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Abstract This paper considers auctions design in a general independent private value

(IPV) setting where each potential bidder has a valuation discovery cost which is his

private information. First, the revenue-maximizing auction generally involves individual

entry fee for each bidder which equals the hazard rate of his entry cost distribution,

evaluated at the optimal entry-threshold for him. The second-price auction with no

entry fee and a reserve price equal to seller’s valuation remains the ex ante efficient

auction. Second, even for the symmetric setting, it is in general an auction implementing

asymmetric rather than symmetric entry across bidders that maximizes the total expected

surplus or the seller’s expected revenue. This result holds no matter the entry costs are

the bidders’ private information or common knowledge. Third, if the distributions of

entry costs are degenerated (common-knowledge costs), there is no loss of generality

in considering entry patterns where every bidder participates in probability of either 0

or 1, for the revenue-maximizing (also total-expected-surplus-maximizing) auction. The

corresponding revenue-maximizing auction generally employs positive entry fees to extract

the surplus of the participants.

Keywords: Auctions Design, Endogenous Participation, Valuation Discovery Cost.

JEL classifications: D44, D82.
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1 Introduction

The impact of valuation discovery costs on bidders’ entry decision and auctions design,

has been extensively studied by Johnson (1979), Milgrom (1981), French and McCormick

(1984), McAfee and McMillan (1987), Engelbrecht-Wiggans (1987, 1993), Harstad (1990),

Levin and Smith (1994) and Ye (2004) among others. Here, valuation discovery costs refer

to the costs for bidders to discover their valuations of the auctioned object.1 All these

previous studies assume that bidders’ valuation discovery costs are common knowledge.2

In this paper, we allow the valuation discovery costs to be bidders’ private information in

a general independent private value (IPV) framework allowing asymmetry across bidders,

and provide a path to show the auctions that maximize the total expected surplus and

seller’s revenue, respectively. The case of common-knowledge costs corresponds to the

setting that the distributions of entry costs are degenerated. The methodology developed

for private-information costs case is also applied in this paper to the case of common-

knowledge discovery costs. This exercise provides new insights by allowing full flexibility

in bidders’ entry pattern.

We first review the literature and introduce our new findings for the common-knowledge

discovery costs setting. McAfee and McMillan (1987) study an IPV framework with in-

finite number of potential bidders. They show that the optimal reserve price for seller is

his own valuation.3 By allowing the optimal number of entrants to be a non-integer, they

show that a first-price auction with a reserve price equal to seller’s valuation and a pos-

itive entry fee is the revenue-maximizing auction. Since non-integer number of entrants

1There are many studies that focus on other entry costs that are incurred even when bidders know

their valuations. These studies include Green and Laffont (1984), Samuelson (1985), Stegeman (1996),

Menezes and Monteiro (2000) and Lu (2004a, 2004b, 2005).
2Matthews (1984) and Tan (1992) consider the case where the information quality depends on the

amount of investment chosen by the bidders.
3Engelbrecht-Wiggans (1987) independently finds a similar result.
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is not implementable,4 McAfee and McMillan (1987) further establish that a first-price

auction with a reserve price equal to seller’s valuation and zero entry fee leads to the clos-

est discrete number of participants to the unrestricted optimum. Engelbrecht-Wiggans

(1993) further examines the revenue-maximizing auction in a setting allowing for affilia-

tion among bidders’ private valuations while restricting the number of participants to an

integer. In all these works, it is assumed that bidders participate in either probability

of 1 or 0. Levin and Smith (1994) and Ye (2004) look at the symmetric mixed strategy

entry equilibrium in a symmetric setting, i.e., every potential bidder participates in a

common probability that falls in the interval (0, 1). Levin and Smith (1994) show that

the revenue-maximizing auction must also induce socially optimal entry. Particularly, for

the private value case, this optimal entry occurs when seller charges no entry fee and a

reserve price equal to seller’s valuation. Ye (2004) shows a similar result in a private value

framework, which differs from Levin and Smith (1994) in assuming that after incurring an

entry cost, each entrant not only observes his own valuation, but also observes information

that updates his belief on the distributions of other bidders’ valuations.

In this paper, we further allow each bidder to participate in any probability in the

interval [0, 1]. This results in new findings. First, there is no loss of generality in consid-

ering the entry patterns where every bidder participates in probability of 0 or 1 for the

revenue-maximizing (meanwhile ex ante efficient) auction. Second, for symmetric settings

considered in Levin and Smith (1994), we explicitly show that the optimal entry pattern

maximizing the seller’s expected revenue (meanwhile the total expected surplus) is gener-

ally an asymmetric corner solution rather than the symmetric inner solution in terms of

the participation probabilities. This insight explains why seller’s expected revenue may

drop with the number of potential bidders in Levin and Smith (1994) when they restrict

the entry pattern to be symmetric. Third, the highest total expected surplus is still im-

4Although the expected number of entrants can be a non-integer if bidders participate in mixed

strategy, the number of entrants is still random.
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plemented through a second-price auction with no entry fee and a reserve price equal

to the seller’s valuation, even if the optimal entry pattern is asymmetric across bidders.

However, generally there exist other entry fees that are also ex ante efficient. Fourth, indi-

vidual entry fees for each bidder generally are essential to extract all the expected surplus

of the participants at the revenue-maximizing entry pattern. In other words, if asymmet-

ric participation probabilities across bidders are allowed, then zero entry fee remains ex

ante efficient although it is not unique, however, generally it is not revenue-maximizing.

An interesting question to ask would be to what extent these results still hold if the entry

costs are private information of bidders.

For the setting with private information entry costs, we first establish a convenient

way to write the optimal total expected surplus and seller’s expected revenue as a func-

tion of the vector of participation thresholds in terms of the bidders’ entry costs. This

allows us to establish useful connections between the first order conditions characteriz-

ing the optimal entry thresholds and the expected surplus of these threshold types in

a second-price auction with no entry fee and a reserve price equal to seller’s valuation.

Based on these connections, we find that a second-price auction with no entry cost and

a reserve price equal to seller’s valuation remains the ex ante efficient auction. However,

the seller’s optimal expected revenue generally cannot be implemented through such an

auction. In addition, the entry pattern maximizing the seller’s expected revenue gener-

ally no longer coincides with the one maximizing the total expected surplus. The entry

fees in the revenue-maximizing auction are generally positive and different across bidders.

Specifically, the optimal entry fees for different bidders are respectively the hazard rates of

the individuals’ entry cost distribution evaluated at the bidders’ participation thresholds.

In the case where bidders’ valuation discovery costs are common knowledge, the auction

maximizing the seller’s expected revenue must also maximize the total expected surplus

of both the seller and bidders, since the seller can extract all the expected surplus of the
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participants using entry fees. However, in the case that the entry costs are private infor-

mation of bidders, the seller can no longer extract all the expected surplus of participants.

