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Abstract
This paper investigates the implications of common knowledge of lan-

guage on cheap talk games. A general framework is proposed where lan-
guage is modeled as a direct restriction on players�strategies, and the pre-
dictions under iterative admissibility (IA) are characterized. We apply
this framework to sender-receiver games a la Crawford and Sobel (1982)
(CS), where the Receiver takes a one-dimensional action. We incorporate
two observations about natural language into the language assumption: 1)
there always exists a natural expression to induce a certain action, if that
action is indeed inducible by some message, 2) messages that are more dif-
ferent from each other induce actions that are weakly more di¤erent. It is
assumed to be common knowledge that the Receiver plays only strategies
that belong to language. Typically, there is a severe multiplicity issue in
CS games. This procedure, on the other hand, eliminates outcomes where
only a small amount of information is transmitted. Under certain regu-
larity conditions, all equilibrium outcomes are eliminated except the most
informative one. However, with an example, we point out that the normal
form procedure does not take care of sequential rationality. To address
this issue, we propose an extensive form procedure and characterize the
solution.
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1. Introduction

Common sense suggests that speaking the same language helps with cooperation
and e¢ ciency, as long as there is room for cooperation. However, this phenomenon
is not quite captured in economic analyses of communication. Game theoretic
predictions do not depend on whether or not the players speak the same language.
This is not surprising, since the notion of language is absent from standard models
of cheap talk games. In the standard cheap talk analysis, all messages are treated
symmetrically, in that the exact labeling does not matter. That is, two messages
can have their names swapped with each other without changing the strategy
set or the equilibrium outcome. However, if players speak the same language,
convention o¤ers a way of interpreting messages, suggesting that labeling does
matter in reality. For example, suppose a man and a woman are both native
English speakers and they have to choose between going to the opera or to a
boxing match. The woman can send a message beforehand. It is natural that
two messages, �Opera� and �Boxing�, uttered in a serious manner, are either
taken literally or ignored for strategic reasons. It is counter-intuitive that the
message �Opera�would indicate going to the boxing match while the message
�Boxing�would indicate going to the opera.
Language manifests itself in the asymmetry among messages. This paper

attempts to formalize the notion of language in terms of players�strategy sets.
We propose the following general framework to incorporate language. First, we
model language as a direct restriction on players� strategies. The restriction
does not by itself shrink the set of communication outcomes. It eliminates only
strategies that are replicas of other strategies up to the name change. We call
this new game �the game with language�. Second, we characterize the prediction
of the game with language under iterative admissibility, i.e., iterative deletion
of weakly dominated strategies. Applying language or iterative admissibility
alone does not shrink the set of outcomes, but the combination can give a sharp
prediction.
We make a �rst attempt to apply this general framework to a classic sender-

receiver game as in Crawford and Sobel (1982) (CS). The simple structure of
CS games provides a straightforward implication for the language assumption,
which we will describe below. In a CS game, the Sender (she) is the only player
with private information, which is called the Sender�s type and is assumed to
be one-dimensional. The Receiver (he), upon receiving the message, takes a
one-dimensional action, which a¤ects the utility of both. The Sender always
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prefers a di¤erent action from the Receiver. Since the Sender communicates in
an attempt to in�uence the behavior of the Receiver, messages can be mapped to
recommendations. Equating message space with action space allows us to linearly
order messages because the action space is on the real line. Two observations of
natural language usage are imposed as assumptions: (i) there always exists a
natural expression to induce a certain action, if that action is indeed inducible by
some message; (ii) messages that are more di¤erent from each other induce actions
that are weakly more di¤erent, i.e., if two messages induce the same action, any
message in between the two will induce the same action. The second assumption
exploits the linear order on the action space. It gives more structure to language
and is important for our characterizations.
We �rst take the normal form approach to this multi-stage game described

above. It seems natural as language is a normal form restriction, and sequential
rationality is not an issue in standard cheap talk games, since all messages can
get used with positive probability. We �nd that if the players� interests are
su¢ ciently aligned, this procedure eliminates outcomes where only a small amount
of information is transmitted. Under certain regularity conditions, all equilibrium
outcomes but the most informative one are eliminated.
However, we �nd that the normal form approach might even eliminate the

most informative equilibrium of the game without language. We show an example
where our procedure yields a unique informative outcome, in contrast with the
game without language where babbling is the unique equilibrium� thus the most
informative equilibrium in this game. This example illustrates how normal form
procedure might allow the Receiver to take a sub-optimal action after receiving
some messages, though it requires strategies to be ex ante optimal for the Receiver
with respect to his belief. This is because modeling language as a direct restriction
on the strategy sets gives language the highest priority, overriding rationality at
times. We then illustrate the tension between language, iterative deletion of
weakly dominated strategies and sequential rationality. To resolve this tension,
we propose a notion of weak sequential rationality with language and an extensive
form iterative procedure. The key observation motivating our de�nition of weak
sequential rationality is that the Sender does not distinguish between messages
that induce the same action, and hence the Receiver does not either. We view
messages as a coordination device to achieve a mapping from types to actions,
which is called an outcome. We decompose a strategy pro�le into the usage of
messages and the induced outcome. In order to capture the idea that language
takes care of the usage of messages, while rationality concerns determine the set
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of possible outcomes, we de�ne a concept of sequential rationality in terms of
the outcome induced by a strategy pro�le, instead of the strategy pro�le itself.
This extensive form iterative procedure always yields a nonempty limiting set.
When the original game has multiple equilibria, it eliminates some of the less
informative outcomes like the normal form procedure. When babbling is the
unique equilibrium in the original game, it also yields babbling as the unique
prediction.
Our approach falls into the tradition of trying to incorporate literal meanings

into cheap talk games. Farrell (1993), Rabin (1990) and Zapater (1997) share
the assumption that the literal meaning of a message is believed if it is credible,
but they propose di¤erent credibility criteria. Farrell (1993) uses credible literal
meaning to restrict o¤-equilibrium-path beliefs held by the Receiver and proposes
neologism-proofness as an approach to equilibrium re�nement, which, however,
su¤ers from Stiglitz Critique, because in establishing credibility, the Sender is as-
sumed to be guaranteed her equilibrium payo¤, even if the equilibrium in question
is not stable. Additionally, it might make an empty prediction. In particular,
no equilibrium in a nontrivial CS game is neologism-proof.
Rabin (1990) and Zapater (1997) both use rationalizability to establish credi-

bility. To get the unraveling going in rationalizability, they restrict the Sender�s
strategies and ask whether that restriction is consistent with rationality and com-
mon knowledge of the restriction. In making the restriction, certain communi-
cation outcomes are ruled out a priori. Credibility assures that if it is common
knowledge that this information is going to be transmitted, the eliminated out-
comes will not be realized. Rabin�s �credible message rationalizability�represents
the minimal amount of information the Sender can credibly transmit, while a
�credible proposal�as de�ned by Zapater represents the maximal amount. Cred-
ible message rationalizability always yields a non-empty (if sometimes weak) pre-
diction, while a credible proposal is not guaranteed to exist. In particular, every
CS equilibrium is credible message rationalizable.
Our approach is closely related to Rabin�s and Zapater�s, since in a two-player

setting, rationalizability is equivalent to iterative deletion of dominated strategies.
Our approach di¤ers from the literature in two key aspects. First, we make re-
strictions on the Receiver�s strategy set instead of on the sender�s strategy set,
and hence avoid ruling out babbling or any equilibrium outcome a priori. Our
de�nition of language applies without modi�cation to the entire class of CS games,
in contrast to Rabin and Zapater�s de�nitions which are not independent of the
speci�cs of the game, such as the utility functions and the prior, since restric-
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tions have to be credible and credibility di¤ers with games. Second, looking at
any message in isolation, we make no assumption about the actions the Receiver
will take. Instead, all our assumptions concern the relation between messages
in terms of the induced actions. On the other hand, Rabin and Zapater assume
that the Receiver believes credible messages and carries out credible recommen-
dations, while the relation between messages is roughly determined by the model.
We argue that, in reality, messages have relative meanings in addition to absolute
meanings. For example, when the audience says �good job,�they might sincerely
mean that they appreciate the performance, but they might just be polite. How-
ever, for the receiver of the comment, it is probably weakly better than if they
say �horrible.� We share with the literature the view on absolute meanings, but
stress the asymmetry among messages as an important implication of language.
In addition to equilibrium selection, our prediction then re�ects the e¤ect of the
properties of language.
The rest of the paper is structured as follows. Section 2 provides a simple

example to motivate our approach. Section 3 discusses the solution concept in use
and the language assumptions. Section 4 outlines the setup of the game. Section
5 presents the results using normal form concept and highlights the con�ict with
sequential rationality. Section 6 motivates a weak concept of sequential rationality
for this game with language, de�nes an extensive form procedure and presents the
results. Section 7 concludes.

2. Motivating Example

Consider a two-player game with one-sided pre-play communication. Rob the
pirate is planning to set sail for the treasure island. He does not know whether
it is on the West sea or the East sea. He only knows that with probability 2

3
,

the treasure island is on the West sea. The prior is common knowledge. Sally
the witch, however, knows where the treasure island is. Rob asks Sally in which
direction he should go and commits to giving Sally a commission if he �nds the
treasure. Their payo¤ matrix is as in table 2.1. The row indicates whether
the treasure island is on the West Sea or East Sea. The column indicates the
direction Rob chooses. W stands for west and E stands for east. The number
on the left is Sally�s payo¤ and the number on the right is Rob�s payo¤. The
game goes like this: Sally tells Rob which direction to take, either west or east,
and Rob chooses one direction and sets sail. If he �nds the treasure, he has to
give Sally a payo¤ of 2. If he does not, neither of them loses anything.
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a
W E

location of treasure West 2,1 0,0
East 0,0 2,1

Table 2.1: Treasure Hunt Game

"west" "east"
Stubborn W W W
Stubborn E E E
Literal W E
Opposite E W

Table 2.2: Receiver Strategies in the Treasure Hunt Game

Given the true location of the treasure island, t, Sally chooses a message sS (t):
either �west�or �east.� Her strategy is therefore sS =

�
sS (West) ; sS (East)

�
.

A strategy for Rob, denoted by sR, is a function from the message space M to
the set of actions A = fW;Eg. Table 2.2 lists all of Rob�s possible strategies.
Both the Stubborn W and the Stubborn E strategies completely ignore Sally�s
recommendation. Literal strategy and Opposite strategy are essentially the same
strategy up to relabeling. This is because they both react to one message with
the action W and the other with the action E.
This game has two equilibrium outcomes. One is the so-called �babbling�

equilibrium, in which Rob always chooses W and Sally �babbles�. The other
equilibrium is what we call the informative equilibrium, in which Rob�s decision
changes with Sally�s recommendation and Sally�s recommendation depends non-
trivially on the true state. There is an innocuous multiplicity here in terms of
relabeling the two messages. Actually, if we relabel the messages, we will end
up with the same strategy set. The symmetry between messages suggests that
language does not play a role in standard analysis. Game theoretic predictions
for an English speaking Rob and an English speaking Sally would be the same as
the predictions for an English speaking Rob and an alien Sally.
However, suppose Rob and Sally do share a common �rst tongue, say English.

In the language English, �west� means the direction where the sun falls and
�east�means the direction where the sun rises. It seems absurd that Rob and
Sally would coordinate in such a way that the message �west�induces Rob to go
east and the message �east� induces Rob to go west, if they are going to play
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the informative equilibrium. The issue is not credibility: if Rob does not believe
that Sally�s recommendation conveys information, Rob would ignore the message
and take the same action regardless. If Rob�s action depends nontrivially on
Sally�s message, then it seems more natural that he would go west upon hearing
the suggestion �west�and he would go east upon hearing the suggestion �east.�
Suppose it is common knowledge that Rob follows the convention of language

and does not use the Opposite strategy. That is to say, in the game with language
GL, the set of strategies for Rob is SRL � fStubborn W , Stubborn E, Literalg.
Then when the true state is West, for Sally, sending the message �east�is weakly
dominated by sending the message �west�. To see this, notice that both mes-
sages yield the same payo¤ if Rob plays either the Stubborn W strategy or the
Stubborn E strategy. Sally�s choice of message matters only if Rob plays the
Literal strategy. In that case, message �west� induces the action W , which is
strictly preferred by Sally when the true state is West. Similarly when the true
state is East, the message �west�is weakly dominated for Sally. In conclusion, if
Sally does not play weakly dominated strategies, then she says �west�when the
true state is West and �east�when the true state is East.
If the Receiver knows that Sally does not play weakly dominated strategies,

then when he receives the recommendation �west�, he knows that the true loca-
tion must be West, and when he receives the recommendation �east�, he knows
that the true location must be East. The optimal strategy then is to follow
Sally�s advice and play the strategy Literal. We therefore end up with a unique
prediction that Rob and Sally play the informative equilibrium outcome, which is
what we would �expect�.
Eliminating the Opposite strategy by way of the language assumption is a

key step in getting the unique prediction. In the game without language, both
strategies Literal and Opposite belong to Rob�s strategy set. When the true
state is West (East), sending message �east�(�west�) performs better for Sally
than sending message �west� (�east�) if Rob plays the strategy Opposite, while
sending �west�(�east�) performs better if Rob plays the strategy Literal. In
short, none of Sally�s strategies are weakly dominated. Eliminating the strategy
Opposite from Rob�s strategy set gets the unraveling process going.
However, language alone does not do the trick. It is language combined with

iterative deletion of weakly dominated strategies that sharpens the predictions.
Table 2.3 summarizes the predictions under di¤erent combinations of solution
concepts and language assumption.
IA means iterative admissibility, i.e., iterative deletion of weakly dominated
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Equilibrium IA ID
No Language babbling,informative everything everything
Language babbling,informative informative everything

Table 2.3: Predictions of Treasure Hunt Game

strategies. ID stands for iterative deletion of strictly dominated strategies.
�Everything�means every pair of strategies in the game except those where Rob
plays Stubborn E. As long as Rob is rational, he will not play Stubborn E
because going east blindly is worse ex ante than going west blindly. Here the lan-
guage assumption alone does not change the set of equilibrium outcomes. It only
eliminates the innocuous equilibrium multiplicity where meanings are reversed.
Comparing the prediction using IA and ID suggests that weak dominance is key
in getting rid of the babbling outcome. This is not surprising since messages are
costless, and therefore Sally does not have a strict preference for any message if
she believes that Rob will ignore it.

3. General Framework

The example of section 2 suggests modeling language as a direct restriction on
players�strategies. Let � denote a cheap talk game where a one-shot game is
preceded by a communication stage. Let I denote the set of players, and T i

denote the set of types for player i. A strategy for player i, denoted by si 2 Si,
is a mapping from player i�s type space T i to his action plans. Write player
i�s ex ante expected utility function as U i : (Si)i2E ! R. That is, U i is a
mapping from the set of strategy pro�les to the real line. We can represent �
in the strategic form G =

�
I; (Si)i2I ; (U

i)i2I
�
. Language transforms the game

into GL =
�
I; (SiL)i2I ; (U

i)i2I
�
, which we call �the game with language". To

make predictions about cheap talk games with language, we need to know two
things: (1) the implications of �language,�that is, which strategies belong to SiL
for each i 2 I, and (2) given (SiL)i2I , the solution to the game GL. This is a clean
way to incorporate language since all assumptions about language are embodied
in (SiL)i2I . By altering the assumptions, we can understand the implications of
speci�c properties of language. This section �rst discusses the solution concept
employed and then motivates a speci�c way to model language.
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3.1. Solution Concept

The solution concept employed here is iterative admissibility (IA) when the normal
form is used and a variation when the extensive form is used. The discussion of
the variation for the extensive form analysis is deferred to section 6. Here we
recall the de�nition of iterative admissibility and discuss the choice of this solution
concept over others.
The de�nitions below follow Brandenburger et al (2004).

