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Abstract:

We define rationality and equilibrium when states specify agents’ actions and
agents have arbitrary partitions over these states.  Although some suggest that
this natural modeling step leads to paradox, we show that Bayesian equilibrium
is well-defined and puzzles can be circumvented.  The main problem arises
when player j’s partition informs j of i’s move and i knows j’s strategy.  Then
i’s inference about j’s move will vary with i’s own move, and i may
consequently play a dominated action.  Plausible conditions on partitions rule
out these scenarios.  Equilibria exist under the same conditions, and more
generally ε equilibria usually exist.
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1  Much of the remainder of the literature on Bayesian games employs a base state space that does not
specify actions (as in the Harsanyi model) or, when actions states do list actions, assumes that agents do not have
partitions over the state space.  For a sampling of the literature, see Armbruster and Böge [1], Aumann and
Brandenburger [4], Böge and Eisele [7], Brandenburger and Dekel [8], Dekel and Gul [9]), Mertens and Zamir
[14], Tan and Werlang [18].  Brandenburger and Dekel [8] also considers Newcomb’s paradox, which we discuss
below.
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1.  Introduction

Agents in decision theory take as given a set of states that specify every feature of the

world that affects them and the probabilities of those states.  When placed in a game, therefore,

an agent i should take as given the probabilities of the actions that any other agent j plays.  But

although the probabilities of j’s actions are given from i’s perspective, they cannot be given

from j’s own perspective.  To deal with this complexity, one can let states specify profiles of the

agents’ actions.  Every agent then faces the same state space and all can simultaneously

maximize utility, with a move for an agent i leading i to update probabilities accordingly.  But a

difficulty arises: if j’s partition informs j of i’s move and i knows j’s strategy (i.e., j’s move as a

function of the state), then i’s own move can reveal to i what move j is taking.  Agents can thus

gather substantive information from their own moves and the customary independence between

actions and knowledge breaks down.  Even worse, in this scenario agent i can rationally play a

dominated action.  Some (Binmore [5], Shin [16]) have recognized these possibilities and

suggested that allowing agents to draw Bayesian inferences from their own actions leads too far

astray from orthodox game theory.  We will show that these concerns are exaggerated; with the

right conditions on knowledge in place, Bayesian rationality can be applied to states that specify

actions and yet remain consistent with traditional thinking about games.

The keys that open the door to the play of dominated actions are first, states that specify

actions, and second, agents who receive partitional information about other players’ moves.  The

less distinctive equilibrium assumption that agents know other players’ strategies is also

important.  While Aumann [3] and the literature in its wake give agents partitions over states

that specify actions, we will argue that the Aumann model evades the consequences of these

assumptions.1  Curiously it is the traditional dictates of Bayesian rationality – states that specify
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every relevant contingency, and partitions – that can lead to anomaly.

The classic illustration of the feedback from action to knowledge when states specify

actions, and the resulting potential for the play of dominated actions, is the famous Newcomb

problem.  An agent c (for chooser) is presented with two boxes, one of which is opaque and may

or may not contain a million dollars and one of which is transparent and visibly contains a

thousand dollars: c may either follow the one-box action c1, and take only the opaque box or the

two-box action c2, and take both boxes.  At an earlier point in time, the other agent d (for

demon) either places a million dollars in the opaque box, action d2, in which case both boxes

contain money, or leaves the opaque box empty, d1, in which case only the transparent box has

money.  Agent c’s utility is given by his money payoff, while d wants justice to prevail: d prefers

the outcomes where c modestly chooses only the opaque box and it has money or c greedily

chooses both boxes but the opaque box is empty over the outcomes where c chooses the single

opaque box but finds it empty or c chooses both boxes and discovers the opaque box is full.  The

payoffs are given below, where x > y.

        d1                     d2

  c1       0,  y                106,  x

  c2 1000,  x    106 + 1000,  y 

In standard game theory, c will play c2, which dominates c1, and d will therefore select

d1.  The supposed paradox lies in the long history of past plays of the game.  Some c’s have

chosen c1 – perhaps they have different payoffs or think that sometimes it can be rational to play

a dominated action.  And it turns out that whenever c selects c1, d had earlier chosen d2.  Agent

d is somehow able to predict with perfect accuracy if he is dealing with a c who chooses c1 or a

c who chooses c2.  Some conclude that there is then a logic to choosing c1.  If d can indeed

predict with perfect accuracy the sort of c he faces, then c will benefit from deciding to be the

sort of c who chooses c1.  The following story sometimes bolsters this argument: if d has

extensive knowledge of the physiology of c’s decision-making and sufficient prior information,
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then he or she should be able to predict c’s actions flawlessly.  This story is implausible, but it

underscores the need for a minimal and plausible formal condition that will rule it out.

The above case for playing c1 is noticeably vague about the nature of d ’s knowledge of

c’s actions.  If we let the state space specify agents’ actions and model d ’s knowledge by a

partition, we can put the argument for choosing c1 in Bayesian terms.  Suppose the state space Ω

specifies just c’s and d’s actions: Ω = {(c1, d1), (c1, d2), (c2, d1), (c2, d2)}.  Agent d’s flawless

knowledge of c’s move may then be modeled with the following partition of Ω :

{{(c1, d1), (c1, d2)}, {(c2, d1), (c2, d2)}}.

Assuming c has no comparable partitional knowledge of d’s move, c’s partition is just {Ω}. 

When a player i moves after having originally been informed of the cell Pi, the player updates

using the additional information implied by his move: the original cell Pi is replaced by the

subset of Pi that consists of those states that report the move that i takes.  For example, if d is

originally informed of {(c1, d1), (c1, d2)} and moves d1 then d knows that {(c1, d1)} obtains,

while if c, who is always informed of just Ω, moves c1 then c knows that {(c1, d1), (c1, d2)}

obtains.  By itself, d’s information about c’s move will not lead c to play the dominated action

c1: if the probabilities that d plays d1 or d2 are fixed, c will prefer to take the move c2.  What

leads to trouble is if d’s action depends on d’s information and c knows this.  So suppose that

each player knows the equilibrium strategy of the other player and that d plays the utility-

maximizing strategy of choosing d2 when facing {(c1, d1), (c1, d2)} and d1 when facing

{(c2, d1), (c2, d2)}.  Then c knows that only the states (c1, d2) and (c2, d1) are possible and so

c, by playing c1, can lead the more preferred of the two, (c1, d2), to obtain.  If c plays c1, c’s

Bayesian inference is that d must have had information that led to the play of d2, while if c plays

c2 then c would infer that d had information that led to the play of d1.

Notice that c’s partition is completely uninformative; it is d’s information combined with

the equilibrium assumption that players know each other’s strategy that leads c to play c1.  More

generally, the fact that an agent i receives partitional information about another player j’s move

will not lead i to play a dominated action – it just helps i play a better response.  For a dominated
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action to be rational, it is one’s opponents’ information that matters.  It is also important that d ’s

partition carries information about c’s move, not just about c’s type (payoffs).

The present example of playing a dominated action is the simplest of the cases we will

consider.  Here d’s partition gives d perfect knowledge of c’s move, but all that is necessary is

that d has some partitional information.  In fact, a player i can still play a dominated action even

when some other agent j has partitional knowledge of i’s move that is so weak that j always

judges each of i’s possible actions to have positive probability.

It is the converse to these examples that is most important: if no agent has any partitional

information about other agents’ moves then no agent will play a dominated action.  Indeed in the

absence of partitional information about others’ moves (and with a plausible restriction on how

to update on 0 probability events), we will arrive at the same predictions as Aumann’s model of

correlated equilibrium.  An absence of partitional knowledge of others’ moves is a natural and

plausible way to get rid of the paradoxes that can accompany states that specify actions. 

Regarding Newcomb’s paradox, these results allow us to identify the conditions under which c1

is rational.  Agent d must have some partitional knowledge of c’s move, it is not enough for d

merely to be an accurate predictor of c (see sections 5.ii and 9).

Our model weakens Savage’s independence between knowledge and actions but not so

drastically that we end up on the Jeffrey [12] side of the divide in decision theory, where agents’

actions can change the probabilities of states in arbitrary ways.  Instead the updating that takes

place as an agent moves occurs only via the refinement of the agent’s prespecified partition. As a

consequence, an agent i’s act of moving does not directly inform i of another player j’s move; it

is the impact of i’s move on j’s information and hence on j’s equilibrium action that gives i

information and leads i to play a dominated action.

Traditional game and decision theory blocks the rational play of dominated actions either

by eliminating actions from the description of states or by not letting agents update as they

move.  Agents then cannot infer anything about the state space from their own moves.  But these

crude steps both go too far and fail to pin down where the problem lies.  Agents should be able
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to draw at least some conclusions about the world from their moves – they are subject to

physical laws, after all, and therefore ought to be able to deduce some physical facts from their

moves.  If we abide by the Savage dictum that states omit no relevant detail about the world,

such inferences become unavoidable.  But with appropriate and plausible auxiliary assumptions

in place, they do not lead to trouble.

In addition to analyzing dominated move pathologies, we also aim to show that games

and information updating can be analyzed coherently when states specify actions.  Rational play

and equilibrium are readily definable even when agents do receive partitional information about

others’ moves.  The existence of equilibrium involves some complications not present in

ordinary game theory, but equilibria or ε equilibria exist in the important cases.

2.  Strategies as states: the problem

Aumann’s [3] theory of Bayesian decision-makers playing a game was the first to endow

agents with partitions over states that specify actions, and it illustrates the characteristic

problem: in order to preserve the independence of actions and knowledge, utility maximization

is defined so as to ignore the effect of an agent’s action on the state.