This leads to the discrepancy between the problems of maximizing the seller’s expected

revenue and maximizing the total expected surplus. This is why the entry pattern maxi-

mizing the seller’s expected revenue generally does not maximize total expected surplus,

and the revenue-maximizing auction is different from the ex ante efficient auction.

Interestingly, we find that even for symmetric setting with private-information of entry

costs, it could be an auction implementing asymmetric entry rather than symmetric entry

that maximizes the total expected surplus or the seller’s expected revenue. For example,

let us consider a setting where there are 2 potential bidders. Bidders’ private values follow

the uniform distribution on [0, 1], and bidders’ entry costs follow the uniform distribution

on [0.4, 0.5]. The seller’s valuation is assumed to be zero. In this setting, the total

expected surplus takes the maximum of 0.05 when the participation thresholds of entry

costs for the 2 bidders are set at 0.5 and 0.4, respectively; seller’s expected revenue takes

the maximum of 0.025 when the participation thresholds for the 2 bidders are set at 0.45

and 0.4, respectively. If we restrict the participation thresholds to be the same across

the two bidders, then the total expected surplus takes the maximum of 0.023 when the

common participation threshold is set at 0.4231, and seller’s expected revenue takes the

maximum of 0.01875 when the common participation threshold is set at 0.4187. The

intuition for the asymmetric optimum is explained as follows. Suppose the symmetric

optimum is an inner solution where every bidder participates in a common probability in

(0, 1). The fundamental reason for asymmetric optimum lies in the fact that the marginal

contribution of an additional participant’s valuation to the total expected surplus or

seller’s expected revenue strictly decreases with the number of other participants. This

fact implies that given the summation of the participating probabilities of any two bidders,

the marginal contribution of their valuations to the total surplus or the seller’s revenue
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is maximized when the difference between their participating probabilities is maximized.

It follows that the optimum must be asymmetric unless the symmetric optimum is a

corner solution, provided that the above difference-maximizing adjustment in the entry

probabilities of the two bidders does not substantially change the expected entry costs.5

This paper is organized as follows. In section 2, we consider a general IPV setting where

potential bidders have different distributions on both valuations and valuation discovery

costs. The ex ante efficient auction and revenue-maximizing auction are established. In

section 3, we focus on the symmetric IPV setting, where potential bidders share identical

distributions on valuations and valuation discovery costs. We show that even in symmetric

setting, it could be an auction implementing asymmetric entry rather than symmetric

entry that maximizes the total expected surplus or the seller’s expected revenue. Section

4 revisits the common-knowledge entry costs case. The findings in section 4 echo those

in sections 2 and 3, and provide new insights in auctions design with common-knowledge

entry costs. Section 5 concludes.

2 Auctions Design under General IPV Setting

There are N potential bidders who are interested in a single item auctioned, where N

is public information. Denote this group of potential bidders by N = {1, 2, ..., N}. The

seller’s valuation is v0, which is public information. Without loss of generality, we normal-

ize v0 to be zero. Bidder i has to incur an entry cost of ci in order to enter the auction.6

After incurring ci, he observes his private value vi. Both ci and vi are assumed to be

private information of bidder i. The cumulative distribution function of ci is Gi(ci) with

5This condition clearly holds when entry costs are common knowledge. In general, it holds when the

ranges of private entry costs are small.
6This assumption is adopted by most of the literature. However, this assumption precludes the

possibility that a bidder may simply submit a bid equal to the unconditional expected valuation.
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density function of gi(ci), while the cumulative distribution function of vi is Fi(vi) with

density function of fi(vi). The support of Gi(ci) is [ci, ci], and the support of Fi(vi) is

[vi, vi]. We assume gi(·) > 0 on its support. The distributions of ci and vi, i ∈ N are

assumed to be common knowledge. For simplicity, we assume ci and vj, ∀i, j ∈ N are

mutually independent. The seller and bidders are assumed to be risk neutral.

The timing of the auction is as follows.

Time 0: The group of potential bidders N and the seller’s valuation v0 are revealed

by Nature as public information. Every bidder i observes his private cost ci, i ∈ N .

Time 1: The auctioneer announces the rule of the auction.

Time 2: The bidders simultaneously and confidentially make their entry decisions.

If they do not enter, they take the outside option which gives them zero payoff. If they

enter, they incur their private entry costs and observe their private values.

Time 3: Every participant bids.7

Time 4: The payoffs of the auctioneer and all the participating bidders are determined

according to the announced rule at time 1.

We study the auction rules announced at time 1, which maximizes the total expected

surplus and the seller’s expected revenue, respectively. Hereafter, the auction maximizing

the total expected surplus of seller and bidders is called the ex ante efficient auc-

tion; the auction maximizing the expected revenue of the seller is called the revenue-

maximizing auction. We use A0 to denote the second-price auction with no entry fee

and a reserve price equal to the seller’s valuation v0.

Before we proceed to consider auctions design, we first characterize the feasible entry

patterns.

Lemma 1: Any equilibrium entry pattern can be described through a vector of entry

thresholds Cc = (c(1)
c , ..., c(N)

c ) satisfying the following properties: (i) c(i)
c ∈ [ci, ci], ∀i ∈ N ;

7Every participant may or may not observe the other participants. The auctions designed later work

in both cases.
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(ii) if ci < c(i)
c , bidder i participates with probability of 1; if ci > c(i)

c , bidder i participates

with probability of 0.

Proof: Let us consider any entry equilibrium E implemented by a feasible auction rule.

If all bidders other than i adopt the equilibrium entry strategy in E , the bidder i’s equi-

librium entry strategy in E must be his best entry strategy. Given all bidders other than i

adopt the equilibrium entry strategy in E , there must exist an entry threshold c(i)
c ∈ [ci, ci]

such that bidder i’s best entry strategy is described by property (ii) in Lemma 1. This

is true because the expected payoff of bidder i from participating in any given auction

decreases strictly with his entry cost, given all bidders other than i adopt the equilibrium

entry strategy in E . 2

Given a threshold-vector Cc where c(i)
c ∈ [ci, ci], ∀i ∈ N , for simplicity we assume (i)

if c(i)
c > ci, bidder i participates if and only if ci ≤ c(i)

c ; (ii) if c(i)
c = ci, no type of bidder

i participates. This simplification is a reasonable one, because if c(i)
c > ci bidder i with

cost c(i)
c at least weakly prefers participation, and if c(i)

c = ci then bidder i with cost c(i)
c at

least weakly prefers nonparticipation. Moreover, this simplification only further specifies

the participation of the threshold type c(i)
c of bidder i. The total expected surplus and

seller’s expected revenue are not affected.

Next, we establish the following results regarding the restricted efficient auction and

revenue-maximizing auction, which implements a given entry threshold-vector Cc =

(c(1)
c , ..., c(N)

c ), where c(i)
c ∈ [ci, ci], ∀i ∈ N .