De�nition 1. Fix (Xj)j2I � (Sj)j2I . A strategy si is weakly dominated with
respect to X�i if there exists �̂i 2 �X i such that U i

�
�̂i; s�i

�
� U i (si; s�i)

for every s�i 2 X�i and that U i
�
�̂i; ŝ�i

�
> U i (si; ŝ�i) for some ŝ�i 2 X�i.

Otherwise, say that si is admissible with respect to (Xj)j2I . If si is admissible
w.r.t. (Sj)j2I , simply say that s

i is admissible.

De�nition 2. Set Si (0) = Si for i 2 I and iteratively de�ne

Si (k + 1) =
n
si 2 Si (k) : si is not weakly dominated with respect to

�
Si (k)

�
i2I

o
.

Write \1k=0Si (k) = Si (1) and \1k=0S (k) = S (1). A strategy si 2 Si (1) is
called iteratively admissible.

Denote by �X the set of probability distribution on X, and by �+X the set
of probability distribution which puts positive weight on every element of X.
Brandenburger et al (2004) show that if there are only two players, say player

S and player R, a strategy is weakly dominated if and only if it is never a best
response to a totally mixed strategy. For completeness of arguments, this equiv-
alence result is restated as Lemma 1 below. Note that this result does not hold
if there are more than two players unless players can play correlated strategies.

Lemma 1 (Brandenburger et al (2004)). A strategy ŝR 2 XR is admissi-
ble with respect to XS � XR if and only if there exists �̂S 2 �+SS such that
UR

�
�̂S; ŝR

�
� UR

�
�̂S; sR

�
for every sR 2 XR.

As our analysis of the Treasure Hunt game revealed, weak dominance is cru-
cial. This is not surprising since messages are costless, and therefore senders
are indi¤erent between messages per se. It is this indi¤erence that causes se-
vere multiplicity. In the evolutionary approach, it is important that any strategy
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that is weakly better than the current strategies gets used with strictly positive
probability and gets taken into account by opponents. This corresponds to weak
dominance in the iterative procedure instead of strong dominance, since a strat-
egy that survives weak dominance is a best response to a belief that puts strictly
positive weight on every surviving opponent strategy.
One reason we choose iterative admissibility over other non-equilibrium con-

cepts employing weak dominance is its epistemic foundation. Brandenburger et
al (2004) provide a su¢ cient epistemic condition under which the predicted strat-
egy pro�les are characterized by IA. More speci�cally, they show that if there
is rationality and n-th order assumption of rationality, where n is higher than
the number of iterations needed to arrive at IA, then players play strategies in
IA. However, we are not incorporating language into the epistemic framework
provided by Brandenburger et al (2004). We simply take the solution concept as
given and apply it directly to the game transformed by our language assumption.
By representing the original game as G = (I; (Si)i2E ; U), we have implicitly

assumed that players make their decisions at the initial node before nature makes
her move. This ex ante interpretation implies that each player believes that di¤er-
ent types of his opponent hold the same belief about his behavior. Alternatively,
we can think of di¤erent types as representing di¤erent �individuals�, chosen to
appear by nature, and thus assume that players make their decisions after nature
makes her move1. This interim interpretation implies that each player believes
that di¤erent types of his opponent may hold di¤erent beliefs about his behavior.
Let�s rewrite the set of players, I, as Im � [i2IT i. Every player q in Im can then
be written as ti 2 T i for some i 2 I. Let ~Sq = St

i
be the set of action plans

available to type ti of player i. De�ne ~U q � U i8q 2 Im. Then iterative admis-
sibility in the game (I; (SiL)i2I ; U) under the interim interpretation is equivalent

to iterative admissibility in the game (Im;
�
~SqL

�
q2Im

; ~U).

In equilibrium concepts, it does not matter whether players make their deci-
sions before or after nature makes her move, because in equilibrium, every type
of player i holds the correct belief about the behavior of the opponents, and thus
every type of player i holds the same belief. However, the two interpretations
make a di¤erence in nonequilibrium solution concepts, since players are not as-
sumed to hold the �correct� belief about the behavior of the opponents. The
interim interpretation is more appealing if we think of private information as
some hard-wired characteristics of the players. However, the ex ante interpreta-

1See p.226 in [5].
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tion is more closely related to the equilibrium concept in that it is as if players of
di¤erent types hold the same belief about the opponents. Analysis is conducted
under both interpretations. In general, it is easier to include strategies under the
interim interpretation , while it is easier to exclude strategies under the ex ante
interpretation.
Lastly, Lemma 2 shows that the equivalence between weak dominance and

never best response to a totally mixed belief holds under the interim interpretation
with only two players. This characterization, instead of weak dominance, is
directly used in operation. To simplify the analysis, we assume that there is
only one-sided incomplete information. Player S holds private information while
player R does not. It should easily generalize to cases with two-sided incomplete
information. Under the interim interpretation, each type of S is considered an
individual player, so Lemma 1 does not directly apply. Let XS � �tXS (t). The
proof for equivalence is similar to that in Pearce (1984).

Lemma 2. sR is weakly dominated w.r.t.
�
�tX

S (t)
�
� XR if and only if there

does not exist a �S (t) 2 �+XS (t) for every t such that

sR 2 arg max
s02XR

UR
��
�S (t)

�
t2TS ; s

0
�
.

3.2. Incorporating Language

Recall that language here is simply a subset of players�strategies resembling con-
ventional language usage. This paper focuses on sender-receiver games where
only the Sender (S) possesses private information and only the Receiver (R) has a
non-trivial one-dimensional action space A. (In arbitrary communication games,
our notion of language remains valid , although a di¤erent set of restrictions may
be appropriate.) The relative simplicity of the communication protocol and the
complete linear order on the action space A give language more structure and
generate the assumptions discussed below.
Before talking about the implication of language for players�strategy sets, we

need to discuss the message space. It will be assumed throughout the paper
that the message space M has the same number of elements as the action space
A. With that assumption in the background, we argue that (1) language should
restrict only the Receiver�s strategy set, (2) the message spaceM can be identi�ed
with the action space A, i.e., M = A, and (3) every Receiver strategy in language
should satisfy the literal meaning condition and the convexity condition. Lastly,
we discuss the implications of these restrictions.
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It is desirable that our de�nition of language itself does not restrict the set
of communication outcomes in a given game, while eliminating the �innocuous�
multiplicities in terms of how messages are used. An outcome of a sender-receiver
game dictates which action (or probability distribution over actions) each type of
sender induces. Messages are only means to implement a possibly nontrivial
outcome since they are costless. As pointed out in the example in section 2,
relabeling of messages might produce the same outcome. Language is a restriction
only insofar as these relabelings are concerned.
In particular, our de�nition of language itself should not rule out the bab-

bling outcome. This would imply that language does not place any restriction on
the Sender�s strategy set. To see this, notice that in the babbling equilibrium,
the Receiver ignores all messages and the Sender sends every message with equal
probability2. In other words, language should not force the Sender to convey
information nor should it force the Receiver to react di¤erently to di¤erent mes-
sages. Thus, language includes any Receiver strategy that is a constant on the
message space. This implies that when looking at every message in isolation,
any action is possible. For a given type of Sender, every message belongs to her
message space if she can play the strategy that puts equal probability on every
message. If we do not take it as a literal assumption that there is one Sender
at the initial node before nature decides on the true state, the message sent by a
given type should not be physically linked to the message sent by another type.
Therefore, the set of pure Sender strategies in language as mappings from the
type space to the message space should be the product space of M . We conclude
that language does not place any restriction on the Sender�s strategies.
To justify the simpli�cation that the message space M is equivalent to the

Receiver�s action space A, notice that the sender talks in an attempt to induce
a certain behavior from the Receiver. Say that an action a can be induced in
language SRL if there exists a Receiver strategy s

R 2 SRL and a message m 2 M
such that sR (m) = a. Every action a 2 A can be induced in language since
language should contain all constant sR. If the language is rich enough, there
is usually a conventional way to express the literal meaning of a. For example,
in the Treasure Hunt game, if Sally can get Rob to go east in some way, she can
successfully do so simply by saying �Go east!�
Formally, this implies that for every action â, there is at least one message

m̂ that invariably induces â whenever the Receiver is going to take â after some

2We focus on the babbling equilibrium strategy pro�le where every message is used with
strictly positive probability, so that Bayesian update can be performed on every message.
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message. Call such m̂ a message with literal \â"-meaning. Whether the Receiver
is going to take action â after any message is up to strategic considerations, but
there will be no ambiguity about the literal meanings of messages. If the language
is rich enough, there exists a canonical message for every action, that is, for every
action a in A, there exists a message m in M with literal \a" �meaning. It is
easy to show that a message cannot have di¤erent literal meanings. Given the
assumption that the number of messages inM is the same as the number of actions
in A, we can label the message with literal \a"�meaning by \a:" Therefore, we
can simply assume that M = A, given the assumption that jM j = jAj.
We can then compare messages since M = A. It is intuitive that �similar�

messages should induce �similar�actions. For example, when a friend tells you
that restaurant A is �faaabulous�instead of telling you that it is �so-so�, it would
appear that she means that restaurant A is drastically better than average. If
you know that your friend have a tendency to exaggerate, and you wouldn�t go
to restaurant A even if she told you it was �faaabulous�, then it is unlikely that
you would go to restaurant B if she told you it was �good�. Messages that lie on
the two extremes should convey weakly more information than messages that lie
in between them.
The preceding discussion leads us naturally to de�ne language as follows.

De�nition 3. sR :M ! A belongs to SRL if and only if

1. (literal meaning) sR (â) = â if 9m̂ 2M such that sR (m̂) = â;

2. (convexity) If sR (m1) = sR (m2) where m1 < m2, then sR (m1) = sR (m)
for all m such that m1 � m � m2.

De�nition 4. Say that sR belongs to language if sR 2 SRL .

Lemma 3 (Property of strategies in language). If sR belongs to language,
then

1. (relative meaning) sR is weakly increasing on M . That is, 8m1 < m2,
sR (m1) � sR (m2),

2. (absolute meaning) if m1 < m2 and sR (m1) 6= sR (m2), then sR (m1) < m2

and sR (m2) > m1.
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The �rst property re�ects the relative di¤erence in messages: a higher message
induces a weakly higher action. A deadline of tomorrow signals a more urgent
deadline than a deadline 10 days later, if they do convey any information at all.
The second property re�ects the absolute di¤erence in messages: if �excellent�
means something di¤erent from �good,� then �excellent� means something at
least as good as the absolute quality of being good.
Given sR and Q �M , de�ne

sR (Q) �
�
aj9m 2 Q s.t. sR (m) = a

	
.

That is, sR (Q) is the set of actions induced by a message m in Q under the
Receiver strategy sR.
We began the discussion by arguing that it is desirable that a de�nition of

language does not a priori rule out any outcomes in the original game. Lemma 4
stated below con�rms that the speci�c way of modeling language given by de�ni-
tion 3 satis�es this condition.

Lemma 4 (Completeness of Language). For all B � A, there exists a sR 2
SRL such that s

R (M) = B.

Proof To see this, we simply need to construct a Receiver strategy, sR, taking
exactly the actions in a given B � A. We can linearly order the elements
in B and write B = fa1; a2; :::; ang where aj < aj+1 for every j. We can
construct the Receiver strategy sR by de�ning

ŝR (m) �

8<:
a1
aj
an

m 2 [0; a1]
m 2 (aj�1; aj]; j = 2; :::; n

m 2 [an; 1]
.

It is easy to check that ŝR satis�es de�nition 3 and ŝR (M) = B.

Corollary 1. Every equilibrium outcome in the game without language is also
an equilibrium outcome in the game with language.

4. The Setup

We apply this general framework to a discretized version of sender-receiver games
as in Crawford and Sobel (1982). There are two players, a Sender (S) and a
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Receiver (R). Only the Sender has private information, represented by her type
t 2 T . The common prior on T is � 2 �T . The Sender sends a message m 2M ,
and the Receiver takes an action a in A after receiving the message m. It is
helpful to think of T = A = M = f0;�; 2�; :::; 1g, though all we need is that
they are all �nite spaces, and that A = M . Both players have Von Neumann-
Morgenstern utility function ui (t; a), i = S;R. Though the type space and the
action space are both discrete, we assume that ui can be extended to a function
from [0; 1] � [0; 1] to the real line. It is assumed that ui is twice continuously
di¤erentiable.
As in Crawford and Sobel (1984), it is assumed throughout the paper that

@2

@a2
ui < 0 and @2

@t@a
ui > 0 for i = S;R. De�ne

yi (t) := argmax
a2A

ui (t; a) .

From the conditions on ui, yi (t) is weakly increasing in t for both i = S;R. Since
A is discretized, argmaxa2A ui (t; a) might not be a singleton. For simplicity, as-
sume that yi (tS) is a singleton for all t and both i = S;R. The bias is represented
by

b := min
t2T

�
yS (t)� yR (t)

	
.

To simplify the analysis, we also assume that yR (t) = t. Let E ([t1; t2]) denote
the optimal action for the Receiver if he only knows that the Sender�s type lies in
the interval [t1; t2]. That is, for any t1 < t2,

E ([t1; t2]) � argmax
a

X
t2T;

t1�t�t2

uR (t; a)� (t) .

A pure strategy of the Receiver (sR) is a function from the message space M
to the action space A which belongs to the language, that is, sR 2 SRL . Denote
by �R a mixed strategy of the Receiver. Under the interim interpretation, a pure
strategy of the type t Sender, sS (t), is an element in the message spaceM . Write
sS �

�
sS (t)

�
t2T . Let �S (t) 2 �M denote a mixed strategy of type T Sender.

In ex ante interpretation, a pure strategy of the Sender, sS, is a function from the
type space T to the message space M . Denote a pure Sender strategy by sS and
a mixed Sender strategy by �S. With some abuse of notation, write

�
�S (t)

�
t2T

as �S.
For ease of exposition, we restate the related CS results here. In their paper,

both the type space and the action space are the unit interval. That is, T = A =
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[0; 1]. They showed that every equilibrium is characterized by a �nite partition
of the type space, ft0; t1; :::; tNg, where t0 = 0, tN = 1, and type ti is indi¤erent
between being pooled with the immediately lower step and getting the action
E ([ti�1; ti]) and being pooled with the immediately higher step and getting the
action E ([ti; ti+1]). They proved that there exists a �nite upper bound N (b) on
the maximum number of steps in an equilibrium, and that for every 1 � n � N (b),
there exists an equilibrium with n steps.
They used a monotonicity condition to conduct comparative statics. Call a

sequence � � f� 0; � 1; :::; �Ng a forward solution if type � i is indi¤erent between
action E ([� i�1; � i]) and action E ([� i; � i+1]) for i = 1; :::; N � 1. Call N the size
of the forward solution � . Say that � is a size-N forward solution on [� 0; �N ]
and that [� ; �� ] has a forward solution of size N if there exists a forward solution
f� 0; � 1; :::; �Ng where � 0 = � and �N = �� . With abuse of notation, we de�ne

tNj ([[� ; �� ]]) � � j; j = 1; :::; N � 1

where f� 0; � 1; :::; �Ng is a forward solution on [� ; �� ]. Write �Nj ([� ; �� ]) � E ([� j�1; � j]).

(M) If �̂ and ~� are two forward solutions with �̂ 0 = ~� 0 and �̂ 1 > ~� 1, then �̂ i > ~� i
for all i � 2.

