generate: 
 
(12) (1 - δ1) ( 1u  - d1)  +  δ1 [u1(y*) - d1]  =  δ1

2 [u1(x*) - d1]   

and 
(13) (1 - δ2) ( 2u  - d2)  +  δ2 [u2(1-x*) – d2]  =  δ2

2 [u2(1-y*) – d2]   

 

It must be the case that in that solution: d1 + δ1 d1 + δ1
2 1

1

( *)
1
u x

δ−
 > 1

11
d

δ−
, and 

symmetrically for player 2. Hence:     u1(x*) > d1; u2(1-y*) > d2. 

In equilibrium, if player 1 is the first-mover, he will get:  
 

(14) Z1*  =  d1 + δ1 1

1

( *)
1
u x

δ−
 

 
If he is the second-mover, and it is 2’s turn to propose: 
 

(15) V1*  =  1u  + δ1 1

1

( *)
1
u y

δ−
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The first equation describing the equilibrium solves for V1* = d1 + δ1 Z1* and - as δ1 < 

1 and both Z1*(1 - δ1) and V1*(1 - δ1) must exceed d1 – the problem always exhibits a first-

mover advantage in accumulated utility flows, i.e., Z1* > V1*. As 1u  > d1, - from (14) and (15) - 

that implies that u1(x*) > u1(y*) and a first-mover advantage is also present for the periodic 

share. 

Also, V1*  > 1

11
d

δ−
 , which requires that: (1 - δ1) 1u  + δ1 u1(y*) > d1. 

 
. Let ui(z) = z, i =,1,2 and di and iu  rest undefined. Then, in line with (3), we can derive:  
 

(16) x*  = 
2 2 2 2

1 21 2 2 2 1 1 1 2 2 2 1 1 2

1 2 1 2

(1 ) (1 ) (1 ) (1 ) (1 )
(1 )

d d u uδ δ δ δ δ δ δ δ δ δ δ
δ δ δ δ

− + − − − − − + −
−

    ;   

 y*  =  
2 2 2 2 2

1 21 2 2 2 1 1 1 2 2 2 1 1 2

1 2 1 2

(1 ) (1 ) (1 ) (1 ) (1 )
(1 )

d d u uδ δ δ δ δ δ δ δ δ δ δ
δ δ δ δ

− + − − − − − + −
−

 

 
As for the long-term accumulated flows: 
 

(17) Z1*  =  d1 + δ1 1

1

( *)
1
u x

δ−
 = 

  =  1

11
δ

δ−
 

2 2
1 21 2 2 2 2 1 1 1 2 2 2 1 1 2

1 2 1 2

(1 ) (1 )(1 ) (1 ) (1 ) (1 )
(1 )

d d u uδ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ δ

− + + − − − − − + −
−

 

 V1*  =  1u  + δ1 1

1

( *)
1
u y

δ−
 =   

 = 1

11
δ

δ−
 

2 2 2 2 2 2
1 21 2 2 2 1 1 1 2 2 1 2 1 1 2

1 2 1 2

(1 ) (1 ) (1 ) (1 ) (1 )
(1 )

d d u uδ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ δ

− + − − − − − + −
−

 

 
Player i’s share, as accumulated utility, increases with his “outside option”, di, and 

decreases with the other’s, dj. It decreases with the perceived utility obtained with the initial 

down-payment he gets with acceptance, iu , and increases with the opponent’s ju ; this would 

seem counter- intuitive but can be explained by the equilibrium mechanics: the opportunity cost of 
rejecting an offer today rises with the size of the own bonus, it decreases with the opponent’s 
once we will only pay it if we reject today’s offer. To accept a bribe to close a contract is not 
worthwhile for a player; that the opponent does, is. In other words, one is better off paying a bribe 
to close a long-term contract than receiving it. 

Under equal discount rates, the previous expressions simplify to: 
 

(18) x*  =  1 21 2(1 ) (1 )
(1 )

d d u uδ δ δ δ δ
δ δ

+ + − + − +
+

    ;   
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 y*  =  
2

1 21 2(1 ) (1 )
(1 )

d d u uδ δ δ δ δ
δ δ

+ + − + − +
+

  

 Z1*  =  
1

δ
δ−

 1 21 2(1 ) (1 )
(1 )

d d u uδ δ δ δ
δ δ

+ + − + − +
+

  

 V1*  =  
1

δ
δ−

 
2 2

1 21 2(1 ) (1 )
(1 )

d d u uδ δ δ δ δ δ
δ δ

+ + − + − +
+

  

 
The impact of his own outside option di on the share or accumulated utility of a first-

mover is never more pronounced (in absolute value) than the effect of a rise in the opponent’s; 
the opposite occurs for the second to play. We encounter the same relative magnitudes with 
respect to the effect of the outside option iu .  

In absolute terms, the effect of iu  is always smaller than that of di (not unexpectedly, 

once the loss of the latter is anterior to any closing contract) on the share of any player. 
The expressions become quite cumbersome to interpret; allow for simplicity that the 

alternatives are di = ui(0) = 0 and the initial period transfer/gift is complete, i.e., iu  = ui(1) = 1. 

Then, it is straight- forward to show that: 
 

(19) x*  = 
2

1 2

1 2 1 2(1 )
δ δ

δ δ δ δ
−
−

       ;       y*  =  1  -  
2

2 1

1 2 1 2(1 )
δ δ

δ δ δ δ
−
−

   

 Z1*  =  1

11
δ

δ−
 

2
1 2

1 2 1 2(1 )
δ δ

δ δ δ δ
−
−

   ;    V1*  =  1

11
δ

δ−
 

2
1 1 2

1 2 1 2

( )
(1 )

δ δ δ
δ δ δ δ

−
−

   

 
Patience is rewarded: x* as y* rise with δ1 and decrease with δ2.  

Comparing (19) with (6) of the standard model of section 3 we can confirm that: 
 

2
1 2

1 2 1 2(1 )
δ δ

δ δ δ δ
−
−

 > 
21

2

1
1

δδ
δ

−
−

        iff     δ1 (1 - δ2)  >  δ2
2 (1 - δ1) , i.e.,  δ1  > 

2
2

2
2 21
δ

δ δ− +
  

1 - 
2

2 1

1 2 1 2(1 )
δ δ

δ δ δ δ
−
−

 < 
21

21

1
)1(

δδ
δδ

−
−

   iff    δ2 (1 - δ1)  >  δ1
2 (1 - δ2) , i.e.,  δ2  > 

2
1

2
1 11
δ

δ δ− +
 

 
That is, if δ1 = δ2 = δ (or provided the two discount rates are close) the first-mover is has 

a higher periodic share than if no experience rights existed – provided that the opponent is not 
much more patient, having a high discount factor (for given δ1, the higher δ2 the less likely the 

first condition will hold, once 
2
2

2
2 21
δ

δ δ− +
 increases with δ2); the second player has a lower share 

– unless he is very patient, having a high discount factor (
2

1
2

1 11
δ

δ δ− +
 increases with δ1: for given 

δ2, the higher δ1 the less likely the condition will hold). The first part of the proposition is 

somewhat counter-intuitive, and can be reasoned (again) in terms of opportunity costs: in case of 
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rejection, the individual assessing the proposal will not only lose this period’s free experience as 
he will have to postpone consumption to make an acceptable proposition next period, when he 
must also offer a free gift to the opponent.  

Yet, the accumulated flows should provide the appropriate welfare comparisons: Z1* 

should compare with 1

1

( *)
1
u x

δ−
 of the standard problem; V1* with 1

1

( *)
1
u y

δ−
. Then  

 

 1

11
δ

δ−
 

2
1 2

1 2 1 2(1 )
δ δ

δ δ δ δ
−
−

 > 
1

1
1 δ−

 
21

2

1
1

δδ
δ

−
−

        iff     δ1  >  δ2   

 1

11
δ

δ−
 

2
1 1 2

1 2 1 2

( )
(1 )

δ δ δ
δ δ δ δ

−
−

 > 
1

1
1 δ−

 
21

21

1
)1(

δδ
δδ

−
−

     iff    δ1  >  δ2  

 
The more patient player, whether he will move first or second, is better-off with the 

current protocol. 
This justifies promotion policies based on a one period initial experiment or gift – that if 

rejected can be expected to be followed by a rise in price (the “return gift” to the seller): the 
trader with lower interest rate will have an advantage in such protocol. Interestingly, the 
conclusion is based on the properties of the implied bargaining equilibrium and not on uncertain 
information or knowledge about the (quality of) the good being bartered.  

Under δ1 = δ2 = δ: 

 

(20) x*  = 
1

(1 )δ δ+
             ;        y*  =  1  -  

1
(1 )δ δ+

   

 Z1*  =  2

1
1 δ−

            ;       V1*  =  21
δ
δ−

   

 
Even with equal discount rates, x*, the first mover periodic share, is now higher than if 

no free bonus is offered at acceptance; that is, the first mover has double advantage in this case. 
Yet, with equal impatience of the players, accumulated flows are the same than in the standard 
protocol. 

 

. Considering the replacement of δ i by e-ri∆ 
7
, manipulation of (12) and (13) and letting 

∆ tend to 0 to represent instantaneous bargaining, we can arrive at: 
 

(21) 1

2

' ( *)
' (1 *)
u x

u x−
  =  1

2

r
r

 1 1 1 1

2 2 2 2

( *)
(1 *)

u d u x d
u d u x d

− + −
− + − −

 

                                                 
7
 One can show that such replacement will continue to be valid if the players maximize a continuous-time 

utility function and bargaining offers take place at discrete time intervals of length ∆ analogously to the setting 

described in Appendix 1. 
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The maximand originating such first-order conditions will be: 
 

(22)  uW  =  Arg Max  
1 2

1 21 1 2 2(2 ) (2 )u d u u d u
γ γ

   − − − −     

 u ∈ G  

 

Again, 
1 2

iγ
γ γ+

 represents bargaining power of player i and equals 

1 2

1

1 1
ir

r r
+

. It maximizes 

the product of the utility gains relative to the difference between twice the status quo and 
maximum utility achieved by the player, powered by a factor proportional to the inverse of the 
individual’s interest rate.  

Graphically, for equal bargaining strength of the players, the new hyperbolas are such 
that the original reference center is shifted to ( 112d u− , 222d u− ) - hence, relative to the standard 

Nash maximand, in favor of the player with lower maximal utility. 
We can alternatively write 

8
: 

 

  uW  =  Arg Max  
1 2

1 21 1 1 2 2 2u d u d u d u d
γ γ

   − + − − + −     

 u ∈ G  

 
Under an egalitarian possibility set with respect to utilities, u1 + u2 = U : 

 

u1
W – d1  = 2 11 2 1 2 1

1 2

( 2 ) ( )U u d d d uγ γ
γ γ

+ − − + −
+

  or  u1
W  = 2 11 2 2 1

1 2

( 2 ) (2 )U u d d uγ γ
γ γ

+ − + −
+

  

 
If we assume that 1u  = 2u  = U : 
 

  u1
W – d1  =  1 2 1 2 1 2 1

1 2

(2 ) 2 ( )U d dγ γ γ γ γ
γ γ

− − − −
+

  or   u1
W  =  1 2 1 2 2 1

1 2

(2 ) 2( )U d dγ γ γ γ
γ γ

− − −
+

   

 

In case γ1 = γ2, the solution, u1
W = 2 12( )

2
U d d− −

, differs from the Nash solution, u1
N = 

2 1

2
U d d− +

, even if it also possesses similar the properties. the equilibrium favors more the 

player with higher “threat” utility than the Nash solution does. 

                                                 
8
 Technically, the mathematical arrangement of the maximand is found in some finance literature. See 

Verchenko (2004). 
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If iu  = U  - dj: 
 

    u1
W – d1  =  1 2 1 2

1 2

(2 )( )U d dγ γ
γ γ

− − −
+

  or   u1
W  =  1 2 2 2 1 1

1 2

(2 )( ) (2 )U d dγ γ γ γ
γ γ

− − + −
+

   

 
The utility surplus (relative to the status quo) accruing now to 1 is added of the 

difference between 1 and 2’s bargaining strengths relative to the Nash solution.  
Summarizing: 
 
Proposition 1: Assume an alternating offers protocol as above where a first period  

bonus is conceded upon acceptance of an offer. 
1.1. The sub-game perfect equilibrium will possesses a first mover advantage (both in  
accumulated utility as in the periodic share) and reward patience as usual (under linear  
utilities). 
1.2. (With linear utilities) The more patient player is now in a better position than in  
the traditional framework; the first-mover is expected to enjoy a higher periodic share  
than in the standard model. 
1.3. A player’s periodic share and accumulated utility decrease with the utility he  
derives from the bonus he obtains when accepting an offer, and increase with the other 
player’s. 
1.4. The underlying instantaneous maximand is of the multiplicative Nash form, but  
weights – equally - in each factor both the incremental utility allowed by bargaining  
as the maximal incremental utility of each player. 

 
2.2. Proposing Party Entitlements 
 
Suppose that making proposals is costly in terms of time and one period with loss of the 

cake must pass before an offer - with the same traits as before: an infinite-time binding settlement 
on the share accruing to each party - can be made again by either side; simultaneously, the 
individual making an acceptable proposition is entitled to one trial – a “prize” - when his offer 
becomes accepted. 

When 1 is assessing 2’s proposal y he compares: 
 

 d1 + 1 1
1

( )t

i

u yδ
∞

=
∑   =  d1  + δ1 1

1

( )
1
u y

δ−
 ≥  

  ≥  d1 +  δ1 d1 + δ1
2 1u  + 1 1

3

( *)t

i

u xδ
∞

=
∑   =  d1 +  δ1 d1 + δ1

2 1u  + δ1
3 1

1

( *)
1
u x

δ−
  

that is:   1

1

( )
1
u y

δ−
  ≥  d1 + δ1 1u  + δ1

2 1

1

( *)
1
u x

δ−
  =  d1 + δ1 11 1 1

1

( *) (1 )
1

u x uδ δ
δ

+ −
−
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For 2, an identical assessment is made when he receives an offer 1-x. The sub-game 

perfect equilibrium will generate: 
 
(23) [u1(y*) - d1]  +  δ1

2 [ 1u  - u1(x*)]  =  δ1 ( 1u  - d1)   

and 
(24) [u2(1-x*) – d2]  +  δ2

2 [ 2u  - u2(1-y*)]  =  δ2 ( 2u  - d2)   

 
In equilibrium, each player may be in any of four points. Consider player 1. He may be 

the first-mover and either be before or after the preparation of the proposal; he will get:  
 

(25)   if before, Z1b* =  d1 + δ1 1u  + δ1
2 1

1

( *)
1
u x

δ−
; if after, Z1a* = 1u  + δ1 1

1

( *)
1
u x

δ−
 and 

Z1a* > Z1b*. 

