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1 Introduction

In their seminal paper, Bernheim (1984) and Pearce (1984) proposed the solution

concept of rationalizability as the logical implication of common knowledge of

Bayesian rationality (see also Tan and Werlang (1988)). In strategic games, the

concept of rationalizability can be defined in terms of a best-response (product)

set of strategies, which reflects the idea that “rational” behavior should be jus-

tified by “rational” beliefs and conversely, “rational” beliefs should be based on

“rational” behavior. In finite games, the set of rationalizable strategies can be

derived from iterative deletion of never best response strategies (see Bernheim’s

(1984) Proposition 3.1 and Pearce’s (1984) Proposition 2) and, if moreover cor-

related beliefs are permitted, it is equivalent to iterated (strict) dominance. The

concept of rationalizability aims to be weak: it determines not what actions should

actually be taken, but what actions could be ruled out with confidence.

However, the concept of rationalizability does not take into account the in-

triguing and important possibility that groups or coalitions of players would be

willing to coordinate their moves, in order to achieve mutual beneficial outcomes.

For example, in the following coordination game:

a b
a 2,2 0,0
b 0,0 1,1

,

it is pretty clear that two players can coordinate their actions to achieve the best

payoffs (2,2). To capture these important aspects of collective strategic behavior,

Ambrus (2006) first offered a solution concept of “coalitional rationalizability”

(henceforth, c-rationalizability) by using an iterative procedure of restrictions, in

which members of a coalition will confine play to a subset of their strategies if it

is in their mutual interest to do so. In this coordination game c-rationalizability

predicts the unique payoff-dominant outcome (a,a); in particular, it excludes the

strict Nash equilibrium (b,b).
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The main purpose of this paper is to further study the logical implication
of common knowledge of the fact that every player is Bayesian rational and also
aware of arrangements of strategies within conceivable coalitions. We extend Am-
brus’s (2006) notion of c-rationalizability to situations where, in pursuit of mutual
beneficial interests, players in groups (i) make use of Bayes rule in expectation
calculations and (ii) contemplate various deviations — i.e. the validity of deviation
is checked not only against restricted subsets of strategies, but also against arbi-
trary sets of strategies. That is, this paper is motivated mainly by the following
two considerations: First, in the standard view a Bayesian player should update,
using Bayes rule, his/her subjective prior beliefs on conditional events. In other
words, a rational player who conforms to Savage’s (1954) axioms must update
his/her prior beliefs according to Bayes rule.1 Thus, when players consider im-
plicit agreements to confine their collective actions within a set of strategies, each
player should make Bayesian updating of the initial priors and calculate his/her
resulting expected payoffs of making the implicit agreements. In this paper, we
offer an alternative notion of c-rationalizability (Definition 1) to accommodate
the effect of Bayesian updating.2

1The decision-theoretic foundation of this rule is laid by the axiomatization of Savage (1954);
see, e.g., Kreps (1988, Chapter 10) and Myerson (1991, Section 1.4). See also Epstein and
LeBreton (1993) for more extensive discussions and Ghirardato (2002) for a recent formalization
of Bayesian updating.

2Ambrus (2006) did not consider Bayesian updating, and he required the marginal distribu-
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Second, on a conceptual level, Ambrus’s (2006) analysis does not go far enough
to account for all the aspects of collective and coalitional “stability;” Ambrus’s
notion of c-rationalizability requires the validity of deviation check only against
restricted subsets of strategies when players in groups contemplate deviations
— i.e. a valid deviation is a deviation from a product set of strategies to its
subset. However, there seems no reason to suppose that coalitional deviations are
restricted only to subsets of strategies. In fact, members of deviating coalitions
may in general confine, enlarge, or even revise and rearrange play to any arbitrary
set of their strategies if doing so is in their mutual interest, and the validity of
deviation should go further to check against completely free and unrestrained
any sets of strategies.3 For example, in the aforementioned coordination game,
the superior coordination outcome (a,a) is coalitionally stable, but the inferior
coordination outcome (b,b) cannot be regarded as a coalitionally stable one (since
players can improve their payoffs by jointly moving to (a,a)). The alternative
notion of c-rationalizability is proposed here to accommodate the presence of
very universal coalition deviations.4

In order to easily understand our analysis in this paper, we follow closely
Pearce’s (1984) and Bernheim’s (1984) approach to conventional rationalizability
and carry out a ceteris paribus study of the coalitional version of rationalizabil-
ity. All the major features and nice properties of the conventional rationaliz-
ability, as a special case of c-rationalizability with the restriction to singleton
coalitions only, are essentially preserved. More specifically, we define the notion
of c-rationalizability by the “c-rationalizable set (CRS),” which can be viewed
as the counterpart of the “best-response set” in the notion of conventional ratio-
nalizability (see Definition 1). The central result of this paper is to show that
there is a (nonempty) largest CRS (Theorem 1). Moreover, the largest CRS can
be derived from an iterative procedure of restrictions to c-best response strate-
gies (Proposition 1); any Pareto-dominant pure Nash equilibrium and, hence, any

tion on the strategies of players outside the coalition to be fixed (see also Footnote 8).
3Based on a similar consideration, Kahn and Mookherjee (1994) proposed ‘universal

coalition-proof equilibrium’ to accommodate more general coalition formation in Bernheim et
al.’s (1987) ‘coalition-proof equilibrium’. Unfortunately, the notion of ‘universal coalition-proof
equilibrium’ may fail to exist; see Section 5(1) for more discussion.

4Ambrus’s original notion of c-rationalizability cannot be extended to the case of universal
coalition deviations; see Section 4(1).
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strong pure Nash equilibrium are c-rationalizable (Proposition 2). We next formu-
late the coalitional version of iterated strict dominance (Definition 2), and show
it is equivalent to the notion of c-rationalizability (Theorem 2). We also provide
its epistemic foundation (Theorem 3).
The rest of this paper is organized as follows. Section 2 contains some prelim-

inaries. Section 3 offers the definition of c-rationalizability. Subsection 3.1 inves-
tigates the existence of c-rationalizability; Subsection 3.2 formulates the notion
of “c-dominance” and shows an equivalence theorem; Subsection 3.3 provides an
epistemic characterization of c-rationalizability. Section 4 is concluding remarks.
To facilitate reading, all the proofs are relegated to Appendix. Throughout this
paper, we restrict our attention to pure strategies and, moreover, players are
allowed to hold correlated beliefs about the strategies of their opponents.5

2 Preliminaries

Let ∆ denote the space of the probability distributions on a finite space S of
states.6 For μ ∈ ∆, let μ (A) denote the probability of an arbitrary subset A of
states under the distribution μ and, if μ (A) 6= 0, let μ|A denote the probability
distribution conditional on A. (We decree that μ|∅ ≡ μ.) We denote the space of
probability distributions conditional on A by

∆|A ≡ {μ ∈ ∆| μ(A) = 1} .