Lemma 2: Among all auctions implementing any given participation threshold vector

Cc = (c(1)
c , ..., c(N)

c ), a second-price auction with a reserve price equal to seller’s valuation

and appropriately set entry fee (or subsidy) for each bidder provides the highest seller’s

expected revenue as well as the highest total expected surplus. The entry fees (or subsidies)

are charged upon entry at time 2 before the valuations are learned by the entrants, and

are set at levels such that the threshold-type entrants get zero expected surplus.
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Proof: Let us first consider auction A0. Suppose all bidders other than i participate

in auction A0 according to thresholds Cc = (c(1)
c , ..., c(N)

c ). Denote bidder i’s expected

surplus by Si(c
(i)
c ;Cc) if he participates in A0 while his entry cost is c(i)

c . Set a time-2

entry fee (or subsidy) for bidder i as ei = Si(c
(i)
c ;Cc), ∀i ∈ N . Clearly, for a second-price

auction with entry fee (or subsidy) ei for bidder i and a reserve price equal to seller’s

valuation, bidder i’s expected surplus is c(i)
c − ci if he participates and his entry cost is ci.

Hence, the above auction with entry fee ei for bidder i implements participation thresholds

Cc = (c(1)
c , ..., c(N)

c ). Note that for any auction implementing participation thresholds

Cc = (c(1)
c , ..., c(N)

c ), the total expected entry costs are the same. Thus the above designed

auction achieves the highest possible total expected surplus among the class of auctions

implementing Cc, as the auction always awards the item to the participant (including the

seller) with the highest valuation.

Moreover, for any auction implementing entry threshold-vector Cc = (c(1)
c , ..., c(N)

c ),

the expected surplus of bidder i with entry cost ci ≤ c(i)
c can not be smaller than c(i)

c − ci.

This is due to the fact that a type ci of bidder i can always mimic a type c(i)
c of bidder

i, and by doing so he gets at least c(i)
c − ci. Recall that in a second-price auction with

entry fee ei for bidder i and a reserve price equal to seller’s valuation, bidder i’s expected

surplus is exactly c(i)
c −ci if he participates and his entry cost is ci. As a result, this auction

achieves the highest possible seller’s expected revenue among all auctions implementing

any given entry threshold-vector Cc = (c(1)
c , ..., c(N)

c ). 2

For a given entry threshold-vector Cc where c(i)
c ∈ [ci, ci], ∀i ∈ N , we denote the

highest total expected surplus attainable by TES(Cc), and the highest seller’s revenue

attainable by SER(Cc). We next introduce a convenient way of writing TES(Cc) and

SER(Cc).

Define set K = {(k1, k2, ..., kN)|ki ∈ {0, 1}, i ∈ N}, where ki denotes bidder i’s entry

status. Specifically, ki = 1 stands for the participation of bidder i, while ki = 0 represents

9



the non-participation of bidder i. In addition, let k0 = 1 to symbolize the participation of

the seller for convenience. For any k = (k1, k2, ..., kN) ∈ K, use vk to denote the highest

valuation of all participants including the seller. Then vk can be written as the following

vk = max
{kj=1,0≤j≤N}

{vj}.

We use Fk(vk) and fk(vk) to denote the cumulative and density function of vk respectively.

Furthermore, we use Vk to denote the expectation of vk.
8 TES(Cc) and SER(Cc) can

then be written as the following

TES(Cc) =
∑

{k∈K}

(
Vk

∏

i∈N
(Gi(c

(i)
c )ki(1 − Gi(c

(i)
c ))1−ki)

)
−

∑

i∈N

∫ c
(i)
c

ci

cigi(ci)dci, (1)

SER(Cc) =
∑

{k∈K}

(
Vk

∏

i∈N
(Gi(c

(i)
c )ki(1 − Gi(c

(i)
c ))1−ki)

)
−

∑

i∈N
c(i)
c Gi(c

(i)
c ). (2)

The first summation term in (1) is the contribution of the valuations of all participants

including the seller to the total expected surplus if potential bidders participate according

to threshold-vector Cc. The second term is the contribution (negative) of the entry costs

of participants to the total expected surplus if the potential bidders participate according

to threshold-vector Cc. Following the proof of Lemma 2, we know that the expected

information rent of bidder i is
∫ c

(i)
c

ci
(c(i)

c − ci)gi(ci)dci. This leads to (2) giving the seller’s

expected revenue, which is the difference between the total expected surplus and the

bidders’ expected information rent.

2.1 Ex Ante Efficient Auction

We derive the ex ante efficient auction through two steps. First, we characterize the first

order conditions for the optimal threshold-vector C∗
c = (c∗(1)c , ..., c∗(N)

c ), which maximizes

TES(Cc). Second, we show that auction A0 implements C∗
c.

8Define wk = max{v0, max{kj=1,j∈N}{vj}}, we have Vk = v0Fk(v0) +
∫ wk

v0
vkfk(vk)dvk.
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First, we characterize the first order conditions for the optimal threshold-vector C∗
c

maximizing TES(Cc). Let us consider bidder i’s optimal threshold c∗(i)c , ∀i ∈ N . The 2N

components in
∑

{k∈K}

(
Vk

∏
i∈N (Gi(c

(i)
c )ki(1−Gi(c

(i)
c ))1−ki)

)
can be divided into 2 groups.

In group 1, there are 2N−1 components in which ki = 1, while in group 2 there are other

2N−1 components in which ki = 0. Note that for each component in group 1, there is a

corresponding component in group 2 satisfying that all kj, ∀j 6= i are same. This feature

leads to the following result.

Define K−i = {(k1, ..., ki−1, ki+1, ..., kN)|kj ∈ {0, 1}, j 6= i.}, ∀i ∈ N . For any k−i =

(k1, ..., ki−1, ki+1, ..., kN) ∈ K−i, define vector k̃1(k−i) = (k̃1
j ) ∈ K, in which k̃1

j = kj, ∀j 6=

i, and k̃1
i = 1; define vector k̃0(k−i) = (k̃0

j ) ∈ K, in which k̃0
j = kj, ∀j 6= i, and k̃0

i = 0.

We then have

∂TES(Cc)

∂c
(i)
c

= gi(c
(i)
c )

∑

{k−i∈K−i}
[(Vk̃1(k−i)

− Vk̃0(k−i)
−c(i)

c )
∏

j 6=i

Gj(c
(j)
c )kj (1 − Gj(c

(j)
c ))1−kj ]. (3)

Suppose C∗
c maximizes TES(Cc), then we have the following characterization for C∗

c.

For all i ∈ N ,

∂TES(C∗
c)

∂c
(i)
c

=





0, if c∗(i)c ∈ (ci, ci),

≥ 0, if c∗(i)c = ci,

≤ 0, if c∗(i)c = ci.