 
If he is the second-mover, and it is 2’s turn to propose, either  
 

(26)    V1a* =  d1  + δ1 1

1

( *)
1
u y

δ−
 or     V1b* =  d1  + δ1 d1  + δ1

2 1

1

( *)
1
u y

δ−
 and V1a* > V1b* 

 
The first equation describing the equilibrium solves for V1a* = d1 + δ1 Z1b*; as δ1 < 1 

and both Z1b*(1 - δ1) and V1a*(1 - δ1) must exceed d1 – the problem always exhibits a first-

mover advantage, i.e., Z1a* > Z1b* > V1a* > V1b*. 

The relevant measures may either be Z1b* and V1b* or Z1a* and V1a* – according to 

whether, in the game we might want to replicate, a first period delay is required to make the 
initial proposition or not. 

 
. Let ui(z) = z, i =,1,2. Then: 

 

(27) x*  =  
2 2 2

1 22 2 1 1 2 2 1 2 1 2 2
2 2

1 2

(1 ) (1 ) (1 ) (1 ) (1 )
1

d d u uδ δ δ δ δ δ δ δ δ
δ δ

− + − − − + − − −
−

    ;   

 y*  =  
2 2 2 2

1 21 2 1 1 1 2 2 1 1 1 2 2
2 2

1 2

(1 ) (1 ) (1 ) (1 ) (1 )
1

d d u uδ δ δ δ δ δ δ δ δ δ
δ δ

− + − − − + − − −
−

 

 
One can also solve for: 
 

(28)  Z1a* = 1u  + δ1 1

1

( *)
1
u x

δ−
  = 
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            =  
2 2

1 21 2 1 2 1 1 1 2 2 1 1 2 2
2 2

1 1 2

(1 ) (1 ) (1 ) (1 ) (1 )
(1 )(1 )

d d u uδ δ δ δ δ δ δ δ δ δ δ
δ δ δ

− + − − − + − − −
− −

        

 Z1b*  =  d1  +  δ1  Z1a* =  

   =  
2 2 2 2

1 21 2 1 1 1 2 2 1 1 1 2 2
2 2

1 1 2

(1 ) (1 ) (1 ) (1 ) (1 )
(1 )(1 )

d d u uδ δ δ δ δ δ δ δ δ δ
δ δ δ

− + − − − + − − −
− −

 

 V1a*  =  d1  + δ1 1

1

( *)
1
u y

δ−
  =   

 =  
3 2 2 2 3 2 3

1 21 2 1 1 1 2 1 1 2 2 1 1 1 2 2
2 2

1 1 2

(1 ) (1 )(1 ) (1 ) (1 ) (1 )
(1 )(1 )

d d u uδ δ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ

− + − + − − − + − − −
− −

  

 V1b*  =  d1  +  δ1  V1a* =  
4 2 2 2 2 3 2 4 3 4

1 21 2 1 1 1 1 2 1 2 1 1 2 2 1 1 1 2 2
2 2

1 1 2

(1 ) (1 )(1 ) (1 ) (1 ) (1 )
(1 )(1 )

d d u uδ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ

− + − + + − − − − + − − −
− −

 
As usual, player i’s accumulated utility as the periodic share increase with his “outside 

option”, di, and decrease with the other’s. Interestingly – and in opposite direction to what was 

obtained for the scenario of the previous section, but as one might expect –, player i’s welfare 
increases with the initial extra payment he can obtain with acceptance of his offer, and decreases 
with what the other player can get: it “pays” to make reasonable propositions. 

Under equal discount rates the previous expressions simplify to: 
 

(29) x*  =  
2 3

1 21 2
2

1
(1 )(1 )

d d u uδ δ δ δ
δ δ

+ + − + −
+ +

      y*  =  
2 2 3

1 21 2
2

(1 )
(1 )(1 )

d d u uδ δ δ δ δ
δ δ

+ + − + −
+ +

 

 Z1a*  =  
3 2

1 21 2
4

(1 )
1
d d u uδ δ δ δ δ

δ
+ + − + −

−
      ;  

 Z1b*  =  
2 2 3

1 21 2
4

(1 )
1

d d u uδ δ δ δ δ
δ

+ + − + −
−

 

 V1a*  =  
3 4 3 2 4

1 21 2
4

(1 ) (1 )
1

d d u uδ δ δ δ δ δ δ
δ

+ + + − − + −
−

 

 V1b*  =  
4 2 4 5 4 3 5

1 21 2
4

(1 ) (1 )
1

d d u uδ δ δ δ δ δ δ δ δ
δ

+ + + + − − − + −
−

 

 
The impact of his own outside option di on the periodic share of a first-mover is less 

pronounced (in absolute value) than the effect of a rise in the opponent’s; the same occurs with 
respect to the outside option iu . For the second to play, the opposite relative magnitudes of those 
effects are observed. 

In absolute terms – and as before -, the effect of iu  is always smaller than that of di on 

the periodic share of any player. 
(Given the delay implied with the current structure, it is difficult to justify comparisons 

on accumulated flows; the previous regularities are not totally preserved for them.) 
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Take again the simplest case where di = 0 and iu  = ui(1) = 1. Then: 

 

(30) x*  =  1 -  2

1 21
δ
δ δ+

           ;       y*  =  1

1 21
δ
δ δ+

   

 Z1a*  =  
1 1 2

1
(1 )(1 )δ δ δ− +

      ;     Z1b*  =  1

1 1 2(1 )(1 )
δ

δ δ δ− +
    

 V1a*  =  
2
1

1 1 2(1 )(1 )
δ

δ δ δ− +
     ;    V1b*  =  

3
1

1 1 2(1 )(1 )
δ

δ δ δ− +
     

 
Patience is still rewarded. x* > y* and a first-mover advantage is also present for the 

periodic share.  
One can easily show, confronting the periodic share with that of the standard model that: 
 

 1 -  2

1 21
δ
δ δ+

  < 
21

2

1
1

δδ
δ

−
−

          iff       δ2 <  
1

1
2 δ−

    

 1

1 21
δ
δ δ+

  >  
21

21

1
)1(

δδ
δδ

−
−

             iff       δ1 <  
2

1
2 δ−

     

 

That is, the first-mover – provided the opponent is less or not much more patient than 
him 

9
 - is now expected to enjoy a worse periodic share than if no accepted proposal rewards nor 

time losses between proposals existed. The second mover – unless he is much more patient than 
the opponent 

10
 – will be in a better periodic situation. 

Comparing Z1a* with 1

1

( *)
1
u x

δ−
 of the standard problem and likewise V1a* with 1

1

( *)
1
u y

δ−
, 

we see that the inequalities switch signs: 
 

 
1 1 2

1
(1 )(1 )δ δ δ− +

  > 
1

1
1 δ−

 
21

2

1
1

δδ
δ

−
−

      iff     δ1 <  
2

1
2 δ−

     

 
2
1

1 1 2(1 )(1 )
δ

δ δ δ− +
  < 

1

1
1 δ−

 
21

21

1
)1(

δδ
δδ

−
−

    iff   δ1 (1 - δ1 δ2) < (1 - δ2) (1 + δ1 δ2) 

 
If an immediate solution entails no “first” time loss, it is the first to propose that receives 

the benefits of the bonus. The second mover – unless he is much more patient than the opponent – 
will be in a worse position than in the standard game. 

Yet, comparing Z1b* with 1

1

( *)
1
u x

δ−
 of the standard problem and likewise V1b* with 

1

1

( *)
1
u y

δ−
, we conclude that:  

 

                                                 
9
 The first condition implies that: if δ

1
 = 0.8, then δ

2
 < 0.83; if δ

1
 = 0.5, then δ

2
 < 0.67. 

10
 The second condition implies that: if δ

2
 = 0.8, then δ

1
 < 0.83; if δ

2
 = 0.5, then δ

1
 < 0.67. 
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 1

1 1 2(1 )(1 )
δ

δ δ δ− +
 < 

1

1
1 δ−

 
21

2

1
1

δδ
δ

−
−

    iff     δ1 (1 - δ1 δ2) < (1 - δ2) (1 + δ1 δ2) 

 
3
1

1 1 2(1 )(1 )
δ

δ δ δ− +
 < 

1

1
1 δ−

 
21

21

1
)1(

δδ
δδ

−
−

     iff    δ1
2 (1 - δ1 δ2) < (1 - δ2) (1 + δ1 δ2)   

 
In this case, the current game yields smaller welfare than the standard problem, once 

now both players are penalized by the unavoidable one (even first) period delay – for the 
preparation of the proposal. 

 
Under δ1 = δ2 = δ,  

 

(31) x*  =  1  -  21
δ
δ+

            ;         y*  =  21
δ
δ+

   

 Z1a*  =  
2

1
(1 )(1 )δ δ− +

      ;      Z1b*  =  
2(1 )(1 )

δ
δ δ− +

 

 V1a*  =  
2

2(1 )(1 )
δ

δ δ− +
     ;      V1b*  =  

3

2(1 )(1 )
δ

δ δ− +
    

 
The one period implied loss of cake between offers has the interesting effect of factoring 

twice the discount factor in the denominator and switching the general aspect of the x* and y* 
solutions, relative to the standard case. In fact, that switch is what is partly achieved when the 
proposing party is rewarded with a full “pie” – even if x* is still larger than y*. 

 

. Considering the replacement of δ i by e-ri∆ 
11

 in (23) and (24) and subsequent 

manipulation to represent instantaneous bargaining, we can arrive at: 
 

(32) 1

2

' ( *)
' (1 *)
u x

u x−
  =  1

2

r
r

 

1 1
1

2 2
2

( *)
2

(1 *)
2

u du x

u d
u x

+−

+
− −

   

 
With concave utility functions, one would want to: 
 

                                                 
11

 One can show that such replacement will still be valid if the players maximize a continuous-time utility 

function and relevant bargaining periods initiate at discrete time intervals of length ∆ analogously to the setting 

described in Appendix 1. 



 22

(33) uW  =  Arg Max  
1 2

1 21 2
1 22 2

d u d u
u u

γ γ
   + +

− −   
   

 

 u ∈ G  
 
We maximize the product of the gains relative to average expected utility powered by a 

factor proportional to the inverse of each player’s interest rate. Alternatively, (32) could be 
generated by: 

 

 uW  =  Arg Max  
1 2

1 21 1 1 2 2 2( ) ( ) ( ) ( )u d u u u d u u
γ γ

   − − − − − −     

 u ∈ G  

 
weighing equally and symmetrically in each of the Cobb-Douglas function factors the 

distance to the threat point as to the “ideal” status achieved by the player 
12

. 

Of course, for the maximand to have meaning, ( 11

2
d u+

, 22

2
d u+

) must belong to set G. 

If it does not, one could generate the F.O.C. (32) requiring that  
 

 uW  =      Arg Min      
1 2

1 21 2
1 22 2

d u d u
u u

γ γ
   + +

− −   
   

 = 

 u r G (and u ∈ G) 

 =        Arg Min         
1 2

1 21 1 1 2 2 2( ) ( ) ( ) ( )u u u d u u u d
γ γ

   − − − − − −     

   u r G (and u ∈ G) 
 
or, in general (provided the arguments of the absolute value brackets have the same 

sign): 
 

        Arg Min             
1 2

1 21 1 1 2 2 2( ) ( ) ( ) ( )u u u d u u u d
γ γ

− − − − − −  

 u r G (and u ∈ G) 
 
where u r G stands for u is to the northeast or on the northeastern boundary of set G - in 

space (u1, u2). 
For instance, under an egalitarian possibility set with respect to utilities, and u1 + u2 = 

U : 
 

u1
W – d1 = 2 11 1 2 2 1

1 2

(2 2 ) ( )
2( )

U d d u u dγ γ
γ γ

− − − + −
+

  or  u1
W = 2 11 2 2 1

1 2

(2 ) ( )
2( )

U d u d uγ γ
γ γ

− − + +
+

  

 

                                                 
12

 See Martins (2004) for cooperative or axiomatic bargaining forms also including both distances. 
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Assuming iu  = U , as ( 1

2
d U+

, 2

2
d U+

) does not belong to set G, using the implied 

interior F.O.C. – identical to the condition from which we, nevertheless, departed - deriving: 
 

 u1
W – d1  =  1 2 1 1 2 1

1 2

( )( ) ( )
2( )

U d d dγ γ γ
γ γ

+ − − +
+

  =  1 2 1 2 1 1 2

1 2

( ) (2 )
2( )

U d dγ γ γ γ γ
γ γ

+ − + −
+

 

 or     u1
W  =  1 2 1 2 2 1

1 2

( ) ( )
2( )
U d dγ γ γ γ

γ γ
+ − −

+
   

 
will not originate a maximum for the proposed objective function (33). In case γ1 = γ2, 

the solution hence derived, u1
W = 

2 1

2
2

d d
U

−
−

, differs again from the Nash solution, u1
N = 

2 1

2
U d d− +

, but now in the opposite direction: the equilibrium favors less the player with higher 

“threat” utility than the Nash solution does. 
If iu  = U  - dj, even under asymmetric bargaining strength of the two players we arrive 

at the egalitarian split of the surplus: 
 

   u1
W – d1  =  1 2

2
U d d− −

           or            u1
W  =  2 1

2
U d d− +

   

 
Proposition 2: Assume an alternating offers protocol as above where a first period  

bonus is conceded to the maker of an acceptable(ed) an offer and a one period loss is  
implied between offers. 
2.1. The sub-game perfect equilibrium will possess a first mover advantage and  
reward patience as usual (under linear utilities). 
2.2. (With linear utilities) The first-mover is expected to have a worse periodic share 
than in the traditional framework – even if he is the one receiving the bonus – but  
to enjoy a better welfare position if the starting period delay is avoidable. 
2.3. A player’s accumulated utility and periodic share increases with the utility he can  
derive from the bonus he obtains with acceptance of his offer, and decreases with the 
other player’s. 
2.4. The underlying instantaneous maximand is of the multiplicative Nash form, but in 
each factor the incremental utility is measured relative to the mid-point between the 
status quo and maximal potential utility of each player. 
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3. Alternating Offers with Uncertain Outside Options  
 
. Assuming the possibility that in case of rejection of an offer, the player can enjoy the 

full periodic pie with probability pi, generates the context of the traditional model. di is just 

replaced by  
 
(34)  iw   =  [pi iu  + (1 – pi) di]  

 
in the equations of the previous section. iw  has the status of a recurrent outside option 

always available to any offer made to individual i until contract closure. 
Consider instead a setting where player i may reject a proposition, in which case he gets 

di, but implying engaging in uncertain war – with per period utility iw  - thereafter. If player 1 is 

listening to an offer, he will accept 2’s proposition y iff: 
 

1 1
0

( )t

i

u yδ
∞

=
∑  = 1

1

( )
1
u y

δ−
  ≥  d1 + 11 1 1 1

1

[ (1 ) ]t

i

p u p dδ
∞

=

+ −∑  = d1 + 11 1 1 1

1

[ (1 ) ]
1

p u p dδ
δ

+ −
−

 

 
or  u1(y) – d1  ≥  δ1 p1 [ 1u  – d1] 

 
Knowing this, if player 2 is making an offer, he will propose the lowest y such that the 

inequality holds; hence y* will be such that equality is observed. (The condition will prevail if, in 
case of rejection, 1 can still make an acceptable offer - provided that p1 [ 1u  – d1] > u1(x*) - d1, 

where x* refers the solution for x in the conventional model.) 
 
