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Abstract This paper shows that allowing the option of destroying the auctioned item by

the seller improves the optimal auction when identity-dependent externalities exist be-

tween the seller and bidders. The sufficient and necessary conditions for item destruction

to be optimal both in terms of nonparticipating threat and allocation outcome are also

provided in this paper. A modified second-price sealed-bid auction with appropriately

set nonnegative entry fees and reserve price is established as the optimal auction. The

optimal auction induces full participation of bidders, and a feature of the optimal auction

is that each losing bidder’s payment includes a component (positive or negative) equal

to the externality on him at the outcome of the auction. These components eliminate

the impact of externalities on strategic bidding behavior. It thus follows intuitively that

a second-price auction with these additional payments is optimal. The above findings

hold when players have private information on externalities they create for others, or

when externality to every bidder is proportional to total payments of other bidders or all

bidders.
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1 Introduction

Auctions design with externalities among bidders has been studied by a number of papers.

Jehiel, Moldovanu and Staccheti (1996), Varma (2002), and Brocas (2003, 2005) among

others consider negative identity-specific externalities imposed on losers by the winning

bidder, while Maasland and Onderstal (2002, 2005) and Goeree, Maasland, Onderstal

and Turner (2005) study the cases where positive externalities among bidders are pro-

portional to the total payments of other bidders or all bidders. Jehiel, Moldovanu and

Staccheti (1999) study auctions design when bidders have private information of exter-

nalities on themselves in a multi-dimensional setting. While the literature largely focuses

on externalities among bidders, clearly in many cases there exist externalities between

the seller and bidders other than those among bidders. One recent example is the North

Korea’s nuclear weapon case, where the seller (North Korea) puts great externalities on

the bidders (China, Japan, Russia, South Korea, US) if it keeps its nuclear arsenal.

We study in this paper the optimal auction while allowing externalities among all

players, including the seller and bidders. 1 One major contribution of this paper lies in

that the analysis brings in the option for the seller to destroy the item (i.e., dismantle its

nuclear arsenal) at a cost. In previous auctions design literature, destroying the auctioned

item has not been formulated as a possible outcome or as a nonparticipation threat. The

significance of bringing in this option is the following. First, we are particularly interested

in addressing when and how to dismantle the nuclear weapons, i.e. under what conditions

is it optimal for the seller to destroy the object and what actions should be taken by the

seller to maximize his revenue if he destroys the object. Second, allowing this new option

enlarges the freedom of auctions design with externalities. Specifically, destroying the

1Potipiti (2005) also considers a setting of selling retaliation in the WTO where externalities exist

between the seller and buyers. However, both the setting and the focus of Potipiti (2005) are quite

different from that of this paper.
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item can be an optimal allocation outcome for the seller or be used by the seller as an

optimal nonparticipation threat, since it eliminates the externalities imposed on bidders.

In particular, eliminating these externalities has two potential effects. First, seller’s threat

to a bidder who refuses to participate can be made more severe. This happens when a

bidder enjoys positive externalities whoever else gets the object. In this case, the most

severe nonparticipation threat is to destroy the object. Second, the seller may extract

higher rent when he destroys the object if the object is unsold. This occurs when the sum

of the seller’s valuation, the destroying cost of the seller and the total externalities to the

bidders is negative, if the seller keeps the item. In this situation, the seller can be better

off by destroying the object and collecting a payment from each bidder which equals the

externality to him.

We start with and derive our main findings in a baseline setting where the identity-

specific externalities among all players are common-knowledge. 2 We also allow hetero-

geneity in the externalities among the players. In addition, our analysis does not require

the externalities to be uniformly positive or negative.

The optimal auction is fully characterized in terms of the nonparticipation threats, the

winning probabilities, the probability of destroying the item, and especially the payments

of bidders. A modified second-price sealed-bid auction with appropriately set nonnega-

tive entry fees and reserve price is established as the optimal auction. Specifically, the

features of the optimal auction are as follows. (i) All bidders participate. The optimal

nonparticipation threats take the following form: If only i does not participate, the item

is then assigned to the one (including the seller) generating bidder i the smallest exter-

nality provided this externality is nonpositive. Otherwise the seller destroys the object.

2We adopt this setting because the multi-dimensional setting in Jehiel, Moldovanu and Staccheti

(1999) is too complicated for a thorough characterization of the optimum, and the Jehiel, Moldovanu and

Staccheti (1996) setting is fundamentally one-dimensional.
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(ii) Every participant pays a nonnegative entry fee, which equals the absolute value of the

smallest possible externality to him. This smallest externality must be nonpositive due to

the option of destroying the object by the seller. (iii) The highest bidder wins if his bid

is higher than the reserve price, and he pays the second highest bid or the reserve price

whichever is higher. Each bidder pays an additional payment (positive or negative) that

equals the externality on him at the outcome of the auction. This additional payment

is a unique feature which is first discovered in the literature to my best knowledge. (iv)

If no bidder bids higher than the reserve price, the seller may keep the item or destroy

it, depending on the sum of the seller’s valuation, the destroying cost of the seller and

the total externalities to all bidders when the seller keeps the item. The seller keeps the

item if this sum is positive, and destroys it if this sum is negative. Moreover, the optimal

reserve price is set differently depending on whether the above mentioned sum is positive

or negative.

As pointed out in the previous paragraph, besides the entry fee, each bidder pays an

additional payment that equals the externality on him at the outcome of the auction.

When the payoffs of bidders are adjusted by these additional payments, we face a situa-

tion that mimics a standard auctions design problem with zero externalities on bidders.

Intuitively, this is why a modified second-price auction with these additional payments is

optimal, if the entry fee and reserve price are set appropriately.

We develop a formal procedure to establish that there is no loss of generality to consider

only the mechanisms which induce full participation of bidders for the optimal auction.

The significance of this result can be seen from the following arguments. First, there exist

occasions where full participation is not the unique optimum. Note that in the Myerson

(1981) setting with zero externalities, the seller still gets the optimal expected revenue if

the bidders whose valuations are lower than the optimal reserve price do not participate.