CS proved that condition (M) implies that ex ante, the Receiver always prefers
an equilibrium with more steps. Therefore, the most informative equilibrium, i.e.
the equilibrium with the largest number of steps, gives the Receiver the highest
ex ante utility. This condition will play an important role in some of our results.

5. Normal Form Iterative Admissibility

Section 5.1 characterizes the solution to NIAL, which is simply iterative admis-
sibility of the game with language. Section 5.2 compares NIAL with equilibria
of the game without language and discusses the caveats of NIAL.

5.1. Characterizations

The notation here implies the use of the interim interpretation. However, the
main results hold under both interpretations. Recall that NIAL is simply it-
erative admissibility in the game with language. By the equivalence of weak

15



dominance and never best response to a totally mixed belief in two player incom-
plete information games, we rewrite the procedure of NIAL as the following:

De�nition 5. SR (0) = SRL . SS (0; t) =M 8t. De�ned iteratively:

SR (k + 1) =

8><>:
sR 2 SR (k) j

there exists �S (t) 2 �+SS (k; t) for every t such that

UR
��
�S (t)

�
t2T ; s

R
�
� UR

��
�S (t)

�
t2T ; s

0
�
for all s0 2 SR (k)

9>=>;
and

sS (k + 1; t) =

8<:
m 2 SS (k; t) j

there exists �R 2 �+SR (k) such that
uS
�
t; �R (m)

�
� uS

�
t; �R (m0)

�
for all m0 2 SS (k; t)

9=;
where uS

�
t; �R (m)

�
�
P

sR2SR �
R
�
sR
�
uS
�
t; sR (m)

�
. Write \1k=0SR (k) = SR (1)

and \1k=0SS (k; t) = SS (1; t). That is, SR (1) and SS (1) are the limiting set
of strategies for the Receiver and the Sender respectively under this normal form
iterative procedure.

We need some more notations here.

Notation 1. l (k; t) � minSS (k; t);
2. g (k; t) � maxSS (k; t);
3. l�1 (k;m) � max ftjl (k; t) � mg;
4. g�1 (k; t) � min ftjg (k; t) � mg.

l (k; t) and g (k; t) are respectively the smallest and the largest message that
a type t Sender might send in round k. l�1 (k;m) is the highest type t that
might send a message smaller than or equal to m in round k, while g�1 (k;m)
represents the lowest type t that might send a message greater than or equal to m
in round k. Given k, if l (k; t) and g (k; t) as functions from T to M are bijective
when the range is restricted to l (k;T ) and g (k;T ) respectively, then l (k; t) and
l�1 (k;m) are inverse functions to each other, while g (k; t) and g�1 (k;m) are
inverse functions to each other.
Before characterizing the solution to cases where b > 0, let�s look at the bench-

mark case where players�interests are aligned, that is, where yS (t) = yR (t) for
all t. Proposition 1 characterizes the NIAL solution. It con�rms conventional
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wisdom that players should be able to coordinate on the e¢ cient outcome if the
interests are aligned and they can communicate before playing the game.
We need the following observation for the proof. It says that if a message m

is used sometimes in round k, and if it can only come from types smaller than or
equal to itself, then any Receiver strategy that takes an action greater than the
message m is weakly dominated.

Observation If l�1 (k;m) � m, and m 2 M (k), then sR (m) � m for all sR 2
SR (k + 1).

Proof Suppose ŝR (m̂) > m̂ and l�1 (k; m̂) � m̂. Let m1 be the smallest message
m such that ŝR (m) = ŝR (m̂). From the assumption that l�1 (k; m̂) � m̂,
according to any belief on �SS (k), any message in [m1; m̂] can only come
from types smaller than or equal to m̂. Then ŝR can be improved upon
by lowering the value on [m1; m̂] down to m̂. This does not violate the
language conditions. So ŝR is weakly dominated w.r.t. S (k) and does not
belong to SR (k + 1).

Proposition 1. If yS (tS) = yR (tS)8tS, then there is full communication in
S (1), i.e. S (1) =

�
sRid
	
where sRid (a) = a for all a.

Proof Type 0 prefers a lower action to a higher one. In addition, she prefers
action 0 the most. Recall that from the discretization,� is the second lowest
message. From the relative property of language (see Lemma 3 in Section
3.2), a lower message always induces a weakly lower action. Therefore, in
the �rst round, every message m � � is weakly dominated by message 0
with respect to S (0) for type 0. Similarly, every messagem � 1�� is weakly
dominated by message 1 with respect to S (0) for the highest type Sender.
Knowing this, in the second round, the Receiver knows that any message
between � and 1�� can only come from types in [�; 1��]. Then after
receiving any message m 2 [�; 1��], the Receiver will not take either
action 0 or action 1. Suppose to the contrary, there exists ŝR 2 SR (2)
such that ŝR (m̂) = 0 for some m̂ > 0 and ŝR (m̂+�) 6= 0. From the
supermodularity condition of uR, action � is better than action 0 for the
Receiver whatever belief he has. If we change ŝR by changing the action
taken on [�; m̂] from 0 to �, we strictly improve the Receiver�s utility with
respect to any belief in �SS (1). The case for action 1 is similar.

Given SR (2), the lowest action that message � can induce is action �, and
the highest action message 1 � � can induce is action 1 � �. Since on
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the interval [�; 1��], type � prefers a lower action to a higher one, every
message m greater than � is weakly dominated for type � by message �
with respect to S (2) because message � induces a weakly lower action in
[�; 1��]. The same holds here for type 1 ��. We have used the same
logic to get SS (1). Likewise for all sR in SR (4), sR takes on actions
between [2�; 1� 2�] for messages in [2�; 1��]. Repeating the process
iteratively, we get that sR (m) = m for all sR 2 SR (1) and sS (t) = t for
all type t 2 T .

The �niteness assumption imposed on the type space T is crucial to the proof
above. In the iterative process, we �rst showed that the lowest type of the Sender
does not send any message other than the lowest one, because she prefers the
lowest action (action 0) to a higher action, and message 0 induces a weakly lower
action than any other message greater than 0. In response to that, the Receiver
does not take the lowest action unless he receives the lowest message (message
0). Therefore, the lowest action a Sender will get by sending a message higher
than 0 is the action preferred by the second lowest type of the Sender. Hence,
the second lowest type Sender does not send any message higher than her most
preferred action, which is equal to her type. However, if T is dense, the second
lowest type does not exist. Therefore, this argument does not carry through.
Nonetheless, the full communication result itself does not necessarily rely on the
�niteness assumption. As a corollary to Proposition 4 to be stated later, when
the monotonicity condition (M) holds (de�ned in section 4), full communication
is the unique outcome in the limiting set even without the �niteness assumption.
However, without the �niteness assumption, we do not know at this stage about
convergence.
From now on, it is assumed that b > 0. It implies that b � � since yi is

de�ned on the discretized space. The case that b < 0 is done in the same way.
NIAL gives a nontrivial upper bound and lower bound on the amount of

information transmitted in a given game. Before stating the results, we need
to de�ne how we measure the amount of information transmitted. Let Q be a
subset of the message space M . Say that an action a is inducible on Q under a
Receiver strategy sR if there exists a message m in Q such that sR (m) = a. For
the Receiver to be willing to use a strategy sR that has many di¤erent inducible
actions, he has to believe that the Sender can credibly transmit signi�cant amounts
of �ne-tuned information. Let sR be in SR (1). De�ne M (1) to be the set
of messages used by some type t under some strategy in SS (1; t). Say that a
is inducible under sR if a is inducible on M (1) under sR. When measuring
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the number of di¤erent inducible actions taken by sR, we con�ne the attention
to the message subset M (1) since messages outside of M (1) are never used
by any type of the Sender, and hence actions taken by the Receiver outside of
M (1) are irrelevant. Proposition 2 stated below implies a limited number of
di¤erent values for sR. This is intuitive because as the interests of the Sender and
the Receiver diverge, it becomes more di¢ cult to transmit �ne-tuned information
credibly. Proposition 3 stated below says that if given a bias b su¢ ciently small,
the number of inducible actions on M (1) under sR is at least L � 2, where L
varies with the bias. In addition, L does not depend on how �nely we discretize
the action space, as long as it is not greater than the bias. These two results
hold whether the interim interpretation or the ex ante interpretation is used in
this incomplete information game.
Lemma 5 is the building block for these two results. It states that no type

of the Sender ever recommends an action that is smaller than what is most pre-
ferred by the Receiver. We say that two messages are equivalent if they receive
the same action under any sR in SR (1). Lemma 5 sets forth, more precisely,
that the Sender always gives a recommendation at least as high as an equivalent
recommendation of her most preferred action.

Lemma 5. l (1; t) � t for all t 2 T . Moreover, either l (1; t) � yS (t) or
sR (l (1; t)) = sR

�
yS (t)

�
for all sR 2 SR (1).

Proof (Sketch) Every type of the Sender prefers an action higher than her type
t. Though the assumption of language implies that a higher message induces
a weakly higher action, a type t Sender might want to send a recommen-
dation smaller than her most preferred action for fear of being pooled with
types that are too high. By de�nition, the distance between each type�s
most preferred action and her type is at least b. In particular, every type
greater than or equal to 1� b prefers a higher action to a lower action and
will send only message 1 after step 1. Any type smaller than 1 � b will
not be pooled with extremely high types if she sends a message no greater
than 1� b. Thus, on the message interval [0; 1� b], type 1� b becomes the
extreme high type. Using the same logic, we can show that the extreme
high types in [0; 1� b] will not send any message smaller than 1� b. After
iteration, we �nd that every type gives a recommendation at least as high
as her most preferred action. Therefore, it is never optimal for the Receiver
to take an action higher than the recommendation.
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A further complication of this proof arises because one message cannot be
weakly dominated by another if they always receive the same action. Be-
cause the iterative process depends on high types eliminating low messages,
we must rule out as many situations as we can in which messages always
receive the same action.

We need some notations here. Write M (k) = [t2TSS (k; t). M (k) is the set
of messages used by some type up to round k. Then M (1) = [t2TSS (1; t).
De�ne �

sR
��1

(a) �
�
m 2M jsR (m) = a

	
.

It is the set of messages inM that induces the action a under the Receiver strategy
sR.
Now we state the two main results for NIAL.

Proposition 2 (Coarseness). Given any sR 2 SR (1), suppose a1 < a2 < a3
are adjacent actions in the range of sR, and

�
sR
��1

(a2) \M (1) 6= ;, that is, a2
might be received by some type t Sender under some Sender strategy in SS (1; t).
Then the following inequality holds:

a3 � a1 > a3 � y�1S (a3) � b,

where y�13 (a3) is the type that prefers action a3, or the lowest type that prefers
a3 to any action lower than a3.

Proof From the de�nition of SRL , s
R (aj) = aj; j = 1; 2; 3. Suppose to the

contrary that there exists ŝR 2 SR (1) where a1 < a2 < a3 are adjacent
actions taken in ŝR and a3� a1 � b . Let [m2; �m2] be the interval on which
ŝR (m) = a2. That is,

�
sR
��1

(a2) = [m2; �m2]. From Lemma 5, types
that prefer action a3 to any lower one will send a message no smaller than
a message which is equivalent to message a3. (Recall the de�nition that a
message m0 is equivalent to message m if sR (m) = sR (m0)8sR 2 SR (1).)
�m2 is not equivalent to message a3 because ŝR (a3) 6= ŝR ( �m2) and ŝR belongs
to SR (1). From the de�nition of b, every type no smaller than a3�b prefers
action a3 to any lower one. Therefore, messages in [m2; �m2] can only come
from types smaller than a3 � b. By assumption, a3 � b � a1. Then if
[m2; �m2] \M (1) 6= ;, ŝR can be improved upon by changing the action
taken on [m2; �m2] from action a2 to action a1. Hence ŝR is weakly dominated
and should not belong to SR (1). We need the quali�er that

�
ŝR
��1

(a2) is
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used by at least one type under some strategy because otherwise the Receiver
would not care what he does on the interval

�
ŝR
��1

(a2).

Remark 1. Proposition 2 shows that communication cannot be perfectly infor-
mative as long as the bias is greater than 2�. If the bias is large, we can be
sure that very little information will be transmitted. Proposition 2 is parallel to
Lemma 1 in Crawford and Sobel (1984), stating that there exists " > 0 such that
any two actions induced on the equilibrium path di¤er by at least ".

Remark 2. The number of inducible actions under Receiver strategies in SR (1)
is less than or equal to 2

b
.

Proposition 3. There exists L > 0 such that the number of inducible actions on
M (1) under any sR 2 SR (1) is at least L. L increases as the bias b decreases.

Proof Lemma 5 shows that l (1; t) � t for all t. From observation 5.1, sR (m) �
m for all m 2 M (1). We can also show that the maximum action taken
by a strategy sR 2 SR (1) must be greater than or equal to E ([0; 1]). If
b is small enough, then g (1; 0) < E ([0; 1]), which implies that there will
exist some types that will never elicit the highest action because they always
send lower messages. Therefore, every sR in SR (1) must partition M (1)
into at least 2 subintervals. Let mq be the lowest message that takes on
maxm ŝ

R (m) where ŝR 2 SR (1). Then E ([0; 1]) � ŝR (mq) = mq. Let
mq�1 be the smallest message that takes on maxm<mq ŝ

R (m), then by the
same argument, mq�1 = ŝR (mq�1) � E ([0; g�1 (1;mq)]). If b is small, then
g�1 (1;E ([0; g�1 (1;mq)])) > 0, that is, there will be types sending only
low messages which never elicit an action higher than the second highest
one. If we stop after L steps, then we know that every Receiver strategy
sR in SR (1) partitions M (1) into at least L intervals.

CS showed that under the monotonicity condition (M) restated here in section
4, the Receiver prefers the most informative equilibrium. They argued that
focusing on the most informative equilibrium would be natural. It is natural
to ask whether NIAL provides grounds for doing so. To relate NIAL to the
equilibrium concept, we will use ex ante interpretation, which is equivalent to
assuming that di¤erent Sender types hold the same belief about the behavior
of the Receiver. Proposition 4 states that every equilibrium which is not as
informative as the largest equilibrium will be eliminated.
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Discretization compels us to make certain assumptions. When T = [0; 1],
continuity insures that boundary types, which are indi¤erent between two equi-
librium actions, are of measure zero. We assume that this condition holds in the
discrete case.

Assumption Given any � < �� 2 T , every equilibrium in the game restricted to
the subset [� ; �� ] \ T is such that no boundary types are indi¤erent between
two equilibrium actions.

This assumption implies that every forward solution f� 0; � 1; :::; �ng is such that
type � i�� prefers action E ([� i�1; � i ��]) to action E ([� i; � i+1 ��]), while type
� i prefers action E ([� i; � i+1 ��]) to action E ([� i�1; � i ��]). This assumption
will be carried throughout the paper.

Proposition 4. Under condition (M), every Receiver strategy satisfying NIAL
takes at least as many di¤erent actions on M (1) as the most informative equi-
librium in the game without language. That is, L � N (b).

The proposition follows immediately from the following claim.

Claim For any �̂ 2 ŝR (M (1)) where ŝR 2 SR (1) and â 6= min ŝR (M (1)), ŝR
takes at least q di¤erent actions on M (1)\ [0; â��] if [0; g�1 (1; â)��]
has a forward solution of size-q. Let ~a � max ŝR ([0; â��] \M (1)).
Then ~a is greater than or equal to the largest action on the size-q forward
solution on [0; g�1 (1; â)��] and g�1 (1; aq) � tqq�1 ([0; g

�1 (1; â)��])
where aq is the smallest message equivalent to ~a.