Let ø  = {1, ..., n} be the set of players with each player i having a set of actions or moves

Si and define S = S1 × ... × Sn.  Each i has the utility function ui : S ÷ R.  Uncertainty is

described by a set of states Ω, where each ω 0 Ω specifies (among other things) the players’

actions.  The agents share a common prior π on Ω while each i’s private information is modeled

by a partition - i of Ω such that each cell Pi 0 -i has π(Pi) > 0.  Let Pi (ω) denote the cell of - i

that contains ω.  Agent i chooses a strategy, σi: Ω ÷ Si, that specifies i’s preferred action in Si as

a function of the state.  The function σi is required to be measurable with respect to - i.  That is,

for all ω, ωN 0 Ω,

Pi (ω) = Pi (ωN) Y σi (ω) = σi (ωN).

It is not clear if the Aumann model pertains to a point in time before or after actions are taken. 

If before, then measurability means that i cannot vary his or her move as a function of states in
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the same cell.  If after, and if we assume informally that i knows σi, then measurability means

that i knows his or her own move.

Let the strategy functions (σi)i0ø
 be Aumann rational if and only if, for all ω 0 Ω, i 0 ø,

and all σiN that are measurable with respect to - i,

E(ui (σi, σ! i)*Pi (ω)) $ E(ui (σiN, σ! i )*Pi (ω)),

where σ
! i = (σ1, ..., σi!1, σi+1, ..., σn) and E(ui (σi, σ! i)*A ) is the expectation of ui (σi, σ! i)

conditional on the event A.

Aumann rationality has several drawbacks (see Binmore [5], Binmore and

Brandenburger [6], Shin [16]).  The left hand side of the above inequality gives i’s expected

utility in the event Pi (ω).  By measurability, i takes the same action, say si = σi (ω), at each

0 Pi (ω); any 0 Pi (ω) should therefore describe a state at which si occurs.  But if i wereω̂ ω̂

instead to play the strategy σiN where σiN(ω) = siN … si for all ω 0 Pi, the right hand side of the

inequality says that i’s payoff would be E(ui (σiN, σ! i )*Pi (ω)), the expected utility of playing siN

given that the event Pi (ω) obtains.  But Pi (ω) contains only states at which i plays si, not siN. 

Agent i would thus have to consider his payoff in a state that i deems to be impossible – a state

not in the cell Pi (ω).

Second, how should we interpret the σi?  The function reports the action si chosen as a

function of the state ω.  But if a state specifies what actions are taken, then σi evaluated at ω

could report only the action for i that is given by ω (σi would simply project ω onto the

coordinate that gives i ’s action).  Hence Ω normally cannot include every possible profile of

actions s 0 S if Aumann rationality is to obtain.  When for example ω 0 Ω specifies a strictly

dominated action si 0 Si, and therefore σi (ω) = si, then i cannot be Aumann rational at this ω.

If Ω has states that specify every possible profile of actions, then an agent i ’s action must

reveal information to i, and thus i should condition on different events as i considers different

possible moves.  The rest of this paper considers the consequences of this conditioning, in

particular that as the events on which i conditions change, i may be able to infer the moves of

other players.  If for instance i were to deviate to the action siN from the action σi (ω), then some
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j … i might be informed that a different cell of - j obtains and thus i might be able to infer, from

knowledge of σj, that j will play a distribution of actions that differs from σj*Pi (ω).

3.  Partitional rationality

Again the set of players is ø = {1, ..., n} where each i 0 ø has the set of actions Si with

typical element si, and S again denotes S1 × ... × Sn.  To make players’ actions explicit in the

description of a state, the state space Ω  will now be a subset of S × Γ, with typical element ω =

(s, γ ), where Γ indicates all relevant features of the world besides players’ moves.  We assume

throughout that each Si is a compact subset of some Euclidean space, e.g., all mixtures of a finite

set of pure actions.  But no structure is imposed on Γ, and so γ could, for example, specify an

infinite hierarchy of each player i’s beliefs, beliefs about j ’s beliefs, etc.  Since we sometimes

need to consider convex action sets, we allow Ω to be uncountable and endow Ω with a σ-

algebra of measurable subsets.

Notation: Let Si (A), where A d Ω, denote the projection of A onto Si, S(A) denote the

projection of A onto S, etc.  We use si (ω), i 0 ø, and γ (ω) to denote the coordinates of ω.  When

Si (A) is a singleton, we also use si (A) to denote si 0 Si (A).  As usual, s
! i = (s1, ..., si!1, si+1,

..., sn), S
! i = S1 × ... × Si!1 × Si+1 × ... × Sn, etc.

We assume throughout that S(Ω ) = S.  In every important example, Ω in fact equals the

product S × Γ (one exception arises in this section and two others in section 5).

Each agent i is described by a utility ui : Ω ÷ R and a premove partition -i of Ω

consisting of measurable cells that indicate i’s information prior to moving.  We assume for

simplicity that i cannot exclude ex ante the possibility of any of his or her moves: for each agent

i, each si 0 Si, and each Pi 0 -i, there exists a ω 0 Pi such that si (ω) = si.  Let P
! i denote a (P1,

..., Pi!1, Pi+1, ..., Pn) 0 -1 × ... -i!1 × -i+1 × ... × -n.

The act of moving refines agent i’s partition, leading to a postmove partition  of-
(

i

measurable cells of Ω , where  refines -i.  We interpret  0  both as what i knows after-
(

i P (

i -
(

i

having taken the move si ( ) and as what i anticipates knowing if i were to take the actionP (

i



2  Let  and  denote partitions that refine - i and satisfy KYOM and NEI.  For any  0 , there-
(

i -
(

i N P (

i -
(

i
exists  0  such that  1  … i and hence a  0  1 .  Then, for any ω, ωN 0 c ,P (

i N -
(

i N P (

i P (

i N ω̂ P (

i P (

i N P (

i P (

i N
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si ( ).  The latter vantage point is the relevant one when we consider what moves are rationalP (

i

for i.  The coincidence of the two interpretations amounts to an assumption of rational

expectations.

We impose the following requirements on the .  Given any Pi, d Pi, d Pi,-
(

i P (

i P (

i N

ω 0 , and ωN 0 , thenP (

i P (

i N

KYOM (know your own move)  =  Y si (ω) = si (ωN),P (

i P (

i N

NEI (no extra information)  =  Z si (ω) = si (ωN).P (

i P (

i N

KYOM says that if two actions are in the same cell of the postmove partition, then they

are the same action: after moving, i knows his or her own action.  This has the same meaning as

the ‘after the action’ interpretation of measurability in the previous section: an agent knows and

remembers his move.  Notice that when Si consists of an infinite number of actions, then KYOM

implies that the postmove partition  contains an infinite number of cells.-
(

i

NEI says that if two cells of i’s postmove partition report the same move for i (and they

originate from the same cell of i’s premove partition) then they are the same cells: when i cannot

distinguish ex ante between two states at which i makes the same move, the act of moving does

not by itself distinguish the states.  Assuming that nothing else besides i’s move occurs when i

chooses a , we view NEI as a rationality requirement.  To see this, suppose  refines - iP (

i -
(

i

and satisfies KYOM but violates NEI: then there exist distinct  and  in some Pi and a P̃
(

i P (

i N ŝi

such that si (ω) =  for all ω 0 c .  If taking the move  necessarily leads to one of theŝi P̃
(

i P (

i N ŝi

postmove cells, say , then i ought to be able to deduce premove that the states in  cannotP (

i N P (

i

obtain.  Moreover some  0  should necessarily obtain when i selects  since we think ofP (

i -
(

i ŝi

i as choosing a  in Pi.  If both  and  could obtain, and again assuming that nothingP (

i P̃
(

i P (

i N

else occurs when i moves, then how does i select, say,  rather than ?P̃ (

i P (

i N

It is readily confirmed that given a partition - i, there is a unique partition  that both-
(

i

refines - i and satisfies KYOM and NEI.2  Henceforth all postmove partitions will be generated
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from premove partitions by KYOM and NEI.

KYOM and NEI do not imply that agents learn nothing from the act of moving above

and beyond their own move.  For instance, if -i consists of a single cell {(si, s! i, γ),

(siN, s! i, γN)} then  is {{(si, s!i, γ)}, {(siN, s!i, γN)}}.  So if i moves si then i may infer that γ-
(

i

obtains, while if i moves siN then i knows that γN obtains.  The variables γ and γN might denote

different arrays of information about the physical world at an earlier date, and so i might know

that the move si is perfectly correlated with γ and that siN is perfectly correlated with γN.  The

following assumption excludes this possibility.

NI (no information): for any Pi, ω 0 Pi, and si 0 Si , there exists d Pi such thatP (

i

(si , s
! i (ω), γ (ω)) 0 .P (

i

NI says that every (s
! i, γ) that arises in some cell of i’s postmove partition arises in every

other postmove cell that originates from the same premove cell: each Pi is the product of Si and

some  d S
! i × Γ.  (And so, given KYOM and NEI, each d Pi has the form {si} ×  forQPi

P (

i QPi

some si 0 Si.)

NI, although implausibly strong, is implicit in most models, such as Aumann’s, of

interacting Bayesian agents: agents know nothing after moving that they do not know before

moving.  NI nevertheless does not eliminate the rational play of dominated actions: the simple

Newcomb example in the introduction satisfies NI as will virtually every other example we

consider where agents rationally play dominated actions (there is one minor exception in section

5).  We will see in section 6 that NI also need not obtain when it is not rational to play

dominated actions.  Despite its strength, NI is neither necessary nor sufficient for the traditional

view of rational play.

In addition to the state space Ω and the partition profile (- i)i0ø
, the final primitives of

the model are the agent utilities ui : Ω ÷ R, i 0 ø.  We assume that each ui is integrable with

respect to any probability measure on Ω.  Each ui may be constant as a function of γ, in which
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case ui has the specification of the previous section.  To avoid distraction, we use the same

probability measure π on Ω to calculate expected utilities for each ui.  Although agents’ choice

of actions affect the probabilities of states and hence one cannot view π as wholly exogenous,

we could allow the elements of the meet (finest common coarsening) of the partitions - i, i 0 ø,

to have exogenously given probability.