(4)

Define TSi(Cc) =
∑

{k−i∈K−i}[(Vk̃1(k−i)
−Vk̃0(k−i)

−c(i)
c )

∏
j 6=i Gj(c

(j)
c )kj(1−Gj(c

(j)
c ))1−kj ].

This term in (3) is the marginal contribution of bidder i with entry cost c(i)
c to the total

expected surplus, given that other bidders participate in auction A0 according to Cc.

On the other hand, TSi(Cc) is the expected payoff of bidder i with entry cost c(i)
c

from participating in auction A0, provided that other bidders participate according to

Cc. This can be seen from the following arguments. Note that the economic meaning

of Vk̃1(k−i)
− Vk̃0(k−i)

− c(i)
c is the marginal contribution of bidder i with cost c(i)

c to the

total expected surplus if he participates in auction A0, and all other participants are
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those bidders with kj = 1, j 6= i in vector k−i. Hence, Vk̃1(k−i)
− Vk̃0(k−i)

− c(i)
c can be

alternatively written as

Vk̃1(k−i)
− Vk̃0(k−i)

− c(i)
c =

∫ vi

v0

[(vi − v0)Fk̃0(k−i)
(v0)

+
∫ vi

v0

(vi − vk̃0(k−i)
)fk̃0(k−i)

(vk̃0(k−i)
)dvk̃0(k−i)

]fi(vi)dvi − c(i)
c , (5)

where Fk̃0(k−i)
(·) and fk̃0(k−i)

(·) are the cumulative distribution function and density func-

tion of vk̃0(k−i)
, respectively. In addition, note that the right hand side of (5) can also

be interpreted as the expected payoff of bidder i with cost c(i)
c when he participates in

auction A0, if all other participants are those bidders with kj = 1, j 6= i in vector k−i.

The result then follows that TSi(Cc) is the expected payoff of bidder i with cost c(i)
c when

he participates in auction A0, if all other potential bidders participate according to Cc.

This insight together with (3) and (4) lead to the following proposition which addresses

the ex ante efficient auction.

Proposition 1: The second-price auction A0 with a reserve price equal to seller’s valu-

ation and no entry fee is ex ante efficient.

Proof: Since gi(·) > 0, it is clearly a Nash equilibrium that every bidder participates in

auction A0 according to C∗
c, when (4) is satisfied for C∗

c. 2

From Proposition 1, the result that auction A0 is ex ante efficient holds in a much

more general environment than the symmetric IPV setting with common-knowledge costs

studied in Levin and Smith (1994). Furthermore, the result does not depend on the

restriction of symmetry on entry pattern across bidders. Moreover, Proposition 1 ac-

commodates the flexibility of an optimal corner solution, as indicated by (4). An ex-

ample of corner solution is provided in the following symmetric setting, where v0 = 0,

N = 2, Fi(vi) = vi, ∀vi ∈ [0, 1], and Gi(ci) = 10(ci − 0.4), ∀ci ∈ [0.4, 0.5]. In this setting,

TES(Cc) takes the maximum of 0.05 when c(1)
c = 0.5 and c(2)

c = 0.4. This means that

one bidder always participates, while the other one never participates.

Although zero entry fee in a second-price auction with reserve price equal to seller’s
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valuation is indeed ex ante efficient, the same may apply to other entry fees. This is

always true when c∗(i)c is not an inner solution. If c∗(i)c = ci, any entry fee for bidder i

which is smaller than or equal to TSi(C
∗
c), is also ex ante efficient. If c∗(i)c = ci, any entry

fee for bidder i which is greater than or equal to TSi(C
∗
c) is also ex ante efficient.

2.2 Revenue-Maximizing Auction

We now study the revenue-maximizing auction. From (1), (2) and (3), we have

∂SER(Cc)

∂c
(i)
c

= gi(c
(i)
c )

∑

{k−i∈K−i}

{
(

∏

j 6=i

Gj(c
(j)
c )kj(1 − Gj(c

(j)
c ))1−kj )

·(Vk̃1(k−i)
− Vk̃0(k−i)

− c(i)
c − Gi(c

(i)
c )

gi(c
(i)
c )

)
}
. (6)

Suppose that C+
c = (c+(1)

c , ..., c+(N)
c ) maximizes SER(Cc), then we have the following

characterization for C+
c . For all i ∈ N ,

∂SER(C+
c )

∂c
(i)
c

=





0, if c+(i)
c ∈ (ci, ci),

≥ 0, if c+(i)
c = ci,

≤ 0, if c+(i)
c = ci.

(7)

Denote
∑

{k−i∈K−i}

{
(
∏

j 6=i Gj(c
(j)
c )kj(1−Gj(c

(j)
c ))1−kj)(Vk̃1(k−i)

−Vk̃0(k−i)
−c(i)

c −Gi(c
(i)
c )

gi(c
(i)
c )

)
}

by BSi(Cc). Suppose that all other potential bidders participate according to C+
c . Based

on the arguments in section 2.1, we have that BSi(C
+
c ) is the expected payoff of bidder i

with cost c(i)
c , if he participates in a second-price auction with a reserve price equal to v0

and a time-2 entry fee of Gi(c
+(i)
c )

gi(c
+(i)
c )

for bidder i.9

Based on this insight, we obtain from (6) and (7) the following proposition that ad-

dresses the revenue-maximizing auction.

9As pointed in Lemma 2, the entry fees (or subsidies) are charged upon entry at time 2 before the

valuations are learned by the entrants

13



Proposition 2: Suppose that C+
c maximizes SER(Cc), then a second-price auction with

reserve price equal to seller’s valuation and time-2 entry fees ei for bidder i defined below

leads to the seller achieving the highest expected surplus.10 The time-2 optimal entry fees

ei, i ∈ N are defined as

ei =





Gi(c
+(i)
c )

gi(c
+(i)
c )

, if c+(i)
c ∈ (ci, ci),

TSi(C
+
c ) ≥ 1

gi(ci)
, if c+(i)

c = ci,

any number ≥ TSi(C
+
c ), if c+(i)

c = ci.

(8)

Furthermore, no other entry fees works.

Proof: Since gi(·) > 0, it is clearly a Nash equilibrium that every bidder participates

in the above defined auction according to C+
c , when (7) and (8) are satisfied for C+

c .

Moreover, if ei is defined differently from (8), then it is clear that either the entry threshold

c+(i)
c can not be implemented or the surplus of the entrant i with c+(i)

c can not be extracted

completely. 2

From Proposition 2, if the entry cost is private information of bidders, then generally

the revenue-maximizing auction involves individual entry fees. The second-price auction

A0 with a reserve price equal to seller’s valuation and no entry fee provides the seller the

highest expected revenue if and only if c+(i)
c = ci and TSi(C

+
c ) ≤ 0, ∀i ∈ N . This is

a degenerate case where it is inefficient for any bidder to participate in any chance, i.e.,
∫ vi
v0

(vi − v0)fi(vi)dvi ≤ ci, ∀i ∈ N .