Likewise, if player 1 is proposing, he will choose the highest x such that: 
 
 u2(1-x) – d2  ≥  δ2 p2 [ 2u  – d2]  

 
That is, x* will be such that the equality will hold. 
Proceed now to the evaluation of the players’ relative increment utilities under both 

circumstances, replacing δ i by e-ri∆ 
13

 in the two conditions in equality. They will translate into: 

 u1(y*) – d1  =  e-r1∆ p1 [ 1u  – d1]  

and  u2(1-x*) – d2  =  e-r2∆ p2 [ 2u  – d2]  

                                                 
13

 One can show that such replacement will still be valid if the players maximize a continuous-time utility 

function and relevant bargaining periods initiate at discrete time intervals of length ∆ analogously to the setting 

described in Appendix 1. 
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As ∆ tends to 0, we may conjecture that if x* tends to y* - or rather, that only y* and 1 – 
x* can occur and both players’ position is equally likely:  

 

(35) 1 1

2 2

( *)
(1 *)

u x d
u x d

−
− −

  →  1

2

p
p

 1 1

2 2

u d
u d

−
−

  

 
Then a generalization of the Kalai-Smorodinsky solution - weighted by the relative 

probability of unilateral win ratio - is found. Note that under the egalitarian possibility set, if iu  = 
U  - dj: 

 

(36) 1 1

2 2

( *)
(1 *)

u x d
u x d

−
− −

  →  1

2

p
p

  

 
and we recover an optimal solution implying the ratio of the bargaining gains equal to 

the relative win probabilities. 
However, it is still possible, subtracting u1(x*) from both sides of the first equation and 

u2(1-y*) from the second and, assuming that x* and y* will tend to coincide, to arrive at: 

 

 1

2

' ( *)
' (1 *)
u x

u x−
  →  11 1 1 1

22 2 2 2

( ) ( *)
( ) (1 *)
p u d u x d

p u d u x d
− − +

− − − +
 = 11 1 1 1

22 2 2 2

( *) [ (1 ) ]
(1 *) [ (1 ) ]
u x p u p d

u x p u p d
− + −

− − + −
, 

 
We recover an unweighted Nash maximand, with factors defined relative to the 

effectively perceived threat points: 
 
 uN  =  Arg Max  {u1 – [p1 1u  + (1 – p1) d1]} {u2 – [p2 2u  + (1 – p2) d2]} 

 u ∈ G  
 
The conjecture that as ∆ tends to 0 x* tends to y* is, nevertheless, improbable. 

 
4. Mixed Strategies under Alternating Offers  
 
. Consider instead a more flexible bargaining structure and that we allow for mixed 

strategies of the players. The turn to propose alternates between the two players, with each player 
having the right to propose – make an offer - or not. That is, strategies involve not only a 
(potential) share proposal – to hold eternally -, but also a probability attached to its actual 
transmission when it is a player’s turn to make offers; and an eventual acceptance probability of 
the partner’s proposition. 

Denote by ri the probability with which player i makes (decides to make) an offer when 

it is his turn to make it, and (1 – ri) the probability with which he does not make an offer. ri can 
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(or will) only differ from either 0 or 1 in equilibrium iff i is indifferent between making an offer 
or not. 

If the player making the offers does not make one, it is understood that he engages in 
theft/war, obtaining expected utility in the period iw  = [pi iu  + (1 – pi) di]. Also, i engages in war 

- or in general, consumes that outside option yie lding utility iw  - if he does not receive an offer 
when it is due. That is, when no offer is exchanged, both players attain their “war” utility per 
period, iw . 

When a player receives an offer, he can either accept it or not- we will denote by si the 

probability with which i accepts a proposition made to him by player j. If an offer is received by i, 
then “war utility” is not an immediate possibility, but only acceptance or rejection yielding utility 
di in the period for i - while j receives jw  > dj 

14
; upon rejection, next period, it is i’s turn to make 

or not offers. 
Let Vi be the value of the game – the accumulated discounted expected utility – for 

player i when he is the first to receive offers (i.e., the second to propose, or the second to play), or 
rather, at a moment where he is waiting for a proposal from j; Zi is the value of the game at a 

point where it is i’s turn to make offers. 
Equilibria will entail the following properties 

15
: 

i) For player i to use mixed strategies, he will balance the two alternatives: si (ri) will (or 

can) differ from either 0 or 1 in equilibrium iff i is indifferent between acceptance (making an 
offer) or not: they must generate the same extended value of the game – otherwise, i would use 
pure strategies.  

ii) Nevertheless, the extended value of a two-branch decision node may still equalize 
with pure strategies (if not, it will be the maximum of the extended value of the two routes; then 
the node does not provide an equality for the equilibrium identification): meaning that the other 
player is forcing one’s hand when that is beneficial to him.  

If beneficial, a player can push the opponent to the most of his advantage. If i uses mixed 
strategies of one variable or is indifferent, the extended value of the game for j at the 
corresponding junction may be pushed to the worst outcome (for j) by the use of i’s probability: it 
will not alter player i’s outcome, but it may the opponent’s. If it does, the threat to the opponent 
may secure i an infinitesimal benefit. One can therefore add: 

                                                 
14

 The equilibrium would not change if j received d
j
 in this case, provided jw  > d

j
. That a player may 

receive more upon rejection of a proposition that he made than by rejecting one that was made to him may be 

realistic. 
15

 Non-convexity of felicity functions should insure satisfactory performance of the statements. Given the 

relative independence of the pie distribution deducted before, the general linearity of the remaining problem 

should suffice. 
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iii) If i uses mixed strategies of one variable or is indifferent relative to it in the 
equilibrium solution, the extended value of the game for j at the corresponding (non-decisional) 
junction at a sub-game perfect equilibrium – but not necessarily at a Nash equilibrium - will be 
the largest of j’s alternatives (which he cannot choose from…) at that point (up to an 
infinitesimum). 

Let us describe the game structure from the point of view, as a decision tree of Player 1 – 
2’s is depicted in Appendix 2. Square marks denote decision nodes of the player. For purposes of 
interpreting the equilibrium, as in the pure strategies case, let us position the decision tree at the 
point where 2 is due to start the game, i.e., proposing offers; to determine the equilibrium, the 
convenient “background” tree for 2 will therefore be the one in which 1 is due to start: 

 
 Player 1 
 ⇒ V1, Value of Game for 1 if 2 Starts 

 
 (1 – r2) r2 

 
 Does Not Receive an Offer Receives an Offer, y 
 ⇒ 1w  + δ1 Z1 [Did Not Accept] 

Z1, Value of Game for 1 if 1 Starts s1 (1 – s1) 

 
 Accepts Does Not Accept 
 ⇒ 1

1

( )
1
u y

δ−
 ⇒ d1 + δ1 Z1 [Did Not Accept] 

 
 r1 (1 – r1) 

 
 Makes an Offer, x War 
  ⇒ d1 + δ1 1w  + δ1

2 V1 

 s2 (1 – s2) 

 
 Offer is Accepted Offer is Not Accept – War  

 ⇒ d1 + δ1 1

1

( )
1
u x

δ−
  ⇒ d1 + δ1 1w  + δ1

2 V1 

 
The first stage represents whether individual 2 makes (made) an offer – which he does 

when it is his turn to propose with probability r2 - or not.  

If 2 does not make an offer, 1 gets the outside option 1w  and the one period discounted 
value utility of not accepting an offer – modeled in the right hand-side of the tree: if he is not 
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made an offer, next period he is in the same situation as if he had not accepted one today: he is 
then the first mover, with value of the game Z1. 

If 2 makes an offer, y, 1 is not “allowed” to make war – he is listening to propositions. 
He can either accept it – and he gets the sum of the corresponding discounted utilities - or not. If 
not, this period he gets d1; next period, it is his turn to decide whether to make an offer – which 

he makes with probability r1 – or war. 
2 accepts an offer from 1 with probability or frequency s2. 

We will look for equilibria where – and make the assumption, common in the literature, 
that if both alternatives yield the same utility stream, an acceptance is strictly preferred to an 
income stream with either war or status quo - si* = 1 (or 0), i = 1,2, and where acceptable 

propositions are made (or not at all). That is, under indifference, the game resumes – with a 
closing contract. In fact, several 0 < si* < 1 will be compatible with interior equilibrium given 

that if 1’s proposal is not accepted, 1 obtains the same payoff than if he had not made one. A 
“free” – interior - si* would require that the payoff to i from accepting an offer would have to be 

equal to the expected payoff of not accepting one. If a rejection of 1’s proposal implied a payoff 
1s  for 1 as well, - that is d1 + δ1 1s  + δ1

2 V1 in the last right hand-side branch of the tree 
16

 -, 

then a 0 < s2* < 1 might be possible and its determination necessary; because 2 is indifferent 

between accepting or not, he could then choose to harm – “threat” - player 1 with mixed 
strategies. As for the standard game, the dilemma can be solved requiring the solution pair to be 
(x*-ε, y*+ε’), where ε and ε’ are infinitesimal quantities, x*-ε being the share accruing to 1 if he 
is the first to decide to make an offer, y*+ε’ if 2 is the first, x* and y* being such that the 
equilibrium conditions (below) are met 

17
. Or imposing that in case of indifference, a player ends 

the game - by ruling out mixed strategies in what offer acceptance is concerned. 

                                                 
16

 We inspect the solutions of games with multiple alternatives in the second and third parts of Appendix 

3. 
17

 Allowing for mixed strategies in the model of section 1, we see that if such advantage is not conceded 

to the second mover, who is indifferent as whether to start at 0 or at 1, an equilibrium solution is possible, with 

the second mover enjoying its standard expected value and using mixed strategies, alternating offers – rather, 

also rejecting with a probability larger than 0 once settlements are eternal - with the status quo and pushing the 

first-mover – who, conversely to the second-mover is better-off starting at 0… - also to a second-mover 

expected value solution (if 2 is the first to play, by 1 using s1* = 2

21
δ

δ+
, solving s1 2

2

(1 *)
1

u y
δ

−
−

 + (1 - s1) [d2 

+ δ2 2

2

(1 *)
1

u x
δ

−
−

] = 2

2

(1 *)
1

u x
δ

−
−

 and using the fact that 2 2(1 *)u x d− −  = 2 2 2[ (1 *) ]u y dδ − − ). Note, 

however, that only an infinitesimal is required to insure that the second-mover is no longer indifferent towards 

accepting at 0 – then, credible threat of further use of mixed strategies disappears. Also, we are assuming that 

the first-mover only considers pure strategies… 
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A Nash equilibrium with mixed offer strategies will consist of a four-tuple (x*, y*, r1*, 
r2*) such that, for player 1: 

- He will be indifferent between accepting or not offer y* if it arrives: 
 

(37) 1

1

( *)
1
u y

δ−
  =  d1 + δ1 Z1*   

 
For 1 to accept, the left hand-side must be not smaller than the right hand-side; player 2 

will pick the smallest y*, hence establishing equality. (This would be required for an interior free 
s1*.) 

- He will be indifferent between making an acceptable offer x* or war: 
 

(38) 1

1

( *)
1
u x

δ−
  =  1w  + δ1 V1* 

 
For an r1* between 0 and 1, equality is required between the yield of the two alternatives 

of the decision node. (This will guarantee that player 1’s offer x* is the lowest that he will accept 
– 2 will push it to that limit with an opposite potential inequality.) 

As noted, if a rejection of 1’s proposal implied a payoff d1 for 1 as well, - that is d1 + δ1 

d1 + δ1
2 V1 in the last right hand-side branch of the tree -, then, the condition above would be 

replaced by: 
 

 s2* 1

1

( *)
1
u x

δ−
 + (1 – s2*) (d1 + δ1 V1*)  =  1w  + δ1 V1* 

 
An s2* = 0 could be possible, as well as values between 0 and 1. 