Proof (Sketch) Prove by induction. The claim holds by the construction of ŝR

and â for q = 1. Suppose the claim holds for any such ŝR 2 SR (1) and any
â 2 ŝR (M (1)) for q = 1; 2; :::; �q. To abuse notation, write �q as q. Recall
that for every sR 2 SR (1), sR (m) � m for allm 2M (1). To show that it
holds for q+1, it su¢ ces to show that [0; g�1 (1; ~a)��] must have a size-q
forward solution. It is easy to see that ~a � E ([g�1 (1; ~a) ; g�1 (1; â)��]).
Then we can show that ŝR must partition [0; g�1 (â)��] \M (1) into at
least two intervals. That is, roughly, ŝR (~a��) 6= ŝR (~a) and g�1 (1; ~a) >
0. Suppose [0; g�1 (1; ~a)��] has a maximum of size-j forward solution
where j < q. Notice that by the de�nition of g�1 (1; a), type g�1 (1; ~a) has
to prefer the action ~a to action ŝR (~a��). By @2

@a2
uS < 0, type g�1 (1; ~a)
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has to prefer action E ([g�1 (1; ~a) ; g�1 (1; â)��]) to action ŝR (~a��).
Let �t be such that type g�1 (1; ~a) prefers action E ([g�1 (1; ~a) ; �t]) to action
�jj ([0; g

�1 (1; ~a)��]), and type g�1 (1; ~a)�� prefers action

�jj
��
0; g�1 (1; ~a)��

��
to action E ([g�1 (1; ~a) ; �t]). Then we form a size-(j + 1) forward solution
by adding �t to the size-j forward solution tj ([0; g�1 (1; ~a)��]). Since the
largest forward solution on [0; g�1 (1; ~a)��] is of size j, the largest forward
solution on [0; �t] is of size j + 1 by condition (M). But [0; g�1 (1; ~a)��]
has a size-(q + 1) forward solution, so �t < g�1 (1; â) � � and therefore
E ([g�1 (1; ~a) ; �t]) < E ([g�1 (1; ~a) ; g�1 (1; â)]). Since �t is de�ned such
that type g�1 (1; ~a) is roughly indi¤erent between E ([g�1 (1; ~a) ; �t]) and
�jj ([0; g

�1 (1; ~a)��]), type g�1 (1; ~a) prefers action �jj ([0; g�1 (1; ~a)��])
to action E ([g�1 (1; ~a) ; g�1 (1; â)]) because E ([g�1 (1; ~a) ; g�1 (1; â)]) >
E ([g�1 (1; ~a) ; �t]). By assumption, sR (~a��) � �jj ([0; g

�1 (1; ~a)��])
for any sR 2 SR (1) such that ~a 2 sR (M (1)). By the property of SR (1),
sR (~a) = ~a > sR (~a��) if sR 2 SR (1) and ~a 2 sR (M (1)). We have
shown that ~a � E ([g�1 (1; ~a) ; g�1 (1; â)��]). Then type g�1 (1; ~a)
prefers action sR (~a��) to action ~a = sR (~a) for all sR 2 SR (1) where
sR (~a) 6= sR (~a��). Such sR exists by construction, indicating that it
is weakly dominated for type g�1 (1; ~a) to send message ~a. But this vi-
olates the de�nition of g�1 (1; ~a). We hence arrive at a contradiction.
Therefore j � q. But then we can show similarly that g�1 (1; ~a) �
tq+1q ([0; g�1 (1; â)]).

Remark 3. We prove it by showing that it is necessary for the limiting set. The
arguments do not depend on the �niteness assumption. As a corollary, this is also
a necessary condition for the limiting set under NIAL even if T = A =M = [0; 1].
In fact, we do not need the assumptions we impose in the discrete case.

5.2. Relating NIAL to Equilibria in the Game without Language

Denote by EQ (G) the set of equilibria in G, where G represents the game without
language. Recall that NIAL is iterative admissibility in GL, the game WITH
language. In general, there is no containment between NIAL and EQ (G). As a
non-equilibrium concept, NIAL naturally gives rise to non-equilibrium outcome
being contained in NIAL. Proposition 3 implies that NIAL may eliminate some
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types of S sending message m in SS (1) ; 0 1
2
; 1

sR in language n message m \0" \1
2
" \1" in SR (1) in SR (2)

0 0 0
0 1

2
1
2

v
1
2

1
2

1
2

v
1 1 1
0 1 1 v
1
2

1
2

1 v
0 1

2
1 v

sRnice 0 0 1 v v

Table 5.1: Receiver Strategy Set in Language

of the less informative equilibria. However, in this section, we present an example
demonstrating that NIAL can be disjoint from EQ (G). In our example, the
unique equilibrium in G is the babbling equilibrium, while the unique prediction
given by NIAL is partially informative.

Example 1. There are three types: type 0; 1
2
and 1. The common prior is such

that � (0) = 1
3
; �
�
1
2

�
= 4

9
and � (1) = 2

9
. Both the Sender and the Receiver have

quadratic loss function: uR (t; a) = � (t� a)2 and uS (t; a) = �
�
t+ 1

2
� a

�2
.

The unique equilibrium in this game without language is babbling. Because
both type 1

2
and type 1 Senders prefer a higher action to a lower one, it is impos-

sible to separate these two types in any equilibrium. To show that there is no
informative equilibria, let�s suppose to the contrary that there is an equilibrium
in which type 0 separates from type 1

2
and 1. The best action against pooling

of type 1
2
and type 1 is action 1

2
, while the best action against type 0 is action 0.

However, this cannot be an equilibrium because type 0 prefers action 1
2
to action

0, and therefore would have an incentive to imitate type 1
2
and type 1. Thus, in

an equilibrium, type 0 cannot separate from type 1
2
and type 1. Since the best

action with respect to the prior is 1
2
, the unique equilibrium in the game without

language is babbling, where all types pool and the Receiver takes action 1
2
after

receiving every message.
Now let�s derive the solution to this game under NIAL. Write sR as a

3-tuple of actions taken after messages 0; 1
2
and 1 respectively, i.e., sR =�

sR (0) ; sR
�
1
2

�
; sR (1)

�
. The bottom part of table 5.1 shows all the Receiver
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strategies in SRL . In the �rst round of deletion, (0; 0; 0) and (1; 1; 1) are elimi-
nated since the unique best response to pooling of all types is 1

2
. For every other

strategy ŝR, a totally mixed Sender strategy �̂S can be constructed such that ŝR

is a best response to �̂S. Thus no further Receiver strategies can be eliminated
in the �rst round.
Now we must determine the set of Sender strategies that survive the �rst

round. Both type 1 and type 1
2
Sender prefer a higher action to a lower one. For

these two types, both message 0 and message 1
2
are weakly dominated by message

1 because Receiver strategies in SRL are weakly increasing, and hence message 1
induces the weakly highest action. A type 0 Sender prefers action 1

2
the most, and

is indi¤erent between action 0 and action 1. Recall that by the absolute meaning
property of language, sR satis�es the following inequalities if sR (0) 6= sR

�
1
2

�
:8<:

sR
�
1
2

�
> sR (0)

sR
�
1
2

�
> 0

sR (0) < 1
2

.

This implies that sR (0) = 0 and sR
�
1
2

�
� 1

2
if sR (0) 6= sR

�
1
2

�
. That is, whenever

message 0 and message 1
2
induce di¤erent actions, message 0 induces action 0 while

message 1
2
induce either action 1

2
or action 1. As the type 0 Sender weakly prefer

both action 1
2
and action 1 over action 0, and strictly prefers action 1

2
over action

0, message 0 is weakly dominated by message 1
2
for the type 0 Sender. Similarly,

message 1 is weakly dominated by message 1
2
for a type 0 Sender among SS (0).

In conclusion, after the �rst round of deletion, a type 0 Sender will send only
message 1

2
, and both type 1

2
and type 1 Sender will send only message 1. This

Sender strategy, called sSnice, is shown in the �rst row of table 5.1.
Now we show that SR (2) =

�
sRnice

	
where sRnice = (0; 0; 1). In the second

round, the only conjecture the Receiver can hold about the Sender�s strategy
is sSnice. Under sSnice, no type of Sender ever sends message 0. Therefore the
Receiver�s predetermined response to message 0 is irrelevant. Hence, the relevant
di¤erence among Receiver strategies

�
1
2
; 1
2
; 1
�
;
�
0; 1

2
; 1
�
; (0; 1; 1) and (0; 0; 1) lies

only in their responses at message 1
2
. When receiving message 1

2
, action 0 is the

best because only type 0 sends this message. Therefore, Receiver strategy (0; 0; 1)
yields a higher utility than either strategy

�
1
2
; 1
2
; 1
�
;
�
0; 1

2
; 1
�
or (0; 1; 1). Then we

need only compare sRnice with the strategy
�
0; 1

2
; 1
2

�
. Simple calculation of ex ante

utility shows that UR
�
sSnice; (0; 0; 1)

�
> UR

�
sSnice;

�
0; 1

2
; 1
2

��
. So SR (2) =

�
sRnice

	
.

The process then stops and S (1) =
��
sSnice

	
;
�
sRnice

	�
. Call this strategy pro�le

snice. NIAL predicts that type 0 Sender receives action 0 and both type 1
2
and
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Equilibrium IA ID
No Language sbabble everything everything
Language sbabble, snice snice everything

Table 5.2: Comparison of Predictions

types of S sending message m in sSnice ; 0 1
2
; 1

sR n message m \0" \1
2
" \1" in language

sRnice 0 0 1 yes
sRcheat 0 0 1

2
no

sRignore 0 1
2

1
2

yes

Table 5.3:

type 1 Sender receive action 1.
Table 5.2 summarizes this game�s predictions under di¤erent combinations of

language restriction and solution concepts. snice emerges as an equilibrium in
the game with language, though babbling is the unique equilibrium in the game
without language. In arriving at S (1), we previously showed that sRnice is optimal
with respect to sSnice among S

R
L . sSnice is optimal among S

S with respect to sRnice
because every other Sender strategy is weakly dominated by sSnice with respect to
SRL . It follows that snice is an equilibrium in GL.
To understand why snice is not an equilibrium in G, note that according to

sSnice, message 1 is transmitted by either type
1
2
or type 1. The best response

against pooling of these two types is action 1
2
, not action 1. Therefore, the

strategy
�
0; 0; 1

2

�
yields a higher utility than (0; 0; 1) with respect to sSnice. It then

follows that snice is not an equilibrium in G. Table 5.3 illustrates all the relevant
strategies. To see why snice is an equilibrium in GL but not an equilibrium in G,
note that

�
0; 0; 1

2

�
does not satisfy the language assumptions, and therefore does

not belong to SRL . Recall that by the literal meaning assumption of language
(see de�nition 3), if action 1

2
belongs to the range of a strategy, action 1

2
must

be taken in response to message 1
2
. Thus, if the Receiver wants to take action

1
2
after receiving message 1, he must choose strategy

�
0; 1

2
; 1
2

�
. Though strategy�

0; 1
2
; 1
2

�
yields a higher interim utility than strategy (0; 0; 1) when message 1 is

received, it yields a lower interim utility when message 1
2
is received, because only

type 0 sends message 1
2
, and action 0 is the best against type 0. When deriving

the solution to NIAL, we have shown that strategy (0; 0; 1) gives a higher ex
ante payo¤ than strategy

�
0; 1

2
; 1
2

�
against the Sender strategy sSnice. Therefore,
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(0; 0; 1) is optimal among SRL with respect to s
S
nice, though it is not optimal among

the unrestricted strategy set.
This example points out that in a game with language, ex ante utility max-

imization does not necessarily imply interim utility maximization on every in-
formation set on the equilibrium path. We showed above that sRnice is ex ante
optimal against sSnice. However, s

R
nice takes a suboptimal action against the pos-

terior generated by sSnice in response to message 1, which is reached with positive
probability by the pro�le snice. Thus, in the game with language, sRnice is not
interim optimal with respect to sSnice even on the equilibrium path.
The break down of the link between ex ante optimality and interim optimality

on the equilibrium path results from the non-separability of the second-stage-
action space created by the language restriction. In the �rst stage of the two-stage
sender-receiver game, the Sender decides to send a message based on her private
information. In the second stage, the Receiver takes an action in response to the
message from the Sender. In a standard game, the action space available to a
player at a given information set (a particular message in a sender-receiver game)
does not depend on the action the player plans to take at any other information
set. We can conceive of the second stage action space as �separable�. The
language restriction breaks the separability: the set of actions available to the
Receiver upon receiving a message depends on which actions he plans to take in
response to other messages. Although for any single message taken in isolation,
language does not restrict the Receiver to a strict subset of his action space, when
holding �xed the Receiver�s responses to other messages, language assumption
does often impose restrictions on the available action space. In Example 1, if the
Receiver wants to respond optimally to message 1 with respect to sSnice, he should
take action 1

2
. However, if he takes action 1

2
after receiving message 1, he must

then take action 1
2
at message 1

2
by the literal meaning condition of language.

Note that our assumption prohibits the Receiver from any strategy which violates
language. Therefore, the set of actions available to the Receiver at message 1

2

is
�
1
2

	
given that he takes action 1

2
after receiving message 1. Thus it is often

the case that when the Receiver decides to take an optimal action in response to
a message based on a conjecture he holds about the Sender�s behavior, he will
be forced to take a suboptimal action in response to another message reached
with positive probability. The Receiver gauges the gains and losses ex ante and
chooses one that maximizes his ex ante utility.
Though the language restriction does not limit strategic contents, in that

EQ (G) � EQ (GL) for every sender-receiver game G, it does provide an arti-
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�cial commitment device that may make EQ (G) strictly contained in EQ (GL).
As is often the case, commitment makes the Receiver weakly better o¤. For ex-
ample, snice gives the Receiver a higher ex ante payo¤ than the babbling outcome.
However, the Receiver does not really have a commitment device. Incorporating
language with a normal form approach fails to take into account sequential ra-
tionality, since in the game with language, interim optimality on the equilibrium
path is no longer implied by ex ante optimality. This prompts us to develop an ex-
tensive form version incorporating language, iterative admissibility and sequential
rationality.

6. Extensive Form Iterative Admissibility with Language

To address the issue presented in example 1, an extensive form version of iterative
admissibility with language (EIAL) is proposed. Section 6.1 motivates and
de�nes weak sequential rationality and the procedure for EIAL. Section 6.2
characterizes the solution to EIAL.

6.1. Weak Sequential Rationality and the Extensive Form Procedure

Sequential rationality is not a novel issue, and a natural �rst step is to add the
requirement into the iterative procedure. Recall the standard de�nition of se-
quential rationality. A Receiver strategy �R is sequentially rational with respect
to a belief �S if and only if �R (m) is optimal at every message m according to
the Bayesian update of �S. However, with a simple opposing-interest example,
we show that this de�nition may clash with language combined with iterative ad-
missibility. We argue that a weaker notion of sequential rationality, in terms of
the induced outcome instead of the strategy pro�le, can better capture the idea of
language, because messages serve only as coordination device. We then develop
the extensive form procedure EIAL. Example 1 is revisited to show the predic-
tions of IA combined with di¤erent sequential rationality notion. It is shown that
the limiting set of EIAL is nonempty.