The rationality of agents turns on how they select elements of the postmove partition

.  The strategy of agent i is a function hi: - i ÷  such that, for each Pi, hi (Pi) d Pi.  A-
(

i -
(

i

profile of strategies is denoted h = (h1, ..., hn).

We assume that an agent i who uses the strategy hi against opponents playing h
! i = (h1,

..., hi!1, hi+1, ..., hn) knows that the event hi (Pi) obtains when informed initially of the cell Pi. 

But if i knows the functions h
! i, as one usually assumes in equilibrium analysis, i can infer

more: since each j … i selects only states that lie in some hj (Pj ), any state that obtains should be

in some hj (Pj ) for j … i as well as in hi (Pi), assuming such states exists.  To state the restriction

that only these states have positive probability, let Range hi (in a slight abuse of notation) denote

{ω 0 Ω : ω 0 hi (Pi) for some Pi 0 -i}, and define Range
ø
 h = Range hj and Range¬ i h =_

j0ø

Range hj._
j0ø \{i}

Definition 1.  The probability π is accurate with respect to the strategies h if and only if

π(Range
ø
 h) = 1.

In order to optimize, an agent i must take into account that as i varies the  in Pi that heP (

i

selects, the hj (Pj ), j … i, that intersect  may change.  Each agent i thus anticipates what heP (

i

would know if he were to undertake the various  in Pi.  Agent i therefore may be able to inferP (

i

information about the moves of j … i move from his own move, and this information can

influence which move is optimal for i.  If i is optimizing, i should choose an action whose

expected utility, conditioning on what i knows given that i takes that action, is at least as great as

the expected utility of any alternative action, conditioning on what i would know if i were

indeed to take that alternative.  So i when facing the premove cell Pi should choose a hi (Pi) such
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that

E(ui*hi (Pi) 1 Range¬ i h) $ E(ui* 1 Range¬ i h )P (

i

for each d Pi.
3  Unfortunately, the conditioning events above can be empty, in which caseP (

i

expectations are not well-defined.  The empty event can arise, for instance, if -i informs i of

some j ’s move since then some Pi can imply moves for j that j does not take with hj.  This

possibility is important.  For example, in the Newcomb example in the introduction where c’s

premove partition consists of the entire state space Ω, let hc specify the move c2 (formally hc(Ω )

= {(c2, d1), (c2, d2)}).  And suppose again that d faces the premove cells {(c1, d1), (c1, d2)}

and {(c2, d1), (c2, d2)}.  In order to specify rational play for d in all eventualities, we must

define d ’s expected utility when c plays c1 and d therefore faces {(c1, d1), (c1, d2)}.  Whatever

move d plays at this cell, 1 Range hc will equal the empty set since hc specifies c2 but P (

d P (

d

specifies c1, and so d ’s expected utility is not well-defined.  Moreover, we cannot leave d’s

expected utility undefined in the event that c plays c1, since, for c to optimize, c must know how

d would act if c hypothetically were to play c1.

To deal with the empty conditioning event, we assume that when i contemplates a cell

that does not intersect Range¬ i h, then i takes  itself to be the set of possible states.  LetP (

i P (

i

K( ) denote 1 Range¬ i h if 1 Range¬ i h … i and  otherwise.  So our assumption isP (

i P (

i P (

i P (

i

that i knows K( ) when taking the move .  Also, π will denote both a probability measureP (

i P (

i

π (@ ) on Ω and, for any measurable P d Ω, a conditional probability measure π ( @ *P) on Ω. 

Given π ( @ *P) and an integrable u, E(u*P) (the conditional expectation of u given P) will denote

u(ω)dπ (ω*P ) rather than some arbitrary version of the conditional expected value.m

Definition 2.  The strategies and probability (h, π) form a partitionally rational equilibrium if

and only if π is accurate with respect to h and for all i 0 ø, Pi, and d Pi,P (

i

E(ui*K(hi (Pi))) $ E(ui*K( )).P (

i

To see how Definition 2 is applied when agents face the empty event, see the matching
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pennies example in section 4 or section 5.  Even when the empty event does not arise, many

action profiles are not taken when the agents play a given h.  Consequently zero-probability

events appear routinely as each i considers various .  Conditional probabilities are then notP (

i

uniquely determined.  Definition 2 requires only that the hi are optimal for some set of

conditional probabilities.

4.  Existence and nonexistence of partitionally rational equilibria

We begin by using matching pennies to illustrate partitionally rational equilibria and

clarify the role played by accuracy, and then turn to an example that satisfies standard convexity

and continuity conditions but that has no partitionally rational equilibria.  Nonexistence stems

from the fact that the cells of -i typically cannot all be compact.  But we show that models with

the more important types of partition profiles always possess equilibria and that ε equilibria exist

in two-player models if non-move uncertainty (information about γ) is symmetric.  This section

is self-contained except for our later use of Definition 4; the reader may wish just to peruse some

of the examples.

Keep in mind that, unlike the Aumann [2] model of correlated equilibrium, the state

space and agent partitions are among the primitives (Ω, (- i, ui)i0ø
) rather than part of the

definition of equilibrium.  So for example a statement that “no equilibrium exists” does not

mean that no equilibrium exists for a different specification of partitions.

Matching pennies.  There are two players a and b.  Let Ω = {(H, T ), (H, H ), (T, T ), (T, H )},

where the first coordinate of each ω is a’s move and the second is b’s.  There is no non-move

uncertainty: γ is constant across states and suppressed in the notation.  Utilities are given by 

ua (H, T ) = ua (T, H ) = ub (H, H ) = ub (T, T ) = 1,

ua (H, H ) = ua (T, T ) = ub (H, T ) = ub (T, H ) = 0.

Assume first that before moving each player knows the other’s move:

- a = {{(H, T ), (T, T )}, {(H, H ), (T, H )}}, - b = {{(H, T ), (H, H )}, {(T, T ), (T, H )}}.
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Then, given KYOM and NEI,

 =  = {{(H, T )}, {(H, H )}, {(T, H )}, {(T, T )}}.-
(

a -
(

b

One might think that partitional rationality would be possible since a for example will reason

that if he were to move H, b will know that and move T, and if he were to move T, b would

know that too and move H.  So a should be indifferent between his two moves.  The difficulty is

that both players know the other’s move.  When, for instance, a knows that b plays H and

therefore plays T – so ha ({(H, H ), (T, H )}) = {(T, H )} – the state must be (T, H ).  But if hb

assigns {(T, T )} to {(T, T ), (T, H )} then state (T, H ) is not in Range hb.  And similarly if a

knows b plays T, we have ha ({(H, T ), (T, T )}) = {(H, T )} and  hb ({(H, T ), (H, H )}) =

{(H, H )}, and again ha and hb do not intersect.  Hence there cannot be an accurate π.

If instead just one player, say b, knows the other’s move, then a partitionally rational

equilibrium does exist.  Suppose b knows a’s move but not vice versa:

- a = {Ω}, - b = {{(H, T ), (H, H )}, {(T, T ), (T, H )}}.

If a were to play H, then b will play H, and if a were to play T, then b will play T.  Two pairs of

strategies are therefore possible in partitionally rational equilibrium.  In one, a plays H (i.e.,

ha (Ω ) = {(H, H ), (H, T )}) and in the other, a plays T, while in both,

hb ({(H, T ), (H, H )}) = {(H, H )}, and hb ({(T, T ), (T, H )}) = {(T, T )}.

Accuracy is achieved in the first case if

π ((H, H )) = 1, π ((H, T )) = π ((T, H )) = π ((T, T )) = 0,

and in the second if

π ((T, T )) = 1, π ((H, T )) = π ((T, H )) = π((H, H )) = 0.

Notice that although a partitionally rational equilibrium now exists, one of the agents, b,

must specify play in the face of the empty event.  For example, in the equilibrium where a plays

H, b must still specify a move when informed of the cell {(T, T ), (T, H )}.  The dictates of

partitional rationality are entirely noncontroversial, however: b plays (T, T ) when {(T, T ),

(T, H )} occurs.

The nonexistence that occurs above when both players know the other’s move disappears
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if mixed actions are allowed.  If the action sets contain all mixtures of H and T – so Si = [0, 1]

rather than S i = {H, T} – and payoffs are extended accordingly, then equilibrium for matching

pennies will always exist regardless of the partition profile.  But this repair works only because

matching pennies is zero-sum: if both agents play their secure actions, any deviation for i to give

j different information and thereby induce a change in j’s move will not raise i’s payoff.  In non-

zero-sum games, such deviations can be profitable and can lead to nonexistence of equilibrium

even when all mixed actions are available, as the following example shows.  �

Nonexistence with mixed actions.  The payoffs to pure actions are given by the following matrix.

a   
b   L   R

   T 0, 2 6, 1

   B 2, 1 4, 2

Let p denote the probability that a plays T and q denote the probability that b plays L.  Payoffs to

mixed actions are given by the expectations of pure payoffs.  There is no non-move uncertainty,

and so Ω = [0, 1] × [0, 1], with typical state (p, q) 0 Ω.  Premove partitions are given by -a =

{[0, 1] × [0, 1]}, and - b = {[0, .4) × [0, 1], [.4, 1] × [0, 1]}.  Thus, a receives no partitional

information about b’s move, whereas b knows that a is either playing p 0 [0, .4) or p 0 [.4, 1].

The sole Nash equilibrium of the standard model (that is, where -a = - b = {[0, 1] ×

[0, 1]}) occurs at p = q =  .5.  We can use this fact to exclude several equilibrium possibilities. 