- The equilibrium value of the game if 1 starts, Z1*, can be written as: 

 

                                                                                                                                            

One could argue then that equilibrium would be guaranteed by 1

1

( '*)
1

u y
δ−

 = d1 + δ1 1

1

( '*)
1

u x
δ−

 and 

2

2

(1 '*)
1

u y
δ

−
−

 = d2 + δ2 2

2

(1 '*)
1

u x
δ

−
−

 where y’ is today’s share of 1 and x is tomorrow’s. Under linear utilities, 

the system solves for y’* = 2 2 1 1

1 2

(1 )(1 ) (1 )d dδ δ
δ δ

− − − −
−

 (the effective split) and x’* = 

1 2 2 2 1 1

1 2

(1 )(1 ) (1 )d dδ δ δ δ
δ δ

− − − −
−

, but not under equal discount rates or alternatives – and requiring 0 < y’*, 

x’* < 1... 
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(39) Z1*  = r1* 1

1

( *)
1
u x

δ−
 + (1 - r1*) ( 1w  + δ1 V1*) = 1

1

( *)
1
u x

δ−
 

 
The preceding comment still applies. 
- The equilibrium value of the game for 1 if 2 starts, V1*: 

 

(40)           V1*  =  (1 – r2*) ( 1w  + δ1 Z1*) + r2* 1

1

( *)
1
u y

δ−
  = 

      =  (1 – r2*) { 1w  + [ 1

1

( *)
1
u y

δ−
 - d1]} + r2* 1

1

( *)
1
u y

δ−
 = 1

1

( *)
1
u y

δ−
 + (1 – r2*) ( 1w  - d1)  

 
that given (39) – or (37) and (39) -, can be written as the last expression. 
And symmetrically for player 2. We have 8 – linearly independent - equations and 8 

unknowns – x*, y*, V1*, V2*, Z1*, Z2*, r1* and r2* - and in general the system will possess a 
unique solution exhibiting acceptance and interior solutions for the ri’s. Two things should be 

highlighted: firstly, with 8 equations – and even if the immediate payoff for not making an offer 
and for not having an offer accepted differ between themselves and from the one received when 
no offer occurs - we can never expect to solve for mixed strategies in both ri’s and both si’s. 

Secondly, if making a rejectable proposition yields the same utility as not making any, 
only one offer will be relevant. Suppose that the two decisions yielded a different utility; then, as 
long as rejecting generates a unique immediate payoff, di – even if different from that of not 

making an offer – only one offer, say k, can be accepted by a player with interior si
k – see 

Appendix 3. It cannot be the higher proposition from his point of view, because then the other 
player would not want to make it, or will not consider making no offers. If the lower, we could 
not solve for all variables (with the method…); if just equalization for i of expected values at si

k 

and (1 - si
k), some inconsistency would be generated at j’s emission decision nodes. 

Exploring the properties of the equilibrium solution: 

Conditions (37) and (39) lead to: 1

1

( *)
1
u y

δ−
  =  d1  +  δ1 1

1

( *)
1
u x

δ−
 

generating: 
 
(41) u1(y*) - d1  =  δ1 [u1(x*) - d1]  

 
Hence, we will recover the same optimal offers than in the no war game. 
With (41), (38) implies that: 
 

(42) V1* = 11 1

1 1

( *) (1 )
(1 )

u x wδ
δ δ

− −
−

 = 11 1 1 1
2

1 1

( *) (1 )( )
(1 )

u y d wδ δ
δ δ

− − +
−
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where (x*, y*) are the Rubinstein’s splits. Player’s 1 value of the game if he starts is: 
 

(43) Z1*  =  1

1

( *)
1
u x

δ−
  

 
once, by (38) equality of the two weighted terms must be observed for 0 < r1* < 1. Then 

the first-mover is as well-off as in the standard game. 
For the interior solution for r1 to be possible, if 2 starts, the value of the game for player 

1, V1* > 11 1
2
11

d wδ
δ

+
−

, the utility he would get alternating rejection or obtaining no offer, with 

making no offers - a path always open to a player and the minimum that he can secure by himself 
- which implies:  

 

(44) u1(x*)  >  1 1 1

11
w dδ

δ
+
+

    or    u1(y*)  > 11 1

11
d wδ

δ
+
+

   

 

If 1 starts, Z1* = 1

1

( *)
1
u x

δ−
 > 1 1 1

2
11

w dδ
δ

+
−

 what 1 can get with making no offer and rejecting 

the other player’s offers – guaranteeing that, as a first-mover, he would actually make a 
proposition -, which also implies 

 

(45) u1(x*)  > 1 1 1

11
w dδ

δ
+
+

      or     u1(y*)  >  11 1

11
d wδ

δ
+
+

     

 
Comparing (42) and (43), Z1* > V1* and the first-mover advantage is still present. Note 

that 1

1

( *)
1
u x

δ−
 was the value of the game if 1 starts in the general set-up; hence, he makes no gain 

nor loss for having an outside option under the current structure; but – see (40) - V1* > 1

1

( *)
1
u y

δ−
 as 

long as 1w  > d1 and r2* < 1, i.e., u1(x*) > 1 1 1

11
w dδ

δ
+
+

 required by (45). 

Yet, given that 1w  does not intervene in the determination of x* nor y*, (42) implies that 
in an interior solution with mixed strategies the value of the(is) game for a second-mover in fact 
becomes reduced with the size of his outside options: creating/improving alternatives is only 
good for a “second-mover” if it gets the player out of the bargaining table, otherwise, the first-
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mover will always be able to anticipate it and force the potential gains of a second-mover down 
18

. 
Finally, with (40) and (42) we infer 
 

(46) 1 – r2*  =  1 1 1

1 1 1

(1 ) * ( *)
( )(1 )

V u y
w d

δ
δ

− −
− −

  =  1 11 1 1

11 1 1

( *) [ ( *) ]
(1 ) ( )

u x w u y w
w d

δ
δ δ

− − −
− −

  = 

   =  11 1 1 1

11 1

(1 ) ( *)
( )

u x w d
w d

δ δ
δ

+ − −
−

  =  11 1 1 1
2

11 1

(1 ) ( *)
( )

u y w d
w d

δ δ
δ

+ − −
−

    

   =  
* *

1 1 1 1

1 1

( )
( )

V d Z
w d

δ− +
−

  and 

 r2*  =  11 1

11 1

(1 )[ ( *)]
( )

w u x
w d

δ
δ

+ −
−

  =  11 1 1 1 1
2

11 1

(1 )[ ( ) ( *) ]
( )

w d u y d
w d

δ δ
δ

+ − − +
−

 

 
r2* increases with 1w  iff u1(x*) > d1; it is independent of 2w . 

Provided 1w  > d1: 

(47) r2* > 0 iff  1w   >  u1(x*)  =  1 1 1

1

( *) (1 )u y dδ
δ

− −
      or  

 u1(y*)  <  (1 - δ1) d1 + δ1 1w   

 r2* < 1 iff   1w  <  1 1 1 1(1 ) ( *)u x dδ δ+ −  = 1 1 1 1( *) [ ( *) ]u x u x dδ+ −  = 

 =  1 1 1

1

(1 ) ( *)u y dδ
δ

+ −
  

 or   u1(x*) > 1 1 1

11
w dδ

δ
+
+

    or   u1(y*) > 11 1

11
d wδ

δ
+
+

     

Then, r2* < 1 will guarantee (44) or (45): interestingly, the failure of r2* < 1 implies that 

if in pure strategies player 1 would not make a first-mover offer. 
Player 2 will face symmetrical constraints. Then: 
 
(48) u2(1-x*) – d2  =  δ2 [u2(1-y*) – d2]  

(49) V2* = 22 2

2 2

(1 *) (1 )
(1 )

u y wδ
δ δ

− − −
−

  

(50) Z2*  =  (1 – r2*) [ 2w  + δ2 V2*]  +  r2* 2

2

(1 *)
1

u y
δ

−
−

 = 2

2

(1 *)
1

u y
δ

−
−

 

And 

(51) 1 – r1* = 2 2 2

22 2

(1 ) * (1 *)
(1 )( )

V u x
w d

δ
δ

− − −
− −

  =  2 22 2 2

22 2 2

(1 *) [ (1 *) ]
(1 ) ( )

u y w u x w
w d

δ
δ δ

− − − − −
− −

  

                                                 
18

 There is no inconsistency with the last statement of the previous paragraph: the structure of the standard 

game is completely different than that of the current stage. 
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 =  22 2 2 2

22 2

(1 ) (1 *)
( )

u y w d
w d

δ δ
δ

+ − − −
−

  =  22 2 2 2
2

22 2

(1 ) (1 *)
( )

u x w d
w d

δ δ
δ

+ − − −
−

   and 

 r1*  =  22 2

22 2

(1 )[ (1 *)]
( )
w u y
w d

δ
δ

+ − −
−

  =  22 2 2 2 2
2

22 2

(1 )[ ( ) (1 *) ]
( )

w d u x d
w d

δ δ
δ

+ − − − +
−

 

 
r1* increases with 2w  iff u2(1-y*) > d2; it is independent of 1w . 

Provided 2w  > d2: 

(52) r1* > 0 iff  2w  >  u2(1-y*)  =  2 2 2

2

(1 *) (1 )u x dδ
δ

− − −
  or 

 u2(1-x*)  <  (1 - δ2) d2 + δ2 2w   

 r1* < 1 iff  2w  <  2 2 2 2(1 ) (1 *)u y dδ δ+ − −   =  2 2 2

2

(1 ) (1 *)u x dδ
δ

+ − −
 

 or   u2(1-y*) > 2 2 2

21
w dδ

δ
+
+

    or   u2(1-x*) > 22 2

21
d wδ

δ
+
+

     

 
In general, each player may have equal chance to be the first to start the game. The value 

of the game for player i is, thus,  
 

(53)
1
2

V1* +
1
2

Z1* = 11 1 1

1 1

(1 ) ( *) (1 )
2 (1 )
u x wδ δ

δ δ
+ − −

−
= 

2
11 1 1 1 1 1

2
1 1

(1 ) ( *) (1 ) (1 )
2 (1 )

u y d wδ δ δ δ
δ δ

+ − − − −
−

 

1
2

V2* +
1
2

Z2* = 22 2 2

2 2

(1 ) (1 *) (1 )
2 (1 )

u y wδ δ
δ δ

+ − − −
−

=
2

22 2 2 2 2 2
2
2 2

(1 ) (1 *) (1 ) (1 )
2 (1 )

u x d wδ δ δ δ
δ δ

+ − − − − −
−

 

 
The value of the game for player i decreases with iw . 

The probability that player i makes an offer in the first period is 
1
2

 ri*; that an offer is 

made in the first period, 
1
2

 (r1* + r2*). The probability that player i is the first to advance an offer 

ever is: 
 

(54)  
1
2

{ ri* + (1 - ri*) (1 - rj*) ri* + [(1 - ri*) (1 - rj*)]2 ri* +  ... } +  

+ 
1
2

{(1 - rj*) ri* + (1 - rj*) (1 - ri*) (1 - rj*) ri* + (1 - rj*) [(1 - ri*) (1 - rj*)]2 ri* +  ... } =  

 = 
1
2

 
*

* * * *
i

i j i j

r
r r r r+ −

 + 
1
2

 
*(1 *)

* * * *
i j

i j i j

r r
r r r r

−
+ −

 = 
1
2

 
*(2 *)

* * * *
i j

i j i j

r r
r r r r

−
+ −

 

 
The probability that an offer will ever be made is, in the interior solution of this game, 1 

– the probability that there will never be an offer is 0. The probability that 1 makes the (first) 
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offer is larger than the one that 2 does, i.e., 
1
2

1 2

1 2 1 2

*(2 *)
* * * *
r r

r r r r
−

+ −
 > 

1
2

2 1

1 2 1 2

*(2 *)
* * * *
r r

r r r r
−

+ −
, iff r1* > 

r2*. 

Finally, the expected waiting time until a first offer is made if i is the first to play is 
 
(55) 1 ri*  +  2 (1 - ri*) rj* + 3 (1 - ri*) (1 - rj*) ri* + 4 (1 - ri*)2 (1 - rj*) rj* + 

  + 5 (1 - ri*)2 (1 - rj*)2 ri* + 6 (1 - ri*)3 (1 - rj*)2 rj* + ... = 

 =  2

*[1 (1 *)(1 *)] 2 *(1 *)
( * * * *)

i i j j i

i j i j

r r r r r
r r r r

+ − − + −
+ −

  

 
The expected waiting time until an offer is made is, thus, 

1 2

2

* *
[1 (1 *)(1 *)] *(1 *) *(1 *)

2
( * * * *)

i j j i i j

i j i j

r r
r r r r r r

r r r r

+
+ − − + − + −

+ −
 = 

1 2
1 2

2

* *
[3 (1 *)(1 *)] 2 * *

2
( * * * *)

i j

i j i j

r r
r r r r

r r r r

+
+ − − −

+ −
. 

 
rj* < 1 guarantees that in the interior solution conditions (44) hold: that at the point of 

making offers, i is better-off accepting than rejecting and then not proposing, which yields 

21
ii i

i

d wδ
δ

+
−

, and at the point of listening to j’s offers, than 21
i i i

i

w dδ
δ

+
−

.  

Notice that rj* > 0 implies that in any interior solution, i would be better-off even if he 

got the welfare of a first player and therefore, if the game was not played – i.e., if neither he nor 
the opponent made offers. That is, the Nash equilibrium with mixed strategies is not optimal. 
Technically, it can occur – it is a Nash equilibrium: each player is doing his best given that the 
other player made an offer with more than probability 0 – because (provided rj* < 1) it still 

insures that each player is better-off than what he can secure on his own - 21
ii i

i

d wδ
δ

+
−

 or 21
i i i

i

w dδ
δ

+
−

; 

ultimately, because during the game, any player is forced to listen and while it does, it cannot 
secure more than di. It is easy to show, however, that such equilibrium is not unique and that ri* = 

0 for i = 1,2 is, in that parameter range, also a Nash equilibrium – and the unique sub-game 
perfect equilibrium 

19
. 

The range conditions also shed light on equilibria outside the parameter range.  

                                                 
19

 Multiple Nash equilibria in which one is inferior for both players and cannot be discarded without 

refinements such as sub-game perfection are known in pure strategies: equilibrium in price strategies is – can be 

systematically - better (worse) for firms than in quantity strategies in duopolies of substitute (complement) 

goods – see Singh and Vives (1984) using linear demands -, but both provide Nash equilibria. The same can 

occur with wages relative to employment strategies of union substitute (complement) labor types - see examples 

in Martins (2005). 
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Firstly, one can establish that the other several possible equilibrium types are five: ri* = 
0, 0 < rj* < 1; ri* = 1, 0 < rj* < 1; ri* = 0, rj* = 1; ri* = 0, rj* = 0; ri* = 1, rj* = 1. The first two 

stage mixed strategies of one player and pure of the other, the last two, equal pure offer strategies 
of both players - the last one, the conventional exchange. We will inspect –superficially - the 
vicinity of the doubly interior solutions.  