Second, in the case of positive externalities, bidders with lower valuations may prefer not
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to participate due to the free-riding incentive. What is the intuition behind the optimality

of full participation? As has been pointed out in the previous paragraph, the additional

payments in the optimal auction lead to a situation that mimics a standard auctions

design problem with zero externalities on bidders. Note that the sum of the additional

payment in the optimal auction and the entry fee for each bidder is nonnegative, as the

entry fee is the absolute value of the lowest externality to the bidder. Thus, the seller

gains (weakly) from the participation of every type of bidders.3 This explains why the

seller wants every type of bidders to participate, although some types have no chance of

winning.

An interesting question is whether the above insights also apply in a multi-dimensional

setting where bidders have private information on the externalities they create for oth-

ers. Jehiel, Moldovanu and Staccheti (1996) have shown that when bidders have private

information on the externalities they create for others, the optimal auction design prob-

lem can be transformed into a one-dimensional problem. Therefore intuitively, the find-

ings obtained in the common-knowledge setting are still valid if we replace the common-

knowledge externalities in our setting by the expectations of the private-information ex-

ternalities.

The key findings from our baseline setting also apply to the settings of Maasland

and Onderstal (2002) and Goeree, Maasland, Onderstal and Turner (2005), i.e., when

externality to any bidder is proportional to the other bidders’ total payments or those

of all bidders. Maasland and Onderstal (2002) assume that externality to any bidder is

proportional to the other bidders’ total payments. They show that a lowest-price all-pay

auction with proper entry fee and reserve price is optimal in this setting. Based on the

insights from our baseline setting, we put forward an alternative modified second-price

3Besides the additional payment, each bidder (winner or loser) makes another nonnegative payment

as in a standard second-price auction without externalities.
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auction which is revenue-equivalent to the lowest-price all-pay auction in Maasland and

Onderstal (2002). Similar result is obtained for the Goeree, Maasland, Onderstal and

Turner (2005) setting where positive externalities among bidders are proportional to the

total payments of all bidders. Being consistent with the findings from our baseline setting,

in the alternative auctions constructed every bidder’s payment consists of a component

which equals the externalities on them at the outcome of the auction.

This paper is organized as follows. Section 2 derives the optimal mechanism in a base-

line setting with common-knowledge externalities. The implementation of the optimal

auction is established. The findings are shown to hold when bidders have private infor-

mation on the externalities they create for others. Section 3 shows that the main findings

from the baseline setting apply to the case of financial externalities. Section 4 concludes

the paper. The technical proofs are given in the appendix.

2 The Optimal Auction

In this section we fully establish the optimal auction mechanism when there are exter-

nalities among players, including the seller and bidders. Externalities lead to an auctions

design problem in which the bidders have mechanism-dependent reservation utilities. We

will establish concretely through a formal procedure that the full participation is the opti-

mal participation in terms of the seller’s expected revenue. For this purpose, we explicitly

deal with the optimal endogenous participation.

Following Stegeman (1996), we define participating in the auction as submitting a bid.

Since an auction mechanism implementing endogenous participation essentially cannot re-

quire the bidders who do not participate to submit bids, we consider the mechanisms based

on only the signals submitted by the participating bidders. Following Jehiel, Moldovanu

and Staccheti (1996), we assume that the bidders who do not participate have no chance

6



to win the object and their payments to the seller are zero. This assumption is consistent

with the no passive reassignment (NPR) assumption adopted by Stegeman (1996).

2.1 The Setting

There is one seller who wants to sell one indivisible object to N potential bidders through

an auction. We use N = {1, 2, ..., N} to denote the set of all potential bidders, where

N is assumed to be common knowledge. The seller’s value for the object is v0, which

is public information. Hereafter, we let the seller to be player 0, and bidder i to be

player i. The ith bidder’s private value of the object is vi, which is his/her private

information. These values vi, i ∈ N are independently distributed on interval [vi, vi]

following respectively cumulative distribution function Fi(·) with density function fi(·).

We assume the regularity condition that the virtual valuation functions Ji(v) = v − (1 −

Fi(v))/fi(v) are increasing on interval [vi, vi]. The density fi(·) is assumed to be common

knowledge. Every bidder observes his private value before his participation decision. The

seller and the bidders are assumed to be risk neutral.

Player i suffers or enjoys an externality ei,j when player j keeps the item, i, j =

0, 1, ..., N . By definition, ei,i = 0, i = 0, 1, ..., N . These externalities are public informa-

tion. The auctioned item can be destroyed by the seller at a cost of c0 ≥ 0. If the item

is destroyed, no player suffers or enjoys any externality. As a result, bidder i’s payoff is

vi − xi if he wins and pays xi; his payoff is ei,j − xi if he pays xi while another player j

(seller or bidder) wins.

The timing of the auction is as follows.

Time 0: The externalities ei,j, the seller’s value v0 and destroying cost c0 are revealed

by Nature as public information. Every bidder i observes his/her private value vi, i ∈ N .

Time 1: The seller announces the rule of the auction. The possibility of destroying

the item by the seller is allowed. We assume that the seller has the power of committing
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to the proposed rule.

Time 2: The bidders simultaneously and confidentially make their participation de-

cisions and announce their bids if they decide to participate.

Time 3: The payoffs of the seller and all bidders are determined according to the

announced rule at time 1.

In this paper, we look for the optimal mechanism among the threshold-participation

mechanisms. Here, threshold-participation refers to that the bidders only participate if

their valuations are equal to or higher than their corresponding thresholds. Based on

the “semirevelation” principle established by Lemma 1 in Stegeman (1996) that allows

no participation, we only need to look at the direct truthful semirevelation mechanism,

which requires bidders to reveal their true types if and only if they participate. Denote

thresholds vector (v(1)
c , ..., v(N)

c ) by vc, where v(i)
c is the threshold for bidder i and it takes

values in [vi, vi]. In a direct truthful semirevelation mechanism implementing threshold-

participation vc, bidder i announces his/her valuation if and only if his/her valuation is

equal to or greater than threshold v(i)
c . The seller determines how to allocate the object

and how much each bidder pays, using a set of outcome functions which accommodate all

participation possibilities. Following Stegeman (1996), we introduce a null message ∅ to

denote the signal of a nonparticipant. Let m = (m1, m2, ..., mN ), where mi is the signal

of bidder i and it takes values in Mi = [vi, vi] ∪ {∅}, ∀i ∈ N . Define M =
∏N

i=1 Mi.