If ha selects any p 0 [.4, .5), b will play R (q = 0) when informed that p 0 [.4, 1]; but if hb

selects R at the cell where p 0 [.4, 1], ha must select T ( p = 1).  Similarly, if ha selects any p 0

(.5, 1], b will play L when informed that p 0 [.4, 1]; but if hb selects L at the cell where p 0

[.4, 1], ha must select B.  Equilibrium also cannot occur at the standard Nash equilibrium p = q = 

.5.  Although q = .5 is optimal for b when informed that p 0 [.4, 1] and ha selects p = .5, p = .5 is

not optimal for a.  To see this, note that hb must select R at the cell where p 0 [0, .4).  So, by

choosing p less than but near to .4, a can achieve expected utility arbitrarily near to .4 × 6 +

.6 × 4 = 4.8, while, by choosing p = .5, a receives expected utility equal to 3 if hb selects q = .5
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at the cell where p 0 [.4, 1].  We may (again invoking standard reasoning) also exclude the

possibility of an equilibrium in which ha selects p = .5 and hb selects q < .5 or q > .5 at the cell

where p 0 [.4, 1].  Summing up, we conclude there can be no equilibrium in which ha selects

p $ .4.  But an ha that selects p < .4 is also impossible since p + ε for small ε > 0 gives a a

higher expected utility (nearer to 4.8) than p does.

The example is robust in that for a sufficiently small open set of payoffs for the pure

actions and boundaries for the partition cells, nonexistence will persist.  Equilibria will exist

however if we “perturb” -b by changing the cell [0, .4) × [0, 1] to [0, .4] × [0, 1]  (and hence

changing b’s other cell from [.4, 1] × [0, 1] to (.4, 1] × [0, 1]).  �

Noncompact partition cells, which are key to the example, unfortunately can be

unavoidable.  If one of two agents, say b, has a set of actions formed from at least two pure

actions and their probability mixtures, and if the number of cells in - a is finite and greater than

1, then at least one cell of - a cannot be closed.  And so it becomes possible for b to have a

sequence of actions each of which lies in one Pa and along which b’s expected utility is

increasing but whose limit action switches a to another cell PaN; if a’s action changes as a result

and discretely lowers b’s utility, equilibrium may not exist.

There are two types of remedies for the nonexistence problem.  First, we can impose

restrictions on information that imply that convergent sequences of actions cannot lead in the

limit to a discrete fall in utility.  The second remedy, perhaps the more promising path, is to

consider ε equilibria.

Several prominent classes of partition profiles qualify under the first cure.  Suppose in a

two-agent model that one agent a knows ex ante as much as b, which we define to mean that -a

refines .  Agent a would then know b ’s action ex ante but b would not know a’s action even-
(

b

ex post (unless b can infer it from Range ha).  The Newcomb example in the introduction (or see

section 5.i below) provides an example, letting a = d.  When a knows ex ante as much as b, then

any change in b’s action will always shift a to a new cell of -a.  But with appropriate continuity
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assumptions on ua, a’s best response will move continuously as a function of b’s action, thus

eliminating the discrete changes in utility that can lead to existence trouble.  The existence result

in this case is given as Theorem 1 below and is proved by backward induction.  Even though a

and b move simultaneously, if a knows as much ex ante as b, then it is ‘as if’ b moves first: b in

effect acts as a Stackelberg leader and a as a Stackelberg follower.  The appearance of an ‘as if’

temporal order of play is characteristic when some agents have partitional knowledge of other

agents’ moves.

Definition 3.  Partitional continuity is satisfied if and only if, for any i 0 ø and - iNd - i, there

exists a function : Si × S
!i ( Pi) ÷ Γ such that (1) for each s 0 Si × S

!i ( Pi),γ
-i N

^
Pi0-i N

^
Pi0-i N

(s, (s)) 0 Pi, and (2) for all j 0 ø, vj: Si × S
!i ( Pi) ÷ R defined by vj (s) =γ

-i N
^

Pi0-i N

^
Pi0-i N

uj (s, (s)) is continuous.γ
-i N

One simple way to satisfy partitional continuity is for γ to be payoff-irrelevant (see below) and

for each agent’s utility to be a continuous function of actions.

Theorem 1.  If for (Ω, (- i, ui)i=a, b) agent a knows ex ante as much as b, and partitional

continuity is satisfied, then a partitionally rational equilibrium exists.

Proofs are in the appendix.  Existence of equilibrium also obtains in the n-agent case where, for i

0 {1, ..., n !1}, i knows ex ante as much as i + 1.

Next, suppose each i’s partition informs i of the moves of j … i.  Subject to standard

technical caveats, each i can then best respond to the actions of j … i reported by Pi and the

existence of a standard Nash equilibrium will ensure that Range
ø
 h is nonempty.  A sequence of

actions for i now cannot in the limit lead to a discrete change in i’s utility since the premove

cells of j … i already inform j of si; so s
!i is fixed along any sequence of postmove cells.

Definition 4.  Agent i partitionally knows j’s move if and only if, for each Pi,

ω, ωN 0 Pi Y sj (ω) = sj (ωN).

Definition 5.  The variable γ is payoff-irrelevant if and only if, for all i 0 ø and ω, ωN 0 Ω,
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sj (ω) = sj (ωN) for j 0 ø Y ui (ω) = ui (ωN).

We say that convexity is satisfied if and only if, for all i 0 ø, Si is convex.  Simple

continuity is satisfied if and only if for all i 0 ø and for all functions : S ÷ R with (s, (s)) 0 Ωγ̂ γ̂

for s 0 S: (1) for any s
!i 0 S

!i, si |÷ ui (si, s!i, (si, s!i)) is quasiconcave, and (2) s |÷ ui (s,γ̂

(s)) is continuous.  For later reference, γ-simple continuity is satisfied if and only if (1) and (2)γ̂

are imposed only on functions  such that there is a  0 Γ with (s) =  for all s 0 S (as well asγ̂ γ̄ γ̂ γ̄

(s, (s)) 0 Ω for s 0 S ).γ̂

Theorem 2.  If for (Ω, (- i, ui)i0ø
) each i partitionally knows the move of each j … i, γ is payoff-

irrelevant, and convexity and simple continuity are satisfied, then a partitionally rational

equilibrium exists.

We omit the proof, which recapitulates the standard Nash argument in the current notation (the

only extra step is to set a state where a standard Nash equilibrium occurs to have probability 1).

As we make clear in section 7, existence is also assured if we replace each i partitionally

knowing the move of each j … i in Theorem 2 with the “opposite” assumption, namely that as

some i changes his move the other agents remain partitionally uninformed of this fact (see

Definition 10 below).  Assuming γ is payoff-irrelevant, we then return to the Aumann [2, 3]

model of correlated equilibrium.  Existence problems do not arise since a sequence of actions for

i transmit no information to j … i and hence cannot induce in the limit a discrete change in i’s

utility.

We turn to ε equilibria, where for any ε > 0 there exist strategies such that each agent

achieves utility within ε of the supremum of the utility levels attainable given the other agent’s

strategy.  We do not settle the existence question; given strategies hj for j … i, an agent i’s best

responses when facing the cell Pi need not form a convex set, and so standard existence proofs

do not apply.  But with two agents, and when agents’ uncertainty about the non-move variable γ

is symmetric, then ε-equilibria do always exist.

Definition 6.  Non-move uncertainty is symmetric if and only if there exists a partition -
Γ
 of Γ
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such that for i 0 ø : P
Γ
 0 -

Γ
 ] (Si × S

!i (Pi) × P
Γ

) 0 -i.

In words, each agent faces the same partition of Γ and each cell of this partition can arise

whatever i’s information about the other agents’ moves.  While symmetric non-move

uncertainty is restrictive, it permits a wide range of possibilities, including the Newcomb

example in the introduction, all of the matching pennies examples, and the nonexistence

example.

Definition 7.   An ε partitionally rational equilibrium exists if and only if for all ε > 0 there

exists (h, π) such that π is accurate with respect to h and, for all i 0 ø, Pi, and d Pi,P (

i

E(ui*K(hi (Pi))) + ε $ E(ui*K( )).P (

i

Theorem 3.  If for (Ω, (- i, ui)i=a, b) non-move uncertainty is symmetric, convexity and γ-simple

continuity are satisfied, and S
!i (Pi) is convex for each i and Pi, then an ε partitionally rational

equilibrium exists.

The idea of the proof is that, conditional on γ, standard arguments show that, for any pair

(Pa, Pb), the closure of Pa 1 Pb has a “constrained Nash equilibrium” in which each i is required

to choose a si in the closure of Si (P
!i), and so there is a ε constrained Nash equilibrium in Pa 1

Pb itself.  We then use these ε constrained equilibria to determine which states have conditional

probability 1, ensuring that when i faces Pi and contemplates choosing a  that intersects, say,P (

i

 0 , he or she anticipates that the ε constrained equilibrium of Pi 1  will obtain.  EachP̂
&i -

&i P̂
&i

i achieves ε rationality by selecting a  whose corresponding ε constrained equilibrium is nearP (

i

the upper bound of the set of utilities that can be reached by the ε constrained equilibria.  With a

careful adjustment of the actions in the Pa 1 Pb that contains the standard (unconstrained) Nash

equilibrium and of the pertinent conditional probabilities, accuracy is assured as well.

5.  The rational play of dominated actions

Definition 8.  The strategy hi plays a dominated action if and only if there exist Pi and d PiP (

i N

such that, for all s
!i 0 S

!i, if (si, s!i, γ) 0 hi (Pi) and (siN, s!i, γN) 0  thenP (

i N



4  We use this “ex post” definition of domination, rather than a less demanding “interim” definition (where
hi only has to take actions whose expected utility condition on hi (Pi) is less than the expected utility of some dP (

i

Pi, conditional on ) since we wish dominated actions to be as plainly suboptimal as possible.P (

i
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ui ((si, s!i, γ)) < ui ((siN, s!i, γN)).
4

An agent i can play a dominated action in partitionally rational equilibrium either

because switching to a dominated action can lead  to intersect different subsets of the rangeP (

i

of the other agents’ strategies or because switching actions can change the conditional

probabilities of the other agents’ moves or some non-move feature of the world.  We illustrate

both possibilities with various Newcomb examples.  Until warning to the contrary, the payoffs

are those given in the introduction.

(i)  To save on notation, let an action denote the states where the action is taken, e.g., when d

faces Pd, d1 will indicate the states in Pd that have a sd coordinate equal to d1.