Given that the interior solution in mixed strategies originates an inefficient result – 
related to – and the opposite significance found for each bound (of type (44)) relative to 
optimality and lower alternative, the equilibrium solutions when, say, ri* (but not rj*) only 

crosses one of the limits (may) suffer discontinuities – and reversals.  
Let us assume that the mixed strategy equilibrium probability ri* > 1 for a player but not 

for the other. If the player for which ri* > 1 made an (the…) offer with ri* = 1, the other would 
better respond with rj* = 0; but with rj* = 0, ri* = 0 too leaves both players in the better solution 

than (x*, y*) does: the game “stops” at the - preferable for both - no-offer equilibrium. 
(Note: If ri* = 0 for a player but not for the other, for i to accept an offer from j, he is 

going to press j to the felicity bound uj(1-z*) = jw  - j will obtain Vj* = 
1

j

j

w
δ−

. Additionally, rj* 

is determined through the expected value definition of the game of player i (because z* was 
determined); if then rj* > 0 mixed strategies are available; otherwise, rj* = 1 could be required.) 

If ri* < 0, (but 0 < rj* < 1) j would be obtaining uj(1-z*) > jw  but i ui(z*) < iw . If j is 

the first to play, he makes the Rubinstein offer provided the other is not better off rejecting it. If i 
is the first to play, he may make an offer z* such that uj(1-z*) = jw  if ui(z*) > iw , otherwise, he 

makes no offers and allows j to be the first to play and offer him z* or the Rubinstein split. 
Multiple equilibria may still occur. 

 
. Consider linear utility functions for both players and the cake normalized to 1. The 

optimal x* and y* are still the same as in (3) and the same comments apply: 
 

 x*  = 2 1 1 2 2

1 2

(1 ) (1 )(1 )
1
d dδ δ δ

δ δ
− + − −

−
    ;   y*  =  1 1 1 2 2

1 2

(1 ) (1 )(1 )
1

d dδ δ δ
δ δ

− + − −
−

   

 
Then: 
 

(56)  V1*  =  12 1 1 2 2 1 2 1

1 1 1 2

(1 ) (1 )(1 ) (1 )(1 )
(1 )(1 )

d d wδ δ δ δ δ δ
δ δ δ δ

− + − − − − −
− −

  

and 

(57) Z1*  =  2 1 1 2 2

1 1 2

(1 ) (1 )(1 )
(1 )(1 )

d dδ δ δ
δ δ δ

− + − −
− −

  

(58)    
1
2

V1* + 
1
2

Z1*  =  11 2 1 1 2 2 1 2 1

1 1 1 2

(1 )[ (1 ) (1 )(1 )] (1 )(1 )
2 (1 )(1 )

d d wδ δ δ δ δ δ δ
δ δ δ δ

+ − + − − − − −
− −
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(59)  r2*  =  (1 + δ1) 11 2 2 1 1 2 2

11 1 2 1

(1 ) (1 ) (1 )(1 )
(1 )( )

w d d
w d

δ δ δ δ δ
δ δ δ

− − − − − −
− −

  

 
r2* increases with d2 iff 1w  > d1; it will decrease with d1 iff 1w  + d2 < 1. 

Provided 1w  > d1: 

(60) For r2* > 0:    1w  >  2 1 1 2 2

1 2

(1 ) (1 )(1 )
1
d dδ δ δ

δ δ
− + − −

−
  

 For r2* < 1:    1w  <  2 1 1 1 2 2

1 2

( ) (1 )(1 )(1 )
1

d dδ δ δ δ
δ δ

− + + − −
−

  

 
Under equal discount rates we recover (5):  
 

 x*  = 1 2(1 )
1

d dδ
δ

+ −
+

      ;     y*  = 1 2(1 )
1

d dδ
δ

+ −
+

   

 

(61)  V1*  =  
2

11 2
2

1 (1 )
(1 )

d d wδ δ
δ δ

+ − − −
−

  

(62) Z1*  =  1 2
2

(1 )
1

d dδ
δ

+ −
−

  

(63) 
1
2

V1* + 
1
2

Z1*  =  11 21 (1 )
2 (1 )

d d wδ δ
δ δ

+ − − −
−

 

and 

(64)  r2*  =  1 1 2

1 1

(1 ) 1
( )

w d d
w d

δ δ
δ

+ − − +
−

  

 
Provided that 1w  > d1: 

(65) For r2* > 0:    1w  >  1 21
1

d dδ
δ

+ −
+

      For r2* < 1:    1w  <  1 – d2   

 
(65) highlights that in this case, in interior solutions, iw  can never be larger than 1 (dj is 

non-negative) – the alternative cannot be larger than the pie for each individual - and never 

smaller than 
1

1
i jd dδ

δ

+ −

+
 and therefore, if di*’s are negligible, than 0.5. 1w  + 2w  will sum more 

than 1 (provided only that d1 + d2 < 1) – and therefore, than the “pie”; yet, it is not exchangeable 

between the players -, but less than 2. 
 
To simplify the comparisons, let di = ui(0) = 0 and iw  = pi (potentially, iw  = pi ui(1) + 

(1-pi) ui(0) = pi ui(1) + (1-pi) di and represent the expected periodic war pay-off - equal to pi with 
linear utilities and for di = 0). The optimal x* and y* are again:  
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 x*  = 
21

2

1
1

δδ
δ

−
−

              ;               y*  = 
21

21

1
)1(

δδ
δδ

−
−

   

Now: 

(66) V1*  =  2 1 1 2 1

1 1 2 1

1 (1 )(1 )
(1 )(1 )

pδ δ δ δ
δ δ δ δ

− − − −
− −

  =  2

1 1 2 1

1
(1 )(1 )

δ
δ δ δ δ

−
− −

 - 1

1

p
δ

 

(67)    Z1*  =  2

1 2 1

1
(1 )(1 )

δ
δ δ δ

−
− −

        

(68) 
1
2

V1* + 
1
2

Z1*  =  1 2 1 1 2 1

1 1 2 1

(1 )(1 ) (1 )(1 )
2 (1 )(1 )

pδ δ δ δ δ
δ δ δ δ

+ − − − −
− −

  

(69) 1 – r2*  =  1 1 1

11 1

(1 ) * ( *)
(1 )( )

V u y
w d

δ
δ

− −
− −

  =  2 1 1 2 1

1 1 2 1

(1 )(1 ) (1 )
(1 )

p
p

δ δ δ δ
δ δ δ

− + − −
−

 

 r2*  =  1 1 2 1 2

1 1 2 1

(1 )[(1 ) (1 )]
(1 )

p
p

δ δ δ δ
δ δ δ

+ − − −
−

  =  1 2 1 1 1

1 1 2 1

(1 )[ (1 ) (1 )]
(1 )

p p
p

δ δ δ
δ δ δ

+ − − −
−

 

r2* increases with δ2, with patience of player 2. 

(70) For 0 < r2* < 1: 2

1 2

1
1

δ
δ δ

−
−

  <  p1  <  1 - 2 1

1 21
δ δ

δ δ
−

−
  =  2 1

1 2

(1 )(1 )
1
δ δ

δ δ
− +

−
 

 
If 1 starts the game, 2’s expected payoff will be: 

(71) V2* = 1 2 1 2 2

2 1 2 2

1 (1 )(1 )
(1 )(1 )

pδ δ δ δ
δ δ δ δ

− − − −
− −

 

(72)   If  2 starts:    Z2* = 1

1 2 2

1
(1 )(1 )

δ
δ δ δ

−
− −

 

(73)  
1
2

V2* + 
1
2

Z2* = 2 1 2 1 2 2

2 1 2 2

(1 )(1 ) (1 )(1 )
2 (1 )(1 )

pδ δ δ δ δ
δ δ δ δ

+ − − − −
− −

  

(74)   1 – r1* = 2 2 2

22 2

(1 ) * (1 *)
(1 )( )

V u x
w d

δ
δ

− − −
− −

  =  1 2 1 2 2

2 1 2 2

(1 )(1 ) (1 )
(1 )

p
p

δ δ δ δ
δ δ δ

− + − −
−

  

 r1*  =  2 1 2 2 1

2 1 2 2

(1 )[(1 ) (1 )]
(1 )

p
p

δ δ δ δ
δ δ δ

+ − − −
−

  =  2 1 2 2 2

2 1 2 2

(1 )[ (1 ) (1 )]
(1 )

p p
p

δ δ δ
δ δ δ

+ − − −
−

 

r1* increases with δ1, with patience of player 1. 

(75) For 0 < r1* < 1: 1

1 2

1
1

δ
δ δ

−
−

  <  p2  <  1- 1 2

1 21
δ δ

δ δ
−

−
 = 1 2

1 2

(1 )(1 )
1
δ δ

δ δ
− +

−
 

 
We depict below the range of admissible pairs (δ i, δ j) – i=1,2, j=2,1 -, for interior 

solutions of rj* - applying if j is the first-mover - after formulas (70) and (75), for pi = 0.4 and 

0.75. Such admissible pairs are in the lenses formed between the upper and lower curve of each 

graph: above the lim Inf lines (δ i < (1 - 
1 j

ip

δ−
)

1

jδ
 and) rj* > 0, below lim Sup, rj* < 1. In the 

upper north-west region to the lens, rj* > 1, in the lower south-east, rj* < 0. 
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Interior Solutions for rj: Range of Admissible 
(Deltai, Deltaj) for pi=0.4
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Figure 1. Admissible (δ i, δ j), pi = 0.4 

 

Interior Solutions for rj: Range of Admissible 
(Deltai, Deltaj) for pi=0.75
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Figure 2. Admissible (δ i, δ j), pi = 0.75 
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Apparently, as pi rises 

20
, the admissible area for interior solutions, i.e., mixed strategies, 

for player j to be possible increases. The area of ranges implying rj* < 0 decreases. 

Also, 
 

(76) r1* > r2*   iff   1 1 2 2 2 1

2 1

(1 )(1 ) (1 )(1 )
p p

δ δ δ δ δ δ− + − +
−  < (δ1 - δ2) 1 2(1 )δ δ−   

 
At given discount rates, the lower p1 and the higher p2, the more likely will 1 be the first 

to go forward.  
 
. Under equal discount rates, we still recover (6): 
 

 x*  = 
1

1 δ+
               ;              y*  = 

1
δ

δ+
   

Now:  

(77) V1*  =  
2

1
2

1 (1 )
(1 )

pδ
δ δ
− −

−
 

(78)    Z1*  =  2

1
1 δ−

     

(79) 
1
2

V1* + 
1
2

Z1* = 11 (1 )
2 (1 )

pδ
δ δ

− −
−

 

 

(80) 1 – r2* = 
1
δ

 1

1

1 p
p

−
   ;   r2* = 1

1

(1 ) 1p
p

δ
δ

+ −
     

 1 – r1* = 
1
δ

 2

2

1 p
p

−
   ;   r1* = 2

2

(1 ) 1p
p

δ
δ

+ −
      

 
Both ri’s increase with δ : patience promotes the development of the game into 

(acceptable) proposition exchange. 
 

(81) r1* > r2*   iff   p2 > p1.    For ri* larger than 0: pi > 
1

1 δ+
.  

 
With equal impatience, the player with lower alternatives will more likely move first. 
 
Proposition 3: Assume an alternating offers protocol with a general outside option  

(implying higher utility for a player than the one he derives while listening and  

                                                 
20

 Note that p was depicted for ranges around 0.5… 
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refusing an offer) described above, admitting mixed strategies for both players. 
For an adequate range of outside options, a Nash equilibrium will exist, originating the  
same exchanged offer levels as in the standard model and where the players will make  
equilibrium offers with a lower than 1 frequency, alternating their proposals with the 
(upper) outside option. 
3.1. In the interior solution, the first mover obtains the same utility as  
in the standard model; but - even if a first-mover advantage is still present – the  
“second mover” obtains higher utility in the presence of the outside option. Yet, his  
welfare decreases with that option’s size. 
3.2. Under linear utilities:  
- the expected utility of the second mover decreases with the (exogenous) subjective  
probability with which he perceives he can unilaterally achieve a total victory.  
- the frequency with which a party makes war instead of an offer when it is due  
decreases with the subjective probability with which the opponent assesses achieving  
a total victory – his outside option in case of discontentment; decreases with the  
perceived utility obtained when he rejects an offer; increases with that accruing to the  
opponent. 
3.3. The Nash equilibrium in mixed strategies will not be unique and (both) players  
would be better “off the game” – in the persistent outside option. The latter is then the  
sub-game perfect equilibrium. 
 

 
. If di > iw , to secure an interior solution in mixed strategies for player 2, it had to be the 

case that: 

For r2* > 0, iff 1w  <  u1(x*)  =  1 1 1

1

( *) (1 )u y dδ
δ

− −
   or  

 (1 - δ1) d1 + δ1 1w  > u1(y*)   

For r2* < 1, iff 1w  > 1 1 1 1(1 ) ( *)u x dδ δ+ −  = 1 1 1 1( *) [ ( *) ]u x u x dδ+ −  = 1 1 1

1

(1 ) ( *)u y dδ
δ

+ −
 

 or   u1(x*) < 1 1 1

11
w dδ

δ
+
+

    or   u1(y*) < 11 1

11
d wδ

δ
+
+

     

 
and similarly for player 1. But now, any player would be better-off if both kept 

alternating rejectable offers… (No offers would just secure the lower alternative iw , worse for a 
first player).  
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For 1w  < u1(x*) < 1 1 1

11
w dδ

δ
+
+

 (and d1 > 1w ), 1 1 1

11
w dδ

δ
+
+

 < d1 and therefore u1(x*) < d1 – 

and also u1(y*) < d1; the Rubinstein formula could still apply – but now the second mover would 

be in advantage.  

In mixed strategies: u1(x*) < 1 1 1

11
w dδ

δ
+
+

 guarantees that Z1* < 1 1 1
2

11
w dδ

δ
+
−

, and also insures 

that V1* < 11 1
2
11

d wδ
δ

+
−

: both players are better-off exchanging rejectable offers. 

One can show that in pure strategies:  
- as a first mover, player 1 would rather not to make an offer or make a rejectable offer – 

and receive 1w  - and wait for the other to make a “Rubinstein” offer y* - provided that u1(x*) < 

1 1 1

11
w dδ

δ
+
+

.  

- as a second-mover, he would be better-off rejecting, getting d1 and waiting for next 

period’s either 1w  when his offer would be turned down (or he would not make an offer) - 

securing 11 1

11
d wδ

δ
+
+

 (u1(y*) < 11 1

11
d wδ

δ
+
+

 and u1(x*) < u1(y*)).  