Propositions 1 and 2 show that if the entry costs are private information of the bidders,

then the optimal entry patterns that maximize the expected total surplus and the seller’s

expected revenue are generally different. Thus, the ex ante efficient auction and the

revenue-maximizing auction are generally different. In contrast, as will be revealed in

Section 4.1, if the entry costs are public information of the bidders, then the optimal

10Here and hereafter, the entrants pay their entry fees or receive their entry subsidies before their

valuations are learned.
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entry patterns that maximize the expected total surplus and the seller’s expected revenue

are the same, although the optimal entry fees in the ex ante efficient auction and revenue-

maximizing auction can be different. The intuition behind this difference is explained as

follows. If the entry costs are public information, the seller can always extract all the

surplus of the participants. Thus the entry pattern maximizing total expected surplus

also maximizes the seller’s expected revenue. However, if the entry costs are private

information of the bidders, then the seller has no way to extract all the surplus of the

participants as shown in the proof of Lemma 2. It is this special feature that leads to the

discrepancy between the problems of maximizing seller’s expected revenue and maximizing

the total expected surplus. It follows that generally the entry pattern maximizing the

seller’s expected revenue generally does not maximize total expected surplus, and the

revenue-maximizing auction must generally be different from the ex ante efficient auction.

3 Further Issues in Symmetric IPV Setting

In section 2, we consider the unrestricted ex ante efficient and revenue-maximizing auc-

tions in a general IPV setting where bidders have private-information entry costs. The

setting considered in this section is identical to that of section 2 except the following

further symmetry restrictions on the distributions of the bidders’ valuations and entry

costs. The cumulative distribution functions of all ci, i ∈ N are G(·) with density func-

tion of g(·). The cumulative distribution functions of all vi, i ∈ N are F (·) with density

function of f(·). The support of G(·) is [c, c], and the support of F (·) is [v, v]. We assume

g(·) > 0 on its support. One reason for further considering the symmetric setting lies in

that people are usually interested in the symmetric equilibrium in this setting.

Clearly, all the findings in section 2 apply to the above specified symmetric IPV

setting. In this section, we investigate some special issues which are unique to the above

symmetric setting. First, we show that even for the symmetric setting, the entry patterns

15



maximizing the total expected surplus and the seller’s revenue are generally asymmetric,

i.e., the optimal participation thresholds are different across bidders. Second, on one

hand, discriminating symmetric bidders may not always be allowed; on the other hand,

people usually are interested in the symmetric entry in symmetric setting. We then derive

the restricted ex ante efficient auction and revenue-maximizing auction within the class

of auctions implementing symmetric entry across bidders.

3.1 Asymmetry in the Optimal Participation Thresholds

We begin from the following example. Consider a symmetric setting where v0 = 0,

N = 2, F (v) = v, ∀v ∈ [0, 1], and G(c) = 10(c − 0.4), ∀c ∈ [0.4, 0.5]. Direct calculations

using (1) and (2) give the following results. TES(Cc) takes the maximum of 0.05 when

c(1)
c = 0.5 and c(2)

c = 0.4, and SER(Cc) takes the maximum of 0.025 when c(1)
c = 0.45

and c(2)
c = 0.4. If we restrict c(1)

c = c(2)
c , then we have TES(Cc) takes the maximum

of 0.023 when c(1)
c = c(2)

c = 0.4231, and SER(Cc) takes the maximum of 0.01875 when

c(1)
c = c(2)

c = 0.4187. In other words, the optimal participation patterns maximizing the

total expected surplus and the seller’s expected revenue are asymmetric.

The above example immediately shows that “symmetric” entry is generally restrictive

for auctions design. The intuitions behind this result is as follows. Define Wn, n ≥ 0 as

the expectation of the highest among the valuations of the seller and n symmetric bidders.

For simplicity, let us consider the case with 2 potential bidders (N=2). From (1) and (2),

the first common component of TES(c(1)
c , c(2)

c ) and SER(c(1)
c , c(2)

c ) can be written as

G(c(1)
c )G(c(2)

c )W2 + [G(c(1)
c )(1 − G(c(2)

c )) + G(c(2)
c )(1 − G(c(1)

c ))]W1

+(1 − G(c(1)
c ))(1 − G(c(2)

c ))W0

= (G(c(1)
c ) + G(c(2)

c ))(W1 − W0)

+
1

4
[(G(c(1)

c ) + G(c(2)
c ))2 − (G(c(1)

c ) − G(c(2)
c ))2][(W2 − W1) − (W1 − W0)].
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Note that W2 − W1 > W1 − W0 as Wn+1 − Wn (the contribution of the valuation of an

additional bidder if there are already n bidders) decreases with n. Thus for given G(c(1)
c )+

G(c(2)
c ), we want to maximize G(c(1)

c )−G(c(2)
c ) in order to maximize the above component.

Therefore, if the symmetric optimum is an inner solution where both bidders participate

in a common probability in (0, 1), we must have that the unrestricted optimal thresholds

maximizing the above common component be asymmetric. The above arguments can be

generalized for N > 2 by focusing on the entry probabilities of any two bidders while

assuming the entry probabilities of all other bidders are fixed. It is clear that if c and

c are close enough, maximizing the difference between the entry probabilities of any 2

bidders while keeping the sum of entry probabilities unchanged will lead to higher total

expected surplus and seller’s expected revenue because the second terms in (1) and (2)

do not change much. This is especially true when entry costs are common knowledge

as in section 4.2, because the second term in (16) does not change if the sum of entry

probabilities remains unchanged.

Although the optimal entry patterns are generally asymmetric even in the symmetric

setting, a seller may not be allowed to discriminate against some bidders. In addition,

more attention is paid to the auctions implementing symmetric entry across symmetric

bidders in the literature. We thus emphasize the restricted ex ante efficient auction and

revenue-maximizing auction within the class of auctions implementing symmetric entry

across bidders.

3.2 Ex Ante Efficient Auction in Symmetric-Entry Class

Symmetric entry across bidders implies that the thresholds c(i)
c are same across all po-

tential bidders. Suppose c(i)
c = cc ∈ [c, c], ∀i ∈ N . For notational simplicity, we define

TES(cc) = TES(Cc), where c(i)
c = cc in vector Cc, ∀i ∈ N .
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Under this restriction, we have

dTES(cc)

dcc
=

∑

{i∈N}

∂TES(Cc)

∂c
(i)
c

= N
∂TES(Cc)

∂c
(i)
c

, ∀i ∈ N . (9)

Equation (9) leads to

∂TES(Cc)

∂c
(i)
c

=
dTES(cc)

dcc
/N, ∀i ∈ N . (10)

Suppose that c∗∗c maximizes TES(cc). Use C∗∗
c to denote the threshold-vector in which

every element equals c∗∗c . Then we have the following characterization for c∗∗c from (10).