The simplest case where it is rational for c to play the dominated action c1, sketched in

the introduction, occurs where d partitionally knows c’s move, that is, where every cell of d’s

partition consists only of states whose sc coordinates agree (see Definition 4 in section 4):

Ω = {(c1, d1), (c1, d2), (c2, d1), (c2, d2)},

- d = {{(c1, d1), (c1, d2)}{(c2, d1), (c2, d2)}}, - c = {Ω}.

With these -i, the only partitionally rational equilibrium occurs where hc(Ω ) = c1,

hd ({(c1, d1), (c1, d2)}) = d2, hd ({(c2, d1), (c2, d2)}) = d1.

Neither agent i in this example learns anything directly from  that he/she did notP (

i

know before moving (besides si itself).  But indirectly, via  1 Range h
!i, i = c acquiresP (

i

information about d ’s  move from c’s own move, and this leads c to play a dominated action. 

The absence of direct informational content to the  will be retained through sections 5.i andP (

i

5.ii.  The principal reason for this lack of informational content is that the agent partitions satisfy

the NI axiom of section 3, which shows that NI does not eliminate the play of dominated

actions.  In fact, except for the next paragraph, every Newcomb example we consider satisfies

NI.

Partitional knowledge does not require d to observe c’s move directly.  Instead, d may
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observe γ at an earlier date, and the different γ ’s inform d of c’s move.  For example, if we set

- d = {{(c1, d1, α), (c1, d2, α)}, {(c2, d1, β), (c2, d2, β)}}, - c = {Ω},

then d ’s partitional knowledge of c’s move can be ascribed to d ’s observation of α or β.  Think

of α as infallible physical evidence that c will play c1 and β as infallible evidence that c will play

c2.

When d partitionally know c’s move, every cell of -d informs d of c’s action.  But c can

still always play c1 even if d partitionally knows c’s move only at some of d ’s premove cells.

Definition 9.  Agent j occasionally partitionally knows i’s move if and only if, for some Pj,

ω, ωN 0 Pj Y si (ω) = si (ωN).

For an example where d only occasionally partitionally knows c’s move but where c

nevertheless always chooses c1, suppose c does not know when d is informed about c’s action. 

Let  denote {(ci, d1, α), (ci, d2, α)}, i = 1, 2.  Also, when convenient let a nonmoveαci

coordinate represent the four states that have that coordinate, e.g., β = {(c1, d1, β ), (c1, d2, β ),

(c2, d1, β ), (c2, d2, β )}.  With this notation, set - c = {Ω}, - d = { , , β}.  Then theαc1
αc2

strategies

hc (Ω ) = c1, hd ( ) = d2, hd ( ) = d1, hd (β ) = d2αc1
αc2

are utility-maximizing if π((c1, d2, α)) is sufficiently large.  For accuracy to obtain, set

π ((c1, d2, α)) = 1 !δ and π ((c1, d2, β )) = δ for nonnegative δ sufficiently near 0.

Not surprisingly, if we let c distinguish between the β states and the α states, c will still

play c1 at the α states.  Replace - c = {Ω} with {α, β}.  Then the strategies

hc (α) = c1, hc (β) = c2, hd ( ) = d2, hd ( ) = d1, hd (β ) = d1αc1
αc2

form a partitionally rational equilibrium when π ((c1, d2, α)) = 1!δ and π ((c2, d1, β )) = δ, δ 0

[0, 1].

(ii)  It may seem that if an agent a is to play a dominated action, then b must at least in

some cells of -b be certain of a’s move (i.e., there must be a Pb that contains only states that

specify just one move for a).  This is not the case.  To build a Newcomb example where no

agent partitionally knows the other’s move even occasionally, we employ states with four values
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for the non-move coordinate, α, β, η, and τ.  Suppose when either γ = β or γ = η that

min i=1,2 uc(c2, di, γ) > max i=1,2 uc(c1, di, γ) thus ensuring that c always chooses c2 at the β or η

states.  Similarly, suppose that at the α states payoffs are such that c always chooses c1.  At the τ

states, c has the Newcomb game payoffs as does d in all states.  Set Ω = Sc × Sd × {α, β, η, τ}

and as before let each of α, β, η, and τ denote the four states with the corresponding value of γ. 

For example, α = {(c1, d1, α ), (c1, d2, α ), (c2, d1, α ), (c2, d2, α )}.  Finally, for i = 1, 2, let τi d

τ denote {(ci, d1, τ), (ci, d 2, τ)}.  Now set

- c = {α, β c η, τ},

- d = {α  c η c τ2, β c τ1},

hc(α) = c1, hc(β c η ) = c2, hc(τ) = c1, hd (α c η c τ2) = d1, hd (β c τ1) = d2 ,

π ((c1, d2, τ)) = 1!2 ε!δ, π ((c1, d1, α)) = δ, π ((c2, d2, β)) = ε, π ((c2, d1, η)) = ε.

View d ’s first cell as a noisy signal that c has moved c2 when facing the τ cell and the second as

a noisy signal that c has moved c1 at the τ cell.  We specify the needed conditional probabilities

momentarily.

Agent c’s preferences ensure that hc(α) = c1 and hc(β c η ) = c2 are partitionally rational

(i.e., best responses in the sense of Definition 2).  As for hc(τ), if c plays c1 then (given the

specified hd ) the state (c1, d2, τ) must obtain and c’s payoff is 106, whereas if c plays c2 then

(c2, d1, τ) must obtain and c’s payoff is 1000.  Hence hc(τ) = c1 is partitionally rational.

Turning to hd, as  ÷ 4, the payoff to d of playing d1 when facing α c η c τ2 convergesε

δ

to x.  The payoff to d of playing d2 when facing α c η c τ2 depends on the probabilities

conditional on 0-probability events.  Let π(si*s
!i, A), where A d Γ, serve as shorthand for

π({ω: si (ω) = si}*{ω: s
!i (ω) = s

!i, γ 0 A} 1 Range hi).  

Assuming δ + ε > 0, we have

π (c1*d1, {α, η, τ}) = , π (c2*d1, {α, η, τ}) = .δ

δ % ε

ε

δ % ε

And we set

π (c1*d2, {α, η, τ}) = , π (c2*d2, {α, η, τ}) = .δ

δ % ε

ε

δ % ε

So, as  ÷ 4, π (c2*d2, {α, η, τ}) ÷ 1 and the payoff to d of playing d2 converges to y.  Henceε

δ

hd (α c η c τ2 ) = d1 is partitionally rational for large .  Finally, consider d’s payoffs whenε

δ



5  For instance, add a small-but-positive probability set of states σ at which d always moves d2, let μ
denote another small-but-positive probability state at which c always moves c1, let the premove partitions be - c =
{α c μ , β c η, σ c τ}, - d = {α c η c τ2, σ c μ c β c τ1}, and let each player i’s move at his jth cell coincide
with the move taken at the jth cell in the previous example (where cells are numbered in the order we have written
them).
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facing β c τ1.  If δ < 1 and ε becomes small, then π(c1*d2, {β, τ}) approaches 1; hence the

payoff to playing d2 converges to x.  If we set π(c1*d1, {β, τ}) = π(c1*d2, {β, τ}), the payoff to

playing d1 approaches y.

Thus, if we set ε > 0 small and  large, the specified strategies and probabilities areε

δ

partitionally rational and the specified probabilities are accurate.  We conclude that c rationally

plays the dominated action c1 when facing the cell τ.

Agent d ’s lack of information about c’s move in this example goes beyond not having

occasional partitional knowledge of c’s move: both c1 and c2 are played with positive

probability in each of d’s premove cells.  But despite d never being sure of c’s move, c still

rationally chooses c1 at some cells.  We could tweak the example so that in addition both d1 and

d2 are played with positive probability in each of c’s premove cells.5

The source of trouble in the above cases is that there are Pc and Pd such that Pc 1 Pd … i

but where, for some d Pc, 1 Pd = i.  Thus d sometimes gets a (possibly noisy) signal ofP (

c P (

c

c’s move, namely that c has not moved sc( ), not just a signal about c’s type.  The followingP (

c

requirement bars an agent j from receiving such a signal, not just at each of j ’s premove cells but

given any move j might take.

Definition 10.  Agent j is partitionally ignorant of i’s move if and only if, for all , Pi, dP (

j P (

i

Pi,  d Pi,P (

i N

1  … i Y 1  … i.P (

i P (

j P (

i N P (

j

In words, j is partitionally ignorant of i’s move if whenever j believes it possible that i could

take some action si when facing Pi then j also believes it possible that i could take any other

action siN when facing Pi.  The set of conceivable  therefore do not change as  varies withP (

i P (

j

a single Pj.  So, for instance, if j is partitionally ignorant of i ’s move then j does not occasionally

know i’s move.  But more strongly, partitional ignorance implies that j never has better
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information about i’s move than i has ex ante.  Partitional ignorance nevertheless allows j to

have considerable knowledge of i, e.g., - i could refine - j.

Notice that even if each agent is partitionally ignorant of the other’s move the NI axiom

of section 3 need not be satisfied.  For instance let

- c = - d = {{(c1, d1, α), (c1, d2, α), (c2, d1, β), (c2, d2, β )}},

 = {{(c1, d1, α), (c1, d2, α)}, {(c2, d1, β), (c2, d2, β )}},-
(

c

 = {{(c1, d1, α), (c2, d1, β )}, {(c1, d2, α), (c2, d2, β )}}.-
(

d

Evidently NI is violated but each agent is partitionally ignorant of the other’s move.  As in

section 5.i, think of α (resp. β ) as unerring physical evidence that c will move c1 (resp. c2)

except that here d does not receive this evidence in advance.  After moving c1, say, c will know

that α must obtain.  And this possibility indicates again why NI is so implausible: agents’ own

moves can and do inform them of things other than the moves themselves.