Both players would exchange rejectable offers – and the first (a…) mover would just had 
to “agree” to make a rejectable one rather than no offer… Such arrangement would always seem 
possible (no offer or forwarding a rejectable offer yields iw  in the period for a player) – and the 
interior solution in mixed strategies would not occur. 

 
 
5. Simultaneous Sequential Bargaining with Mixed Strategies (and Outside 

Options) 
 
. The previous model suffers from the first mover indeterminacy of the traditional 

sequential bargaining model. In this section, relying on mixed strategies, we model simultaneous 
bargaining contemplating the possibility of synchronous mutual offers being made and try to infer 
how robust the previous conclusions are to the alternate bargaining protocol assumption.  

As before, even if mixed – hence, probabilistic or random - strategies are allowed, the 
model is still one of perfect information of the players. The decision tree of player 1 – player 2’s 
will be symmetric and depicted in Appendix 2 – is depicted below. 

At a given decision point in time – which take place at discrete (unit) time intervals - 
while the game is being played and has not ended in the closing of a contract, the players decide 
to make an offer – the share rule for all future pies - or not. If an offer is exchanged, the player 
receiving it may accept it or not; si is the frequency with which i chooses to accept a contract 

when he is offered one. 
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We admit two general options to closing a contract: if i’s proposal is not accepted, i gets 

iw  in the period which, for i, is always an available alternative to making an offer. If i receives an 
offer, he either accepts it, or gets di - that may or not differ from iw  - in the current period. When 
a proposal is not accepted, the game reverts next period to its initial state, of value Vi for player i. 

The equilibrium concept applicable is going to be one which has a matching nature, 
being associated to either a proposal of 1 or a proposal of 2 being made with a given probability. 
We denote by r2 the frequency with which 2 makes an offer; by r1 the frequency with which 1 
makes an offer. Neither r1 nor r2 are the observed probabilities with which an acceptable offer is 

made, nor the probability that a player is the first to make offers, but the subjective frequencies 
with which each player chooses to make them. There will be an offer made by 1 (2) in the period 
if 1 (2) makes an offer and 2 (1) does not. 

Synchronicity of the exchange offer decision is guaranteed by assuming: 
- independence with a two-by-two initial branch of each player’s game tree and with the 

probability of the player - 1 in the tree below - making an offer forced to be the same whether he 
received or not an offer. 

- identical frequencies in the symmetric nodes of both opponents’ decision trees.  
We can now postulate that if both make offers, hence, disagreeing, either: 
- they both get the outside option iw  (or di) and the game restarts next period. 

- they get another “try”, being as if the game started again. This rules out in the ex-post 
observed decisions the case of simultaneous offers. 

Of course, allowing for an exogenous probability of ending in either of the two previous 
solutions in case both players make offers would be possible.  
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 Player 1 
 ⇒ V1, Value of Game for 1 

 
 r1 (1 - r1) 

 
               Makes Offer     Does Not Make Offer 
 

 
 (1 – r2) r2 (1 – r2)  r2 

 

 
Does Not Receive Offer Receives an Offer Does Not Receive Offer Receives an Offer 

 V1 (or 1w  + δ1 V1, 1w  + δ1 V1 

 or d1 + δ1 V1) 
 s2 (1 – s2) s1 (1 – s1) 

 
Offer is Accepted Offer is Not Accepted Accepts Does Not Accept 

 

1

1

( )
1
u x

δ−
 1w  + δ1 V1   ⇒ 1

1

( )
1
u y

δ−  ⇒ d1 + δ1 V1 

 
Let us consider the second alternative only. Then, the probability that player 1 

effectively makes an offer in the first period – in each period while the game has not finished in a 
contract - is: 

 

(82) r1 (1 –r2) + r1 r2 r1 (1 –r2) + (r1 r2)2 r1 (1 –r2) + (r1 r2)3 r1 (1 –r2) + ... = 1 2

1 2

(1 )
1

r r
rr
−

−
 

 
For player 2, we would have symmetrically: 
 

(83)  2 1

2 1

(1 )
1

r r
r r
−

−
 

 

Still, 1 2

1 2

(1 )
1

r r
rr
−

−
 > 2 1

2 1

(1 )
1

r r
r r
−

−
 iff r1 > r2.  

The probability that there will be no offer exchange in the period – and of both players 
getting iw  + δ i Vi -, denoted by p is: 

 
(84) p = (1–r1)(1-r2) + r1 r2 (1–r1)(1-r2) + (r1 r2)2(1–r1)(1-r2) + (r1 r2)3(1–r1)(1-r2) + ... = 
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 =  1 2

1 2

(1 )(1 )
1
r r

rr
− −

−
  =  1 - 1 2

1 2

(1 )
1

r r
rr
−

−
 - 2 1

2 1

(1 )
1

r r
r r
−

−
  

 
Of course, ex-post, the probabilities that either 1 or 2 are the first to propose will only be 

meaningful for acceptable offers. All other choices would be equivalent and “added” to this no 
offer exchange situation. 

In fact, the settings of the game could be such that decisions are finalized at discrete time 
intervals but moves are prolonged in continuous time; p is the probability that a decision was not 
and will not be reached, that discussion time elapses without a conclusion – say, both want to 
make offers -, having the same consequences for the players as if no offer is made. 

The expected number of periods till an offer is made is: 
 

(85)    1 (1 – p) + 2 p (1 – p) + 3 p2 (1 – p) + 4 p3 (1 – p) + ….  =  
1

1 p−
  =  1 2

1 2

1 rr
r r
−
+

 

 
It will, thus, move in the same direction as p. 
 
. We still assume that an acceptable offer is strictly preferred to any other state if 

yielding the same utility stream. And as before, we will inspect equilibria where offers are 
accepted when made; hence si* = 1, i = 1,2. Or, the equilibrium (an equilibrium ending in 

acceptance) is a solution pair (x*-ε, y*+ε’), where ε and ε’ are infinitesimal quantities, x*-ε being 
the share accruing to 1 when he makes the offer, y*+ε’ if 2 makes the offer, x* and y* being such 
that the conditions (below) are satisfied. 

The Nash equilibrium will consist of a four-tuple (x*, y*, r1*, r2*) such that the 

extended value of the game in the two immediate branches of any decision node equalize and 
satisfying a definition of the value of the game. Then, for player 1: 

- He will be indifferent between accepting or not offer y* if it arrives: 
 

(86) 1

1

( *)
1
u y

δ−
 = d1 + δ1  V1* 

 
Player 2 will push y* down till equality holds. 
- He will be indifferent between making an acceptable offer x* or not (using also the last 

conclusion). As the decision to make an offer is simultaneous to the other player’s, and as we are 
searching for acceptable offers (If the rejection of player i’s offer implied a payoff for i of di < 

iw , the conditions would still hold.): 
 

(87) (1 – r2*) 1

1

( *)
1
u x

δ−
 + r2* V1*  =  (1 – r2*) ( 1w  + δ1 V1*)  +  r2* 1

1

( *)
1
u y

δ−
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 =  (1 – r2*) 1w   +  r2* d1  +  δ1 V1*    

 
This is required if an interior solution for r1* is going to hold. 

- The equilibrium value of the game, given the previous indifference, is the previous 
equality: 

 

(88) V1*  =  (1 – r2*) 1w   +  r2* d1  +  δ1 V1*  =  1 12 1

1

* ( )
1

w r w d
δ

− −
−

 

Then, using (87): 

(89) V1*  =  1

1

( *)
1
u x

δ−
 

From (86): 

(90) V1*  =  1 1 1

1 1

( *) (1 )
(1 )

u y dδ
δ δ

− −
−

  

Now, equating (89) to (90) we recover the standard Rubinstein condition: 
 
(91) u1(y*) - d1  =  δ1 [u1(x*) - d1]  

 
Then (90) implies that interior solutions will (must…) guarantee to both players the 

expected utility of a first-mover in the conventional alternate offers game. 
Comparing the value of this game, given by (89), with that of the alternate offers game 

(47), which involves the same (x*, y*), the synchronous setting will imply larger payoff: 
 

(92) 1

1

( *)
1
u x

δ−
 > 11 1 1

1 1

(1 ) ( *) (1 )
2 (1 )
u x wδ δ

δ δ
+ − −

−
  iff  u1(x*) < 1w  

 
Using (88), (89) and (86): 

(93) r2*  =  1 1

1 1

( *)w u x
w d
−

−
  =  11 1 1 1

11 1

(1 ) ( *)
( )

w d u y
w d

δ δ
δ

+ − −
−

     and 

 1 - r2* =  1 1

1 1

( *)u x d
w d

−
−

 =  1 1

11 1

( *)
( )

u y d
w dδ

−
−

 

r2* increases with 1w  iff u1(x*) > d1. 

From (93), provided 1w  > d1: 

(94) For r2* > 0:    1w  > u1(x*).   For r2* < 1:    u1(x*) > d1    

If 1w  < d1, which can occur, once the player cannot get out of the game, the opposite 

signs hold. 
 
The symmetric conditions for player 2 would close the game. 
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From (91) – or (1), even if we cannot talk about a first mover in the present context – x* 

> y* iff d1 < u1(x*); then, (93) implies that for r2* in a relevant range, d1 < u1(y*) < u1(x*) < 1w . 

Also, if x* > y*, 1 – y* > 1 – x*; then an internal solution requires likewise that also 2w  > u2(1-

y*) > u2(1-x*) > d2. 

Given that the player can face future war (no proposal) in case he rejects today’s offer 
from the opponent, it is possible, in spite of (1), that u1(y*) < d1, and hence, y* > x*, which 

occurs for 1w  < u1(x*) < u1(y*) < d1. If war, or rather, do not receive nor make propositions 

implies more loss than rejecting a proposal – an also likely case, in realistic terms -, i.e., d1 > 1w  

and d2 > 2w , it is better to be made than to make an acceptable offer. 

The probability that player 1 makes the first offer in the period is: 
 

(95)   2 1

2 1

(1 *) *
1 * *

r r
r r

−
−

 = 21 1 2

1 2 1 21 2 1 2

[ ( *) ][ (1 *)]
( )( ) [ ( *)][ (1 *)]

u x d w u y
w d w d w u x w u y

− − −
− − − − − −

 

 
The probability that no offer will be made in the period is: 
 

(96)   p* = 1 2

2 1

(1 *)(1 *)
1 * *

r r
r r

− −
−

 = 1 1 2 2

1 2 1 21 2 1 2

[ ( *) ][ (1 *) ]
( )( ) [ ( *)][ (1 *)]

u x d u y d
w d w d w u x w u y

− − −
− − − − − −

 

 
Provided u2(1-y*) > d2, this probability decreases with 1w . Provided u1(x*) > d1, this 

probability decreases with 2w . 
 
As in the alternate offers game of section 4, rj* > 0 implies that in any interior solution, i 

would be better-off if the game was not played – i.e., if neither he nor the opponent made offers. 
That is, the Nash equilibrium with mixed strategies is not optimal. Again, it is a Nash 
equilibrium: because (rj* < 1) it still insures that each player is better-off than what he can secure 

on his own – now, di. As before, that such equilibrium is not unique and that ri* = 0 for i = 1,2 is, 

in that parameter range, also a Nash equilibrium – and the unique sub-game perfect equilibrium. 
 
Again, the range conditions (94) suggests equilibria outside the parameter range.  
If the mixed strategy equilibrium probability ri* < 0 for a player but not for the other, j 

the equilibrium in mixed strategies is lost. If the player, say i, for which ri* < 0 does not make 
offers, i.e., ri* = 0, for it to accept an offer from j, he is going to press j to the felicity bound uj(1-

z*) = jw  - j will obtain Vj* = 
1

j

j

w
δ−

. Additionally, rj* is determined through the expected value 

definition of the game of player i; if then rj* > 0, which only occurs if i can obtain a higher 
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expected value of the game than 
1

i

i

w
δ−

, mixed strategies are available; otherwise, rj* = 1 could be 

required. Most likely, ri* = 1 and rj* = 0, with j, in any case, pushed to Vj* = 
1

j

j

w
δ−

. 

 
. Specify now the linear utility functions. We will have the same offer level as before in 

(3): 

 x*  = 2 1 1 2 2

1 2

(1 ) (1 )(1 )
1
d dδ δ δ

δ δ
− + − −

−
    ;  y*  = 1 1 1 2 2

1 2

(1 ) (1 )(1 )
1

d dδ δ δ
δ δ

− + − −
−

   

Then: 

(97)  V1*  =  2 1 1 2 2

1 1 2

(1 ) (1 )(1 )
(1 )(1 )

d dδ δ δ
δ δ δ

− + − −
− −

  

and 

(98)  r2*  =  11 2 2 1 1 2 2

11 2 1

(1 ) (1 ) (1 )(1 )
(1 )( )

w d d
w d

δ δ δ δ δ
δ δ

− − − − − −
− −

  

 
r2* increases with d2 iff 1w  > d1. It decreases with d1 iff 1w  + d2 < 1. 

r2* decreases with δ1 iff d1 + d2 < 1. It increases with δ2 iff d1 + d2 < 1. 

Provided 1w  > d1: 

(99) For r2* > 0:     1w  > 2 1 1 2 2

1 2

(1 ) (1 )(1 )
1
d dδ δ δ

δ δ
− + − −

−
  

 For r2* < 1:      d1 + d2 < 1   

 
Note that this type of range condition arises, for example, in Ponsatí and Sákovics 

(1998) and we refer the reader to them for further justifications. We showed that the above 
conditions insure existence of a “matching equilibrium” – under which, a synchronous exchange 
offer decision along with mixed strategies broaden the range of possibilities. 

 
Under equal discount rates we recover (5):  
 

 x*  = 1 2(1 )
1

d dδ
δ

+ −
+

      ;     y*  = 1 2(1 )
1

d dδ
δ

+ −
+

   

 

(100)  V1*  =  1 2
2

1
1

d dδ
δ

+ −
−

  

and 

(101)  r2*  =  1 1 2

1 1

(1 ) (1 )
(1 )( )

w d d
w d

δ δ
δ

+ − − −
+ −
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Provided that 1w  > d1: 

(102) For r2* > 0:    1w  > 1 21
1

d dδ
δ

+ −
+

. Always, r2* < 1. 

 
(102) highlights that in this case, in interior solutions, iw  can never be smaller than 

1

1
i jd dδ

δ

+ −

+
 and therefore, if di*’s are negligible, than 0.5; then, 1w  + 2w  will sum more than 1 

(provided only that d1 + d2 < 1) – and therefore, than the “pie”. Yet, the iw ’s can now be larger 

than 1. 
 