Let ∆0 ≡ {μ ∈ ∆| μ(s) > 0 ∀s ∈ S}.
Let μn AÃ μ denote “μn → μ in ∆|A with μn ∈ ∆0” — i.e., a “trembling”

sequence {μn} of full-support distributions on S converges to distribution μ in
∆|A. For an arbitrary subset B of states, let μ|B ≡ limn→∞ μn|B if μ (B) = 0.
That is, μ| is a “conditional probability system (CPS)”; see Myerson (1986, 1991).
Clearly, if μ (B) 6= 0, μ|B = limn→∞ μn|B for all sequence μn

AÃ μ. If μ (B) = 0,
μ|B could be an arbitrary conditional probability distribution in ∆|B, depending
upon the chosen “trembling” sequence (Lemma 1 in Appendix).

5See Aumann (1974, 1987) for extensive discussions on subjectivity and correlation.
6∆ is endowed with the weak* topology, and may be regarded as a simplex in a Euclidean

space of dimension |S|.
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3 Coalitional rationalizability

Consider a finite game: G ≡ (I, {Si}i∈I , {ui}i∈I), where I is a nonempty finite set
of players, Si is a nonempty finite set of i’s strategies, and ui : S ≡ ×i∈ISi → <
is i’s payoff function. For (nonempty) coalition J ⊆ I, let SJ ≡ ×j∈JSj, let
S−J ≡ ×i/∈JSi, and let S−j ≡ ×i6=jSi.
Let A andB be subsets of S in product-form. Say a coalition JAB is a “feasible

coalition from A to B” if B = BJAB ×A−JAB — i.e. JAB can be interpreted as a
coalition by which set A can be rearranged to set B. Clearly, the coalition JAB

must include a player j with Aj 6= Bj. Note that B is not necessarily a subset of
A.

Definition 1. A nonempty product subset R ⊆ S is a coalitional rationalizable
set (CRS) if R V R0 only for R0 = R, where R V R0 (via JRR0) is defined as:
∀j ∈ JRR0

(1.1) ∀rj ∈ Rj, uj(rj, μ) < uj(sj, μ|R0−j ) for some sj ∈ Sj, where μn|R0−j →

μ|
R0−j

(6= μ if rj ∈ R0
j) as μ

n R−jÃ μ, and

(1.2) ∀r0j ∈ R0
j\Rj, uj(r0j, μ|R0−j ) ≥ uj(sj, μ|R0−j ) for all sj ∈ Sj, for some μn|R0−j →

μ|
R0−j

as μn
R−jÃ μ.

In particular, rj ∈ Rj is said to be a c-rationalizable strategy.

R/R’ R’/RR∩R’

Figure 1. A typical relationship between R and R0.

In Definition 1 uj(rj, μ) is j’s expected payoff from using rj given his prior
belief μ, and uj(sj, μ|R0−j ) is j’s expected payoff from using sj under his posterior
belief μ|

R0−j
after moving from R to R0 via coalition JRR0. Conditions (1.1-2) say
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that: every player j in coalition JRR0, whatever prior belief j may hold, can always
obtain, by using Bayes rule, a strictly higher expected payoff uj(sj, μ|R0−j ) if the
‘credible’ move from R to R0 is made. For example, in the Prisoner’s Dilemma
game, the noncooperative Nash outcome is the unique CRS because the Pareto-
optimal cooperative outcome is not “credible.” (Technically, the mild ‘credible’
condition (1.2) purports to overcome the notorious problem of emptiness, typified
by Condorcet’s paradox, under the ‘core-like’ blocking arrangements.)7

Remark 1. It is easy to see that a CRS R necessarily satisfies both the “best
response” and “closed under rational behavior” properties (see Basu and Weibull
1991), i.e. Ri = BR (R−i) ∀i, where

BR (R−i) ≡ {si ∈ Si| ∃μ ∈ ∆|R−i s.t. ui(si, μ) ≥ ui(s
0
i, μ)∀s0i ∈ Si}.

Definition 1, with the restriction of |JRR0| = 1, is essentially the correlated version
of rationalizability (cf. Luo 2001, Section 4.1); every c-rationalizable strategy is
rationalizable. It is also straightforward to verify that there is a Nash equilibrium
with the support in R.

Remark 2. We follow Selten’s (1975) idea of “trembling-hand” to offer a way of
updating beliefs in contingencies with zero prior probability in complex coalitional
interactions. To see how Bayes rule plays a role, consider a two-person game:

a b c
a 3, 0 0, 3 0, 2
b 0, 3 3, 0 0, 0
c 2, 0 0, 0 1, 1

.

In this game, S V {a, b} × {a, b} via coalition {1, 2}. Intuitively, if each player
assigns a prior probability of less than 0.5 to a of the opponent and hence the
player could achieve an expected payoff of less than 1.5 by using c, then it is
beneficial for the two players to move to {a, b}×{a, b} because each can guarantee

7Definition 1(1.2) requires coalitional deviations be immune to further individual deviations.
This requirement is also in the same spirit as Milgrom and Roberts’s ‘strongly coalition proof
equilibria’ and Kaplan’s ‘semistrong equilibria’ (see Milgrom and Roberts 1996, p.115). Cf. also
Roth’s (1976) ‘protected’ condition.
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a higher expected payoff of 1.5; and if each player assigns a prior probability of
more than or equal to 0.5 to a, then it is also beneficial for the two players to
move to {a, b}×{a, b} because each can achieve a higher expected payoff by using
a instead of c. (Without using Bayes rule, the player could achieve an expected
payoff of 2 by using c, higher than that by using a or b after the deviation. In
this game, every strategy is c-rationalizable in Ambrus’s (2006) sense.)8

3.1 Existence

The central result in this paper is that there is a largest (w.r.t. set inclusion)
CRS:

R∗ ≡
[

R is a CRS

R

that consists of the union of all CRSs. Formally, we have

Theorem 1. R∗ is a largest CRS.

The proof of Theorem 1 in Appendix shows that the set of c-rationalizable
strategies can be derived from an iterative procedure of restrictions to c-best
response strategies. Moreover, every such procedure leads to the same outcome.
Let “A ⇒ B (via JAB)” denote “A V B (via JAB) with B ⊆ A.” Note that
A⇒ A. Formally, we have9

Proposition 1. R∗ = D where D ≡
∞\
k=0

Dk with D0 = S, Dk ⇒ Dk+1, and

D⇒ D0 only for D0 = D.
8Ambrus’s (2006) notion of c-rationalizability requires that the marginal expectation con-

cerning the strategies of players outside the coalition be fixed. In interpreting the ‘fixed marginal’
requirement for correlated beliefs, players should believe as if the opponents play the strategies
recommended by a mediator in conformity with a prior distribution; see, e.g., Milgrom and
Roberts (1996, Remark on p.118). This sort of updating beliefs is however different from the
Bayesian updating rule commonly used in economics. (Ambrus (2006) implicitly used Bayes
rule in a situation where an eliminated strategy is not a best response to a belief over the
underlying supported restriction.)