For all i ∈ N ,

TSi(C
∗∗
c ) =

∂TES(C∗∗
c )

∂c
(i)
c

/g(c∗∗c ) =





0, if c∗∗c ∈ (c, c),

≥ 0, if c∗∗c = c,

≤ 0, if c∗∗c = c.

(11)

Equation (11) means that C∗∗
c must be a local optimal solution of TES(Cc), if it is not

globally optimal. 11

Note that TSi(C
∗∗
c ) is the expected payoff of bidder i with cost c∗∗c when he participates

in auction A0, if all other potential bidders participate according to threshold c∗∗c . Thus,

equation (11) leads to the following proposition.

Proposition 3: In a symmetric IPV setting with private-information valuation-discovery

costs for bidders, the second-price auction A0 with a reserve price equal to seller’s valua-

tion and no entry fee is ex ante efficient among the symmetric-participation class.

Proof: Since g(·) > 0, clearly it is a Nash equilibrium that every bidder participates in

auction A0 according to threshold C∗∗
c , when (11) is satisfied for C∗∗

c . 2

Although zero entry fee in a second-price auction with reserve price equal to seller’s

valuation is indeed ex ante efficient among the symmetric-entry class, other entry fees

11When vi and ci follow the uniform distribution on [0, 1], we can verify that the symmetric optimal

solution is globally optimal.
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could also be ex ante efficient. Similar to the asymmetric setting, this is always true when

c∗∗c is not an inner solution.

3.3 Revenue-Maximizing Auction In Symmetric-Entry Class

Again for notational simplicity, define SER(cc) = SER(Cc), where c(i)
c = cc in Cc,

∀i ∈ N . Under this restriction, we have

dSER(cc)

dcc
=

∑

{i∈N}

∂SER(Cc)

∂c
(i)
c

= N
∂SER(Cc)

∂c
(i)
c

, ∀i ∈ N . (12)

Equation (12) leads to

∂SER(Cc)

∂c
(i)
c

=
dSER(cc)

dcc
/N, ∀i ∈ N . (13)

Suppose that c++
c maximizes SER(cc). Define threshold-vector C++

c = (c++
c , ..., c++

c ).

Then based on equation (13), we have the following characterization for c++
c . For all

i ∈ N ,

BSi(C
++
c ) =

∂SER(C++
c )

∂c
(i)
c

/g(c++
c ) =





0, if c++
c ∈ (c, c),

≥ 0, if c++
c = c,

≤ 0, if c++
c = c.

(14)

Thus C++
c must be a local optimal solution of SER(Cc), if it is not globally optimal.12

Note that BSi(C
++
c ) is the expected payoff of bidder i with cost c++

c when he par-

ticipates in a second price auction with a time-2 entry fee of G(c++
c )

g(c++
c )

and a reserve price

equal to v0, if all other potential bidders participate according to c++
c . Thus, equation

(14) leads to the following proposition.

Proposition 4: Suppose c++
c maximizes SER(cc), then a second-price auction with a

reserve price equal to seller’s valuation and a time-2 entry fee, e, defined below maximizes

12Similar to the case of TES(cc), when vi and ci follow the uniform distribution on [0, 1], we can verify

that the symmetric optimal solution is globally optimal.
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the seller’s expected revenue among the symmetric-entry class. The time-2 optimal entry

fee, e, is defined as

e =





G(c++
c )

g(c++
c )

, if c++
c ∈ (c, c),

TSi(C
++
c ) ≥ 1

g(c)
, if c++

c = c,

any number ≥ TSi(C
++
c ), if c++

c = c.

(15)

Furthermore, no other entry fee works.

Proof: Since g(·) > 0, clearly it is a Nash equilibrium that every bidder participate in

the above defined auction according to threshold c++
c , when (14) and (15) are satisfied

for c++
c . Moreover, if the e is defined differently from (15), then it is clear that either

the symmetric entry threshold c++
c can not be implemented or the surplus of the entrants

with the threshold entry costs can not be extracted completely. 2

From Proposition 4, if the entry cost is private information of bidders, then generally

the revenue-maximizing auction involves individual entry fee. The necessary and sufficient

conditions for auction A0 with a reserve price equal to seller’s valuation and no entry fee to

maximize the seller’s expected revenue among the symmetric-entry class are that c++
c = c

and TSi(C
++
c ) ≤ 0. As mentioned before in section 2.2, this case is a degenerate one

where it is inefficient for any bidder to participate in any chance.

Propositions 3 and 4 show that restricting the entry to be symmetric across bidders

does not change the essence of the conclusion. Specifically, if the entry costs are private

information of the bidders, then the optimal symmetric entry patterns that maximize the

expected total surplus and the seller’s expected revenue are generally different. In addi-

tion, the revenue-maximizing auction must generally be different from the ex ante efficient

auction. In contrast, if the entry costs are public information, Levin and Smith (1994)

show that optimal symmetric participation probability that maximize the expected total

surplus also is optimal for the seller’s expected revenue. Moreover, if this participation

probability belongs to (0, 1), then the revenue-maximizing auction is same as the ex ante
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efficient auction A0.

4 Further Results with Common-Knowledge Entry

Costs

In this section, we keep all the assumptions in section 2, except that the distributions of

the entry costs are assumed to be degenerate. In other words, we have common-knowledge

entry costs ci ≥ 0 for bidder i, ∀i ∈ N . Those costs ci are allowed to be asymmetric across

potential bidders. This setting is more general than the IPV setting studied in Levin and

Smith (1994) since asymmetry among bidders is allowed. Levin and Smith (1994) focus

on symmetric mixed strategy (strictly) entry equilibrium in settings where this type of

entry equilibria exist. We instead allow full flexibility in bidders’ entry probabilities even

when we consider the symmetric setting later. This flexibility is natural for asymmetric

setting, and it does enlarge the freedom for auctions design in the symmetric settings.

4.1 Ex Ante Efficient Auction and Revenue-Maximizing Auc-

tion

Use P = (p1, p2, ..., pN) to denote the entry pattern, where pi ∈ [0, 1] is the entry proba-

bility of bidder i. Similar to Lemma 2, we have the following result. The proof is omitted,

since it is similar to that of Lemma 2.

Lemma 3: Among all auctions implementing any given entry pattern P = (p1, p2, ..., pN),

a second-price auction with a reserve price equal to the seller’s valuation and appropriately

set individual entry fee (or subsidy) for each bidder provides the highest seller’s expected

revenue as well as the highest total expected surplus. The entry fees (or subsidies) are

charged upon entry at time 2, and are set at the levels making bidders’ expected surplus
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to be zero when they participate in the auction.

According to Lemma 3, at the optimum the expected surplus of bidders is zero. Thus

the optimal seller’s expected revenue equals to the optimal total expected surplus. Denote

this optimal total expected surplus by TES(P). Then TES(P) can be written as follows.