. For simplicity, let di = 0 and specify – as in the previous section - iw  = pi. Then: 
 

 x*  = 
21

2

1
1

δδ
δ

−
−

             ;               y*  = 
21

21

1
)1(

δδ
δδ

−
−

   

 

Now: 

(103) V1*  =  2

1 1 2

1
(1 )(1 )

δ
δ δ δ

−
− −

   

(104) r2*  = 1 2 1 2

1 2 1

(1 ) (1 )
(1 )

p
p

δ δ δ
δ δ

− − −
−

    or    1 - r2* =  2

1 2 1

1
(1 )p

δ
δ δ
−

−
  

Always, r2* < 1. For r2*  > 0: 

(105)    p1  >  2

1 2

1
1

δ
δ δ

−
−

     or     δ2  > 1

1 1

1
1

p
pδ

−
−

 

 
We depict below the separating line assuring an internal solution for cases of pi = 0.4 

and pi = 0.75. Above the line(s), rj* > 0 and we have an interior solution; below, rj* < 0. 
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Interior Solutions for rj: Range of Admissible 
(Deltai, Deltaj) for pi=0.4 and 0.75
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Figure 3. Admissible (δ i, δ j), pi = 0.4 and 0.75 

 
 
Again, a rise in seems to broaden the admissible area for interior solutions to be possible.  
 
(106) r1* > r2*  iff    p2 (1 – δ2)  >  p1 (1 - δ1)   

 
The smaller p1 and the higher δ1 – the worse his alternatives and the more patient or 

lower interest rate player 1 has - the more likely player 1 will be the “first” player - the one to 
“move” first.  

The probability that no offer will be exchanged in the period is: 
 

(107) p* = 1 2

1 1 2 1 2 1 2 2 1 2

(1 )(1 )
(1 )(1 ) (1 )(1 ) (1 )(1 )p p

δ δ
δ δ δ δ δ δ δ δ

− −
− − + − − − − −

 

 

It decreases with either pi; for it to be positive: 1 2 1

2

(1 )
1

pδ δ
δ

−
−

 + 1 2 2

1

(1 )
1

pδ δ
δ

−
−

 > 1. To be 

smaller than 1:    

 1 2 1

2

(1 )
1

pδ δ
δ

−
−

 + 1 2 2

1

(1 )
1

pδ δ
δ

−
−

 > 2 
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Hence this second condition prevails. 
The expected number of periods till an offer is made: 
 

(108) 1 2

1 2

1 * *
* *
r r

r r
−

+
  =  

1 2

1
1 δ δ−

 1 2 1 1 2 2 1 2

1 2 1 2 1 1 2 2

(1 )[(1 ) (1 ) ] (1 )(1 )
2(1 ) (1 ) (1 )

p p
p p p p

δ δ δ δ δ δ
δ δ δ δ

− − + − − − −
− − − − −

  

 
Under equal discount rates: 
 

 x*  = 
1

1 δ+
               ;               y*  = 

1
δ

δ+
   

(109) V1*  =  2

1
1 δ−

   

(110) r2*  = 1

1

(1 ) 1
(1 )

p
p

δ
δ

+ −
+

   or   1 - r2* =  
1

1
(1 ) pδ+

  

(111)  Always, r2* < 1.    For r2*  > 0:    p1  >  
1

1 δ+
   

(112) r1* > r2*, iff p1 < p2. 

 
The probability that no offer will be exchanged in the period is: 
 

(113) p* = 
1 2

1
(1 )( ) 1p pδ+ + −

 

 
It decreases either δ – with the patience of the players; for it to be smaller than 1:  

 p1 + p2 > 
2

1 δ+
 

which will also guarantee it will be positive. 
The expected time till an offer is made (that moves in the same direction as p*) is: 
 

(114) 1 2

1 2

1 * *
* *
r r

r r
−

+
  =  1 2

1 2

(1 )( ) 1
(1 )( ) 2

p p
p p

δ
δ

+ + −
+ + −

  

 
 
Proposition 4: Assume a simultaneous offers protocol with asymmetric outside  

options described above, admitting mixed strategies for both players and assuming in  
4.1 and 4.2 that turning down an offer or not making one implies higher utility for a  
player than the one he derives while listening and refusing an offer (di). 

For an adequate range of outside options, a Nash equilibrium will exist, originating the  
same exchanged offer levels as in the standard model and where the players will make  
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equilibrium offers with a lower than 1 frequency, alternating their proposals with the 
(upper) outside option. 
4.1. In the internal solutions, the expected welfare of each player is that of a first- 
mover of the Rubinstein game. The player with higher periodic equilibrium share  
perspective and/or the one with lower alternatives will more likely be the first-mover. 
4.2. Under linear utilities, in the internal solutions:  
- the more patient player and/or the one with lower (outside) alternatives or probability  
of success in a war will more likely be the first-mover. 
- the frequency with which a party makes war instead of an offer decreases with the 
subjective probability with which the opponent assesses achieving a total victory – 
his outside option in case of discontentment; decreases with the perceived utility 
obtained when he simply rejects an offer; increases with that accruing to the opponent. 
- (yet) the frequency with which no offer exchange is expected to be observed  
decreases with the outside options - the alternative to making an offer, also available in  
case of being rejected. Under equal discount rates, it decreases with the patience of the  
players. 
4.3. 3.3 holds. 

 
. Yet, now, if we switch the relative magnitude of iw  and di, we suggest a possible 

unique sub-game perfect equilibrium: (97)-(98) apply, in (99) the inequality signs switch: now, d1 
+ d2 > 1; under equal discount rates, (100) and (101) hold. But sensitivity to the different 

parameters also switches. 
Notice that, because d1 > u1(x*) and d2 > u2(1-y*), the second-mover is in a better 

position than a first-mover; also, di is not attainable simultaneously by both players and is only 

observed in case of rejection – not if offers are not exchanged. u1(x*) > 1 1 1

11
w dδ

δ
+
+

 guarantees that 

player 1 would still rather be a first-mover than not to make an offer – receiving 1w  - and wait for 
the other player to make a Rubinstein offer. Then, two interesting cases can occur: 

- 1w  < 1 1 1

11
w dδ

δ
+
+

 < u1(x*) < u1(y*) < d1 (Note that if 1 1 1

11
w dδ

δ
+
+

 < u1(x*) – replacing the 

periodic split formula -, 11 1

11
d wδ

δ
+
+

 < u1(y*) and a second mover is also better off alternating 

rejectable offers…) and likewise for 2, 2w  < 2 2 2

21
w dδ

δ
+
+

 < u2(1-y*) < u2(1-x*) < d2. Then one of 

the players would be better-off being a second mover in a Rubinstein split – but, who is going to 
agree to be the first mover rather than the – now in advantage - second one? 
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- 1w  < u1(x*) < 1 1 1

11
w dδ

δ
+
+

 < d1 and 2w  < u2(1-y*) < 2 2 2

21
w dδ

δ
+
+

 < d2. Then both players 

would be better-off alternating rejectable offers. Yet, on the one hand, they would have then to 
“commit” to such an alternate protocol… On the other, they would also have to agree on who is 

the first-mover: the second mover, with welfare 21
ii i

i

d wδ
δ

+
−

, as di > iw , is still better-off… 

If we now let iw  = 0, only r2* changes relative to (97)-(99), with (98) becoming: 

 

(115)  r2*  =  2 1 1 2 2

1 2 1

(1 ) (1 )(1 )
(1 )

d d
d

δ δ δ
δ δ

− + − −
−

    ;   1 - r2*  =  2 1 2

1 2 1

(1 )( 1)
(1 )

d d
d

δ
δ δ

− + −
−

 

 
For r2* > 0, (1 - δ2) (d1 + d2 – 1) < (1 - δ1 δ2) d1. For r2* < 1, d1 + d2 > 1 – yet, d1 and 

d2 cannot occur simultaneously…  
r2* now decreases with d2. It will also decrease with d1 iff d2 < 1.  

 

(116) r1* > r2*  iff    δ1 + (1 – δ1) 1

2

1 d
d
−

  >  δ2 + (1 - δ2) 2

1

1 d
d
−

  

 
ri* is expected to be larger for the more patient player (of higher δ i) and (for similar δ1 

and δ2) for the one with lower “inside” alternative di (provided these are higher than 0.5). 

p* and the expected time till an offer is made (that moves in the same direction as p*) 
are also derivable but become messy expressions.  

With equal discount factors: 
 

(117)  r2*  =  1 2

1

(1 )
(1 )
d d

d
δ

δ
+ −
+

    ;   1 - r2*  =  1 2

1

1
(1 )
d d

dδ
+ −
+

 

 

(118) p* = 1 2 1
1 2

d d
δ

+ −
+

 

 
The expected waiting time: 
 

(119) 1 2

1 2

1 * *
* *
r r

r r
−

+
 = 

1 2

1 2
2(1 ) ( )d d

δ
δ

+
+ − +

 

 
We can now summarize, applying when di > iw : 

 

Proposition 5: Assume a simultaneous offers protocol with asymmetric outside  
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options described above, admitting mixed strategies for both players and assuming in  
5.2 and 5.3 that turning down an offer or not making one implies lower utility for a  
player than the one he derives while listening and refusing an offer (di). 

5.1. For an adequate range of outside options, a Nash equilibrium will exist,  
originating the same exchanged offer levels as in the standard model - but these  
referred to a higher valued alternative - and where the players will make equilibrium  
offers with a lower than 1 frequency, alternating their proposals with the (upper)  
outside option. 
5.2. In the internal solutions, the expected welfare of each player is that of a first- 
mover of the Rubinstein game – but both players’ shares now increase with the  
alternative they obtain when they reject an offer. The player with lower periodic  
equilibrium share perspective and/or the one with higher alternative when rejecting an  
offer will more likely be the first-mover. 
5.3. Under linear utilities, in the internal solutions:  
- the more patient player and/or the one with lower (“inside”) alternative to acceptance  
will more likely be the first-mover. 
- the frequency with which a party makes war instead of an offer increases with his 
outside option in case of discontentment; increases with the perceived ut ility 
obtained when he simply rejects an offer; increases with that accruing to the opponent. 
- (yet) the frequency with which no offer exchange is expected to be observed  
increases with the outside options - the alternative to making an offer, also available in  
case of being rejected. Under equal discount rates, it decreases with the patience of the  
players and increases with the “inside” rejection pay-offs. 
5.4. The mixed strategies equilibrium may now be pareto-optimal – if alternate  
protocols are not available… 

 
The reason why this equilibrium arises - and did not in section 4 - is that one can never 

secure the “rejection” by oneself: a player also has to be made a proposition and now, without the 
alternating protocol, the other player is also competing for it.  

Finally, “rejection” by i – when di > iw  - could as well represent a war with j, di 

standing for the probability of player i attaining the full pie if he engages in such a war instead of 
closing a contract – jw  representing the expected ut ility simultaneously accruing to j; if we 
impose di + jw  < 1, no “outside” source other than the pie is needed for the equilibrium to exist 

(even if we can always argue they represent subjective probabilities of winning the pie)...  
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Conclusion 
 
The maximum utility each player may possibly achieve in a given negotiation may be a 

more important reference point to the players than conventional cooperative as non-cooperative 
games benchmark solutions imply. This research presented several non-cooperative bargaining 
setups in which infinite-term contracts are negotiated, under which the equilibrium solution 
possesses such mathematical property. In some, a direct reference to a potential unilateral 
appropriation – out of the bargaining table – of the surplus being bargained over was 
incorporated. In others, the implied cooperative maximand was also inspected.  

A first type of scenarios invoked the possibility of a one (initial) period “gift” of the total 
surplus to one of the players at contract closing. In general, it implied a higher periodic share of 
the first mover than in the conventional model when the accepting party receives a full period 
bonus, lower when the proposing party receives the bonus – also, an advantage to the more 
patient player when the gift is given by the proposing party; and a maximand of Stone-Geary 
form – hence hyperbolic pseudo-social indifference curves – but with a different “origin” than 
that implied by Nash solution. 

A second type of models, with more complex bargaining protocols, where the choice to 
make or not offers is formally modeled as a (random) strategy target, generated “outside option” 
type of results. Under reasonable assumptions of alternate sequential bargaining games, such 
possibility does not condition the optimal split of an (one…) internal equilibrium – even if, of 
course, it does its existence – and sub-game perfection.  

Finally, a simultaneous bargaining game was staged, entailing a synchronous 
equilibrium at the offer exchange decision level. The modeling stands for its methodological 
interest, definitely solving the first mover dilemma in sequential bargaining setups – perfecting 
the attempt of the mixed strategies allowance in the previous alternate bargaining structure; as 
before, visualization of the decision tree of each player became useful in the construction as 
interpretation of the implied equilibrium. 

As a final assessment of the mixed strategies models results, it was found that: the 
more patient player and/or the one with lower alternatives to making an offer within the protocol 
will more likely be the first-mover. However, interior solutions of mixed strategy frequencies of 
both players always imply multiple Nash equilibria and that both players would be better off in 
pure strategies in an alternate offers protocol; and in the simultaneous offer game if the no offer 
option is the highly valued; the inefficient equilibrium arises because the players are forced to 
listen. 