9See Dufwenberg and Stegeman (2002), Chen et al. (2005), and Apt (2005) for the similar
formulation of iterative procedures.
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As individual rationality can be considered a special case of c-rationality with
respect to a minimal coalition, in general we would not expect c-rationalizable
outcomes to be Pareto efficient. For example, in the Prisoner’s Dilemma game,
the “noncooperation” action remains only the c-rationalizable strategy. Given
that c-rationalizability is built on the idea that players try to attain common as-
pirations, we can, however, establish some relationships to Pareto efficient (Nash)
outcomes. Let G0=(I, {S0i} , {ui}) denote the reduced game after iterated elimi-
nation of strictly dominated strategies. Formally, we have

Proposition 2. (2.1) Any Pareto-dominant equilibrium is c-rationalizable. More-
over, any strong Nash equilibrium is c-rationalizable. (2.2) Any Pareto-best strat-
egy profile is a c-rationalizable strategy profile; any strong Pareto-best strategy
profile is a unique c-rationalizable strategy profile. Moreover, if there is a (strong)
Pareto-best strategy profile s∗J for a coalition J in the reduced game G0 — i.e., for
all j ∈ J, (uj

¡
s∗J , s

0
−J
¢
> uj (s) ∀s, s0 ∈ S0 with s∗J 6= sJ) uj (s∗J , s−J) ≥ uj (s)

∀s ∈ S0, then s∗j is a (unique) c-rationalizable strategy for player j. (2.3) In
a common interest game where there is a strategy profile which strictly Pareto-
dominates all other strategy profiles, the Pareto-best Nash equilibrium is a unique
c-rationalizable strategy profile. (2.4) In the class of games with strategic com-
plementarities where the players’ payoffs are all monotonic functions of the op-
ponents’ strategies as defined in Milgrom and Roberts (1996, p.124), there is a
c-rationalizable Pareto-best Nash equilibrium s∗ in G0 and if, moreover, s∗ is a
strict Nash equilibrium and each player’s payoffs are strict monotonic functions
of the opponents’ strategies at s∗, then s∗ is a unique c-rationalizable strategy
profile.

Proposition 2 is simple but useful in the study of c-rationalizable behavior.
Since the Nash equilibrium concept does not take into account coalitional ra-
tionality, a Nash equilibrium may fail to be c-rationalizable. Proposition 2(2.1)
asserts that Pareto-dominant and strong Nash equilibria must be c-rationalizable.
In the class of common interest games, the unique c-rationalizable strategy pro-
file is the Pareto-best strong Nash equilibrium even though there are other strict
Nash equilibria. We would also like to point out that Ambrus’s (2006) motivating
example of “Voting with Costly Participation” can be easily analyzed from the
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perspective of Proposition 2(2.2).10 Indeed, any Pareto-best element in the set of
strategies surviving iterated deletion of dominated strategies is a c-rationalizable
strategy profile and, moreover, it is a coalition-proof equilibrium for any admissi-
ble coalition communication structure; see Milgrom and Roberts (1996, Theorem
1).
As pointed out by Milgrom and Roberts (1990), many games of economic

interest, e.g., the Bertrand pricing game and the macroeconomic coordination
games, belong to the class of games with strategic complementarities in Proposi-
tion 2(2.3); see also Vives (2005). While there is a wide range of Nash equilibria
and rationalizable strategies in this class of games, the notion of c-rationalizability
can provide a unique prediction, which is particularly interesting for games with
no strong Nash equilibrium. The same is true for games with a unique Nash
equilibrium because the games are indeed dominance solvable; see Milgrom and
Roberts (1990, Theorem 6). To illustrate Proposition 2(2.3), consider the follow-
ing parametric game where θ ∈ [1, 2]:

a b
a 2,2 0,θ
b θ,0 1,1

.

It is easy to verify that this game with any lattice structure on strategies is a
game with strategic complementarities in Proposition 2. The Pareto-best Nash
equilibrium (a, a) is a unique c-rationalizable strategy profile if θ < 2. (Every
strategy is c-rationalizable when θ = 2. In this case, (a, a) is not a strict Nash
equilibrium.)

Remark 3. Throughout this paper, we restrict our attention to pure strategies.
As far as mixed strategies are concerned, a Pareto-dominant Nash equilibrium
may fail to be c-rationalizable. Consider a three-person game (where players 1,
2, and 3 pick the row, column, and matrix, respectively):

10In that example it is a strictly dominated strategy for voter 3 to show up and vote for
alternative A. Thus, it is c-rationalizable only for voters 1 and 2 to show up and vote for
alternative A and, then, voter 3 would choose to stay at home. Indeed, for Ambrus’ notion of
c-rationalizability, the ‘uniqueness’ condition in Corollary 2(2.2) can be relaxed as follows: for
all j ∈ J , uj (s∗J , s−J) > uj (s) ∀s ∈ S0 with s∗J 6= sJ .
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a b c
a 6, 6, 0 2, 0, 0 0, 5, 6
b 0, 2, 0 0, 0, 0 0, 0, 0
c 5, 0, 6 0, 0, 0 1, 1, 0

a

a b c
a 2, 2, 2 2, 2, 2 0, 0, 0
b 2, 2, 2 2, 2, 2 0, 0, 0
c 0, 0, 0 0, 0, 0 0, 0, 0

b

In this game, it easy to verify that the largest CRS is {a, b}×{a, b}×{b} in which
each player gets a constant payoff of 2. The profile (0.5a+ 0.5c, 0.5a+ 0.5c, a) is
a Pareto-dominant mixed Nash equilibrium with an expected payoff of 3 for each
player; in particular, player 3’s strategy a is not c-rationalizable.

3.2 Iterated c-dominance

The iterative procedure in Proposition 1 requires that, whatever prior beliefs are
held, players in a coalition exclude “inferior” strategies from their considerations if
it is in their mutual interest to do so. This procedure, however, needs complicated
calculations of expected utility. To the extent that players are concerned about
their decisions, it is convenient to have a similar notion of (strict) dominance under
the consideration of strategy arrangements within coalitions.11 We here formulate
the belief-free notion of “c-dominance” and show an equivalence theorem between
iterated c-dominance and c-rationalizablity.

Definition 2. A subset B ⊆ A is a c-dominated restriction from A, denoted by
A ⇓ B (via JAB), if ∀j ∈ JAB, ∀aj ∈ Aj, ∀cj ∈ Aj\Bj, ∀b−j ∈ B−j, ∀c−j ∈
A−j\B−j,

(2.1) uj(cj, b−j) < uj(σj, b−j) for some σj ∈ ∆ (Sj), and

(2.2) uj(aj, c−j) < uj(σj, b−j) for some σj ∈ ∆ (Sj),

where uj(σj, b−j) ≡
P

sj∈Sj σj (sj) uj(sj , b−j).

11With no coalition considerations, it is well known that a strategy is a never best response to
any correlated conjecture concerning the opponents’ moves if, and only if, it is strictly dominated
possibly by a mixed strategy; see, e.g. Pearce (1984, Proposition 2). See also Shimoji and
Watson’s (1998) and Shimoji’s (2004) related work on extensive-form rationalizability.
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In words, from coalition member j’s point of view, c-dominated strategy cj ∈
Aj\Bj is strictly dominated given set B in the usual sense. Furthermore, given
any −j’s c-dominated profile c−j ∈ A−j\B−j, j can always do better if coalition
members jointly move from A to B, regardless of whatever b−j ∈ B−j will be
eventually used (cf. Figure 2).

b-j c-j
aj uj(aj, b−j) uj(aj, c−j)
cj uj(cj, b−j) uj(cj, c−j)

Figure 2: The problem faced by j.