(iii)  But partitional ignorance is not enough.  With no restrictions on how agents form

conditional probabilities, agents may still select dominated actions.  To that end, we construct an

example where c has the original Newcomb preferences throughout some cell and takes the

dominated action c1 in that cell, but where each agent is partitionally ignorant of the other’s

move.  We use states with the four non-move coordinates α, β, η, and τ.  Assume as in 5.ii that

at the β and η states, each possible payoff for c when playing c2 is strictly larger than each

possible payoff when playing c1.  In all other states, let c have the Newcomb game preferences

as will d in all states.  Using the notational conventions of 5.i and 5.ii, set

- c = {β c η, α c τ}, - d = {α c β, τ c η},

hc (β c η ) = c2, hc (α c τ ) = c1, h d (α c β ) = d1, hd (τ c η) = d2,

π ((c1, d2, τ)) = π ((c2, d1, β)) = .5.

The partitional rationality of hc (β c η ) = c2 is assured, given c’s payoffs in the β and η

states.  If d when facing the cell α c β, plays d1, the state (c2, d1, β) obtains with probability 1

and d receives the payoff x, while if d plays d2, either (c1, d2, α) or (c2, d2, β ) obtains and

hence d receives a weighted average of x and y: hence h d (α c β ) = d1 is partitionally rational. 

When d faces τ c η and plays d1, either (c1, d1, τ) or (c2, d1, η) obtains, and so d ’s payoff is a
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weighted average of x and y, while if d plays d2, (c1, d2, τ) obtains with probability 1 and so d ’s

payoff is x.  So hd (τ c η) = d2 is also consistent with partitional rationality.  It remains to check

the most important case, c’s move when facing the cell {α, τ}.  If c plays c1, (c1, d2, τ) obtains

with probability 1 and so c’s payoff is 106, while if c plays c2, either (c2, d1, α) or (c2, d2, τ)

obtains and so c’s payoff is a weighted average of 1000 and 106 + 1000.  Both (c2, d1, α) and

(c2, d2, τ) have probability 0.  But if the conditional probability π(d1*c2, α) is sufficiently large,

then the move c1 will be partitionally rational.

A twist in this case is that it is the updating induced by c’s moves that drives the

paradox.  Agent d is partitionally ignorant of c’s move and the updating on 0-probability events

that occurs when d moves does not have to occur in a skewed or suspicious way.

6.  Eliminating the play of dominated actions

One step to guaranteeing that a partitionally rational agent i will not play a dominated

action is that the remaining agents are partitionally ignorant of i’s move.  The second is to

prohibit the suspicious updating of probabilities that occurred in section 5.iii.  The NI axiom

plays no role.  When there are n agents, the first step requires an appropriate extension of

Definition 10.

Definition 11.  Agents j … i are mutually partitionally ignorant of i’s move if and only if, for all

Pi, d Pi, d Pi, and ,P (

i P (

i N P (

&i

 … i Y  … i.P (

i _ (_
j… i

P (

j ) P (

i N _ (_
j… i

P (

j )

Definition 12.  Agent i is update independent at (h, π) if and only if for all Pi,  d Pi, dP (

i P (

i N

Pi, and ,P (

&i

[( ) K( ) … i ] ( ) K( ) … i] Y π( |K( )) = π( |K( ))._
j… i

P (

j _ P (

i _
j… i

P (

j _ P (

i N _
j… i

P (

j P (

i _
j… i

P (

j P (

i N

Behind the notation, Definition 12 says something simple: if i contemplates two different moves,

 and , at Pi and the set of possible profiles of moves for the other players does notP (

i P (

i N

change, then i regards each profile of moves for the other players to have the same posterior

probability whether i moves  or .  Since update independence applies only when the actP (

i P (

i N
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of moving has no informational content, it is akin to and as plausible as NEI.

If π is accurate, then for any Pi at most one of the family of conditioning events

{K( )  can have positive probability and therefore conditional probabilities may alwaysP (

i }P (

i dPi

be set so as to satisfy update independence.  Up until section 5.iii, every example we considered

satisfied update independence – or, when some conditional probabilities went unspecified, they

could be set consistently with update independence.  And the equilibria in the proofs of the

existence theorems in section 4 could be supplemented to satisfy update independence.

Theorem 4.  If j … i are mutually partitionally ignorant of i’s move and i is update independent at

the partitionally rational equilibrium (h, π), then hi does not play a dominated action.

7.  Aumann redux

We make our model compatible with Aumann [2, 3] by assuming that γ is payoff-

irrelevant (Definition 5).

Definition 13.  A partitionally rational equilibrium (h, π) leads to a correlated distribution of

actions if and only if there exist a probability space (Ψ, ö, μ ) and, for i 0 ø, a partition Q i of Ψ

and a strategy function gi: Ψ ÷ Si measurable with respect to Q i such that (1) Eui (g i, g!i ) $

Eui ( f i, g!i ) for any f i: Ψ ÷ Si measurable with respect to Q i, and (2) for all A d S, ΩA = {ω 0

Ω : s(ω) 0 A}) is measurable ] ΨA = μ ({ψ 0 Ψ : g(ψ) 0 A}) is measurable, and π(ΩA) =

μ (ΨA).

Theorem 5.  If (h, π) is a partitionally rational equilibrium, γ is payoff-irrelevant, and, for each i

0 ø, j … i are mutually partitionally ignorant of i’s move and i is update independent, then (h, π)

leads to a correlated distribution of actions.

If we did not assume a partitionally rational equilibrium, then the remaining assumptions in

Theorem 5 would imply that a partitionally rational equilibrium exists as long as a standard

Nash equilibrium exists for the game given by (ui)i0ø
: simply let each i play his or her Nash

action at every Pi and assign probability 1 to one of the Nash equilibria.  In terms of a converse
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to Theorem 5, it is not hard to adapt the proof of Theorem 5 to show that if (1) (Ψ, ö, μ ,

(Q i, gi)i0ø ) is a correlated equilibrium, (2) Ψ is isomorphic to the join (coursest common

refinement) of - i, i 0 ø, with bijection φ, and (3) Q i 0Q i ] there exists Pi 0- i with

φ(ψ) = Pi, then a partitionally rational equilibrium exists that leads to the same^
ψ0Qi

distribution of actions as (Ψ, ö, μ , (Q i, gi)i0ø ).

9.  Discussion

(i) The possibility that one agent a might rationally take a dominated action hinges on the

nature of some other agent b’s knowledge of a’s actions.  There is a world of difference between

a b who can make accurate or even flawless predictions of a’s actions and a b who would know

if a were to make a move that a will not in fact make.  As we have seen, the second partitional

type of knowledge can be of various strengths.  An agent b might partitionally know another

agent a’s moves, or might occasionally partitionally know a’s moves, or might simply not be

partitionally ignorant of a’s moves.  In all cases, it becomes possible for a rational agent a to

take a dominated action.

We can characterize flawless prediction, say on b’s part, by assuming that for each Pb

only those states in Pb with the same sa coordinate have nonzero probability.  So let us say that b

knows a’s move with probability 1 if and only if, for all Pb there exists A d Pb and sa 0 Sa such

that Sa(A ) = {sa} and π(A*Pb) = 1.  We interpret π as indicating objective rather than subjective

probability.

Evidently, b can know a’s move with probability 1 even when partitionally ignorant of

a’s move.  For example, if - a and - b each consists of a single cell (neither agent receives any

partitional information) and agents play in partitionally rational equilibrium, then by accuracy

π(ha (Pa)) = π(hb(Pb)) = 1.  Hence each agent knows the other agent’s move with probability 1. 

Moreover it is only a failure of partitional ignorance that can allow a to make the counterfactual

inferences that can justify the play of a dominated action, where, e.g., a can reason “if I were to

play the 0-probability action sa then I can infer that b must be selecting the 0-probability action

sb.”  Knowledge with probability 1 in contrast does not entail this type of reasoning.  Theorem 4
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accordingly reports that if agents are partitionally ignorant of others’ moves and update

independence holds, dominated actions cannot be rational.

Other players’ knowledge with probability 1 of an agent a’s move is not sufficient for a

to play a dominated action, no matter what payoffs agents have.  It is not necessary either.  In

section 5.ii, we saw a Newcomb example where d does not know c’s action with probability 1

(at each of d’s cells, both of c’s actions have positive probability).  But due to the failure of

partitional ignorance, it is rational for c to play c1.

A violation of partitional ignorance means that some agent b at some cell partitionally

knows more about another agent a’s move than a does prior to moving.  One way to eliminate

the rational play of dominated actions is therefore to impose the following rule (on top of update

independence): if a state space Ω specifies some agent a’s moves, then another agent b cannot

not have a partition over Ω that violates partitional ignorance until the point in time at which a

actually moves.  Leaving aside stories like Newcomb that are designed to scrutinize the

foundations of decision theory, it is hard to think of a decision problem where violating this rule

would be justified.

(ii) The distinction between premove and postmove knowledge clarifies what it means for a

profile of agent actions to be specified by a state.  Different choices of actions for an agent i

refine i’s premove partition in different ways, and so each i evidently has the leeway or

“freedom” to choose whatever action he likes.  Agents thus would not see their choices as

somehow fixed in advance (Aumann [3] and Aumann and Brandenburger [4] assert the same

conclusion, but as argued in section 2, their models belie their point).  Notice that i’s leeway to

choose continues to hold even when some other agent partitionally knows i’s action.

The premove-postmove distinction supplies a formalism by which agents can regard

their moves as knowable events.  With the right supplementary conditions, such as partitional

ignorance, in place no paradoxes need result (see, e.g., Gilboa [11] for the view that there is a

paradox).  An agent can regard each of his possible moves in turn as a separate event that

through updating induces distinct consequences.

(iii) Although the Newcomb paradox has served primarily to illustrate the difficulties that
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arise when states specify actions, partitional knowledge also sheds light on the substantial

literature on Newcomb.  The literature sometimes argues that different approaches to decision

theory back different conclusions about which actions are rational for c to take.  Nozick’s [15]

original presentation of the Newcomb problem argued that the “principle of dominance”

supports playing c2, while the “principle of expected utility maximization” supports playing c1. 