These outcome functions announced by the seller consist of the probability p0(m) for the

seller to keep the item, the payment functions xi(m) and winning probability functions

pi(m) of bidder i, ∀i ∈ N . Note that 1 −∑N
i=0 pi(m) is the probability of destroying the

item by the seller. This set of allocation functions are denoted by (p,x).

We say (p,x) is a direct truthful semirevelation mechanism implementing threshold

participation vc if and only if the following conditions hold.

(a) The bidders with private values lower than their participation thresholds do not
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participate, i.e., if they participate, they get expected utility which is equal to or lower

than their expected utility from nonparticipation. Thus these types of bidders submit the

null signal;

(b) The bidders with private values equal to or higher than their participation thresh-

olds do participate and reveal their true valuations.

(c) pi(m) ≥ 0, ∀i ∈ N , with
∑N

i=0 pi(m) ≤ 1, ∀m ∈ M.

(d) pi(m) = 0 and xi(m) = 0 if mi = ∅, ∀i ∈ N .4

Define mi(x) = x if x ∈ [v(i)
c , vi] and mi(x) = ∅ if x ∈ [vi, v

(i)
c ). As pointed out before,

the probability of destroying the object is 1 −∑N
i=0 pi(m) and the destroying cost is c0.

In addition, when the object is destroyed, the seller does not enjoy v0. We use m(v)

to denote (m1(v1), ..., mN(vN)). For any direct truthful semirevelation mechanism (p,x)

implementing threshold participation vc, the seller’s expected revenue is given by:

R(p,x,vc)

= Ev

{
(v0 + e0,0)p0(m(v)) +

N∑

i=1

e0,i pi(m(v)) − c0

(
1 −

N∑

i=0

pi(m(v))
)

+
N∑

i=1

xi(m(v))
}

= Ev

{
(v0 + c0 + e0,0)p0(m(v)) +

N∑

i=1

(e0,i + c0) pi(m(v)) +
N∑

i=1

xi(m(v))
}
− c0, (1)

where v = (v1, v2, ..., vN). Denote the support of v by V =
∏N

i=1[vi, vi].

For bidder i with private value vi, if he submits signal mi ∈ Mi, his interim expected

payoff is given by:

Ui(vi, mi;p,x,vc)

= Ev−i

(
vi pi(mi,m−i(v−i)) +

∑

j≥0

ei,j pj(mi,m−i(v−i)) − xi(mi,m−i(v−i))

)
, (2)

where v−i = (v1, , ..., vi−1, vi+1, ..., vN), and m−i(v−i) = (m1(v1), ..., mi−1(vi−1), mi+1(vi+1),

..., mN (vN)). Denote the support of v−i by V−i =
∏N

j=1,j 6=i[vj, vj].

4This is from the no passive reassignment (NPR) assumption.
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The seller’s optimization problem is to find the optimal participation thresholds v∗
c

and the optimal direct truthful semirevelation mechanism (p∗,x∗) implementing v∗
c, i.e.,

max
(p,x,vc)

R(p,x,vc) (3)

Subject to:

(i) Ui(vi, vi;p,x,vc) ≥ Ui(vi, ∅;p,x,vc); ∀i ∈ N , ∀vi ∈ [v(i)
c , vi], (4)

(ii) Ui(vi, v
′
i;p,x,vc) ≤ Ui(vi, ∅;p,x,vc); ∀i ∈ N , ∀vi < v(i)

c , ∀v′
i ∈ [v(i)

c , vi], (5)

(iii) Ui(vi, vi;p,x,vc) ≥ Ui(vi, v
′
i;p,x,vc); ∀i ∈ N , ∀vi ∈ [v(i)

c , vi], v′
i ∈ [v(i)

c , vi], (6)

(iv) pi(m) = xi(m) = 0 if mi = ∅, pi(m) ≥ 0, ∀i ∈ N
N∑

i=0

pi(m) ≤ 1, ∀m ∈ M. (7)

Restrictions (4)-(7) come from conditions (a)-(d). Since we consider threshold-participation

at v(i)
c for bidder i, there is no loss of generality to restrict the message space for bidder i

as [v(i)
c , vi] ∪ {∅}

2.2 The Optimal Participation and the Optimal Auction

We next derive the optimal participation thresholds v∗
c and the optimal direct truthful

semirevelation mechanism (p∗,x∗) implementing v∗
c.

For any direct semirevelation mechanism (p,x), we define

Qi(vi;p,vc) = Ev−i
pi(m(v)). (8)

If (p,x) is a direct truthful semirevelation mechanism implementing threshold participa-

tion vc, then Qi(vi;p,vc) is the conditional expected probability that bidder i wins the

object if his private value is vi. Note that Qi(vi;p,vc) = 0 if vi < v(i)
c .

The following Lemma gives the necessary and sufficient conditions for a direct semi-

revelation mechanism to be a direct truthful semirevelation mechanism implementing

threshold participation at given vc.
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Lemma 1: Direct semirevelation mechanism (p,x) is a direct truthful semirevelation

mechanism implementing threshold participation vc, if and only if ∀i ∈ N the following

conditions and (5), (7) hold:

Qi(vi;p,vc) ≥ Qi(si;p,vc), ∀v(i)
c ≤ si ≤ vi ≤ vi, (9)

Ui(vi, vi;p,x,vc) = Ui(v
(i)
c , v(i)

c ;p,x,vc) +
∫ vi

v
(i)
c

Qi(si;p,vc)dsi, ∀vi ∈ [v(i)
c , vi], (10)

Ui(v
(i)
c , v(i)

c ;p,x,vc) ≥ Ui(v
(i)
c , ∅;p,x,vc). (11)

Proof: see appendix.

Based on Lemma 1, we can replace (4) and (6) by (9), (10) and (11) in the seller’s

optimization problem. Applying Lemma 1, the expected revenue of the seller from an

auction mechanism (p,x,vc) satisfying conditions (4)-(7) is given in the following Lemma.