The following Theorem 2 shows that the set of c-rationalizable strategies can
be derived from an iterative elimination of c-dominated strategies. Moreover, the
order of elimination does not matter. Formally, we have

Theorem 2. R∗ = bD where bD ≡ ∞\
k=0

bDk with bD0 = S, bDk ⇓ bDk+1, and bD ⇓ bD0
only for bD0 = bD.
It is usually helpful to analyze the complex games by using the notion of

(iterated) c-dominance. For example, the set of c-rationalizable strategies in
Ambrus’s (2006) example of “Dollar Division Game with External Reward” can be
easily derived by applying one round of elimination of all c-dominated strategies.
Let us reconsider the game in Remark 2:

a b c
a 3, 0 0, 3 0, 2
b 0, 3 3, 0 0, 0
c 2, 0 0, 0 1, 1

.

In this game, S ⇓ {a, b}×{a, b} via coalition {1, 2}. Intuitively, under restriction
{a, b}×{a, b}, (i) a strictly dominates c (that is ruled out by the restriction); (ii)
0.5a + 0.5b can guarantee an expected payoff of 1.5 that is higher than the best
payoff of 1 resulting from the opponent’s c (that is ruled out by the restriction).
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3.3 Epistemic foundation

We now turn to exploring the epistemic foundation for our notion of c-rationalizablity.
We offer sufficient/necessary epistemic conditions for the notion of c-rationalizablity,
in terms of common knowledge of “c-rationality.”
Consider a standard Aumann’s semantic model of knowledge for game G

M (G) ≡ (Ω, {Pi (.)} , {si (.)}) ,

where Ω is the set of states with typical element ω ∈ Ω, Pi(ω) ⊆ Ω is player i’s
information structure at ω, and si(ω) ∈ Xi is i’s strategy at ω (cf. Osborne and
Rubinstein 1994, Chapter 5).
ForA ⊆ S letΩA ≡ {ω ∈ Ω| s (ω) ∈ A}. Let buj(ν|B−j ) ≡ maxsj∈Sj uj(sj, ν|B−j ).

Let J ∗AB denote a “credible” coalition from A to B, i.e., J ∗AB is JAB with the prop-
erty that ∀bj ∈ Bj\Aj, uj(bj, μ|B−j ) ≥ uj(sj, μ|B−j ) ∀sj ∈ Sj, for some μn|B−j →

μ|
B−j

as μn
A−jÃ μ. Let E J ⊆ E denote a self-evident event in E among the

players in coalition J, i.e., E ⊆ Kj E ⊆ E ∀j ∈ J . Let E ≡ E I denote a
self-evident event in E (among all the players).
Say i is c-rational at ω if, whenever i ∈ J ∗AB and ω ∈ ΩA J ∗AB

such that ∀j ∈
J ∗AB\ {i}, ∀ω0 ∈ Pi (ω), uj(sj (ω0) , ν) < buj(ν|B−j ) for all CPS (i.e. conditional
probability system) ν| with ν|

A−j
= ν in ∆|s−j(Pj(ω0)) (and ν|

B−j
6= ν if sj (ω0) ∈

Bj), for si (ω) /∈ Bi there is a CPS μ| with μ|
A−i

= μ in ∆|s−i(Pi(ω)) such that

ui (si (ω) , μ) ≥ ui
³
si, μ|B−i

´
for all si ∈ Si.

LetRi ≡ {ω ∈ Ω| i is c-rational at ω}, and letR ≡ ∩i∈N Ri. Note that, if |J ∗AB| =
1, “c-rationality” is the (individual) rationality. The following theorem shows
that c-rationalizablity can be regarded as the logical consequence of common
knowledge of c-rationality. Formally, we have

Theorem 3. (3.1) For all ω ∈ R , si (ω) is a c-rationalizable strategy. (3.2)
For every c-rationalizable strategy ri, there is a model of knowledge such that
ri = si (ω) for ω ∈ R .

Remark 4. Our semantic framework does not require explicit specification of play-
ers’ beliefs at an epistemic state; see, for example, Aumann (1995) and Lipman
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(1994). We may, however, consider a set of CPS associated with a state. Ahn
(2006) provided such a construction of universal type space where players are
allowed to have a compact set of beliefs or CPS.

4 Concluding remarks

In many real life situations, groups of individuals often have an incentive to choose,
voluntarily and without binding agreement, to coordinate their action choices and
make joint decisions in noncooperative environments. Ambrus (2006) took the
first step to offer a solution concept of c-rationalizability for situations in which
coalitions can plan profitable deviations from an initial proposal to subsets of
strategies by using no Bayesian updating. Following this line of research, we have
proposed in this paper an alternative notion of c-rationalizability that applies to
situations where, in seeking mutual beneficial interests, members in groups (i)
make use of Bayes rule in expectation calculations and (ii) contemplate various
deviations — i.e. the validity of deviation is checked not only against restricted
subsets of strategies, but also against arbitrary sets of strategies.
We have shown that c-rationalizability is a well-defined solution concept that

identifies consequences of common knowledge of coalitional rationality and, more-
over, possesses similar nice properties of the conventional rationalizability. We
have shown that the set of c-rationalizable strategies can be fully characterized
by the largest CRS, which can derived from any iterative procedure of restric-
tions to c-best response strategies. We have formulated the coalitional version
of dominance and, then, shown that the set of c-rationalizable strategies can be
solved by performing any iterative deletion procedure of c-dominated strategies.
Thus, we have offered a coalitional analogue to the connection between conven-
tional rationalizability and iterated strict dominance, which is valuable on both
practical and conceptual levels. Within the standard semantic framework, we
have also provided an epistemic characterization of c-rationalizability in terms
of common knowledge of coalitional rationality. As a consequence, our notion of
c-rationalizability can be viewed as a natural extension of rationalizability a la
Bernheim (1984) and Pearce (1984).
We would like to make some final remarks and conclusions:
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1. Various coalitional equilibrium concepts in the literature, e.g. Aumann’s (1959)
strong Nash equilibrium, Bernheim et al.’s (1987) coalition-proof Nash equilib-
rium, and Ray and Vohra’s (1997, 1999) equilibrium binding agreements, often
fail to exist in a natural class of games. Yet, while Ambrus (2006) suggested a
well-defined coalitional solution concept, his solution concept fails to be immune
against being blocked by coalitions using more complex strategy arrangements.
For example, consider Ambrus’s (2006, Figure III) example of a three-person
game:

a b
a 2, 2, 2 0, 0, 0
b 0, 0, 0 3, 3, 0

a

a b
a 0, 0, 0 0, 0, 0
b 0, 0, 0 1, 1, 1

b

.

Ambrus’s notion of c-rationalizability prescribes the outcome (1, 1, 1) which can,
however, be improved on by the appealing Pareto-dominant Nash equilibrium
outcome (2, 2, 2). In contrast, our notion of c-rationalizability is a logically
consistent solution concept that accommodates very complex coalitional rea-
soning. Each player always has a pure c-rationalizable strategy in our sense;
in particular, any Pareto-dominant Nash equilibrium must be c-rationalizable
(Proposition 2(2.2)).