Gibbard and Harper [10], although c2 partisans, came to a similar judgment: “causal” utility

theory endorses c2 as rational while a Jeffrey-like utility theory can support playing c1.  By

distinguishing between probabilistic and partitional knowledge, we can formalize within the

confines of Bayesian decision theory both the view c1 is rational and the view that c2 is rational. 

As we have seen, the rationality of c1 vs. c2 then hinges on specific assumptions on information

and partitions in particular.  Playing c1 is not ruled out a priori, but depends either on d having a

highly refined information partition – indeed, so refined as to be implausible – or on c using a

skewed rule to update probabilities.

The Newcomb literature introduces a red herring when it suggests that the rationality of

c1 rests on d being a flawless predictor of c’s move.  As we have seen, d knowing c’s move with

probability 1 does not imply that c1 is a rational move.  And even when d never assigns

probability 1 to any of c’s actions it can be rational for c to play c1.  So the rationality of c1 and

d ’s complete accuracy as a predictor are separate issues.  What matters for the rationality of c1 is

the type of knowledge that d has about c’s move.

(iv) The possibility of Newcomb-style paradoxes have led some to argue for a new species of

decision analysis – causal decision theory – that classifies how an agent i’s action si causes

changes to the world; this classification in turn presupposes a metric that judges which “possible

world” is nearest to one in which si obtains (see Joyce and Gibbard [13] and the references

therein and Shin [17]).  The rule suggested in (i) above – that an agent remains partitionally

ignorant of any other agent’s move until the latter moves – also draws upon temporal and causal

information.  But that information is used only to determine partitions and the timing of their

refinement; no broader overhaul of expected utility theory or metric on states is necessary.
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Appendix: Proofs of Theorems 1, 3, 4 and 5.

Proof of Theorem 1.  For each , select an arbitrary Pa 0 - a such that Pa d  and label itP (

b P (

b

Pa( ).  Define, for each Pb 0 - b, Q(Pb) = .  By partitional continuity, for any PbP (

b ^

P (

bdPb

Pa (P (

b )

there is a function : S ÷ Γ such that (i) (s, (s)) 0 Q(Pb) for all s 0 S, and (ii) for i =γQ(Pb) γQ(Pb)

a, b, s |÷ ui (s, (s)) is continuous.  Hence, for any sb 0 Sb, ua(sa, sb,γQ(Pb) argmax sa0Sa

(sa, sb)) … i and, when seen as a correspondence of sb, has a closed and hence compactγQ(Pb)

graph.  The problem

ub(sa , sb, (sa, sb))max sa , sb
γQ(Pb)

  (1.1)
s.t.   sa 0 ua(sa, sb, (sa, sb)), sb 0 Sb.argmax sa0Sa

γQ(Pb)

therefore has a solution, which we label (sa[Pb], sb[Pb]).

For each Pb, set hb(Pb) d Pb so that

sb(hb(Pb)) = sb[Pb].   (1.2)

When Pa 0 {Pa( ):  0 }, set ha(Pa) d Pa so thatP (

b P (

b -
(

b

sa(ha(Pa)) 0 ua((sa, sb(Pa), (sa, sb(Pa)))),   (1.3)argmax sa0Sa
γQ(Pb)

where Q(Pb) e Pa, but if in addition Pa d hb(Pb) for some Pb, use the particular element of the

argmax, sa[Pb], i.e., set ha(Pa) so that

sa(ha(Pa)) = sa[Pb].   (1.4)

When Pa ó {Pa( ):  0 }, let  be the function defined on Sa × Sb(Pa) given byP (

b P (

b -
(

b γ{Pa}

partitional continuity and set ha(Pa) d Pa so that

sa(ha(Pa)) 0 ua((sa, sb(Pa), (sa, sb(Pa)))).   (1.5)argmax sa0Sa
γ{Pa}

As for the probabilities, set π((sa[Pb], sb[Pb], (sa[Pb], sb[Pb]))) = 1 for some PbγQ(Pb)

and π(ω) = 0 for all other ω 0 Ω.  When  d Pa 0 {Pa( ):  0 }, setP (

a P (

b P (

b -
(

b

π((sa( ), sb( ), (sa( ), sb( )))* ) = 1,   (1.6)P (

a P (

a γQ(Pb) P (

a P (

a P (

a

where Pb e Pa.  When  d Pa ó {Pa( ):  0 }, setP (

a P (

b P (

b -
(

b

π((sa( ), sb( ), (sa( ), sb( )))* ) = 1.   (1.7)P (

a P (

a γ{Pa} P (

a P (

a P (

a

For all , setP (

b

       π((sa(ha(Pa( )), sb( ), (sa(ha(Pa( ))), sb( )))*  1 Range ha) = 1,   (1.8)P (

b P (

b γQ(Pb) P (

b P (

b P (

b

where Pb e .  All remaining conditional probabilities may be set arbitrarily.P (

b
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To see that ha is partitionally rational, note first that, since -a  refines , if-
(

b

Pa 1 Range hb … i then, for all  d Pa,  1 Range hb = , while if Pa 1 Range hb = iP (

a P (

a P (

a

then, for all  d Pa,  1 Range hb = i.  Hence, for all ,P (

a P (

a P (

a

K( ) = .   (1.9)P (

a P (

a

So, for  d Pa 0 {Pa( ):  0 }, (1.6) and (1.9) implyP (

a P (

b P (

b -
(

b

E(ua*K( )) = ua((sa( ), sb( ), (sa( ), sb( ))))P (

a P (

a P (

a γQ(Pb) P (

a P (

a

where Pb e Pa.  Then (1.3) implies the partitional rationality of ha.  For  d Pa ó {Pa( ):P (

a P (

b

 0 }, (1.7) and (1.9) implyP (

b -
(

b

E(ua*K( )) = ua((sa( ), sb( ), (sa( ), sb( )))).P (

a P (

a P (

a γ{Pa} P (

a P (

a

Then (1.5) implies the partitional rationality of ha.

As for hb, since -a  refines , we have K( ) = 1 Range ha for all .  Hence,-
(

b P (

b P (

b P (

b

for all , (1.8) impliesP (

b

E(ub*K( )) = ub((sa(ha(Pa( ))), sb( ), (sa(ha(Pa( ))), sb( )))),P (

b P (

b P (

b γQ(Pb) P (

b P (

b

where Pb e , and so (1.1), (1.2), (1.3), and (1.4) imply the partitional rationality of ha.  �P (

b

Proof of Theorem 3.  Fix arbitrary P
Γ
 0 -

Γ
 and γ 0 P

Γ
.  Until the end of the proof, we suppress

γ from most of the notation.  For example, (sa, sb) will refer to (sa, sb, γ).  Also, fix ε > 0.

For each Pi 0 -i, i = a, b, let  denote the closure of Pi.  Let :  À P̄i fPa ,Pb
P̄a 1 P̄b P̄a 1 P̄b

denote the best-response correspondence defined by

(ω) = { 0 1 : (siN, s!i ( )) 0 Y ui ( ) $ ui ((siN, s!i ( )), i = a, b}.fP̄a , P̄b
ω̂ P̄a P̄b ω̂ P̄

&i ω̂ ω̂

Let  denote the fixed points of : ω 0  ] ω 0 (ω).  Given convexity andkP̄a , P̄b
f P̄a , P̄b

kP̄a , P̄b
f P̄a , P̄b

γ-simple continuity, and the convexity of the partition cells, Kakutani’s theorem implies that

 is nonempty.  For any (Pa, Pb) 0 (-a, -b), γ-simple continuity implies for i = a, b thatkP̄a , P̄b

ui ((si, s!i)) is a continuous function of s
!i.  Hence there exists a  0 Pa 1 Pbmaxsi0Si (P̄!i)

ωPa ,Pb

near enough to some point of  to satisfy the inequalitykP̄a , P̄b

ui ((si, s!i ( )))!ui ( ) <  (3.i)maxsi0Si (P̄!i)
ωPa ,Pb

ωPa ,Pb

ε

2
for both i = a and i = b.  For at least one (Pa, Pb), say ( , ), 1 , contains a NashP N

a P N
b P N

a P N
b

equilibrium ( , ) of the conventionally defined game where each i has the action set Si ands N
a s N

b

utility ui.  In conformity with (3.i), set  = ( , ).ωP N
a , P N

b
s N

a s N
b
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Let P
!i ( )  denote the unique cell of -

!i such that P
!i ( ) 1  … i, and let gi (Pi)P (

i P (

i P (

i

denote some d Pi such thatP̂ (

i

{ui ( )} ! ui ( ) <   and  si ( ) = si (( )).  (3.ii)supP (

i dPi
ωPi , P

&i (P
(

i ) ωPi ,P&i(P̂
(

i )
ε

2
P̂
(

i ωPi , P
&i( P̂ (

i )

If Range ga 1 Range gb … i (call this case I), then for i = a, b set hi (Pi) = gi (Pi) for all Pi.  If

Range ga 1 Range gb = i and for some i there exists some d  such that 1 Range g
!iP̃ (

i P N
i P̃ (

i

… i and ui ( ) > ui ( ) (case II), then label one such i as  and set  =ωP N
i , P

&i (P̃
(

i ) ωP N
a , P N

b
î h

&î (P
&î )

 for all ,  =  for all  …  and let ( ) equal some d g
&î (P

&î) P
&î h î (Pî ) gî (Pî ) Pî P N

î
hî P N

î
P̂ (

î
P N

î

such that

1 Range  … i,P̂ (

î
g
&î

{ ( )} ! ui ( ) < , (3.iii)supP (

î
dP N

î
:P (

î
1 Range g

&î…i
uî ωP N

î
, P

&î (P (

î
) ωP N

î
,P

&î (P̂ (

î
)

ε

2
( ) = (( )).sî P̂ (

î
sî ωP N

î
, P

&î ( P̂ (

î
)

Finally, in the remaining possibility, case III – where Range ga 1 Range gb = i and there is no

d  such that 1 Range g
!i … i and ui ( ) > ui ( ) for either i = a or i =P̃ (

i P N
i P̃ (

i ωP N
i , P

&i (P̃
(

i ) ωP N
a , P N

b

b – then, for i = a, b, set hi (Pi) = gi (Pi) for all Pi …  and set hi ( ) equal to the  d P N
i P N

i P (

i P N
i

such that si ( ) = .  Notice that in all cases Range ha 1 Range hb … i.P (

i s N
i

Let us say that  for i = a or i = b requires Nash adjustment if case II obtains, i = ,P (

i î

d , and 1Range h
!i = i; or if case III obtains, d , and 1Range h

!i = i. P (

i P N
i P (

i P (

i P N
i P (

i

Otherwise we say  does not require Nash adjustment.  When  for i = a or i = b requiresP (

i P (

i

Nash adjustment, set

π ((si ( ), )|K( )) = 1.P (

i s N
&i P (

i

When  for i = a or i = b does not require Nash adjustment, setP (

i

π ((si ( ), s
!i ( )) |K( )) = 1,P (

i ωPi , P
&i (P

(

i ) P (

i

where Pi e .  The remaining conditional probabilities can be set arbitrarily.  As for theP (

i

unconditional probabilities, set π(ωN) = 1 for some ωN 0 Range ha 1 Range hb and π(ω) = 0 for

ω … ωN.  Thus accuracy obtains.