6.1.1. The Opposing-interest Game

Let�s look at the game in �gure 6.1 where the Sender and the Receiver have
opposing interest. When the true state is West, the Receiver wants to take
action W while the Sender wants the Receiver to take action E and vice versa
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a
West East

t West 0,1 2,0
East 2,0 0,1

Table 6.1: Opposing Interest Game

when the true state is East. The probability that the true state is West is 2
3
and

the probability that the true state is East is 1
3
. If the players cannot communicate

before the Receiver takes an action, it�s optimal for the Receiver to take action
W . This game has a unique babbling equilibrium. NIAL gives a unique solution
where the Receiver takes action W to both messages, which is the same as in the
babbling equilibrium.
We derive the solution to NIAL in this game as follows. The bottom part of

table 6.2 shows all the Receiver strategies in GL, the game with language. In the
�rst round of deletion, the strategy Stubborn E is eliminated because it is strongly
dominated by Stubborn W since taking action W is optimal without communi-
cation. Nothing else can further be eliminated for the Receiver. For type West
Sender, sending message \west" is weakly dominated by sending message \east,"
because typeWest prefers action E to actionW , and either both messages lead to
the same action, or message \west" leads to action W and message \east" leads
action E. Similarly, for type East Sender, sending message \east" is weakly dom-
inated by sending message \west." In summary, the only strategy that survives
the �rst round of deletion for each type of Sender is to utter the desired action.
Call it sSprefer. That is, s

S
prefer (West) = \east" and sSprefer (East) = \west". In

the second round of deletion, the only conjecture the Receiver can have about
the Sender�s behavior is sSprefer. Stubborn W strategy strictly dominates Literal
strategy with respect to sSprefer. The two strategies di¤er only on the actions
taken after receiving message �east.� At round 2, message �east�can only come
from a type West Sender, and Stubborn W strategy takes action W there, which
is better against type West than action E, the action taken by Literal strategy.
Therefore, we end up with a unique prediction S (1) =

�
sSprefer; Stubborn W

	
,

which gives the babbling outcome.
However, Stubborn W is not interim optimal with respect to sSprefer when

the Receiver receives message \west", even though NIAL prediction is equal to
the unique equilibrium outcome in the original game. The top row in table
6.2 illustrates the correspondence between messages and types under the sender
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types of Sender sending m in sSprefer East West

sRnmessage �West� �East�
Stubborn W W W
Stubborn E E E
Literal W E

Table 6.2: Language in Opposing Interest Game

strategy sSprefer. As is shown, message \west" can only come from type East. But
when the true state is East, the optimal action is action E , not action W which
is taken by the Stubborn W strategy. The unique strategy which is sequentially
rational with respect to sSprefer is the Opposite strategy (E;W ). But (E;W ) does
not belong to language, and therefore is physically unavailable. Since sSprefer is the
only conjecture the Receiver can have in the second round, none of the strategies in
language satis�es standard sequential rationality in the second round. Therefore,
imposing standard sequential rationality in the iterative procedure would yield an
empty set.

6.1.2. Weak Sequential Rationality

To see what drives this result and how to tackle it, it might be worthwhile to look
at sequential rationality by its components. In this two-stage game, sequential
rationality can be broken down into ex ante rationality and interim rationality. Ex
ante rationality means utility maximization at the hypothetical initial node, before
the receiver receives the message. Interim rationality means utility maximization
at every information set in the second stage, after receiving the message. Interim
rationality implies ex ante rationality. In the game without language, ex ante
rationality implies interim rationality. We showed that the latter does not hold in
the game with language. While ex ante rationality is taken care of by normal form
analysis, the problem lies in interim rationality. The above discussion shows that
no Receiver strategy in language is sequentially rational with respect to sSprefer.
This is because no Receiver strategy in language is interim rational with respect
to sSprefer. Since every outcome can be achieved in the game with language by
some strategy pro�le, and thus any information can be successfully transmitted
by some message usage speci�ed by language, we wonder what sSprefer represents
in the game with language: is it meant to convey information?
This project focuses on the set of outcomes: language speci�es how messages
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are used to achieve a given set of outcomes. But standard interim rationality is
de�ned in terms of strategy pro�les, not outcomes. In addition, it is sensitive
to the number of messages employed to convey the given information. Consider
the opposing-interest game without language. We want to �nd the smallest set
of strategy pro�les which satis�es the following two properties: 1) it contains all
babbling strategies; 2) it contains all pure strategies getting positive weight in the
set; 2) it is closed under standard interim rationality. Suppose the message space
is trivial and contains only one message. Then the smallest such set contains
only babbling outcome. But if there are two messages in the message space,
then one babbling strategy for each type of the sender is to randomize over the
two messages. Then to contain all supporting pure strategies, this set needs to
contain the two sender strategies where type West sends one message and type
East sends the other message. One such strategy is sSprefer, where type West
utters \east" and type East says \west." Let�s call the other strategy sShonest.
Then to contain Receiver strategies that are interim rational with respect to these
two sender strategies, this set needs to contain both Literal and Opposite, where
the Receiver takes di¤erent actions after receiving di¤erent messages. This set
then has to contain two separating outcomes. However, if we look at interim
rationality in terms of outcomes, ignoring altogether how messages are used, we�ll
avoid this dependence. Since we use language to take care of how messages are
used, it might be natural to look for a notion of sequential rationality that deals
only with the outcomes.
Given a Receiver strategy sR and a belief �S. Typically we say that the

pro�le
�
sR; �S

�
gives rise to an outcome which is a mapping from the type space

to distributions over the action space. From the Receiver�s point of view, however,
the pro�le

�
�S; sR

�
gives rise to an association between actions in the range of sR

and distributions over the type space. Let �(�S ;sR) denote the association induced
by the pro�le

�
�S; sR

�
and sR (M) denote the range of sR. Then, �(�S ;sR) :

sR (M)! �T is de�ned by

�(�S ;sR) (a) (t) =

P
m2(sR)�1(a) �

S (m; t)P
t0
P

m2(sR)�1(a) �
S (m; t0)

,

which is simply a Bayesian update. For each action a that the Receiver takes
in response to some message m 2 M , �(�S ;sR) associates with it a probability
distribution on the type space T , which represents the distribution of the types of
the Sender that might receive this action a under the pro�le

�
�S; sR

�
. Standard
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interim rationality looks at
�
�S; sR

�
. We propose checking interim rationality

from the point of view of �(�S ;sR). It is formally stated as follows:

De�nition 6 (Outcome Interim Rationality). Let B denote a subset of A.
Say that � : B ! �T is outcome interim rational if and only if

a 2 argmax
a02A

X
t

� (a) (t)uR (t; a0)

for all a 2 B.

De�nition 7 (Weak Interim Rationality). Say that sR is weakly interim ra-
tional with respect to �S if and only if �(�S ;sR) is outcome interim rational.

It is easy to see that Stubborn W is weakly interim rational with respect to
sSprefer. Actually, Stubborn W is weakly interim rational with respect to every
�S 2 �SS. In general, for every �S 2 �SS, there exists a sR in language that
is weakly interim rational with respect to �S. Using outcome interim rationality,
we avoid the problem that there might exist some conjectures �S with respect
to which no Receiver strategy in language is interim rational. However, unlike
standard interim rationality, weak interim rationality does not necessarily imply ex
ante rationality. Given a belief �S, there are typically many Receiver strategies
that are weakly interim rational with respect to �S and can be Pareto ranked.
The idea of sequential rationality is that strategies that are not �rational� at
the interim stage are not credible. This motivates a weaker notion of ex ante
rationality: compare ex ante payo¤ among only �credible� Receiver strategies.
More precisely, given �S, only strategies that are weakly interim rational with
respect to �S are credible. Ex ante, the Receiver picks among these �credible�
strategies one that gives him the highest ex ante payo¤. We combine the weaker
notion of ex ante rationality and weak interim rationality analogously to de�ne
weak sequential rationality. Breaking standard sequential rationality into the two
parts and putting them back this way does not alter the implication, since every
Receiver strategy that is interim rational with respect to a conjecture �S is ex
ante payo¤ equivalent to each other.

De�nition 8 (Weak Sequential Rationality). Let XR � SR. Say that sR is
weakly sequentially rational among XR with respect to �S if and only if sR is ex
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ante optimal with respect to �S among Receiver strategies that are weakly interim
rational with respect to �S. That is,

sR 2 arg max
sR02XR

sR0 is weakly interim optimal
w.r.t. �S

UR
�
�S; sR0

�
.

Call
�
�S; �R

�
a weak sequential equilibrium if and only if �S is sequentially

rational with respect to �R and sR is weakly sequentially rational with respect
to �S for every sR in the support of �R. Let WSEQ (G) denote the set of
weak sequential equilibrium in the game without language and WSEQ (GL) de-
note the set of weak sequential equilibrium in the game with language. Then
WSEQ (G) = WSEQ (GL). Recall that in Example 1, where NIAL selects a
unique informative outcome while the unique equilibrium in the original game
is babbling, the set of equilibrium outcomes in the game with language strictly
contain the set of equilibrium outcomes in the game without language. That is,
EQ (G) $ EQ (GL). It is then not that surprising that NIAL, being iterative
admissibility on GL, does not select any equilibrium in EQ (G). Imposing weak
sequential rationality restores the equilibrium outcomes in GL to the equilibrium
outcomes in G. This gives us hope that this de�nition might work.
The motivation for outcome interim rationality is that, instead of truly convey-

ing information, sSprefer might simply be a supporting pure strategy of the mixed
babbling sender strategy. But in the second round, sSprefer is the only conjecture
the Receiver can hold. If sSprefer represents only a supporting pure strategy of
the mixed babbling strategy, the other supporting pure strategy should also be
contained as a possible conjecture held by the Receiver.
We now explain how the combination of language and weak dominance selects�

sSprefer
	
as the unique conjecture the Receiver can hold in the second round

and why it is more properly viewed as a pure strategy supporting the mixed
babbling sender strategy. In the �rst round, we eliminated all sender strategies
except sSprefer. The elimination takes place because the sender takes into account
the possibility of the strategy Literal being used. Suppose instead that the
sender believes that Literal is not going to be used in the game with language,
and therefore the Receiver always ignores messages. Then the two messages
have exactly the same implication to the Sender, and therefore she might as well
randomize. No message is weakly dominated for either type, and all sender
strategies are possible. This points to the well-known force of weak dominance:
the reason for eliminating one strategy might later be eliminated. To show the
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role language plays, consider the game without language. If the sender takes
into account all four strategies, she is not sure which one induces her preferred
action more often. The two messages again look the same to her, though she
might prefer one message under some conjecture, while another under another
conjecture. We�ll end up with everything in the prediction, which is not clear
whether it represents no information transmission, or simply no predicting power.
Language gives a bite by specifying the asymmetry. Though it does not

rule out any outcome, weak dominance forces the sender to take into account all
communication outcomes. Babbling is present in every cheap talk game because
it is self-ful�lling: if the receiver always takes the same action, and the sender
wholeheartedly believes that, then the sender sees the two messages as the same
and might very well randomize between the two. This in turn makes it optimal for
the Receiver to treat the two messages equally and therefore always take the same
action. Language and weak dominance breaks out of this by making the sender
take into account all outcomes. But the danger lies in going to the other extreme
and taking into account outcomes that cannot happen in the game in question.
This gives rise to selecting

�
sSprefer

	
as the unique sender strategy pro�le in a

babbling outcome, because the sender takes into account even outcomes that are
not possible in the situation.

6.1.3. The Procedure for the Extensive Iterative Admissibility with
Language (EIAL)

The idea is to let language take care of how messages are used and use weak
sequential rationality to take care of rationality. ThatWSEQ (GL) =WSEQ (G)
is encouraging. We then de�ne the iterative procedure in an analogous way. We
call this procedure extensive form iterative admissibility with language (EIAL).
Let ESS (0; t) =M , 8t and ESR (0) = SRL .

Procedure 1. sR 2 ESR (k + 1) i¤
a. sR 2 ESR (k)
b. there exists a totally mixed conjecture �S 2 �t2T

�
�+ESS (k; t)

�
such that sR is weakly sequentially rational with respect to �S.

2. sS (t) 2 ESS (k + 1; t) i¤
a. sS (t) 2 ESS (k; t)
b. there exists a totally mixed conjecture �R 2 �+ESR (k) such that

sS (t) is a best response among ESS (k + 1; t) with respect to �R.
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De�nition 9. Write \1k=0ESi (k) = ESi (1) andES (k) =
�
ESS (k) ; ESR (k)

�
.

It is easy to see that EIAL gives the same prediction as NIAL in the opposing
interest game. Now let�s look at the prediction of EIAL on the game in example
1 in section 5.2.

Example 1 Revisited There are three types: type 0; 1
2
and 1. The common

prior is such that � (0) = 1
3
; �
�
1
2

�
= 4

9
and � (1) = 2

9
. Both the Sender

and the Receiver have quadratic loss function: uR (t; a) = � (t� a)2 and
uS (t; a) = �

�
t+ 1

2
� a

�2
.

Recall that the unique equilibrium in the game without language is babbling,
while NIAL selects a unique informative strategy

�
sSnice; s

R
nice

�
. Table 5.1 shows

all the Receiver strategies in language. The �rst round of deletion is the same
as in the normal form procedure: for the Receiver, every strategy in language
except (0; 0; 0) and (1; 1; 1) are retained; for each type of the Sender, only sSnice (t)
is retained. The second round of the extensive form procedure is di¤erent from
that of NIAL. Suppose sR survives the second round of deletion. Then it is
necessary for sR to be weakly interim rational with respect to sSnice, which is the
only conjecture the Receiver can hold at the second round. It is then necessary
that sR takes the same action at both message 1

2
and message 1. Suppose to the

contrary that sR
�
1
2

�
6= sR (1), then by the assumption of language, sR (1) = 1.

From the �rst two rows in table 5.1, we can see that both type 1
2
and type 1

senders send only message 1. Since sR (1) 6= sR
�
1
2

�
, action 1 is associated with

a posterior belief that puts probability 2
3
on type 1

2
and probability 1

3
on type 1.

The best action given this distribution is action 1
2
, not action 1. So sR is not

weakly interim rational with respect to sSnice. We�ve then shown that to be weakly
interim rational with respect to sSnice, it is necessary to take the same action at
both message 1

2
and message 1. Then every type receives the same action since

all types of the Sender send either message 1
2
or message 1. Thus

�
0; 1

2
; 1
2

�
and�

1
2
; 1
2
; 1
2

�
are both weakly sequentially rational with respect to sSnice. The unique

outcome predicted by EIAL is that all types of the Sender receive action 1
2
, which

is the same as the babbling outcome.
Table 6.1.3 summarizes the predictions of the game in example 6.1 under

di¤erent procedures.
We now establish nonemptiness of the limit. We need one notation here.

De�ne "
�
�S; �S0

�
: T ! �M by "

�
�S; �S0

�
(t) � (1� ")�S (t) + "�S0 (t).
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Language No Language
EQ sRbabble; s

R
nice sRbabble

WSEQ sRbabble sRbabble
IA sRnice everything
IA+Standard Sequential Rationality empty everything
Weak IA+Weak Sequential Rationality sRbabble everything

Lemma 6. ES (1) is nonempty.

Proof Since SL =
�
SS; SRL

�
is �nite, the elimination process must stop after

�nite steps. It su¢ ces to show that ES (k + 1) is nonempty if ES (k) is
nonempty. It is obvious from the iterative procedure that ESS (k + 1) is
nonempty, since SL is �nite and for every �R 2 �+ESR (k), there exists
sS 2 ESS (k) which attains the maximum payo¤ among Sender strategies
in ESS (k). To show that ESR (k + 1) is nonempty, it su¢ ces to show that
there exists a totally mixed conjecture on ESS (k), i.e. �S 2 �+ESS (k),
such that there exists sR in ESR (k) which is weakly interim rational with
respect to �S. It is obvious that for every �S 2 �+ESS (0) = �+SS, there
exists sR 2 ESR (0) = SR which is weakly interim rational with respect to
�S, since a constant sR which plays the best action against the prior is weakly
interim rational with respect to �S. Let us pick any �Sk�1 2 �+ESS (k � 1).
Since ESS (k) � ESS (k � 1), "

�
�Sk ; �

S
k�1
�
2 �+ESS (k � 1) for any �Sk in

ESS (k). To shorten the notation, write "
�
�Sk ; �

S
k�1
�
simply as �Sk;". Lemma

7 implies that for every " small enough,�
sR 2 ESR (k � 1) : sR is weakly interim rational with respect to �Sk;"

	
�

�
sR 2 ESR (k) : sR is weakly interim rational with respect to �Sk

	
.