It is also worthwhile to mention that Definition 1(1.1) requires that any devi-
ating coalition member j who uses an unaffected strategy rj in Rj ∩ R0

j can
obtain a strictly higher expected payoff after the deviation takes place, whereas
j’s posterior belief μ|

R0−j
is changed. The following three-person game shows

that this requirement is necessary.

a b c
a 2, 2, 1 1, 1, 0 0, 0, 0
b 0, 0, 0 0, 0, 0 0, 0, 0

a

a b c
a 1, 5, 0 1, 0, 2 0, 4, 2
b 0, 0, 0 0, 5, 2 0, 1, 2

b

.

If the requirement were not in place, then there would be a logical inconsistency
— i.e. there would be no ‘c-rationalizable’ strategy in this case. The major
problem is that the grand coalition could deviate from {(a, a,a)} to {a, b} ×
{b, c}× {b}. Clearly, this sort of deviation is not sensible because player 1 has
no interest in committing to the deviation.
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2. Proposition 1 shows that the set of c-rationalizable strategies can be derived
from any iterative procedure of restrictions to c-best response strategies. This
paper thereby provides an additional rationale for defining a coalitional version
of rationalizability directly by an iterative procedure of restrictions as in Am-
brus (2006). Ambrus (2005) observed that there are other possible definitions
to his formulation of ‘supported restriction’ and thus studied a general notion
of γ-rationalizability by a class of sensible best response correspondences which
satisfy four properties. It is easy to verify that our iterative procedures of re-
strictions satisfy the “closed under rational behavior” and “Pareto optimality”
properties (i.e. Properties (i) and (iv) in Ambrus’s (2005) definition of a sensi-
ble best response correspondence), but the iterative procedures may violate the
“individual rationality” and “monotonicity” properties (i.e. Properties (ii) and
(iii) in Ambrus’s (2005) definition of a sensible best response correspondence).
The main reason for these violations is that our iterative procedures are flexible
to allow one coalition at a time, but not all coalitions simultaneously, to elimi-
nate never c-best response strategies at each stage of an iteration. We believe
that this flexibility is of relevance to practical use of c-rationalizability.

3. To analyze collective behavior in social interactions, the notion of c-rationalizablity
in this paper is motivated and developed by using the ‘core’ idea that no group
of players who, by rearranging and replotting their strategies, can each expect a
higher payoff than that the player can expect to obtain from the original prepa-
rations of strategies. This ‘core’ idea may suffer from a conceptual deficiency:
a CRS must be unblocked by any feasible set of strategies, including those that
can, in turn, be blocked in the same sense; see Greenberg (1990) for more ex-
tensive discussions. Our notion of c-rationalizability can easily be tailored to
overcome this deficiency. Specifically, we can define a ‘coalition-proof rationaliz-
able set’ (CPRS) as a nonempty product subset R of S satisfying RV R0 only
for R0 = R, where R0 is itself a CPRS. That is, a CPRS satisfies an appealing
property of “consistency”: a CPRS is immune against being blocked only by
those that are themselves a CPRS. Apparently, any CRS is itself a CPRS and
the existence of CPRS is an immediate implication of Theorem 1. Nevertheless,
Milgrom and Roberts (1996, p.115) pointed out, “While this symmetric treat-
ment is mathematically elegant, there is no reason to suppose it is descriptive
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of the real possibilities for coalitional deviations.” As a strong Nash equilibrium
maintains the collective stability stronger than a coalition-proof Nash equilib-
rium does, we believe that the well-defined notion of c-rationalizability would be
more suitable for the description of rational behavior in noncooperative social
environments with no binding agreements or commitments.

4. Greenberg (1990) offered an integrative approach to social interactions by using
a ‘stability’ criterion. Within a non-equilibrium framework of coalitional reason-
ing in strategic games, Greenberg (1990) proposed several coalitional negotia-
tion processes where coalitions openly negotiate to make contingent threats (i.e.
“coalitional contingent threats” situation) or to make irrevocable commitments
(i.e. “coalitional commitments” situation), and he analyzed these coalitional
interactions through his theory of social situations. Within a similar frame-
work in which coalitional moves are publicly observed in social environments,
Chwe (1994) and Xue (1998) studied the “stable” outcomes under coalitional
interactions where players are farsighted; Herings et al. (2004) analyzed the
social environment by using Pearce’s (1984) extensive-form rationalizability in
the associated multistage game. The main differences of our approach in this
paper are that: (1) coalitional moves are secretly conducted and cannot be
publicly observed; (2) implicit agreements made by coalitions are in general in
the form of constraint sets of strategies to be confined, rather than stringent
specifications of a particular course of actions.12 We would also like to point out
that the minimal CRS in Definition 1 can be viewed as a coalitional version of
Basu and Weibull’s (1991) minimal curb set, which is an interesting set-valued
solution for strategic games.13

5. Finally, extension of this paper to more general class of games, e.g., extensive
games with imperfect or incomplete information and games with general pref-
erences, is an important subject for further research. Extension of this paper
to permit nonproduct-set deviations is also an intriguing topic worth further
studying.

12See Ambrus (2006, Section VII) for extensive discussions on this form of agreements.
13Voorneveld (2004, 2005) proposed a set-valued solution of ‘(minimal) preparation sets’, and

showed minimal preparation sets are intimately related to Basu and Weibull’s (1991) ‘minimal
curb sets’ and Kalai and Samet’s (1984) ‘persistent retracts’.
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Appendix: Proofs

To prove Theorem 1, we need the following Lemmas 1-4.
Lemma 1. Suppose A ∩ B 6= A. For any μ ∈ ∆|A\B and ν ∈ ∆|B, there is
μn

AÃ μ such that ν = limn→∞ μn|B.
Proof: Consider eμn → μ and νn → ν such that eμn ∈ ∆|S\B, νn ∈ ∆|B, and
1
2
eμn + 1

2
νn ∈ ∆0. Define μn ≡

¡
1− 1

n

¢ eμn + 1
n
νn. Thus, μn AÃ μ and ν =

limn→∞ μn|B.¥
Lemma 2. Suppose A⇒ B with A ∈M. Then, B 6= ∅ and B ∈M, where

M ≡ {A| BR(A−i) ⊆ Ai ∀i} .

Proof: Clearly, A 6= ∅ since A V B. For any fixed i, let ui(a∗) ≡ max
a∈A

ui(a).

Since A ∈M, for all μ ∈ ∆|A−i,

max
si∈Si

ui(si, μ) = max
ai∈Ai

ui(ai, μ) ≤ max
μ∈∆|A−i

max
ai∈Ai

ui(ai, μ) = ui(a
∗).