TES(P) =
∑

{k∈K}

(
Vk

∏

i∈N
pki

i (1 − pi)
1−ki

)
−

∑

i∈N
pici. (16)

Suppose P∗ = (p∗1, ..., p
∗
N) maximizes TES(P), where P∗ is allowed to be corner so-

lution. Following closely the procedure adopted in section 2.1, we have the following

results.

Proposition 5: (i) A second-price auction with a reserve price equal to seller’s valuation

and no entry fee maximizes the total expected surplus. (ii) A second-price auction with a

reserve price equal to seller’s valuation and time-2 entry fee ei for bidder i defined below

maximizes the seller’s expected revenue. The time-2 entry fee ei, ∀i ∈ N are defined as

following,

ei =





0, if p∗i ∈ (0, 1),

TSi(P
∗) ≥ 0, if p∗i = 1,

any number ≥ TSi(P
∗), if p∗i = 0,

(17)

where TSi(P
∗) =

∑
{k−i∈K−i} [(Vk̃1(k−i)

−Vk̃0(k−i)
)
∏

j 6=i p
∗
i
kj (1− p∗i )

1−kj ]− ci is the expected

payoff of bidder i with cost ci when he participates in auction A0, if all other potential

bidders participate according to entry probability vector P∗.

Clearly, no entry fees other than those defined in (17) can implement the participa-

tion pattern P∗ while extracting all the surplus of the entrants. Therefore, the revenue-

maximizing entry fees are uniquely defined in (17). For the same reason as pointed in

sections 2.1 and 3.2, the zero entry fee is not uniquely ex ante efficient when the entry

probabilities are corner solutions.
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4.2 Optimality of {0, 1} Entry Decisions

In the section 3.1 setting with private information cost, we have shown that the opti-

mal participation patterns which maximize the total expected surplus and the seller’s

expected revenue are generally asymmetric, even if the bidders are symmetric. When

the distributions of the entry costs are degenerated (i.e., common-knowledge entry cost),

the same result should still hold naturally. The following proposition further establishes

a stronger result that in a general setting (with symmetric or asymmetric bidders) with

common-knowledge entry costs, there is no loss of generality to consider only the entry

probability vector in which each element is either 0 or 1.

Proposition 6: There must exist an entry probability vector P∗ where p∗i ∈ {0, 1}, ∀i ∈

N , which maximizes TES(P). In other words, it is not restrictive to optimize TES(P)

by considering only the entry probability vector in which each element is either 0 or 1.

Proof: Suppose P∗(0) = {p∗(0)1 , ..., p
∗(0)
N } maximizes TES(P), where p

∗(0)
i ∈ [0, 1], ∀i ∈ N .

If p
∗(0)
i ∈ {0, 1}, ∀i ∈ N , then the proof is completed. Otherwise, there must exist i0 ∈ N

satisfying p
∗(0)
i0 ∈ (0, 1). Since p

∗(0)
i0 is an inner solution, we must have ∂TES(P∗(0))

∂pi0
=

TSi0(P
∗(0)) = 0. Thus setting p

∗(0)
i0 to be either 0 or 1 will not change the total expected

surplus. This change in p
∗(0)
i0 leads to a new entry probability vector P∗(1) maximizing

TES(P). The only difference between P∗(0) and P∗(1) lies in the values that the i0th

elements in the two vectors take. If now p
∗(1)
i ∈ {0, 1}, ∀i ∈ N , then the proof is completed.

Otherwise, the above process can continue until every element in the entry probability

vector becomes either 0 or 1. 2

While Proposition 5 shows that zero entry fee in a second-price auction with reserve

price equal to seller’s valuation is indeed ex ante efficient, Proposition 6 implies that there

are other entry fees which are also ex ante efficient. This is true, because p∗i is generally

a corner solution. If p∗i = 1, any entry fee for bidder i which is less than or equal to

TSi(P
∗), is also ex ante efficient. If p∗i = 0, any entry fee for bidder i which is more than
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or equal to TSi(P
∗), is also ex ante efficient.

4.3 Special Issues in Symmetric Setting

We further restrict the entry costs and distributions of values to be symmetric across

bidders. Suppose ci = c and Fi(·) = F (·), ∀i ∈ N . This is the symmetric IPV setting

studied in Levin and Smith (1994). First of all, the findings in sections 4.1 and 4.2

naturally hold in the above specified symmetric IPV setting. The result regarding market

thickness in Levin and Smith (1994) implies that even for the symmetric IPV setting

with common-knowledge costs, the ex ante efficient entry could be asymmetric across

symmetric bidders. Proposition 6 further shows that there is no loss of generality in

considering the entry patterns where each bidder participates in probability of either 0 or

1, for the revenue-maximizing auction.

A further characterization of all the entry patterns that maximizes the total expected

surplus as well as the seller’s expected revenue for this setting is provided below. Suppose

P∗ = (p∗1, p
∗
2, ..., p

∗
N) maximizes total expected surplus TES(P). Without loss of gener-

ality, we assume that p∗i ≥ p∗j if N ≥ i > j ≥ 1. We then have TSi(P
∗) ≥ TSj(P

∗) if

N ≥ i > j ≥ 1. Define I1 = {i|TSi(P
∗) > 0, i ∈ N}, I0 = {i|TSi(P

∗) = 0, i ∈ N},

I−1 = {i|TSi(P
∗) < 0, i ∈ N}. Then we have ∂TES(P∗)

∂pi
> 0 if i ∈ I1,

∂TES(P∗)
∂pi

= 0

if i ∈ I0, and ∂TES(P∗)
∂pi

< 0 if i ∈ I−1. Thus we must have that p∗i = 1, ∀i ∈ I1,

p∗1 = 0, ∀i ∈ I−1, and for ∀i ∈ I0, the p∗i must take a same value in [0, 1].

The following examples illustrate the insights stated in both Proposition 6 and the

previous paragraph. Assume v0 = 0, c = 0.1 and N = 3. Assume F (vi) = vα
i , i ∈ N

where α > 0. Based on (16), direct calculation shows the following results. If α = 0.3,

P∗ = (1, 1, 0) maximizes TES(P) and TES(P∗) = 0.175. If α = 1.0, P∗ = (1, 1, 0)

maximizes TES(P) and TES(P∗) = 0.4667. If α = 2.0, P∗ = (1, 1, 0) maximizes TES(P)

and TES(P∗) = 0.60. More interestingly, if α = 0.5, P∗ = (1, 1, p) where p is any real
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number in [0, 1] maximizes TES(P) and TES(P∗) = 0.30. If c = 0.5, α = 2.0 and N = 2,

then P∗ = (1, 0) maximizes TES(P) and TES(P∗) = 0.1667.