By hypothesis, the set�
sR 2 ESR (k � 1) : sR is weakly interim rational with respect to �Sk;"

	
is nonempty. Since ESR (k � 1) is �nite, there exists a Receiver strategy
sR 2 ESR (k � 1) which attains the maximum expected utility among all
strategies that are weakly interim rational with respect to �Sk;". Therefore,
the set�

sR 2 ESR (k) : sR is weakly sequentially rational with respect to �Sk
	

is nonempty. The proof is then completed by induction.
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Lemma 7. Given any �S 2 �SS, there exists �" > 0 such that for all �S0 2 �SS
and " < �",�

sR 2 SRjsR is weakly sequentially rational with respect to "
�
�S; �S0

�	
�

�
sR 2 SRjsR is weakly sequentially rational with respect to �S

	
.

The proof is left to the Appendix.

6.2. Characterization

The extensive form procedure (EIAL) is motivated by the example illustrating
that NIAL might not select any equilibrium outcome of the original game. We
showed that EIAL restores babbling as the unique prediction in that example.
In this section, we show that this result is general, i.e., EIAL selects babbling
as the unique outcome when babbling is the unique equilibrium in the original
game. However, we are able to show that EIAL contains at least one equilibrium
outcome in the original game only under monotonicity condition (M) (de�ned in
section 4) and with the interim interpretation. On the other hand, with EIAL,
we are able to show the lower bound on the amount of information transmission
only under ex ante interpretation. We do not have a tight characterization when
the monotonicity condition (M) is satis�ed. Showing inclusion of strategies under
interim representation is easier, while showing exclusion of strategies under ex ante
representation is easier. Therefore, our current results under EIAL depend on
whether interim representation or ex ante representation is employed.

Proposition 5. If babbling is the unique equilibrium, then babbling is the only
outcome under EIAL.

Proof (Idea) Say that X � S contains an informative outcome if there ex-
ists

�
sS; sR

�
2 X such that there are two di¤erent types t1 6= t2 where

sR
�
sS (t1)

�
6= sR

�
sS (t2)

�
. We show that if ES (k) contains an informative

outcome, then the iterative process does not stop, i.e., ES (k + 1) $ ES (k).
Since we have shown that the limiting set is nonempty, it is necessary that
ES (1) contains no informative outcomes. Thus EIAL predicts that every
type receives the same action. Since the strictly best constant strategy is
to play the best action against the prior, we get the babbling outcome.
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To see why the iterative process does not stop when ES (k) contains an
informative outcome, note that for babbling to be the unique equilibrium
in the original game, it has to be the case that every type t prefers to be
pooled with all higher types than with all lower types. Whenever it is not
the case that all messages induce the same action, some type t will want to
discard a message which always receives the lowest action.

The details of the proof is left to the Appendix.

Proposition 6. If condition (M) holds, then the most informative equilibrium
outcome is contained in EIAL under the interim interpretation.

We prove it by showing that if every type exaggerates the most they want and
sends the highest message they might use in ESS (1), the best the Receiver can
do without violating either language or weak interim rationality is to play the
most informative equilibrium strategy. The details are left in the Appendix.
When ex ante interpretation is employed, however, we need to make sure that

there exists one single Receiver strategy with respect to which every type of the
Sender wants to exaggerate the most. Therefore, the proof of proposition 6 does
not carry through directly. Under the interim interpretation, di¤erent types are
allowed to hold di¤erent beliefs about the behavior of the Receiver. Therefore,
it is easier to construct a sender strategy pro�le in the limiting set, and therefore
easier to show that a Receiver strategy belongs to the limiting set.
Now we state the result of the lower bound on the amount of information trans-

mission. Proposition 7 says that every Receiver strategy in the limit partitions
the set of messages used in the limit into at least L intervals.

Proposition 7. With ex ante interpretation, under EIAL, there exists a non-
trivial lower bound on the number of di¤erent actions taken on ESR (1). Speci�-
cally, if the game admits a non-babbling equilibrium, then the number of di¤erent
actions taken in ESR (1) is at least 2.

Proof A Receiver strategy sR partitions the message space. If sR is weakly
interim rational with respect to �S, then a partition determines sR. A �ner
partition is unambiguously better. However, a �ner partition might violate
the language restriction. We show that a Receiver strategy cannot have a
step that is too wide, because otherwise there exists a �ner partition that
satis�es language and is weakly interim rational. The same logic is used to
attain a lower bound.
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We need the following two observations to proceed with the proof. The �rst
claim relates the minimum action the Receiver might take at messagem��
to the value m. It holds only under ex ante interpretation. The second
claim gives a relation between the lowest type that might send messages in
[m; 1] to the value m.

Claim sR (m��) � E ([0; � (m)]) for all sR 2 ESR (1) such that sR (m) 6=
sR (m��).

Claim Type g�1 (1;m) prefers action a = m to actionE ([0; g�1 (1;m)��]).

In particular, g�1 (1;E ([t21; 1])) � t21. Given any �
S 2 �SS, de�ne

sRsep2 (m) �
(
argmaxa U

Rj[0;E([t21;1])��]
�
�S; a

�
argmaxa U

Rj[E([t21;1]);1]
�
�S; a

� m 2 [0; E ([t21; 1])��]
m 2 [E ([t21; 1]) ; 1]

It is obvious that sRsep2 is weakly interim rational with respect to �S. To
show that sRsep2 belongs to language, we need to show that

argmax
a
URj[0;E([t21;1])��]

�
�S; a

�
� E

��
t21; 1

��
�� (6.1)

argmax
a
URj[E([t21;1]);1]

�
�S; a

�
� E

��
t21; 1

��
. (6.2)

Ex ante interpretation implies that every pure Sender strategy sS 2 ESS (1)
is weakly increasing in t. Therefore, argmaxa URj[0;m]

�
sS; a

�
� E ([0; 1]) for

every m and every sS 2 ESS (1). It follows that argmaxa URj[0;m]
�
�S; a

�
�

E ([0; 1]) for every m and every �S 2 �ESS (1). Thus,

argmax
a
URj[0;E([t21;1])��]

�
�S; a

�
� E ([0; 1])

< E
��
t21; 1

��
.

This gives us inequality 6.1. We showed that the smallest type that can
send any message higher than or equal to message E ([t21; 1]) is greater than
t21 ��. Therefore, E ([g�1 (1;E ([t21; 1])) ; 1]) � E ([t21; 1]). Inequality 6.2
then follows. So a constant Receiver strategy cannot be weakly sequentially
rational with respect to �S, because sRsep2 is weakly interim rational with
respect to �S and gives a higher ex ante payo¤ than a constant Receiver
strategy.
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Therefore, sR must partitionM (1) into at least two intervals. Let fa1; :::; aqg
be the set of actions taken by sR on M (1), where aj < aj+1. Let mj be
the smallest message on which sR takes the value aj. Let

m̂q � max
�
m 2M jE

��
g�1 (1;m) ; 1

��
� m

	
.

It follows that m̂q � E ([t21; 1]).

Claim aq � m̂q or aq is such that

g (1; � (ak)) � E
��
� (ak) ; g

�1 (1; m̂q)��
��
. (6.3)

To show this, de�ne

sRsep2 (m) �

8><>:
argmaxa U

Rj[mq ;E([t21;1])��]
�
�S; a

�
argmaxa U

Rj[E([t21;1]);1]
�
�S; a

�
sR (m)

.
m 2 [mq; m̂q ��]

m 2 [m̂q; 1]
otherwise

:

For sR to be weakly interim rational with respect to �S, it has to be the case
that g

�
1; �[0;1] (aq)

�
� mq. If g (1; � (ak)) < E ([� (ak) ; g

�1 (1; m̂q)��]),
then

mq � g (1; � (ak))
< E

��
� (ak) ; g

�1 (1; m̂q)��
��

� argmax
a
URj[mq ;E([t21;1])��]

�
�S; a

�
.

Therefore sRsep2 satis�es language. Since sRsep2 is weakly interim rational
w.r.t. �S by construction, we have thus reached a contradiction.

The above claim gives a lower bound on aq. This in turn gives a lower
bound on argmaxa URj[0;mq��]

�
�S; a

�
. Look at �S restricted on the interval

[0;mq ��]. We can then apply the same argument and get a lower bound
on aq�1.

De�ne  (� 1) to be the longest forward solution with an initial condition
� 1. That is,  (� 1) � f0; � 1;  2;  3; :::;  ng is a forward solution on [0;  n]
where  n � 1, and there does not exist a forward solution f0; � 1;  02; :::;  0n0g
where  0n0 � 1 and n0 > n. De�ne � (� 1) � n where n is the size of the
forward solution  (� 1). A necessary condition is that either � (� (ak)) = 1
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or  2 (� (aq)) � t21 ([0; 1]). So when there is a size-2 forward solution on
[0; t21 ([0; 1])], q � 1 � 2. A lower bound of the lower bound on aq�1 can be
interpreted this way by restricting types to the subset [0; � (ak)��]. So
if there is a size-2 forward solution on [0; t21 ([0; t

2
1 ([0; 1])])], then q � 2 � 2.

De�ne f1 � t21 ([0; 1]), and fj+1 � t21 ([0; fj]) whenever [0; fj] has a size-2
forward solution. The process ends when we reach [0; fl] where there is no
size-2 forward solutions on it.

7. Conclusion

This paper is an exercise to demonstrate the power of incorporating the asymmetry
implied by language, when language is regarded as one way to transmit a given
amount of information. Taking a literal approach, we model common knowledge
of language by directly restricting players�strategy sets without a priori ruling
out any outcome. We then characterize the solution to this new game under
iterative admissibility. Applying the general framework to sender-receiver games
a la Crawford and Sobel (1982), we assume that strategies satisfy �language� if
and only if they satisfy the literal meaning condition and the convexity condition.
Using normal form iterative admissibility, under a regularity condition, we show
that all outcomes are at least as informative (in terms of number of distinct actions
possibly received by the sender) as the most informative equilibrium.
However, we illustrate through an example that this procedure may eliminate

even the most informative equilibrium, and we point out the tension among lan-
guage, iterative admissibility and sequential rationality. These con�icts arise
because modeling language through physically restricting a player�s strategy set
gives language the highest priority. Therefore, language always overrides interim
optimality, although normal form iterative admissibility takes care of ex ante op-
timality. We show that simply adding standard sequential rationality does not
resolve these con�icts. In order to capture and reconcile the ideas of language,
iterative weak dominance and sequential rationality, we develop a weaker version
of sequential rationality which seems more suited to cheap talk games, and we
propose an extensive form procedure. However, we do not have a complete char-
acterization of the predictions under our extensive form iterative procedure, and
there exist alternative methods for analyzing language while giving rationality a
comparable weight. A worthwhile future investigation might involve capturing
the idea of language through restricting beliefs, instead of strategy sets, and �nd-
ing a way to analyze the interaction between beliefs about language and beliefs
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about rationality.
In sum, we point out the asymmetry among messages as the driving force for

language to advance coordination and e¢ ciency. We propose a framework which
provides a systematic and structural approach to understanding the implications
of di¤erent properties of language. We leave open the questions of how to incorpo-
rate language with rationality while giving the two concepts comparable weights
and the epistemic story of common knowledge of language.

8. Appendix

8.1. Proofs for Section 3

Proof for Lemma 2 We �rst establish the equivalence between strong domi-
nance and best response. Lemma 1 then follows using the same method in
the proof of lemma 4 in the Appendix of Pearce (1984). For the complete-
ness of the argument, we restate the proof below.

Suppose that ŝR is not a best response to any �S 2 �t
�
�+XS (t)

�
. De�ne

A =
�
�R 2 �XR : UR

�
�S; �R

�
= UR

�
�S; ŝR

�
8�S 2 �t

�
�XS (t)

�	
.

Let kt be the number of pure strategies in XS (t) and let k = �t2Tkt, and �
be the open interval

�
0; 1

k

�
. De�ne

�t" =
�
�S 2 �XS (t) : �Si � "8i = 1; 2; :::; kt

	
,

�" = �t�
t
"

B" =
�
�R 2 �XR : UR

�
�R; �S

�
> UR

�
ŝR; �S

�
8�S 2 �"

	
,

W" =
�
�R 2 �XR : UR

�
�R; �S

�
� UR

�
ŝR; �S

�
8�S 2 �"

	
.

ŝR is not a best response to any �S 2 �t
�
�+XS (t)

�
, so for each " 2 �, ŝR

is not a best response to any �S 2 �". If we view �t" as set of strategies for
type t Sender, then the equivalence between strong dominance and never
best response establishes that B" is nonempty. Since W" is closed and
nonempty, for each " 2 � we can choose sR" 2 �XR that is a best response
in W" to �S" 2 �", where �S" (t) puts probability

1
kt
on every pure strategy

in XS (t). Notice that sR" yields player R strictly higher utility against �S"
than ŝR, since B" v W". Choose a sequence of "0is in T converging to 0,
such that

�
�R"i
	
converges. Let �R� be the limit of the sequence

�
�R"i
	
. We

will show that �R� weakly dominates ŝ
R.
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Continuity of UR guarantees that �R� is at least as good for player R as ŝ
R

against all �S 2 �
�
�XS (t)

�
. It remains only to show that �R� =2 A. If

9�0R 2 A with �0R = �R� , then for all su¢ ciently small "i, �
R
"i
gives positive

weight to very pure strategy given positive weight by �0R. Then � > 0 can
be chosen su¢ ciently small so that all components of

��R"i =
�
�"i � ��0R

� 1

1� �

are nonnegative. For any �R 2 �"i,

UR
�
�S; ��R"i

�
� UR

�
�S; �R"i

�
=

�

1� �

�
UR

�
�R"i ; �

S
�
� UR

�
ŝR; �S

��
� 0

because �R"i 2 W"i. Moreover, the inequality is strict when �S is such
that, for every t, �S (t) puts probability 1

kt
on every pure strategy in XS (t)

(denote it by ~�S). Thus ��R"i is in W"i and yields player R higher utility than
�R"i against ~�

S, a contradiction.

Claim sR is strongly dominated w.r.t.
�
�tX

S (t)
�
� XR if and only if

there does not exist a �S (t) 2 �XS (t) for every t such that sR 2
argmaxs02XR UR

��
�S (t)

�
t
; s0
�
.

Proof The �only-if�part is trivial. To show the �if�part, suppose to the
contrary that ŝR is not a best response to any �S 2 �t

�
�XS (t)

�
. Then

there exists a function b : �t
�
�XS (t)

�
! XR with UR

�
�S; b

�
�S
��
>

UR
�
�S; ŝR

�
8�S. Consider the zero-sum game

�G =
�
T;�tX

S (t) ; XR; �US (; t) ; �UR
�

where �UR
�
sS; sR

�
= UR

�
sS; sR

�
� UR

�
sS; ŝR

�
and �US

�
sS; sR; t

�
=

�UR
�
sS; sR

�
8t. Let

�
�t�

S
� (t) ; �

R
�
�
be a Bayesian Nash equilibrium

of �G. Since the interim interpretation results in the same equilibria as
the ex ante interpretation,

�US
�
�t�

S
� (t) ; �

R
�
�
� �US

�
�t�

S (t) ; �R�
�

for any �t�S (t) 6= �t�S� (t). For any �S 2 �XS,

�UR
�
�t�

S (t) ; �R�
�
� �UR

�
�t�

S
� (t) ; �

R
�
�

� �UR
�
�t�

S
� (t) ; b

�
�t�

S
� (t)

��
= UR

�
�t�

S
� (t) ; b

�
�t�

S
� (t)

��
� UR

�
�t�

S
� (t) ; ŝ

R
�

> 0
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So

UR
�
�t�

S (t) ; �R�
�
> UR

�
�t�

S (t) ; ŝR
�
8�t�S (t) 2 �t�XS (t)

So ŝR is strongly dominated by �R� .