Lemma 2: For a direct truthful semirevelation mechanism (p,x) implementing threshold

participation vc, the seller’s expected revenue can be written as

R(p,x,vc) = Ev

{ N∑

i=0

pi(m(v))J̃i(vi)
}
− c0 −

N∑

i=1

Ai. (12)

where Ai = Ui(v
(i)
c , ∅;p,x,vc)Fi(v

(i)
c ) + (1 − Fi(v

(i)
c ))Ui(v

(i)
c , v(i)

c ;p,x,vc) and J̃i(vi) =

Ji(vi) + c0 +
∑

j≥0 ej,i. We call J̃i(v) the augmented virtual value function.

Proof: see appendix. Note that J̃0(v0) = v0 + c0 +
∑

j≥0 ej,0.

Here and hereafter, if x < ti − 1
fi(ti)

, J̃−1
i (x) is defined as ti; if x > ti, J̃−1

i (x) is defined

as ti. Based on Lemma 2, we are then able to characterize the optimal participation and

the optimal auction.

Proposition 1: (i) All types of bidders participate. The optimal nonparticipation threats

take the following form: If only bidder i does not show up, the item is assigned to the

one (including the seller) generating him the smallest externality given that this smallest

externality is nonpositive, otherwise the seller destroys the item. (ii) Every participating

bidder pays a nonnegative entry fee, which equals the absolute value of the smallest possible
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externality to him. This smallest externality must be nonpositive due to the option of

destroying the object by the seller. (iii) If all bidders participate, the object is assigned to

the player (including the seller) with the highest “augmented virtual value”, provided this

value is nonnegative. If this value is negative, the object is destroyed by the seller. The

winning bidder i pays J̃−1
i (max{0, maxN

j=0,j 6=i J̃j(vj)}) besides the entry fee. On top of the

entry fee, each losing bidder pays a payment (positive or negative) equal to the externality

on him at the outcome of the auction.

Proof of Proposition 1: From (12), a truthful direct semirevelation mechanism must be

optimal if it satisfies the following 2 conditions. First, it minimizes Fi(v
(i)
c )Ui(v

(i)
c , ∅;p,x,vc)

+(1−Fi(v
(i)
c ))Ui(v

(i)
c , v(i)

c ;p,x,vc), ∀i ∈ N . Second, it also maximizes
∑N

i=0 pi(m(v))J̃i(vi),

∀v ∈ V. We next put forward a mechanism (p∗,x∗,v∗
c) satisfying the above criterion and

thus maximizes the seller’s expected revenue.

First, set v∗
c = (v∗(i)

c ) where v∗(i)
c = vi, i ∈ N . In this case, Ui(vi, ∅;p,x,v∗

c) can be

pushed to take the lowest possible value minj≥0 ei,j. This can be achieved by the following

specification. Set pj0(mi,v−i) = 1 where mi = ∅, j0 = argminj≥0,j 6=iei,j if ei,j0 ≤ 0.

Otherwise set pj(mi,v−i) = 0 for j ≥ 0, j 6= i. Note that if minj≥0,j 6=i ei,j > 0, the above

specification implies that the item is then destroyed by the seller if bidder i does not

participate. When the item is destroyed, externalities cease to exist. As ei,i = 0, ∀i ∈ N ,

we have that Ui(vi, ∅;p,x,v∗
c) = minj≥0 ei,j always holds for the above specifications.

Note that minj≥0 ei,j ≤ 0 is the strongest threat possible for bidder i’s nonparticipation.

Second, Ui(vi, vi;p,x,v∗
c) can be driven down to be exactly equal to Ui(vi, ∅;p,x,v∗

c),

which in turn equals minj≥0 ei,j. Note that Ui(vi, vi;p,x,v∗
c) can not be lower than

Ui(vi, ∅;p,x,v∗
c) from the participation constraint. The full participation payment x∗

i (v)

pushing Ui(vi, vi;p,x,v∗
c) to minj≥0 ei,j is defined as below for any given set of full partici-

pation winning probabilities pi(v), ∀0 ≤ i ≤ N . From Lemma 1, we have Ui(vi, vi;p,x,v∗
c)
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= Ui(vi, vi;p,x,v∗
c) −

∫ vi
vi

Qi(si;p,v∗
c)dsi. Thus from (2) x∗

i (v) must satisfy

min
j≥0

ei,j = Ev−i

(
vi pi(v) +

∑

j≥0

ei,j pj(v) − x∗
i (v) −

∫ vi

vi

pi(si,v−i)dsi

)
, ∀i ∈ N . (13)

Naturally, we define

x∗
i (v) = vi pi(v) +

∑

j≥0

ei,j pj(v) − min
j≥0

ei,j −
∫ vi

vi

pi(si,v−i)dsi, ∀i ∈ N . (14)

Clearly, the above defined v∗
c, the nonparticipation threats and full-participation pay-

ments x∗(v) = (x∗
i (v)) minimize Fi(v

(i)
c )Ui(v

(i)
c , ∅;p,x,vc)+(1−Fi(v

(i)
c ))Ui(v

(i)
c , v(i)

c ;p,x,vc),

∀i ∈ N , for any given set of full participation winning probabilities pi(v), ∀0 ≤ i ≤ N .

Third, we define the full-participation winning probabilities p∗ = (p∗i (·)) which maxi-

mize
∑N

i=0 pi(v)J̃i(vi). Clearly, the winning probability of player i, i = 0, 1, ..., N should

be defined as follows.

p∗i (v) =





1, if J̃i(vi) > maxN
j=0,j 6=i J̃j(vj) and J̃i(vi) ≥ 0,

0, otherwise.
(15)

As usual, tie is broken randomly. Clearly, the above defined v∗
c and p∗(v) maximize

∑N
i=0 pi(m(v))J̃i(vi), ∀v ∈ V.

The full-participation payments x∗(v) are then set as follows according to (14). For

bidder i, i ∈ N ,

x∗
i (v) =





J̃−1
i (max{0, maxN

j=0,j 6=i J̃j(vj)}) + Ei, if i wins,

ei,j + Ei, if j(≥ 0) wins,

Ei, if the object is destroyed,

(16)

where Ei = −minj≥0 ei,j.