Since a∗ ∈ A and A⇒ B, a∗i ∈ Bi. Thus, B 6= ∅.
Let μ ∈ ∆|B−i. Since B ⊆ A, μ ∈ ∆|A−i. Consider μn

A−jÃ μ. Therefore,
μ = μ|

B−i
. Thus, for all si ∈ BR(B−i), there is μ ∈ ∆|B−i such that ui(si, μ) ≥

ui(s
0
i, μ|B−i ) ∀s

0
i ∈ Si. Let A ⇒ B via J ≡ JAB. Since A ∈M, BR (B−j) ⊆ Bj

∀j ∈ J . For i /∈ J , BR (B−i) ⊆ Bi since Bi = Ai.¥
Lemma 3. Suppose A ⊆ AV B, A ∈M, and A∩B = ∅. Then, A−j∩B−j = ∅
∀j.
Proof: Since A ∩ B = ∅, Aj ∩ Bj = ∅ for some j. Since A ∈M, Aj ⊇ Aj ⊇
BR (s−j) for all s−j ∈ A−j ∩ B−j. But, since A V B, by Definition 1(1.1),
Bj ⊇ BR (s−j) for all s−j ∈ A−j ∩ B−j. Therefore, A−j ∩ B−j = ∅. That is,
Aj0 ∩Bj0 = ∅ for some j0 6= j and, hence, A−j ∩B−j = ∅ ∀j.¥
Lemma 4. Suppose A ⊆ A V B. Then, (4.1) A ⇒ A ∩ B if A ∩ B 6= ∅;(4.2)
AV B ⊆ B if A ∩B = ∅ and A, B ∈M.

Proof: Let A V B via J ≡ JAB. (4.1) For any j consider νn
A−jÃ ν and

νn|(A∩B)−j → ν|(A∩B)−j . Define

μn ≡
∙
1

n
νn (A−j ∩B−j)

¸
νn +

∙
1− 1

n
νn (A−j ∩B−j)

¸
νn|A−j .

It is easily verified that μn
A−jÃ ν and μn|B−j → ν|(A∩B)−j . SinceA ⊆ AV B, ∀j ∈

J , ∀aj ∈ Aj, uj(aj, ν) < uj(sj, ν|(A∩B)−j) for some sj ∈ Sj, where ν|(A∩B)−j 6= ν if
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aj ∈ Aj∩Bj. But, since A−J ⊆ A−J = B−J , A∩B = (A ∩B)J×A−J . Therefore,
A⇒ A ∩B via J .
(4.2) Define eB ≡ BJ ×A−J . Since A−J ⊆ A−J = B−J , eB ⊆ B. Since B ∈M,eBj ⊇ BR

³ eB−j´ ∀j ∈ J . Let B be the (nonempty) set of surviving iterated
elimination of never-best responses for all the players in coalition J in the finite
subgame restricted on eB. Clearly, J = JAB and B ⊆ B with Bj = BR (B−j)
∀j ∈ J . To complete the proof, it remains to verify AV B via J . Since A ∈M,
by Lemma 3, A−j ∩B−j = ∅.

(1) Consider νn
A−jÃ ν. Since A−j ⊆ A−j, νn

A−jÃ ν. Since A V B ⊇ B, by
Lemma 1, it follows that ∀j ∈ J = JAB, ∀aj ∈ Aj ⊆ Aj,

uj(aj, ν) < uj(sj, ν
0) for some sj ∈ Sj,

for all ν ∈ ∆|A−j and ν 0 ∈ ∆|B−j . That is, Definition 1(1.1) is satisfied.

(2) Since Bj = BR (B−j), by Lemma 1, ∀j ∈ J = JAB, ∀bj ∈ Bj\Aj ⊆ Bj,

uj(bj, ν|B−j) ≥ uj(sj, ν|B−j) for all sj ∈ Sj,

for some νn|B−j → ν|B−j as νn
A−jÃ ν. That is, Definition 1(1.2) is

satisfied.¥

Proof of Theorem 1: The proof is split into two parts. First of all, define

D ≡
∞\
k=0

Dk

where D0 = S, Dk ⇒ Dk+1, and D⇒ D0 only for D0 = D. By Lemma 2, D 6= ∅.
Part I: D is a CRS. Assume, in negation, that D is not a CRS, i.e., DV D0 6= D.
Clearly, D0 6= ∅ since DV ∅ implies D⇒ ∅. We distinguish two cases.
Case 1.1. D0∩D 6= ∅. By Lemma 4(4.1), D⇒ D0∩D. Thus, D0∩D = D. By

Lemma 2, D ∈M. Therefore, for every d0j ∈ D0j\Dj, uj(d0j , μ|D0−j ) < uj(sj, μ|D0−j )

for some sj ∈ Sj, for all μn|D0−j → μ|
D0−j

as μn
D−jÃ μ. By Definition 1(1.2), D 6V

D0 ) D, a contradiction.
Case 1.2. D0 ∩ D = ∅. Let Dk ⊇ D0 and Dk+1 + D0 (cf. Figure 3). Thus,

∃d0j0 ∈ D0j0\Dk+1
j0 and, hence, d0j0 ∈ D0j0\Dj0 . Thus, j0 ∈ JDD0 ∩JDkDk+1. Since by
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Lemma 2, Dk+1 ∈M, BR(Dk+1
−j0 ) ⊆ D

k+1
j0 . Since D V D0, by Definition 1(1.2),

d0j0 ∈ BR(D0−j0). Therefore, D0−j0 * Dk+1
−j0 , i.e., ∃d0−j0 ∈ D0−j0\D

k+1
−j0 . We proceed

in two steps.

S

D 

D k

D k+1 D’

(dj0,d-j0)’ ’

Figure 3.

Step 1. Let d−j0 ∈ D−j0 . By Lemma 2, D ∈M. Since DV D0, by Lemma
3, d−j0 /∈ D0−j0. Consider μn

D−j0Ã μ with μ(d−j0) = 1. Since D V D0,
by Lemma 1,

uj0(dj0, d−j0) = uj0(dj0, μ) < uj0(sj0 , d
0
−j0) for some sj0 ∈ Sj0 ,

for all dj0 ∈ Dj0 and d0−j0 ∈ D0−j0. Since D0 ⊆ Dk ∈M,

uj0(dj0 , d−j0) < uj0(d
0
j0 , d

0
−j0) for some d

0
j0 ∈ Dk

j0,

for all dj0 ∈ Dj0, d−j0 ∈ D−j0 and d0−j0 ∈ D0−j0 .

Step 2. Let d0−j0 ∈ D0−j0\Dk+1
−j0 (since D0−j0\D

k+1
−j0 6= ∅). Consider νn

Dk
−j0Ã ν

with ν
³
d0−j0

´
= 1. Since D0 ⊆ Dk ⇒ Dk+1, by Lemma 1,

uj0(d
0
j0 , d

0
−j0) = uj0(d

0
j0, ν) < uj0(sj0, d−j0) for some sj0 ∈ Sj0 ,

for all d−j0 ∈ D−j0 and d0j0 ∈ Dk
j0. Since D ∈M, there is d0−j0 ∈ D0−j0

such that

uj0(d
0
j0 , d

0
−j0) < uj0(dj0 , d−j0), for some dj0 ∈ Dj0,

for all d−j0 ∈ D−j0 and d0j0 ∈ Dk
j0, contradicting Step 1.
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Part II: R∗ = D. Assume, in negation, that there is a CRS R * D. Then, there
exists Dk ⇒ Dk+1 via J = JDkDk+1 such that R ⊆ Dk and R * Dk+1. If R∩
Dk+1 6= ∅, by Lemma 4(4.1), R V R ∩ Dk+1, contradicting that R is a CRS. If
R∩ Dk+1 = ∅, by Lemma 4(4.2), RV R0 with R∩R0 = ∅, contradicting that R
is a CRS.¥