Define MS(N) = TSi(P
∗) where P∗ = (p∗1, p

∗
2, ..., p

∗
N) = (1, 1, ..., 1). MS(N) is then

the marginal contribution of any participant to the total expected surplus if all N potential

bidders participate in auction A0. Clearly, MS(N) decreases with N . If MS(1) < 0,

define N∗ = 0, otherwise define N∗ = maxMS(N)≥0{N}. Based on Proposition 6, integer

N∗ ≥ 0 must satisfy the following property. If the number of potential bidders N ≤ N∗,

it must be optimal that all bidders participate with a probability of 1. On the other

hand, if the number of potential bidders N ≥ N∗, it must be optimal that any N∗ bidders

participate with a probability of 1, and other bidders participate with a probability of

zero. Furthermore, this entry pattern is implemented through a second-price auction with

reserve price equal to seller’s valuation and zero entry fee. If no restriction is imposed on

the entry pattern, N∗ is the optimal number of bidders if the number of potential bidders

N > N∗. In other words, additional potential bidders beyond N∗ will neither increase nor

decrease the seller’s optimal expected revenue. This observation provides new insights

into the market thickness puzzle raised by Levin and Smith (1994). In Levin and Smith

(1994), the result that total expected surplus decreases with the number of potential

bidders is due to the fact that the entry patterns are restricted to be symmetric across

bidders. Let us look at the example in the previous paragraph where c = 0.1, α = 2.0.

Calculation shows that when N = 2, P∗ = (1, 1) is the optimal solution, which gives

TES(P∗) = 0.60. Note that it is a symmetric solution. When N = 3, P∗ = (1, 1, 0)

maximizes TES(P) and TES(P∗) = 0.60. In addition, P∗ = (.82759, .82759, .82759) is

the optimal symmetric participation, which gives TES(P∗) = 0.57017. In this example,

the above defined N∗ is 2. This example also illustrates that TES(P∗) decreases with

N when N > N∗ if the entry probabilities are restricted to be symmetric across bidders.

Clearly, N∗ is the maximum number of potential bidders which supports a symmetric

25



entry probability of 1 in auction A0.

We now restrict the entry probabilities to be symmetric across bidders, i.e., pi = p ∈

[0, 1]. Note that p is allowed to be corner solutions such as 0 or 1. Once again, for

notational simplicity, define TES(p) = TES(P), where vector P = (pi) with pi = p, i ∈

N . Suppose p∗ maximizes TES(p) where p∗ could be 0 or 1. Following similar procedures

in section 3.2, we obtain the following result.

Proposition 7: For a symmetric IPV setting with common-knowledge entry costs, (i) a

second-price auction with a reserve price equal to the seller’s valuation and no entry fee

maximizes the total expected surplus among the class of auctions implementing symmetric

entry across bidders; (ii) a second-price auction with a reserve price equal to seller’s

valuation and a time 2 entry fee, e, defined below maximizes the seller’s expected revenue.

The time-2 entry fee, e, is defined as

e =





0, if p∗ ∈ (0, 1),

TSi(1) ≥ 0, if p∗ = 1,

any number ≥ TSi(0), if p∗ = 0,

(18)

where TSi(p
∗) =

∑
{k−i∈K−i} [(Vk̃1(k−i)

− Vk̃0(k−i)
)
∏

j 6=i p
∗kj (1 − p∗)1−kj ] − c is the expected

payoff of bidder i with entry cost c from participating in auction A0, if all other potential

bidders participate in probability p∗.

The result for p∗ falling in (0, 1) corresponds to that obtained by Levin and Smith

(1994) through a different path. From Propositions 5 and 7, we see that a second-price

auction with a reserve price equal to seller’s valuation and a zero entry fee does not in

general maximize the seller’s expected revenue. However, similar to section 3.2, restricted

optimal solution pi = p∗, i ∈ N is at least locally optimal in the symmetric setting.
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5 Conclusion

This paper first presented an endogenous entry model for single-object auction in a general

independent private value (IPV) framework, where each bidder has a valuation discovery

cost that is his private information. This framework allows asymmetry across bidders in

the distributions of their entry costs and private valuations. The framework covers as a

special case the IPV setting with common-knowledge costs that has been considered in

the literature.

We then developed a path to show the auctions maximizing the total expected surplus

and the seller’s expected revenue respectively in this general IPV setting with private-

information entry costs. A key connection is discovered between the first order conditions

characterizing the optimal entry thresholds and the expected surplus of the threshold

types for a second-price auction with zero entry fee and a reserve price equal to seller’s

valuation. Our major results are based on this connection.

Unlike the case of common-knowledge costs, bidders enjoy information rents when

entry costs are their private information. Due to these information rents, discrepancy

appears between entry patterns maximizing the total expected surplus and the seller’s

expected revenue. This further leads to the divergence between the auctions maximizing

the total expected surplus and the seller’s expected revenue for the setting with private-

information entry costs. The ex ante efficient entry is always implemented through a

second-price auction with no entry fee and a reserve price equal to seller’s valuation.

However, the seller’s optimal expected revenue generally cannot be implemented through

such an auction. We find that the auction maximizing the seller’s optimal expected

revenue generally involves individual entry fees for bidders. The optimal entry fee for

each bidder is given by the hazard rate of his entry cost distribution, evaluated at the

optimal threshold entry cost of the bidder.

These findings hold when we restrict the entries to be symmetric across bidders in the
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symmetric IPV setting. Interestingly, even for symmetric setting with private-information

of entry costs, it could be an auction implementing asymmetric entry rather than symmet-

ric entry that maximizes the total expected surplus or seller’s expected revenue, provided

that the symmetric optimum is an inner solution where every bidder participates in a

common probability in (0, 1). The intuition for asymmetric optimum lies in the fact that

the marginal contribution of an additional participant’s valuation to the total surplus or

seller’s revenue strictly decreases with the number of other participants. This fact leads

to that given the summation of the participating probabilities of any two bidders, the

marginal contribution of their valuations to the total surplus or seller’s revenue is maxi-

mized when the difference between their participating probabilities is maximized. It then

follows that the optimum must be asymmetric unless the symmetric optimum is a corner

solution, if the above difference-maximizing adjustment in the entry probabilities does

not change much the total expected entry costs. This is especially true when entry costs

are common knowledge.

A further look at the case with common-knowledge costs provides new insights. A

second-price auction with a reserve price equal to the seller’s valuation and zero entry

fee is shown to be ex ante efficient in more general settings than that considered in the

existing literature. However, generally this auction does not lead to the highest seller’s

expected revenue as some bidders may enjoy strictly positive expected surplus in such

an auction. Thus, individual entry fees are necessary to extract the bidders’ surplus.

Furthermore, when the discovery costs are common knowledge, we show that there is

no loss of generality in considering the entry patterns where each bidder participates in

probability of 0 or 1, for the optimal auction. This result provides new insights into the

market thickness puzzle raised by Levin and Smith (1994).
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