The full-participation winning probabilities and payments functions x∗ and p∗ together

with the optimal threats lead to a Nash equilibrium in which every bidder participates

and reveals truthfully their types, because the conditions in lemma 1 are satisfied. Since
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v∗
c and p∗ maximize the seller’s expected revenue in (12), we have that v∗

c = (vi) is the set

of optimal participation thresholds, and the full-participation winning probabilities and

payments functions x∗ and p∗ together with the optimal threats constitute the optimal

auction rule. In the same spirit of Jehiel, Moldovanu and Staccheti (1996), there is no need

to consider the joint deviation from the Nash equilibrium.5 Thus all the other winning

probabilities and payments functions which are not relevant to the equilibrium path can

be specified in any way. 2

If J̃0(v0) = v0 + c0 +
∑

j≥0 ej,0 ≥ 0, the object is never destroyed by the seller. If

instead J̃0(v0) = v0 +c0 +
∑

j≥0 ej,0 < 0, the object is destroyed by the seller in probability
∏N

i=1 Prob(p∗i (v) = 0), i.e.,
∏N

i=1 Fi(J
−1
i (−c0 −

∑
j≥0 ej,i)).

2.3 Implementation of the Optimal Auction in Symmetric Set-

ting

We now consider the implementation of the optimal mechanism derived above in a sym-

metric setting. In this symmetric setting, Fi(·) = F (·), fi(·) = f(·) on support [v, v],

∀i ∈ N . In addition, ei,0 = ej,0, e0,i = e0,j, ei,j = e, ∀i, j ∈ N . As usual, we assume the

regularity condition that the virtual valuation J(v) = v− 1−F (v)
f(v)

is an increasing function.

Based on (15) and (16), we have the winning probability of player i, ∀i ∈ N , which

is defined as

p∗i (v) =





1 if vi ≥ zi(v−i),

0 if vi < zi(v−i),
(17)

5Please refer to note 11 in Jehiel, Moldovanu and Staccheti (1996).
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and

x∗
i (v) =





zi(v−i) − minj≥0 ei,j, if i wins,

ei,j − minj≥0 ei,j, if j(≥ 0) wins,

−minj≥0 ei,j, if the object is destroyed,

(18)

where zi(v−i) = max{maxj 6=i,j∈N vj, J̃
−1(max{0, v0 + c0 +

∑
j≥0 ej,0})}. In addition,

p∗0(v) =





1, if J̃(maxN
j=1 vj) < v0 + c0 +

∑
j≥0 ej,0 ≥ 0,

0, otherwise.
(19)

Eq. (18) means that every bidder i pays an entry fee of −minj≥0 ei,j. Moreover, if

bidder i wins, he pays an additional payment of zi(v−i). If he loses, he pays an additional

payment that equals the externality he enjoys or suffers. From (19), if v0 +c0+
∑

j≥0 ej,0 ≥

0, the seller keeps it when the object is not sold out, while if v0 + c0 +
∑

j≥0 ej,0 < 0, it

is optimal for the seller to destroy the unsold object. In case that the sum of the seller’s

valuation, the destroying cost of the seller and the total externalities to the bidders is

negative when the seller keeps the item, intuitively the seller is better off by destroying

the object and collecting a payment from each bidder which equals the externality to him.

Based on the above results, we have the following proposition that describes the im-

plementation of the optimal auction.

Proposition 2: In a symmetric setting with externalities among the seller and bidders, a

modified second-price sealed-bid auction with the following features is the optimal auction.

(a) All types of bidders participate. The optimal nonparticipation threats take the same

form as in Proposition 1(i). Every participant pays a nonnegative entry fee that is defined

as in Proposition 1(ii). (b) If all bidders participate, the highest bidder wins if his bid

is higher than the reserve price, and he pays the second highest bid or the reserve price,

whichever is higher. The reserve price is set at J̃−1(max{0, v0 + c0 +
∑

j≥0 ej,0}). Each

losing bidder pays an additional payment (positive or negative) equal to the externality on
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him at the outcome of the auction. (c) If no bidder bids higher than the reserve price, the

seller may keep or destroy the item. The necessary and sufficient condition for the seller

to destroy the auctioned item (dismantling nuclear weapon) is that the sum of the seller’s

valuation, the destroying cost of the seller and the total externalities to the bidders if the

seller keeps the item is negative.

Each bidder’s payment is adjusted by the amount of externality on him, while he/she

suffers or enjoys this externality at the same time. This leads to an environment in

which bidders bid as if there is no externality on them. Based on similar arguments for

the standard second-price auction, bidding his/her true valuation when participating is

a weakly dominant strategy for every bidder in the auction specified in Proposition 2.

This is intuitively why a modified second-price auction with these additional payments

is optimal, provided that the reserve price and entry fee are properly set. According to

Proposition 2, the entry fee is set at the highest possible level which can be supported

by the optimal nonparticipation threats, and the optimal reserve price is set in a way to

reflect the bidders’ contribution adjusted by the externalities involved.

When ei,0 is negative enough such that minj≥0 ei,j = ei,0, ∀i, for the optimal auction we

then have Ui(vi, vi;p,x,vi) = Ui(vi, ∅;p,x,vi) = ei,0, ∀i. From (12), the optimal expected

revenue for the seller is

R∗(p0,x0) = −c0 −
∑

j≥0

ej,0 +
∫

V

{
p0

0(m(v))(v0 + c0 +
∑

j≥0

ej,0)

+
N∑

i=1

p0
i (m(v))(vi + c0 +

∑

j≥0

ej,i −
1 − Fi(vi)

fi(vi)
)
}
f(v)dv,

where (p0,x0) is the optimal auction rule when the externalities are ei,0, i ∈ N . Let

R′∗(p0,x0) denote the value of the right-hand-side of R∗(p0,x0) when ei,0 decreases to

e′i,0 i ∈ N . Clearly R′∗(p0,x0) ≥ R∗(p0,x0) as p0(m(v)) ∈ [0, 1]. Suppose when ei,0

decreases to e′i,0 i ∈ N , the corresponding optimal auction rule changes to (p′,x′). Denote

the optimal expected revenue by R∗(p′,x′) when the externalities are e′i,0, i ∈ N . We
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must have R∗(p′,x′) ≥ R′∗(p0,x0). Therefore, R∗(p′,x′) ≥ R∗(p0,x0), i.e., the seller’s

optimal expected revenue increases as ei,0 decreases. This help s to explain why North

Korea tries to convince the relevant countries that it owns very powerful nuclear weapon.