In the range of inefficient mixed strategy equilibria: the frequency with which a party 
is expected to make an (acceptable) offer increases with the opponent’s alternative in case he is 
rejected; increases with the perceived utility obtained when he simply rejects an offer; decreases 
with that accruing to the opponent. The size of the outside options as, under equal discount rates, 
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patience of the players decreases the no offer exchange equilibrium frequency. Yet, the outside 
option accrues as an alternative to making an offer, and as a response to a rejection (requiring that 
an offer is made to be available through this channel) – this conditions the registered sign of its 
impact. Most change for the (almost…) efficient simultaneous game – with high “inside” (of own 
rejection) option, but low outside one. Rubinstein’s optimal periodic division in a closed contract 
remained robust to most of the settings.  
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Appendix 1 
 
. The conclusions and optimal split would not change if the players were continuous 

time optimizers but forced/allowed to bargain at discrete time intervals.  
Say individuals maximize an utility function of the type: 
 

(A.1) Ui = ∫
∞

−

0

)( duzue ui
uri   

 
ui(zu) is the instantaneous felicity function (measured in a per unit of time basis) 

accruing to i when he obtains the share zu of the “pie” at time u – pies are continuously being 
offered to the players at the rate of 1 per period. ri is the interest rate – measured per unit of (the 

same) time - at which the felicity function is discounted. 
Assume that between two offers, ∆ units of time elapse and that offers must consist of 

constant settlements for that interval; that is: 
 
 zu = zt                 for    ∆ t < u < ∆ (t + 1)   ,   t = 0, 1, 2, … 

 
Then, the “chunk” of utility at stake in the t-th round of negotiations would have current 

(present, i.e., at moment u=0) value: 
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(A.2) ∫
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∆
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Total lifetime utility at time 0 will be: 
 

(A.3) Ui = [ ]∑
∞

=

∆−∆− −
0

1
)(

t

rtr

i

ti ii ee
r
zu

  

 
. Suppose that contracts at stake consist of stationary splits so that zt = z. Then, if 1 is 

assessing an offer y at time 0, he accepts iff it has higher value than rejecting and making an 
acceptable offer, x*, in the next round. That is: 
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Re-arranging and denoting u1(0) by d1: 

 
(A.5) u1(y) - d1  ≥  ∆− 1re  [u1(x*) - d1]  

 
Likewise, when 2 is assessing an offer x (or 1-x), he accepts it iff: 
 
(A.6) u2(1-x) – d2  ≥  ∆− 2re  [u2(1-y*) – d2]  

 
The equilibrium will require equality of the two expressions at x=x* and y=y*. 
 
. The theory departs from the assumption that the “units of time” are the ones for which 

ui(x) is an appropriate measure of felicity – which is theoretically legitimate -, and 

correspondence is assumed with the rate at which one unit of manna is poured into the system.  
We could however assume that felicity should indeed refer to interval of length h in the 

(a particular…) observed empirical units measure, not coinciding with those at which the 
continuous depreciation takes place at the discount rate ri. Then ui(zu) should be replaced by 



 58

h
zhu ui )(

 in the expressions. h and ∆ may not coincide. If it is legitimate to admit that h tends to 0, 

using the l’Hôpital’s rule we can infer that: 

  
h
zhu u

h

)(
lim

0→
  =  )0('

iu uz   

 
Under the above manipulations we would arrive at similar equilibrium conditions as 

before but as if derived for linear felicity functions, i.e., ui(zu) = zu. 

 
 
Appendix 2 
 
Player 2’s decision trees with outside options: 
 
Alternate offers game: 
 
 Player 2 
 ⇒ V2, Value of Game for 2 if 1 Starts 

 
 (1 – r1) r1 

 
 Does Not Receive an Offer Receives an Offer, 1 - x 
 ⇒ 2w  + δ2 Z2 [Did Not Accept] 

Z2, Value of Game for 2 if 2 Starts s2 (1 – s2) 

 
 Accepts Does Not Accept 
 ⇒ 2

2

(1 )
1

u x
δ
−

−
 ⇒ d2 + δ2 Z2 [Did Not Accept] 

 
 r2 (1 – r2) 

 
 Makes an Offer, 1 - y War 
  ⇒ d2 + δ2 2w  + δ2

2 V2 
 s1 (1 – s1) 

 
 Offer is Accepted Offer is Not Accept – War  

 ⇒ d2 + δ2 2

2

(1 )
1

u y
δ
−

−
  ⇒ d2 + δ2 2w  + δ2

2 V2 
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Simultaneous offers game: 
 
 Player 2 
 ⇒ V2, Value of Game for 2 

 
 r2 (1 – r2) 

 
               Makes Offer     Does Not Make Offer 
 

 
 (1 – r1) r1 (1 – r1)  r1 

 

 
Does Not Receive Offer Receives an Offer Does Not Receive Offer Receives an Offer 

 V2 (or 2w  + δ2 V2, 2w  + δ2 V2 

 or d2 + δ2 V2) 
 s1 (1 – s1) s2 (1 – s2) 

 
Offer is Accepted Offer is Not Accepted Accepts Does Not Accept 

 

2

2

(1 )
1

u y
δ
−

−
 2w  + δ2 V2 ⇒ 2

2

(1 )
1

u x
δ
−

−  ⇒ d2 + δ2 V2 
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Appendix 3 
 
Multiplicity of Alternatives in the Alternate Offers Game: 
 
We depict be low a decision tree of Player 1 that admits, on the one hand, that periodic 

payoffs are branch-specific and allow for eventual multiple offers – we just draw 2, A and B – to 
be randomly forwarded by each player. 

 
 
 Player 1 
 ⇒ V1, Value of Game for 1 if 2 Starts 

 
 (1 – r2

A - r2
B) r2

A r2
B 

 
Does Not Receive an Offer Receives an Offer, yA Receives an Offer, yB 

1w  + δ1 Z1 [Did Not Accept] 

Z1, Value of Game for 1 if 1 Starts s1
A (1 – s1

A) s1
B

 (1 – s1
B) 

 
 Accepts Does Not Accept Accepts Does Not Accept 

 1

1

( )
1

Au y
δ−

 d1 + δ1Z1  1

1

( )
1

Bu y
δ−

 d1 + δ1Z1  

 
 r1

A  r1
B (1 – r1

A - r1
B) 

 
 Makes an Offer, xA  Makes an Offer, xB War 
  d1 + δ1 1g  + δ1

2 V1 

 s2
A  (1 – s2

A) s2
B (1 – s2

B) 

 
 Offer is Accepted Offer is Not Accept – War  Offer is Accepted Offer is Not Accept – War 

 d1 + δ1 1

1

( )
1

Au x
δ−

  d1 + δ1 1s  + δ1
2 V1  d1 + δ1 1

1

( )
1

Bu x
δ−

  d1 + δ1 1s  + δ1
2 V1 

 
We will study three situations: possibility of effective multiple offers to be exchanged; 

with the usual “simple” offers, an equilibrium with mixed strategies in si but not in ri; again with 

“simple” offers, the equilibrium – equivalent to that of the text - with mixed strategies in ri: 

 
. Let us inspect the possibility of two offers A and B to be considered by each player i. 
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Lemma 1: s1
A and s1

B (s2
A and s2

B) cannot both exhibit interior solutions. Then, if one 

of the offers, say B, exhibits an interior solution (or is the more stringent one),  
- for the other, A, to be acceptable(ed) in equilibrium and s1

A = 1, yA > yB (1 - xA > 1 - 

xB). 
- for the other, A, not to be accepted in equilibrium and s1

A = 0, yA < yB (1 - xA < 1 - 

xB). 

Proof: If they both exhibited interior solutions, in equilibrium, 1

1

( )
1

Au y
δ−

 = d1 + δ1Z1 = 

1

1

( )
1

Bu y
δ−

: yA and yB would have to equalize – but then the two offers would be indistinguishable. 

The rest of the lemma therefore follows. 
 
Lemma 2: s2

A = 0 and s2
B > 0 (s1

A = 0 and s1
B > 0) cannot occur.  

Proof: If they could, using lemma 1, one would have that xA > xB. Interior solutions of 

r1
A and r1

B would require s2
B 1

1

( )
1

Bu x
δ−

 + (1 - s2
B) ( 1s  + δ1 V1) = 1s  + δ1 V1 = 1g  + δ1 V1. The 

first equality would imply s2
B = 0, which would be a contradiction; the second equality would be 

impossible. 
This lemma would make intuitive sense: to make an unacceptable offer would be 

tantamount to make none. 
 
Lemma 3: For s2

A = 1 and s2
B > 0 (s1

A = 1 and s1
B > 0): s2

B < 1 and 1g  > 1s . 1g  = 1s  

cannot occur. 
Proof: Using lemma 1, for s2

A = 1 and s2
B > 0, xA < xB. Interior solutions of r1

A and r1
B 

would require s2
B 1

1

( )
1

Bu x
δ−

 + (1 - s2
B) ( 1s  + δ1 V1) = 1

1

( )
1

Au x
δ−

 = 1g  + δ1 V1. The first equality 

would imply that s2
B < 1 or  would have to equalize; it would also imply that for xA < xB, 1

1

( )
1

Bu x
δ−

 

> 1s  + δ1 V1; for the second equality to be possible then, 1

1

( )
1

Bu x
δ−

 > 1g  + δ1 V1 > 1s  + δ1 V1 – 

and then 1g  > 1s . And for s2
B > 0, and xA to differ from xB, 1s  = 1g  cannot happen. 

 
A possible equilibrium would require then: 
 

(A.1) 1

1

( )
1

Bu y
δ−

  =  d1  +  δ1 Z1   
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(A.2) s2
B 1

1

( )
1

Bu x
δ−

 + (1 - s2
B) ( 1s  + δ1 V1) = 1

1

( )
1

Au x
δ−

 = 1g  + δ1 V1 

 
(A.3) Z1 = 1g  + δ1 V1 

 

(A.4) V1 = (1 – r2
A – r2

B) ( 1w  + δ1 Z1) + r2
A 1

1

( )
1

Au y
δ−

 + r2
B 1

1

( )
1

Bu y
δ−

  

 
and similarly for player 2. We have 10 equations and 14 unknowns… Exploration of this 

model is beyond the scope of this work and left for further study – because we focused on the 
case for which 1s  = 1g ... 

Likewise, a solution with ri
A + ri

B = 1 would also merit attention. Lemma 3 would partly 

apply, and one would expect then that at best si
A = 1 and 0 < si

B < 1; If they were both possible, 

would require investigation. 
 
. One can further show in such game that an interior solution for si’s but not for the ri 

would generate an inferior equilibrium. We would have that, for player 1: 
 

(A.5) 1

1

( )
1
u y

δ−
  =  d1  +  δ1 Z1   

 

(A.6) s2 1

1

( )
1
u x

δ−
 + (1 - s2) ( 1s  + δ1 V1) = 1g  + δ1 V1 

 
(A.7) Z1 = 1g  + δ1 V1 

 

(A.8) V1 = 1

1

( )
1
u y

δ−
  

 
Using (A.5), (A.8) and (A.7), V1  =  d1  +  δ1 Z1  =  d1  +  δ1 ( 1g  + δ1 V1). Then: 

 

(A.9) V1* = 1 1 1
2

11
d gδ

δ
+
−

  

 

(A.10) Z1* = 1 11
2

11
g dδ

δ
+
−

  

and 
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(A.11) u1(y*) = 1 1 1

11
d gδ

δ
+
+

  

 
If 1g  = 1w  (> d1), we are definitely in a worst solution than in the solution of the main 

text – mixed strategies of si would not be applied for they would leave the two players in the 
lower bound, obtained when rejectable offers are exchanged. From player 2’s problem, also V2*, 

Z2* and x* would be determined – of course, now, y* and x* are not the usual periodic splits. 

Then: 
 

(A.12)   s2* = 
2

11 1
2

11 1 1 1 1 1 1

(1 ) ( )
(1 ) ( *) (1 ) ( )

g s
u x s d g

δ
δ δ δ δ

− −
+ − − − +

  

 
Suppose 1g  > 1s . 

For s2* > 0:  (1 + δ1) u1(x*) > (1 - δ1
2) 1s  + δ1 (d1 + δ1 1g ) = 1s + δ1 d1 + δ1

2 ( 1g - 1s ). 

For s2* < 1:  (1 + δ1) u1(x*) > δ1 d1 + 1g . 

If 1g  > 1s , 1s  + δ1 d1 + δ1
2 ( 1g  - 1s ) < δ1 d1 + 1g . Then, if 1g  > 1s , interior solutions 

just require that 1

1

( *)
1
u x

δ−
 > 1 1 1

2
11

d gδ
δ

+
−

 = V1*.  

One could likewise show that if 1g  < 1s , interior solutions would require 1

1

( *)
1
u x

δ−
 < 

1 1 1
2

11
d gδ

δ
+
−

 = V1*. 

 
. Finally, interior solutions for the ri’s only with the new multiplicity of alternative 

would generate an equilibrium similar to the one developed in the text. For player 1: 
 

(A.13) 1

1

( *)
1
u y

δ−
  =  d1  +  δ1 Z1*   

 

(A.14) 1

1

( *)
1
u x

δ−
 = 1g  + δ1 V1* 

 

(A.15) Z1* = 1

1

( *)
1
u x

δ−
  

 

(A.16) V1* = r2 1

1

( *)
1
u y

δ−
 + (1 - r2) ( 1w  + δ1 Z1*)  
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(A.13) and (A.15) still imply that the equilibrium split is the traditional one and that the 
first-mover is as well-off as in the standard game. We could further develop (A.16) to generate: 

 

(A.17) V1* = 1

1

( *)
1
u y

δ−
 + (1 - r2) ( 1w  - d1)  

 
It now implies, using (A.14): 
 

(A.18) V1* = 1 1 1

1 1

( *) (1 )
(1 )

u x gδ
δ δ

− −
−

 = 1 1 1 1 1
2

1 1

( *) (1 )( )
(1 )

u y d gδ δ
δ δ

− − +
−

 

and 

(A.19) 1 – r2*  =  1 1 1 11

11 1

(1 ) ( *)
( )

u x g d
w d

δ δ
δ

+ − −
−

  =  1 1 1 11
2

11 1

(1 ) ( *)
( )

u y g d
w d

δ δ
δ

+ − −
−

    

   r2*  =  11 1 11

11 1

(1 ) ( *)
( )

g w u x
w d

δ δ
δ

+ − +
−

  =  
2

11 1 1 1 1 11
2

11 1

(1 ) ( ) (1 ) ( *)
( )

d g w u y
w d

δ δ δ δ
δ

− + + − +
−

 

 

If 1w  > d1, 0 < r2* < 1 would require 1 11

11
g dδ

δ
+
+

 < u1(x*) < 111

11
g wδ

δ
+
+

 or/and 1 1 1

11
d gδ

δ
+
+

 < 

u1(y*) < 
2

11 1 1 11

1

(1 ) ( )
(1 )

d g wδ δ δ
δ

− + +
+

. Then two cases are possible: 

If 1w  < 1g , r2* > 0 implies that a first-mover is better-off exchanging rejectable offers. 

(But he may or not be better-off than without offer exchange). 

If 1w  > 1g , r2* > 0 would imply u1(x*) < 111

11
g wδ

δ
+
+

 < 1w  and then a first player would 

(even) be better-off if nobody makes offers. 
 
 