To show that the hi satisfy the ε rationality condition in Definition 7, conditional on ω

being in the fixed P
Γ
 0 -

Γ
, we first calculate the expected utility of arbitrary  actions. P (

i

Suppose for the remainder of this paragraph that  does not require Nash adjustment.  OurP (

i
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specification of the conditional probabilities then implies

E(ui*K( )) = ui ((si ( ), s
!i ( ))),P (

i P (

i ωPi , P
&i (P

(

i )

where Pi e .  Since furthermoreP (

i

ui ((si ( ), s
!i ( ))) # ui ((si, s!i ( ))), P (

i ωPi , P
&i (P

(

i ) maxsi0Si (cl P
&i (P (

i )) ωPi , P
&i (P

(

i )

(3.i) implies

E(ui*K( )) # ui ( ) + .P (

i ωPi , P
&i (P

(

i )
ε

2
Suppose that it is not the case that simultaneously (1) case II obtains, (2) i = , (3) d ,î P (

i P N

î

and (4) 1Range h
!i … i.  Then the fact that ui ( ) # {ui ( )} andP (

i ωPi , P
&i (P

(

i ) sup P̃ (

i dPi
ωPi , P

&i (P̃
(

i )

(3.ii) imply

ui ( ) < ui ( ) + . (3.iv)ωPi , P
&i (P

(

i ) ωPi , P
&i(hi (Pi ))

ε

2
(In case III and Pi = , (3.iv) follows from the fact that ( , ) is a Nash equilibrium of theP N

i s N
a s N

b

conventionally defined game with action set Si and utility ui.)  When (1) through (4) do obtain,

the fact that

ui ( ) # {ui ( )}ωPi , P
&i (P

(

i ) sup
7P (

i dP N
i : 7P (

i 1 Range g
&i…i

ωP N
i , P

&i ( 7P (

i )

and (3.iii) imply that (3.iv) still holds.  Hence, whenever  does not require Nash adjustment,P (

i

E(ui*K( )) < ui ( ) + ε.  (3.v)P (

i ωPi , P
&i(hi (Pi ))

When  requires Nash adjustment, then, given our specification of the conditionalP (

i

probabilities,

E(ui*K( )) = ui ((si ( ), )),P (

i P (

i s N
&i

and, since the Nash action  is utility maximizing against ,s N
i s N

&i

E(ui*K( )) # ui (( , )) = ui ( ).P (

i s N
i s N

&i ωP N
a , P N

b

Hence,

E(ui*K( )) < ui ( ) + ε. (3.vi)P (

i ωP N
a , P N

b

To conclude the demonstration of ε rationality, we calculate the expected utility of the

hi (Pi) actions and compare them to the expected utilities of the arbitrary  actions.  WhenP (

i

case I obtains, or when case II obtains but Pi … , or when case III obtains and Pi …  forP N

î
P N

i

either i = a or i = b, then

E(ui*K(hi (Pi))) = ui ( )           (3.vii)ωPi , P
&i(hi (Pi ))



33

and so (3.v) establishes the ε rationality of hi.  When case II obtains and Pi = , we again haveP N

î

(3.vii), and if additionally d  does not require Nash adjustment, then (3.v) againP (

i P N
i

establishes the ε rationality of hi.  When d  does require Nash adjustment, (3.vi) and theP (

i P N
i

fact that ui ( ) > ui ( ) (see the definition of case II) establish the ε rationalityωP N
i ,P

&i(hi(P N
i )) ωP N

a , P N
b

of hi.  When finally case III obtains, then, for either i = a or i = b,

E(ui*K(hi ( ))) = ui ( ).           (3.viii)P N
i ωP N

a , P N
b

Hence, if d  requires Nash adjustment, (3.vi) and (3.viii) establish the ε rationality of hi. P (

i P N
i

If d  does not require Nash adjustment, then 1 Range h
!i … i and hence ui ( )P (

i P N
i P (

i ωP N
a , P N

b

$ ui ( ) (see the definition of case III).  So ui ( ) $ ui ((si ( ),ωP N
i , P

&i (P
(
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&i (P
(

i ) P (

i

s
!i ( ))) = E(ui*K( )) implies the ε rationality of hi.ωPi , P

&i (P
(

i ) P (

i

So far we have fixed P
Γ
 and γ 0 P

Γ
.  For any P

Γ
N … P

Γ
, again select an arbitrary γN 0

P
Γ
N, define the gi as before, and set hi (Pi) = gi (Pi) for each Pi, i = a, b, implying that the hi are ε

rational on the entirety of their domain.  �

Proof of Theorem 4.  For any , let  be the partition of K( ) with typical element P (

i -P (

i
P (

i

 defined, for all s
!i, byPP (
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(s

&i )

ω 0  ] (s
!i = s
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Suppose Range¬ i h … i.  Given some s
! i, consider an arbitrary  such that s

! i =P (

i _ P (

&i

s
! i ( ) and ( ) ( Range¬ i h) … i.  Then d Range hj, j … i, and of course_
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j

( )  … i.  For  d Pi, where Pi e , the mutual partitional ignorance of i’s_
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i P (

i N P (

i

move implies ( )… i and so ( ) ( Range¬ i h) … i.  Hence i’s updateP (
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j _
j… i

P (
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i N _

independence implies π( | Range¬ i h) = π( | Range¬ i h) and therefore_
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π(s
!i|K( )) = π(s
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i

Now suppose 1 Range¬ i h = i.  Given some s
! i, let  satisfy s

!i  = s
!i andP (

i P (

&i (_
j… i

P (

j )

… i.  For  d Pi, the mutual partitional ignorance of i’s move impliesP (
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 … i.  Since Range¬ i h = i, mutual partitional ignorance also impliesP (
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j… i
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Range¬ i h = i.  Hence K( ) =  and K( ) = .  Update independence thereforeP (
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again implies (4.1).
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Thus for any  d PiP (

i N

 E(ui |K( )) = E(ui | (s
!i))dπ(s

!i |K( )).   (4.2)P (

i N mS
&i

PP (

i N
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If hi plays a dominated action, there exist Pi 0 - i and d Pi such that, for each s
!i,P (

i N

ui ((siN, s!i, γN)) > ui ((si, s!i, γ)) whenever (siN, s!i, γN) 0  and (si, s!i, γ) 0 hi (Pi).  Hence,P (

i N

for each s
!i, E(ui | ) > E(ui | ) and so (4.2) implies E(ui |K( )) >PP (

i N
(s

&i ) Phi (Pi )
(s

&i ) P (

i N

E(ui |K(hi (Pi))), violating partitional rationality.  �

Proof of Theorem 5.  Let Ψ be isomorphic to the join of - i, i 0 ø, denoted - i, withº
i0ø

accompanying bijection φ: Ψ ÷ - i.  Define ö by A 0ö if and only if φ(A) is a measurableº
i0ø

subset of Ω, and Q i by Q i 0Q i if and only if there exists Pi 0- i such that φ(ψ) = Pi.  Let^
ψ0Qi

Q i (ψ) denote the Qi 0 Q i such that ψ 0 Q i.  Set g i (ψ) = si (hi ( φ(ψN))) for all ψ 0 Ψ,^
ψN0Qi (ψ )

and μ (A) = π(φ(A)) for all A 0 ö.  Then (2) of Definition 13 obtains.

To show that (1) of Definition 13 obtains, we first observe that, for all , K( ) =P (

i P (

i

Range¬ i h.  Without loss of generality set i = 1.  Given some , let  be such thatP (

i _ P (

1 P (

&1
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j
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As in the proof of Theorem 4, partitional ignorance and update independence imply

π( | Range¬ i h) = π( | Range¬ i h)_
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j P (

i N _ _
j… i
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for all d Pi and in particular for  = hi (Pi).  SoP (

i N P (

i N
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Therefore, for any Pi and d Pi,P (

i

ui (si (hi (Pi )), s!i (h
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Taking expectations over {hi (Pi): Pi 0 - i} yields
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ui (si (hi (Pi )), s!i (h
!i (P

!i )))dπ(hi (Pi ) 1 h
! i (P

! i )) $m{hi (Pi )1h
&i (P&i):Pi0-i ,P&i0-&i}

ui (si ( ), s
!i (h

!i (P
!i )))dπ(hi (Pi ) 1 h
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Since accuracy implies that π(hi (Pi ) 1 h
!i (P

! i): Pi 0 - i, P! i 0 -
! i) = 1, we conclude that

Eui (g i, g!i ) $ Eui ( f i, g!i ) for any f i measurable with respect to Q i.  �
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