2.4 When Bidders Have Private Information on the Externali-

ties They Create for Others

An interesting question is to what extent the results obtained in a common-knowledge

externalities setting apply in a multi-dimensional setting where bidders have private in-

formation on the externalities they create for others. Specifically, we consider the setting

where ej,i, ∀0 ≤ j ≤ N, are bidder i’s private information. For simplicity, we assume that

all vk and ej,i, ∀0 ≤ k, i, j ≤ N are mutually independent.

Jehiel, Moldovanu and Staccheti (1996) look at a 2-dimensional setting where win-

ning bidder impose the same externality on other bidders. They show that the winning

probability of any bidder must not depend on his/her externality signal because of the

rationality condition. Therefore the private information on externality is a redundant

signal, and thus the auction design problem is a one-dimensional program in nature. Al-

though Jehiel, Moldovanu and Staccheti (1996) show these results while assuming losing

bidders suffer the same externality, it is clear that all these results still hold when play-

ers experience heterogenous externalities, as long as players’ private information is the

externalities they create for other players. Specifically, the optimal auction problem can

be transformed into a one-dimensional program by first integrating over the externalities

dimensions. The one-dimensional program obtained is fundamentally the same as the

problem assuming common-knowledge externalities. The only difference is that in the ob-

tained one-dimensional problem, the common-knowledge externalities in the baseline set-

ting are replaced by the expected externalities. Note that these expected externalities are

also common-knowledge as the distributions of the externalities are common-knowledge.
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Based on the above arguments, clearly the results obtained in the common-knowledge

setting still hold if we replace the common-knowledge externalities by the expectations of

the private-information externalities.

3 The Case of Financial Externalities

In the last section, we studied the optimal auction design when the externalities among

the players are exogenous. As a special feature, the optimal auction requires that every

bidder’s payment consists of a component which equals the externalities to him at the

outcome of the auction. This section investigates whether these findings apply to the case

of financial externalities.

Let us first consider a setting of financial externalities formulated in Maasland and

Onderstal (2002). In their setting, bidders’ valuations follow the same distribution on

[v, v]. Each bidder enjoys a positive externality which equals a proportion (denoted by

φ < 1
N−1

) of the total payments of the other bidders. Here, N is the number of bidders

as before. These are all the externalities considered in this setting, there is no externality

between the seller and bidders. Denote the payment of bidder i by xi. Bidder i’s payoff

is then vi − xi + φ
∑N

j=1,j 6=i xj if he wins and pays xi; his payoff is (φ
∑N

j=1,j 6=i xj)− xi if he

pays xi while another player j (seller or bidder) wins.6

Under this specification, Maasland and Onderstal (2002) show that a lowest-price all-

pay auction with proper entry fee and reserve price is optimal in a symmetric independent

private value setting. All types of bidders participate. However, there exists a bidding

threshold v̂ (> v) which is also the threshold winning type. Only the bidders whose

valuations are no less than v̂ bid. The bidders whose valuations are lower than v̂ pay the

entry fee but abstain from bidding. The bidding function is increasing, and the bidder

6Destroying the object is never optimal in this setting.
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with lowest valuation has zero expected payoff.

It seems that this lowest-price all-pay auction has little similarity with the optimal

auction discovered in section 2.3. Thus an interesting question would be whether the

findings for the exogenous externality setting still hold when the externalities are specified

as in Maasland and Onderstal (2002). The answer is positive, as will be shown below.

Maasland and Onderstal (2002) establish a revenue-equivalence theorem which says

that the payoff of the lowest type and the winning probabilities fully determine the seller’s

expected revenue. Based on this revenue-equivalence theorem, we put forward an alter-

native modified second-price auction discribed below, which is revenue-equivalent to the

above lowest-price all-pay auction.

(a.1) There is no entry fee, the reserve price is v̂ (> v);

(a.2) If at least one bidder does not participate, the seller keeps the item to create zero

externality for all bidders;

(a.3) If all participate, the highest bidder wins if his bid is no less than the reserve price

v̂, and his payment consists of two components. First, he pays b1, which is the second

highest bid or the reserve price v̂ (> v), whichever is higher. Second, he pays φ(N − 1)b2,

where b2 = φb1
1−φ(N−2)−φ2(N−1)

> 0. Every losing bidder pays b2. If the highest bid is less

than v̂, the seller keeps the item, and no one pays.

It can be directly verified that under rule (a.3), all bidders (winner or loser) make a

payment component which is equal to the financial externalities on them. This component

eliminates the impact of the financial externalities on the bidding behavior. For the

winner, the first component b1 of his payment does not depend on the payments of other

bidders; while the second component of φ(N−1)b2 equals exactly the financial externalities

due to the payments of other bidders. For any losing bidder, the financial externality on

him is φ(b1 + φ(N − 1)b2 + (N − 2)b2) which equals b2 by the construction of b2. In other

words, each loser pays the financial externality on him like the optimal action established
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in section 2.3. Based on the above discussion, we see that the payoff structure under rules

(a.1)-(a.3) mimics that of a standard second-price auction without externalities. Thus it

is not a surprise that we have the following result.

Lemma 3: For the auction defined by (a.1), (a.2) and (a.3), all bidders participate and

bid their ture values. Moreover, all losing bidders get zero payoff.

Proof: see appendix.

Base on Lemma 3, the lowest type has no chance to win in the auction defined by

(a.1), (a.2) and (a.3), thus his expected payoff is zero. Moreover, the winning probability

function is the same as that of the lowest-price all-pay auction. Therefore, based on the

revenue-equivalence theorem in Maasland and Onderstal (2002), these two auctions are

revenue-equivalent. This result is formally stated in the following proposition.

Proposition 3: The modified second price auction defined by (a.1), (a.2) and (a.3) is

revenue equivalent to the optimal lowest-price all-pay auction established by Maasland and

Onderstal (2002).