Proof of Proposition 2: (2.1) Let s∗ be a Pareto-dominant Nash equilibrium,
i.e., s∗ Pareto-dominates all other (mixed) Nash equilibria. Assume, in negation,
that s∗ is not c-rationalizable. By Proposition 1, s∗ ∈ Dk\Dk+1 for some Dk ⇒
Dk+1. Since every player i’s Nash equilibrium strategy s∗i is a best response to s

∗
−i,

the deviating coalitionJDkDk+1 contains more than two players. Therefore, s∗−i /∈
Dk+1
−i . Note that there is a Nash equilibrium s∗∗ with the support in Dk+1. Since

Dk ⇒ Dk+1, by Lemma 1, uj (s∗) < uj (s
∗∗) for all j ∈ JDkDk+1, contradicting

that s∗ is a Pareto-dominant Nash equilibrium. Thus, s∗ is c-rationalizable.
Now, let s∗ be a strong Nash equilibrium (see Aumann 1959), i.e., for each

(mixed) strategy profile s 6= s∗, there is a player j such that sj 6= s∗j and uj (s) ≤
uj (s

∗). Assume, in negation, that s∗ is not c-rationalizable. By Proposition 1,
s∗ ∈ Dk\Dk+1 for some Dk ⇒ Dk+1. Define J ≡

©
j| s∗j ∈ Dk

j \Dk+1
j

ª
. Consider

a subgame restricted on Dk+1
J ×

©
s∗−J
ª
. There is a Nash equilibrium s∗∗ in the

subgame. Since by Lemma 2, Dk+1 ∈M, s∗∗j is a best response to s∗∗−j ∀j ∈ J .
Similar to the proof for the Pareto-dominant Nash equilibrium case, it follows
that for all j ∈ J , uj (s∗) < uj (s

∗∗) for some sJ ∈ Dk+1
J , contradicting that s∗ is

a strong Nash equilibrium. Thus, s∗ is c-rationalizable.
(2.2) Let s∗J be a Pareto-best strategy profile for J in the reduced game

G0=(I, {S0i} , {ui}), i.e., for all j ∈ J , uj (s∗J , s−J) ≥ uj (s) ∀s ∈ S0. Assume,
in negation, that s∗J is not c-rationalizable. By Proposition 1, for some j

0 ∈ J ,
s∗j0 ∈ Dk

j0\Dk+1
j0 for some Dk ⇒ Dk+1. Consider s ∈ D. Clearly, s ∈ S0 and

(s∗J , s−J) ∈ Dk. As any dominated strategy is dominated by an undominated
strategy in any finite game (see, e.g., Milgrom and Roberts 1996, Lemma 1), it

follows that s∗j0 is a best response to
³
s∗J\j0, s−J

´
. By Dk ⇒ Dk+1 and D ∈M, it

follows that uj0 (s∗J , s−J) < uj0 (sj0, s−j0) for some sj0 ∈ Dj0 ⊆ S0j0, contradicting
that s∗J is Pareto-best for J . Thus, s

∗
j is c-rationalizable.

Now, assume that for all j ∈ J , uj
¡
s∗J , s

0
−J
¢
> uj (s) ∀s, s0 ∈ S0 with s∗J 6= sJ .

Thus, J would be willing to confine their play to s∗J . Again by Proposition 1, s
∗
J is

a unique c-rationalizable strategy profile for J . Therefore, a (strong) Pareto-best
strategy profile is a (unique) c-rationalizable strategy profile.
(2.3) In a common interest game where there is a strategy profile strictly
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Pareto-dominates all other strategy profiles, the Pareto-best strategy profile is
a strong Pareto-best Nash equilibrium and, hence, is a unique c-rationalizable
strategy profile.
(2.4) Milgrom and Shannon (1994) showed that, if each player’s payoffs are

always nondecreasing (or nonincreasing) in the opponents’ strategies in games
with strategic complementarities, then the reduced game G0 has a Pareto-best
Nash equilibrium s∗ that is given by the largest (or smallest) element in G0. Thus,
s∗ is c-rationalizable.
Now, let s∗ be a strict Nash equilibrium. That is, for all i ∈ I, ui (s∗) >

ui
¡
s0i, s

∗
−i
¢
∀s0i 6= s∗i . By the strict monotonicity of ui (s

∗
i , .) in s−i , ui (s∗) >

ui
¡
s∗i , s

0
−i
¢
∀s0−i 6= s∗−i. Therefore, ui (s

∗) > ui
¡
s0i, s

∗
−i
¢
≥ ui

¡
s0i, s

0
−i
¢
∀s0i 6= s∗i

∀s0−i 6= s∗−i. That is, for all i ∈ I, ui (s∗) > ui (s
0) ∀s0 6= s∗. By (2.2), s∗ is a

unique c-rationalizable strategy profile.¥

Proof of Theorem 2: The proof follows immediately from the following.
Lemma 5: A ⇓ B iff A⇒ B.
Proof: The result is clearly true if A = B, so we assume B ( A.
“only if part”: Suppose that A ⇓ B via J = JAB. Let j ∈ J . Consider

μn|
B−j
→ μ|

B−j
as μn

A−jÃ μ. We distinguish three cases as follows.

Case (1.1) μ(B−j) = 1. By Definition 2(2.1), cj ∈ Aj\Bj is strictly dom-
inated in the subgame restricted on Sj × B−j. Thus, cj ∈ Aj\Bj is
a never-best response in the subgame restricted on Sj × B−j. Since
μ(B−j) = 1, μ = μ|B−j . Therefore, uj(cj, μ) < uj(sj, μ|B−j) for some
sj ∈ Sj.

Case (1.2) μ(B−j) = 0. By Definition 2(2.2), for any aj ∈ Aj, there is
σj ∈ ∆ (Sj) such that

uj(aj, μ) ≤ max
c−j∈A−j\B−j

uj(aj, c−j)

< min
b−j∈B−j

uj(σj, b−j)

≤ uj(σj, μ|B−j).

Therefore, uj(aj, μ) < uj(sj, μ|B−j) for some sj ∈ Sj.

Case (1.3) μ(B−j) 6= 0 or 1. Clearly, μ = qμ0 + (1− q)μ00 where q ≡
μ(B−j), μ0(B−j) = 1 and μ00(B−j) = 0. Since μ0(B−j) = 1, for any
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given aj ∈ Aj,

uj(aj, μ
0) ≤ uj(s

0
j, μ

0) = uj(s
0
j, μ

0|B−j) for some s0j ∈ Sj.

Since μ00(B−j) = 0, by Case (1.2),

uj(aj, μ
00) < uj(s

00
j , μ

0|B−j) for some s00j ∈ Sj.

Therefore,

uj(aj, μ) = quj(aj, μ
0) + (1− q)uj(aj, μ

00)

< quj(s
0
j, μ

0|B−j) + (1− q)uj(s
00
j , μ

0|B−j)
= uj(qs

0
j + (1− q) s00j , μ

0|B−j).

But, since μ00(B−j) = 0, μ|B−j = μ0|B−j . Thus, uj(aj, μ) < uj(qs
0
j +

(1− q) s00j , μ|B−j). Hence, uj(aj, μ) < uj(sj, μ|B−j) for some sj ∈ Sj.