8.2. NIAL Results under the Interim Interpretation

To show lemma 5 strictly under the interim interpretation, we need the following
lemmas.

Lemma 8. 3If yS (t) � t+ b8t, then S (k) satis�es the following properties for all
k:

1. Given any messages m0;m1 where m0 < m1 � yS (t) and m0 2 SS (k; t),
then m1 belongs to SS (k; t).

2. If l (k; t) < yS (t), then [l (k; t) ; yS (t)] 2 SS (k; t);

3. 8m0 < m1 such that m1 2 M (k) and 9sR 2 SR (k) such that sR (m0) 6=
sR (m1), there exists ŝR 2 SR (k) such that ŝR (m0) < ŝR (m1) � m1.

4. For all message m̂ 2 M (k) such that there exists a strategy sR1 2 SR (k)
where sR1 (m̂��) < m̂ < sR1 (m̂), there exists another strategy s

R
2 2 SR (k)

where sR2 (m̂+�) = sR1 (m̂+�) > sR2 (m̂) � sR1 (m̂��).

Proof. Prove by induction. It is obvious that properties 1 through 4 hold
for k = 0. Suppose they hold for j = 0; :::; k. Property 2 is a re-phrasing of
property 1. Property 1 follows from property 4. To show property 4 holds
for j = k + 1, suppose ŝR 2 SR (k + 1) is such that ŝR (m̂��) 6= ŝR (m̂). If
l (k; t) > m̂ for all t > m̂, then message m̂ can only come from types smaller or
equal to m̂. m̂ 2M (k), so it can be shown that sR such that sR (m̂) > m̂ cannot
be a best response to any �S 2 �t2T

�
�+SS (k; t)

�
. So if ŝR (m̂) 6= ŝR (m̂��)

and ŝR 2 SR (k + 1), then ŝR (m̂) = m̂. Property 3 is thus shown to hold and
property 4 holds automatically since there does not exist sR 2 SR (k) such that
sR (m̂) > m̂. Now discuss the case where l (k; t) � m̂ for some t > m̂. According
to the procedure, there exists �̂S 2 �t2T

�
�+SS (k; t)

�
to which ŝR is a best

3I have a proof for property 3 for ex ante representation. The proof for property 4 relies on
interim representation. Do not know whether it holds under ex ante representation.
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response. Recall that �S (:; t) 2 �M . For type t > m̂, construct �̂S2 (:; t) to be
such that the weight on message m̂ is moved to message m̂+�, i.e.

�̂S2 (m̂+�; t) = �̂S (m̂; t) + �̂S (m̂+�; t)

�̂S2 (m̂; t) = 0

�̂S2 (m; t) = �̂S (m; t) 8m < m̂

De�ne �̂S2 (:; t) = �̂S (:; t) for every type t � m̂. Message m̂ + � belongs to
SS (k; t) 8t > m̂ if �̂S (m̂; t) > 0 because yS (t) > t + b � m̂ + b � m̂ + �
and property 2 implies that

�
m̂; yS (t)

�
� SS (k; t) if m̂ 2 SS (k; t). Therefore

�̂S2 (:; t) 2 �SS (k; t) 8t. De�ne �̂S� (:; t) � (�) �̂S2 (:; t) + (1� �) �̂S (:; t). Be-
cause ŝR is a best response to �̂S and ŝR (m̂) > m̂, it must be the case that
argmaxa U

Rjfm̂g
�
�̂S; a

�
> m̂. Since types that send message m̂ under �̂S2 must

be smaller or equal to m̂, argmaxa URjfm̂g
�
�̂S2 ; a

�
� m̂. So there exists �̂ 2 (0; 1)

such that argmaxa URjfm̂g
�
�̂S�̂; a

�
= m̂. This comes from the condition that

@2u
@a2

< 0 and can be shown by mean value theorem.
Let sR�̂ be a best response to �̂

S
�̂. Since �̂S�̂ (t) 2 �+SS (k; t) 8t, it follows

that sR�̂ 2 SR (k + 1). It remains to show that sR�̂ (m̂) = m̂ and sR�̂ (m̂+�) �
ŝR (m̂+�) for property 4 to hold for j = k + 1. If sR�̂ (m̂��) � m̂ ��, then
property 3 is shown to hold for j = k + 1. Otherwise, de�ne �̂S3 to be such
that all types smaller than m̂ send messages smaller than m̂ and all types geater
than or equal to m̂ send messages greater than or equal to m̂. Then if ~sR is a
best response to �S close to �̂S3 , it must be the case that ~s

R (m̂��) � m̂ � �
and ~sR (m̂) � m̂. If ~sR (m̂) = m̂ then property 3 is shown to hold. Otherwise,
~sR (m̂) > m̂ > ~sR (m̂��) and we can apply the technique for ŝR again to show
that there exists ~sR~� 2 SR (k + 1) such that ~sR~� (m̂) = m̂ and ~sR~� (m̂��) � m̂��.
Now show that sR�̂ (m̂) = m̂ and sR�̂ (m̂+�) � ŝR (m̂+�). If sR is such that

sR (m̂) = sR (m̂+�), then UR
�
�̂S2 ; s

R
�
= UR

�
�̂S; sR

�
and therefore UR

�
�̂S�̂; s

R
�
=

UR
�
�̂S; sR

�
. Construct a strategy ��

�
ŝR; m̂

�
which is equal to ŝR except on m̂

and ��
�
ŝR; m̂

�
(m̂) = m̂. The strategy ��

�
ŝR; m̂

�
2 SRL because ŝR (m̂) > m̂ >

ŝR (m̂��) by construction. It�s easy to show that

UR
�
�̂S�̂; ��

�
ŝR; m̂

��
> UR

�
�̂S�̂; ŝ

R
�
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because argmaxa URjfm̂g
�
�̂S�̂; a

�
= m̂. From the construction that ŝR is a best

response to �̂S�̂,

UR
�
�̂S�̂; ��

�
ŝR; m̂

��
> UR

�
�̂S�̂; ŝ

R
�

= UR
�
�̂S; ŝR

�
� UR

�
�̂S; sR

�
for all sR such that sR (m̂) = sR (m̂+�). Therefore, being a best response
to �̂S�̂ by construction, s

R
�̂ (m̂) 6= sR�̂ (m̂+�) and hence s

R
�̂ (m̂) � m̂. A similar

argument can be used to show that sR�̂ (m̂) = m̂ because argmaxa URjfm̂g
�
�̂S�̂; a

�
=

m̂. Now construct a strategy �
�
sR�̂ ; m̂; ŝ

R
�
which is equal to sR�̂ for m � m̂ and is

equal to ŝR for m > m̂. This new strategy �
�
sR�̂ ; m̂; ŝ

R
�
belongs to the language

SRL because s
R
�̂ (m̂) � m̂ < ŝR (m̂+�). For sR�̂ to be a best response to �̂

S
�̂, it

has to be the case that UR
�
�̂S�̂; s

R
�̂

�
� UR

�
�̂S�̂; �

�
sR�̂ ; m̂; ŝ

R
��
. Let �+

�
sR�̂ ; m̂

�
be a strategy which is equal to sR�̂ except on message m̂ and �+

�
sR�̂ ; m̂

�
(m̂) =

sR�̂ (m̂+�). Since s
R
�̂ (m̂+�) > m̂, the new strategy �+

�
sR�̂ ; m̂

�
belongs to SRL .

Therefore,

0 � UR
�
�̂S�̂; s

R
�̂

�
� UR

�
�̂S�̂; �

�
sR�̂ ; m̂; ŝ

R
��

= URj[m̂+�;1]
�
�̂S�̂; s

R
�̂

�
� URj[m̂+�;1]

�
�̂S�̂; ŝ

R
�

=
X

t�m̂+�

�
�̂S (m̂+�; t) + �� �̂S (m̂; t)

� �
uR
�
t; sR�̂ (m̂+�)

�
� uR

�
t; ŝR (m̂+�)

��
+
X
t�m̂

�
�̂S (m̂+�; t)

� �
uR
�
t; sR�̂ (m̂+�)

�
� uR

�
t; ŝR (m̂+�)

��
+

X
m�m̂+2�

X
t

�̂S (m; t)
�
uR
�
t; sR�̂ (m)

�
� uR

�
t; ŝR (m)

��
=

X
t

�
�̂S (m̂+�; t) + �̂S (m̂; t)

� �
uR
�
t; sR�̂ (m̂+�)

�
� uR

�
t; ŝR (m̂+�)

��
+

X
m�m̂+2�

X
t

�̂S (m; t)
�
uR
�
t; sR�̂ (m)

�
� uR

�
t; ŝR (m)

��
�
� P

t�m̂ �̂
S (m̂; t)

�
uR
�
t; sR�̂ (m̂+�)

�
� uR

�
t; ŝR (m̂+�)

��
+(1� �)

P
t�m̂+� �̂

S (m̂; t)
�
uR
�
t; sR�̂ (m̂+�)

�
� uR

�
t; ŝR (m̂+�)

�� �
= UR

�
�̂S; �

�
ŝR; m̂��; �+

�
sR�̂ ; m̂

���
� UR

�
�̂S; ŝR

�
�
�
URjfm̂g

�
�̂S�̂; s

R
�̂ (m̂+�)

�
� URjfm̂g

�
�̂S�̂; ŝ

R (m̂+�)
��
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Thus,

URjfm̂g
�
�̂S�̂; s

R
�̂ (m̂+�)

�
� URjfm̂g

�
�̂S�̂; ŝ

R (m̂+�)
�

� UR
�
�̂S; �

�
ŝR; m̂��; �+

�
sR�̂ ; m̂

���
� UR

�
�̂S; ŝR

�
� 0

because ŝR is a best response to �̂S. Since

argmax
a2A

URjfm̂g
�
�̂S�̂; a

�
= m̂ < ŝR (m̂+�)

and URjfm̂g
�
�̂S�̂; a

�
as a function of a inherits the concavity from uR, we get

sR�̂ (m̂+�) � ŝR (m̂+�)

It has now been shown that sR�̂ (m̂+�) � ŝR (m̂+�) and sR�̂ (m̂) = m̂ �
ŝR (m̂��).
De�ne �k+1 iteratively to be the largest type t̂ < �k such that l (k; t) � t.

That is, de�ne
�k+1 � max ft < �kjl (k; t) � tg

. De�ne
l�1 (k;m) = max ftjl (k; t) � mg

. Then by de�nition, l�1 (k; �k) = �k and l
�1 (k;m) < m for all m > �k.

Lemma 9. There exists sR 2 SR (k + 1) such that sR (�k) 6= sR (�k ��), for any
k.

Proof. This can be done by showing that there exists ŝS 2 SS (k) such that
ŝS (�k) = �k and ŝ

S (t) � �k �� for all t � �k ��. Then show that sR (m) � m
for all m � �k given any s

R 2 CR� (k + 1). Then ŝR where ŝR (�k) = �k and
ŝR (�k ��) � �k�� does strictly better w.r.t. �̂S close to ŝS than any other sR.
So there exists ŝR 2 CR� (k + 1) where ŝR (�k) = �k and ŝ

R (�k ��) � �k �� 6=
ŝR (�k).
Now lemma 5 follows.

Lemma 10. l (1; t) � t for all t 2 T . Moreover, either l (1; t) � yS (t) or
sR (l (1; t)) = sR

�
yS (t)

�
for all sR 2 SR (1).
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Proof. Suppose given k, there exists a type t such that l (k; t) � t. Then
�k is well de�ned. So for all sR 2 SR (k + 1), sR (�k) � �k and there exists
ŝR 2 SR (k + 1) where �k = ŝR (�k) 6= ŝR (�k ��). So for every type t where
yS (t) � �k, message �k � � is weakly dominated by message �k, because they
prefer action �k to any smaller action. It then follows that every message m �
�k�� is also weakly dominated by message �k. So l (k + 2; t) � �k for all t where
yS (t) � �k. So l (k + 2; t) � �k for all t � �k � b. It follows that �k+2 � �k � b
and thus the process does not stop at round k. So when the process stops, it has
to be the case that l (1; t) � t for all type t. Furthermore, either l (1; t) � yS (t)
or sR (l (1; t)) = sR

�
yS (t)

�
for all sR 2 SR (1) because otherwise , message

l (1; t) is weakly dominated by message yS (t) since sR
�
yS (t)

�
� yS (t) for all

sR 2 SR (1) and thus type t always prefers the action induced by message yS (t)
to that induced by message l (1; t), which contradicts the de�nition of l (1; t).

8.3. NIAL Results under Ex Ante Interpretation

Ex ante interpretation is equivalent to assuming that di¤erent types of Sender
hold the same belief about the behavior of the Receiver. Therefore, SS (k) is no
longer a product space of SS (k; t), and the proof under the interim interpretation
does not apply. We�ll make an assumption which is satis�ed when neither type
space nor action space is discretized. We make use of the assumption in the proof
when type space and action space are discretized.

Assumption For any a1 < a2 < a3 where aj 2 A for j = 1; 2; 3 and a1 � yS (0),
there exists t̂ 2 T such that a2 = argmaxj=1;2;3 uS

�
t̂; aj

�
.

Proof for Lemma 5 Suppose to the contrary that there exists type t̂ such that
l
�
1; t̂

�
< t̂ and l (1; t) � t for all t > t̂. From the de�nition of b, we

know that every type greater or equal to 1 � b prefers a higher action to a
lower one. Thus, l (1; t) = 1 for all t � 1� b because any message smaller
than 1 induces a weakly smaller action. So t̂ < 1 � b. l (1; t) � t for all
t > t̂ implies that l�1 (1;m) � m for all m � t̂. From observation 5.1,
we know that sR (m) � m for all sR 2 SR (1) and m 2 M (1) \

�
t̂; 1
�
.

In particular, sR
�
t̂
�
� t̂ for all sR 2 SR (1). If there exists ~sR 2 SR (1)

such that ~sR
�
t̂
�
6= ~sR

�
t̂��

�
, then ~sR

�
t̂
�
= t̂ > ~sR

�
t̂��

�
. Since b � �,

yS
�
t̂
�
� t̂+�. Therefore, any message smaller than t̂ is weakly dominated

for type t̂ by the message t̂. This contradicts the assumption that l
�
1; t̂

�
<
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t̂. Likewise, if there existsm 2
�
t̂; yS

�
t̂
��
such that there exists sR 2 SR (1)

where sR (m) 6= sR
�
l
�
1; t̂

��
, then the message l

�
1; t̂

�
is weakly dominated

by the message m. Since l
�
1; t̂

�
< t̂, there exists m̂ � yS

�
t̂
�
such that

sR (m) = sR
�
l
�
1; t̂

��
for all m 2

�
l
�
1; t̂

�
; m̂
�
.

Moreover, sR
�
l
�
1; t̂��

��
= sR

�
l
�
1; t̂

��
for all sR 2 SR (1) because

type t̂�� prefers action t̂ to any smaller action, due to the assumption that
b � �. So sR (m) = sR

�
l
�
1; t̂��

��
for all m 2

�
l
�
1; t̂��

�
; m̂
�
.