In Goeree, Maasland, Onderstal and Turner (2005), each bidder instead enjoys a

positive externality which equals a proportion (denoted by φ, assume φ < 1
N

) of the total

payments of all bidders. Denote the payment of bidder i by xi. Bidder i’s payoff is then

vi −xi +φ
∑N

j=1 xj if he wins and pays xi; his payoff is (φ
∑N

j=1 xj)−xi if he pays xi while

another player j (seller or bidder) wins. Similar to Maasland and Onderstal (2002), they

show that a two-stage lowest-price all-pay auction with proper entry fee and reserve price

is optimal. In the first stage, bidders make the decision whether to pay the entry fee and

participate. All types of bidders participate, however, there exists a bidding threshold

v̂′ (> v) which is also the threshold of winning type. Only the bidders whose valuations

are no less than v̂′ bid. The bidding function is increasing, and the bidder with lowest

valuation has zero expected payoff.

In this setting, we can establish similar results as Proposition 3 by two slight mod-
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ifications to (a.1) and (a.3). First, v̂ in (a.1) is replaced by the bidding threshold v̂′ in

Goeree, Maasland, Onderstal and Turner (2005). Second, in (a.3) every bidder instead

pays an additional payment of b2 = φb1
1−φN

.

Corollary 1: If we replace the v̂ in (a.1) by the bidding threshold as in Goeree, Maasland,

Onderstal and Turner (2005) and let b2 = φb1
1−φN

in (a.3), then the modified second

price auction defined by (a.1), (a.2) and (a.3) is revenue equivalent to the optimal two-

stage lowest-price all-pay auction established by Goeree, Maasland, Onderstal and Turner

(2005).

Consistent with the findings in sections 2.2 and 2.3, for these alternative auctions,

every bidder’s payment consists of a component which equals the externalities to them at

the outcome of the auction. Moreover, the spirit of (a.1) and (a.2) also catch the essence

of constructing the optimal nonparticipation threats and optimal entry fees in section 2.2

and 2.3. All these results suggest that the findings from our baseline setting remain valid

when the financial externalities are considered.

4 Conclusion

This paper provides a complete characterization of the optimal auction maximizing the

seller’s expected revenue when the externalities among all players (seller and bidders)

are allowed. The externalities are not restricted to be uniformly negative or positive.

We show that introducing the possibility for the seller to destroy the auctioned item at

a cost enlarges the freedom of optimal auction design with externalities. Specifically,

destroying the item can be both an optimal threat and an optimal outcome. As optimal

threat for bidder i’s nonparticipation, the item is assigned to the one (including the

seller) generating bidder i the smallest externality provided this smallest externality is

nonpositive. Otherwise the seller uses destroying the item as an optimal threat. Due to
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this optimal threat, the optimal entry fees are always nonnegative. The necessary and

sufficient condition for the seller to destroy the auctioned item (dismantle nuclear weapon)

as an optimal outcome is that the sum of the seller’s valuation, the dismantling cost of

the seller and the total externalities on the bidders if the seller keeps the item is negative.

Furthermore, the optimal reserve price is set differently depending on whether the above

sum is positive. Moreover, when bidders suffer highly negative externalities if the seller

holds the item, we show that the seller’s expected revenue increases as these externalities

become more negative. This provides an alternative explanation why North Korea tries

to convince relevant countries that its nuclear weapons are powerful.

Jehiel, Moldovanu and Staccheti (1996) point out that the seller is better off by not

selling at all if the sum of externalities generated by a sale is larger than all valuations.

Our analysis further reveals that the seller is better off by dismantling while extracting

payments from all buyers, if the above mentioned sum of the seller’s valuation, the dis-

mantling cost and the total externalities to the bidders when the seller keeps the item

is negative. This discloses that the crucial force driving the dismantling result is the

externalities on the bidders imposed by the seller instead of those caused by a sale.

A unique feature of the optimal auction established is that every bidder’s payment

consists of a component which equals the externalities on them at the outcome of the

auction. This component eliminates the impact of the externalities on strategic bidding

behavior. Thus, introducing these additional payments leads to a situation that mimics

a standard auctions design problem with zero externalities on bidders. This is why a

modified second-price auction with these additional payments is optimal, provided the

entry fees and reserve price are appropriately set. In addition, since the sum of this

additional payment and the entry fee is always nonnegative, intuitively there is no loss of

generality to consider only the full-participation mechanisms for the optimal auction with
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externalities.7 This result has been shown in this paper through a formal procedure.

Although the above feature of the optimal auction and other findings are established

in a baseline setting where the externalities are common-knowledge, these are still valid

in an environment where players have private information on the externalities they create

for others. Moreover, we show that these insights hold even when the externality to

every bidder depends on other bidders’ total payments or those of all bidders. Based

on these insights, revenue-equivalent modified second-price auctions are constructed for

those optimal lowest-price all-pay auctions discovered by Maasland and Onderstal (2002)

and Goeree, Maasland, Onderstal and Turner (2005).

7Please refer to footnote 3.
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Appendix

Proof of Lemma 1: From (2), we have

Ui(vi, v
′
i;p,x,vc) = Ui(v′i, v

′
i;p,x,vc)+(vi−v′i)Qi(v′i;p,vc), ∀vi, v′i ∈ [v(i)

c , vi], ∀i ∈ N . (A.1)

From (6) and (A.1), we have

Ui(vi, vi;p,x,vc) ≥ Ui(v′i, v
′
i;p,x,vc)+(vi−v′i)Qi(v′i;p,vc), ∀vi, v′i ∈ [v(i)

c , vi], ∀i ∈ N . (A.2)

Note (6) is equivalent to (A.2).

Using (A.2) twice, we have for ∀ vi, v′i ∈ [v(i)
c , vi], ∀ i ∈ N ,

(vi − v′i)Qi(v′i;p,vc) ≤ Ui(vi, vi;p,x,vc) − Ui(v′i, v
′
i;p,x,vc) ≤ (vi − v′i)Qi(vi;p,vc). (A.3)

(A.3) implies (9). From (A.3), we have for ∀ si, si + δ ∈ [v(i)
c , vi], ∀ i ∈ N ,

Qi(si;p,vc)δ ≤ Ui(si + δ, si + δ;p,x,vc) − Ui(vi, vi;p,x,vc) ≤ Qi(si + δ;p,vc)δ. (A.4)

Since Qi(si;p,vc) increases with si, (A.4) implies

Ui(si, si;p,x,vc)
dsi

= Qi(si;p,vc), ∀i ∈ N , ∀ si ∈ [v(i)
c , vi], (A.5)

where Qi(si;p,vc) is Riemann integrable, so

∫ vi

v
(i)
c

Qi(si;p,vc)dsi = Ui(vi, vi;p,x,vc) − Ui(v(i)
c , v(i)

c ;p,x,vc). (A.6)

(A.6) implies (10), and (11) is directly from (4). Thus (9)-(11) are derived from (4) and (6).