“if part”: Suppose A⇒ B via J = JAB. Let j ∈ J . Consider μn|
B−j
→ μ|

B−j

as μn
A−jÃ μ. We distinguish two cases.

Case (2.1) μ(B−j) = 1. Since μ(B−j) = 1, μ|B−j = μ. By Definition
1(1.1), for every cj ∈ Aj\Bj, uj(cj, μ) < uj(sj, μ) for some sj ∈ Sj.
That is, cj ∈ Aj\Bj is a never-best response in the subgame restricted
on Sj × B−j. Therefore, cj ∈ Aj\Bj is strictly dominated in the sub-
game restricted on Sj×B−j (see, e.g., Osborne and Rubinstein’s (1995)
Lemma 60.1). Thus, Definition 2(2.1) holds.

Case (2.2) μ(c−j) = 1 for some c−j ∈ A−j\B−j. Let σj ∈ ∆ (Sj) be such
that

min
σ−j∈∆(B−j)

uj(σj, σ−j) = max
σj∈∆(Sj)

min
σ−j∈∆(B−j)

uj(σj, σ−j).

Since μ(B−j) = 0, by Definition 1(1.1) and Lemma 1, uj(aj, μ) <
maxσj∈∆(Sj) uj(σj, σ−j) for all σ−j ∈ ∆ (B−j). Since ∆ (B−j) is com-
pact, by the well-known Maximum Theorem,

uj(aj , μ) < min
σ−j∈∆(B−j)

max
σj∈∆(Sj)

uj(σj, σ−j).
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By the Minmax Theorem,

uj(aj, c−j) = uj(aj, μ)

< min
σ−j∈∆(B−j)

max
σj∈∆(Sj)

uj(σj, σ−j)

= max
σj∈∆(Sj)

min
σ−j∈∆(B−j)

uj(σj, σ−j)

= min
σ−j∈∆(B−j)

uj(σj, σ−j)

≤ uj(σj, b−j) ∀b−j ∈ B−j.

Thus, Definition 2(2.2) holds.¥

Theorem 3. (3.1) For all ω ∈ R , si (ω) is coalitionally rationalizable. (3.2) For
every coalitionally rationalizable strategy ri, there is a model of knowledge such
that ri = si (ω) for ω ∈ R .

Proof: (3.1) Let ω ∈ R . Define R ≡ ×i∈I

n
si (ω

0) | ω0 ∈ R
o
. Clearly, R ⊆

ΩR. Since R is self-evident we have Pi (ω) ⊆ R , and thus sj (Pi (ω)) ⊆ Rj

∀j 6= i. Note that by Myerson’s (1986) Theorem 1, a CPS μ| satisfies μ|
A−i

= μ

in ∆|A−i iff there exists a sequence of full-support distributions μ
n → μ in ∆|A−i

(i.e. μn
A−iÃ μ) such that μn|

B−i
→ μ|

B−i
∀B−i. But since R ⊆ R, ω ∈ Ri ∀i.

Therefore, for all i ∈ J ∗RR0 and si (ω) /∈ R0
i,

ui (si (ω) , μ) ≥ ui(si, μ|R−i ) ∀si ∈ Si,

for some μn|
R0−i
→ μ|

R0−i
as μn

R−iÃ μ if Definition 1(1.1) holds to be true for all

j ∈ J ∗RR0\ {i}. Thus, R 6V R0 if Ri\R0
i 6= ∅ for some i. By the following Lemma

6, R ⊆ R∗. Hence, si (ω) is coalitionally rationalizable.
(3.2) Define Ω as the set of coalitionally rationalizable profiles, i.e., Ω = R∗

is the largest CRS. For any ω = (si)i∈I in Ω, define si (ω) = si ∀i and Pi (ω) =
{ω0 ∈ Ω| si (ω0) = si (ω)} ∀i. Clearly, sj (Pi (ω)) = R∗j ∀j 6= i. Since R∗ is a CRS,
every player i is c-rational at every ω ∈ Ω. Therefore, Ω = R is a self-evident
event in R.¥

Lemma 6: If AV B only if B ⊇ A, then A ⊆ R∗.
Proof. It suffices to show that for A 6= ∅, A ⊆ D. Assume, in negation, that
A * D. That is, there are Dk ⊇ A and Dk+1 6⊇ A where Dk ⇒ Dk+1 via
J ≡ JDkDk+1. If A∩Dk+1 6= ∅, by Lemma 4(4.1), AV A∩Dk+1, a contradiction.
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Now assume that A ∩ Dk+1 = ∅. Define eB ≡ Dk+1
J × A−J . Since A−J ⊆

Dk
−J = Dk+1

−J , eB ⊆ Dk+1. Since Dk+1 ∈M, eBj ⊇ BR
³ eB−j´ ∀j ∈ J . Let B be the

(nonempty) set of surviving iterated elimination of never-best strategies within
∪j∈J

¡
Dk+1
j \Aj

¢
in the subgame restricted on eB. Clearly, J = JAB. Moreover,

B ⊆ Dk+1 with Ai ∩ Dk+1
i ⊆ Bi ∀i ∈ I and Bj\Aj ⊆ BR (B−j) ∀j ∈ J . To

complete the proof, it remains to verify AV B via J . Let j ∈ J .

(1) Since AV B only if B ⊇ A, Aj ⊆ BR (A−j). Therefore, by Dk+1 ∈M,
Dk+1
j ⊇ Aj if Dk+1

−j ⊇ A−j. But, since A ∩Dk+1 = ∅, A−j * Dk+1
−j and,

hence, A−j * B−j. By Lemma 1, ∀j ∈ J , ∀bj ∈ Bj\Aj ⊆ BR (B−j),

uj(bj, μ|B−j) ≥ uj(sj, μ|B−j) for all sj ∈ Sj,

for some μn|B−j → μ|B−j as μn
A−jÃ μ. That is, Definition 1(1.2) is

satisfied.

(2) Let j ∈ J . Consider μn|B−j → μ|B−j as μn
A−jÃ μ. Clearly, μn

Dk
−jÃ μ since

A−j ⊆ Dk
−j. To verify Definition 1(1.1), we distinguish three cases.

(2.1) μ(B−j) = 1. Then, μ = μ|B−j = μ|Dk+1
−j
. Since Aj ∩ Dk+1

j ⊆ Bj,
Aj\Bj ⊆ Dk

j \Dk+1
j . Since Dk ⇒ Dk+1, by Definition 1(1.1), ∀aj ∈

Aj\Bj, uj (aj, μ) < uj
¡
sj, μ|B−j

¢
for some sj ∈ Sj.

(2.2) μ (B−j) = 0. Since Bi ⊇ Dk+1
i ∩ Ai ∀i ∈ I, B−j ⊇ Dk+1

−j ∩ A−j. Thus,
μ
¡
Dk+1
−j
¢
= 0. Since Dk ⇒ Dk+1 ⊇ B, by Definition 1(1.1) and Lemma

1, ∀aj ∈ Aj ⊆ Dk
j , ∀μ0 ∈ ∆|B−j , uj(aj, μ) < uj(sj, μ

0) for some sj ∈ Sj.

(2.3) μ(B−j) 6= 0 or 1. The rest of proof is totally similar to (1.3) in the
proof of Theorem 2.¥
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