Now we have to show (4) and (6) from (8)-(11).

∀v
(i)
c ≤ si ≤ vi ≤ vi, ∀i ∈ N , (9) and (10) imply

Ui(vi, vi;p,x,vc) = Ui(si, si;p,x,vc) +
∫ vi

si

Qi(ri;p,vc)dri

≥ Ui(si, si;p,x,vc) +
∫ vi

si

Qi(si;p,vc)dri

= Ui(si, si;p,x,vc) + (vi − si)Qi(si;p,vc).
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Similarly, ∀v
(i)
c ≤ vi ≤ si ≤ vi, ∀i ∈ N , (9) and (10) imply

Ui(vi, vi;p,x,vc) = Ui(si, si;p,x,vc) +
∫ si

vi

Qi(ri;p,vc)dri

≥ Ui(si, si;p,x,vc) +
∫ vi

si

Qi(si;p,vc)dri

= Ui(si, si;p,x,vc) + (vi − si)Qi(si;p,vc).

Thus we have (A.2), i.e., (6) is shown. Equation (4) is directly derived from (8), (10) and (11).

2

Proof of Lemma 2: From (2),

∫ vi
vi

Ui(vi,mi(vi);p,x,vc)fi(vi)dvi

=
∫ vi

vi

(∫

V−i

(vi pi(m(v)) +
∑

j≥0

ei,j pj(m(v)) − xi(m(v)))f−i(v−i)dv−i

)
fi(vi)dvi

=
∫

V
(vi pi(m(v)) +

∑

j≥0

ei,j pj(m(v)) − xi(m(v)))f(v)dv. (A.7)

where f−i(v−i) =
∏N

j=1,j 6=i fj(vj) is the density of v−i, and f(v) =
∏N

i=1 fi(vi) is the density of

v.

From (A.7), we have

∑N
i=1

∫ vi

vi

Ui(vi,mi(vi);p,x,vc)fi(vi)dvi

=
∫

V
(p0(m(v))

∑

j≥1

ej,0 +
N∑

i=1

[(vi +
∑

j≥1

ej,i) pi(m(v)) − xi(m(v))])f(v)dv. (A.8)

Note that ei,i = 0, ∀i ≥ 0. From (1) and (A.8),

R(p,x,vc) = −c0 −
N∑

i=1

∫ vi

vi

Ui(vi,mi(vi);p,x,vc)fi(vi)dvi

+
∫

V

(
p0(m(v))(v0 + c0 +

∑

j≥0

ej,0) +
N∑

i=1

pi(m(v))[(vi + c0 +
∑

j≥0

ej,i)]
)
f(v)dv. (A.9)

From (10), we have
∫ vi

vi

Ui(vi,mi(vi);p,x,vc)fi(vi)dvi
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= Ui(v(i)
c , ∅;p,x,vc)F (v(i)

c ) +
∫ vi

v
(i)
c

Ui(vi, vi;p,x,vc)fi(vi)dvi

= Ui(v(i)
c , ∅;p,x,vc)Fi(v(i)

c ) +
∫ vi

v
(i)
c

[Ui(v(i)
c , v(i)

c ;p,x,vc) +
∫ vi

v
(i)
c

Qi(si;p,vc)dsi]fi(vi)dvi

= Ai +
∫ vi

v
(i)
c

[
∫ vi

v
(i)
c

Qi(si;p,vc)dsi]fi(vi)dvi = Ai +
∫ vi

v
(i)
c

[
∫ vi

si

fi(vi)dvi]Qi(si;p,vc)dsi

= Ai +
∫ vi

v
(i)
c

[1 − Fi(si)]Qi(si;p,vc)dsi = Ai +
∫ vi

vi

[1 − Fi(si)]Qi(si;p,vc)dsi, (A.10)

where Ai = Ui(v
(i)
c , ∅;p,x,vc)Fi(v

(i)
c ) + (1 − Fi(v

(i)
c ))Ui(v

(i)
c , v

(i)
c ;p,x,vc).

From (8), we have

∫ vi

vi

[1 − Fi(si)]Qi(si;p,vc)dsi

=
∫ vi

vi

[1 − Fi(si)]

{∫

V−i

pi(mi(si),m−i(v−i))f−i(v−i)dv−i

}
dsi

=
∫

V
pi(mi(si),m−i(v−i))

1 − Fi(si)
fi(si)

f−i(v−i)fi(si)dv−idsi. (A.11)

From (A.10) and (A.11), we have

N∑

i=1

∫ vi

vi

Ui(vi, vi;p,x,vc)fi(vi)dvi

=
N∑

i=1

Fi(v(i)
c )Ui(v(i)

c , ∅;p,x,vc) +
N∑

i=1

(1 − Fi(v(i)
c ))Ui(v(i)

c , v(i)
c ;p,x,vc)

+
∫

V

( N∑

i=1

pi(m(v))
1 − Fi(vi)

fi(vi)

)
f(v)dv. (A.12)

From (A.9) and (A.12), we have the desired result. 2

Proof of Lemma 3: Let us consider any bidder i ∈ N . Denote the highest bid among all

others’ bids by b(1).

First of all, note that a losing bidder always gets zero payoff by construction. Thus every

bidder participates.

Second, we show that it is a weakly dominant strategy for every bidder to bid their true

valuations. Suppose vi < b(1). If his bid bi is no greater than b(1), this does not change his
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winning status, he still gets zero payoff as a losing bidder. He has no incentive to bid higher

than b(1), since he gets negative payoff if bi ≥ v̂. If bi < v̂, his payoff is still zero.

Suppose vi > b(1). He has no incentive to bid higher than vi if this does not change his

winning status. If this changes his winning status, it must be the case that vi < v̂. However,

if this is the case, he decreases his payoff by overbidding. He also has no incentive to underbid

since this may decrease his payoff by losing the auction.

In summary, bidder i has no incentive to deviate from bidding vi. 2
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