Now we need to construct sS� 2 SS (1) such that the Receiver�s ex ante best
response to sS� must be a non-constant on the interval

�
l
�
1; t̂��

�
; m̂
�
,

which would contradict the construction of m̂ and we would be done. We
can �nd such sender strategy in SS (1). We�ll suppose we can �nd one in
S (k), and then show that we can �nd one in S (k + 1). Then by induction,
we an �nd one in S (1).

De�nition 10. Say that property * holds for j if there existsm 2 SS
�
j; t̂
�
\�

t̂; m̂��
�
and �R 2 �SR (j � 1) such that uS

�
t̂; �R (m)

�
> uS

�
t̂; �R

�
t̂��

��
.

Suppose k is such that property * holds for j = 1; 2; :::; k. Let mk
1 �

min

8<:
m 2 SS

�
k; t̂
�
\
�
t̂; m̂��

�
j

9�R 2 �SR (k � 1) s.t.
uS
�
t̂; �R (m)

�
> uS

�
t̂; �R

�
t̂��

��
9=;.

Step 1 Show that there exists sS�k 2 SS (k) such that sS�k
�
t̂
�
= mk

1 (or a message
m such that sR (m) = sR

�
mk
1

�
for all sR 2 SR (k � 1)) and sS�k

�
t̂��

�
2�

sS0
�
t̂��

�
; t̂��

�
. Let SR�k �

�
sR 2 SR (k) jsR is a best response among SR (k � 1) to sS�k

	
.

Proof We want to construct �R�k 2 �+SR (k � 1) such that

mk
1 2 argmax

m
uS
�
t̂; � (m)

�
uS
�
t̂; �R�k

�
mk
1

��
> uS

�
t̂; �R�k

�
t̂��

��
uS
�
t̂��; �R1k (m0)

�
> uS

�
t̂��; �R1k (m)

�
for some m0 2

�
l
�
1; t̂��

�
; t̂��

�
and all m � t̂
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. From the construction of mk
1, there exists �

R
1k such that

mk
1 2 argmax

m
uS
�
t̂; �R1k (m)

�
uS
�
t̂; �R1k

�
mk
1

��
> uS

�
t̂; �R1k

�
t̂��

��
� uS

�
t̂; �R1k (m)

�
for all m � t̂��.

W.l.o.g. assume uS
�
t̂��; �R1k (m)

�
is weakly increasing in m on the

set SS
�
k; t̂
�
\
�
0;mk

1

�
. If there exists m0 2

�
l
�
1; t̂��

�
; t̂��

�
such

that

uS
�
t̂��; �R1k (m0)

�
> uS

�
t̂��; �R1k (m)

�
for all m � t̂

, then let �R�k � �R1k. Otherwise, let

m+ � min

8>><>>:
m � t̂j

uS
�
t̂��; �k1 (m)

�
� uS

�
t̂��; �k1

�
t̂��

��
;

9sR 2 SR (k � 1) s.t.
sR (m) 6= sR

�
t̂��

�
9>>=>>;

if t̂ � � 2 SS
�
k; t̂��

�
. If not, then choose the highest message

smaller than t̂�� that belongs to SS
�
k; t̂��

�
. Then m+ 2

�
t̂; mk

1

�
and sR (m) = sR

�
t̂��

�
for all m 2

�
t̂; m+ ��

�
. By construc-

tion of ŝS0 , ŝ
S
0

�
t̂��

�
2 M (1) \

�
l
�
1; t̂��

�
; t̂��

�
. We want

to show that m+is not equivalent to message ŝS0
�
t̂��

�
for type t̂��

w.r.t. SR (k � 1). Suppose true. Then m+ is equivalent with message
ŝS0
�
t̂
�
for type t̂ w.r.t. SR (k � 1) because ŝS0

�
t̂
�
2
�
ŝS0
�
t̂��

�
;m+

�
.

Then message m+weakly dominates message ŝS0
�
t̂
�
for type t̂ w.r.t.

SR (k � 1) by single crossing condition. Thus ŝS0
�
t̂
�
=2 SS

�
1; t̂

�
, which

contradicts the construction of ŝS0 . So m
+is not equivalent with mes-

sage ŝS0
�
t̂��

�
for type t̂�� w.r.t. SR (k � 1). So uS

�
t̂; �R1k (m

+)
�
>

uS
�
t̂; �R1k

�
t̂��

��
. In addition, there exists �R0k 2 �+SR (k � 1) such

that

ŝS0
�
t̂��

�
2 argmax

m
uS
�
t̂��; �R0k (m)

�
uS
�
t̂��; �R0k

�
ŝS0
�
t̂��

���
> uS

�
t̂��; �R0k

�
m+
��
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. If uS
�
t̂; �R0k

�
mk
1

��
� uS

�
t̂; �R0k (m)

�
for allm 2

�
l
�
1; t̂��

�
; t̂��

�
,

then let �R�k � (1� ")�R0k+"�
R
1k, and then we get the property we want.

Otherwise, let

m� � max
�

m � t̂��j
uS
�
t̂; �R0k

�
mk
1

��
< uS

�
t̂; �R0k (m)

� �
De�ne �

�
�;�R1k; �

R
0k

�
� ��R1k+(1� �)�R0k. W.l.o.g., let u

S
�
t̂; �R0k (m)

�
be decreasing in m on SS

�
k; t̂
�
\
�
mk
1; 1
�
. Summarizing what we have,

we get that

uS
�
t̂��; �R0k

�
ŝS0
�
t̂��

���
> uS

�
t̂��; �R0k

�
m+
��

uS
�
t̂; �R0k

�
ŝS0
�
t̂��

���
> uS

�
t̂; �R0k

�
m+
��

uS
�
t̂��; �R1k

�
ŝS0
�
t̂��

���
� uS

�
t̂��; �R1k

�
m+
��

uS
�
t̂; �R1k

�
ŝS0
�
t̂��

���
< uS

�
t̂; �R1k

�
m+
��

. Suppressing �R1k and �
R
0k in the notation and write �

�
�;�R1k; �

R
0k

�
as

� (�). Then we get

uS
�
t̂; � (1)

�
m+
��
� uS

�
t̂; � (1)

�
ŝS0
�
t̂��

���
> uS

�
t̂��; � (1)

�
m+
��
� uS

�
t̂��; � (1)

�
ŝS0
�
t̂��

���
� 0

and

0

> uS
�
t̂; � (0)

�
m+
��
� uS

�
t̂; � (0)

�
ŝS0
�
t̂��

���
> uS

�
t̂��; � (0)

�
m+
��
� uS

�
t̂��; � (0)

�
ŝS0
�
t̂��

���
and

uS
�
t̂; � (�)

�
m+
��
� uS

�
t̂; � (�)

�
ŝS0
�
t̂��

���
> uS

�
t̂��; � (�)

�
m+
��
� uS

�
t̂��; � (�)

�
ŝS0
�
t̂��

���
(8.1)

for all �. � is continuous with �. Then from intermediate value
theorm, we know that there exists �̂ such that

uS
�
t̂��; � (�̂)

�
m+
��
� uS

�
t̂��; � (�̂)

�
ŝS0
�
t̂��

���
= 0.
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Combined with inequality 8.1, we get that

uS
�
t̂; � (�̂)

�
m+
��
� uS

�
t̂; � (�̂)

�
ŝS0
�
t̂��

���
> 0.

We then get

uS
�
t̂; � (�̂� ")

�
m+
��
� uS

�
t̂; � (�̂� ")

�
ŝS0
�
t̂��

���
> 0

> uS
�
t̂��; � (�̂� ")

�
m+
��
� uS

�
t̂��; � (�̂� ")

�
ŝS0
�
t̂��

���
for " small enough. Since by assumption, uS

�
t̂; �R1k (m)

�
is weakly in-

creasing inm on SS
�
k; t̂
�
\
�
0;mk

1

�
, and by construction, uS

�
t̂��; �R0k

�
ŝS0
�
t̂��

���
�

uS
�
t̂��; �R0k (m)

�
for allm � ŝS0

�
t̂��

�
, and thus uS

�
t̂; �R0k

�
ŝS0
�
t̂��

���
�

uS
�
t̂; �R0k (m)

�
for all m � ŝS0

�
t̂��

�
, we know that

uS
�
t̂; � (�̂� ") (m)

�
� uS

�
t̂; � (�̂� ")

�
ŝS0
�
t̂��

���
< uS

�
t̂; � (�̂� ")

�
m+
��

for all m � ŝS0
�
t̂��

�
. Suppose 9m0 2

�
ŝS0
�
t̂��

�
+�; t̂��

�
such

that
uS
�
t̂; � (�̂) (m0)

�
� uS

�
t̂; � (�̂)

�
m+
��
,

then
uS
�
t̂; � (�̂� ") (m0)

�
> uS

�
t̂; � (�̂� ")

�
m+
��
.

Let m0 be the smallest such message in SS
�
k; t̂
�
. Then

uS
�
t̂; � (�̂� ") (m)

�
� uS

�
t̂; � (�̂� ")

�
m+
��

< uS
�
t̂; � (�̂� ") (m0)

�
for all m < m0. We can redo the analysis with � (�̂� ") as �R0k and
m0 as ŝS0

�
t̂��

�
. Eventually we will run out of messages in between

m+� and t̂��. Without loss of generality, we can assume that

uS
�
t̂; � (�̂) (m0)

�
< uS

�
t̂; � (�̂)

�
m+
��

for allm0 2
�
ŝS0
�
t̂��

�
; t̂��

�
. De�ne �R�k � � (�̂� "). So uS

�
t̂; � (�� ") (m0)

�
<

uS
�
t̂; � (�� ") (m+)

�
for all m0 � t̂ � �. From the construction
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of �R1k and �
R
0k, we know that uS

�
t̂; �R1k

�
mk
1

��
� uS

�
t̂; �R1k (m)

�
and

uS
�
t̂; �R0k

�
mk
1

��
� uS

�
t̂; �R0k (m)

�
for all m 2 SS

�
k; t̂
�
\
�
mk
1; 1
�
and

that strict inequality holds for any m which is not equivalent to mk
1 for

type t̂ w.r.t. SR (k � 1). Let

�mk
1 � max

�
m 2 SS

�
k; t̂
�
j

uS
�
t̂; sR (m)

�
= uS

�
t̂; sR

�
mk
1

��
for all sR 2 SR (k � 1)

�
.

Then argmaxuS
�
t̂; � (�� ") (m)

�
�
�
t̂; mk

1

�
. By de�nition, if m <

mk
1, either s

R (m) = sR
�
t̂��

�
for all sR 2 SR (k � 1), and thus

uS
�
t̂; � (�� ") (m)

�
= uS

�
t̂; � (�� ")

�
t̂��

��
< uS

�
t̂; � (�� ") (m+)

�
,

or m =2 SS
�
k; t̂
�
, and thus argmaxm00 uS

�
t̂; � (�� ") (m00)

�
n fmg is

not empty. So
�
mk
1

	
= argmaxuS

�
t̂; � (�� ") (m)

�
\ SS

�
k; t̂
�
. If

argmaxm u
S
�
t̂��; � (�� ") (m)

�
2
�
t̂; m+ ��

�
, then by construc-

tion ofm+, t̂�� 2 argmaxm uS
�
t̂��; � (�� ") (m)

�
, because sR

�
t̂��

�
=

sR (m) for all m 2
�
t̂; m+ ��

�
and all sR 2 SR (k � 1). Since

t̂ � � 2 SS
�
k; t̂��

�
by construction, from ?? and that

�
mk
1

	
=

argmaxuS
�
t̂; � (�� ") (m)

�
\ SS

�
k; t̂
�
, there exists sS� 2 SS (k) such

that sS�
�
t̂��

�
= t̂�� and sS�

�
t̂
�
= mk

1, where s
S
� is a best response to

� (�� "). If there existsm0 > m+ such that uS
�
t̂��; � (�� ") (m0)

�
>

uS
�
t̂��; � (�� ")

�
ŝS0
�
t̂��

���
, then let m0 be the smallest such m0

(so mk
1 � m0 > m+), then we get

uS
�
t̂��; � (�� ") (m0)

�
> uS

�
t̂��; � (�� ")

�
ŝS0
�
t̂��

���
uS
�
t̂; � (�� ") (m0)

�
> uS

�
t̂; � (�� ")

�
ŝS0
�
t̂��

���
and

uS
�
t̂��; � (�� ") (m0)

�
> uS

�
t̂��; � (�� ") (m)

�
for all m 2

�
t̂; m0 ��

�
because

uS
�
t̂��; � (�� ") (m0)

�
> uS

�
t̂��; � (�� ")

�
ŝS0
�
t̂��

���
� uS

�
t̂��; � (�� ") (m)

�
by the de�nition of m0.
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Then we can perform the process using m0 as m+ and � (�� ") as
�R1k. We�ll eventually reach m+ = mk

1 and
�
m+ +�;mk

1

�
= ;, so

the process ends after �nite steps. So we can assume w.l.o.g. that
uS
�
t̂��; � (�� ") (m0)

�
� uS

�
t̂��; � (�� ")

�
ŝS0
�
t̂��

���
for all

m0 > m+. So let � (�� ") � �R�k. Then �R�k 2 �+SR (k � 1) and
argmaxm u

S
�
t̂; �R�k (m)

�
=
�
mk
1

	
and uS

�
t̂��; �R�k

�
ŝS0
�
t̂��

���
�

uS
�
t̂��; �R�k (m)

�
for all m � t̂, where strict inequality holds if m is

not equivalent to message t̂�� for type t̂�� w.r.t. SR (k � 1). Then
there exists sS�k 2 SS (k) which is a best response to (1� ")�R0 +"�

R
�k 2

�+SR (k � 1), where sS�k
�
t̂
�
= mk

1 and s
S
�k
�
t̂��

�
2
�
ŝS0
�
t̂��

�
; t̂��

�
and uS

�
t; �R0

�
sS�k (t)

��
= uS

�
t; �R0

�
ŝS0 (t)

��
for all t � t̂ + �. So

sS�k (t) � m̂+� for all t � t̂+�.

Step 2 Show that 9sR�k 2 SR�k such that sR�k
�
t̂��

�
� t̂��.

Proof This does not hold only if 9~k � k and ~m � t̂�� such that the set of
types sending messages in ~m is nonempty and every type sending mes-
sages in

�
~m; t̂��

�
under SS

�
~k � 1

�
is no smaller than t̂. Otherwise,

we can use ~m instead of ŝS0
�
t̂��

�
in step one and then sS�~k

�
t̂��

�
2�

ŝS0
�
t̂
�
; t̂��

�
=
�
~m; t̂��

�
and so sR�~k ( ~m) � t̂ � �. Now suppose

~k exists and is the smallest one. Let �m � maxtmaxS
S
�
~k � 1; t

�
\�

0; t̂��
�
. Then sR�~k ( �m) � t̂ � � < t̂ � sR�~k ( ~m). W.l.o.g. assume

~m = min
�
sR�~k

��1 �
sR�~k ( ~m)

�
. Assume that there exists t 2 T such that

uS (t; â) = maxa2Â u
S (t; a) for any pair

�
â; Â

�
where Â is a subset of

A and there exists al; ah 2 Â where al � yS (0) and â 2 (al; ah). Then
there exists type ~t � t̂ � � such that argmaxm uS

�
~t; sR�~k (m)

�
� ~m.

But by assumption, ~m =2 SS
�
~k � 1; ~t

�
. So ~m must be weakly dom-

inated for type ~t w.r.t. SR (k0) for some k0 � ~k � 2. But then ~m is
weakly dominated for every type t � ~t w.r.t. SR (k0). We then arrive
at a contradiction.

Step 3 Show that it cannot be the case that sR�k (m̂+�) = sR�k
�
mk
1

�
and type t̂

prefers action sR�k ( ~m) to s
R
�k
�
mk
1

�
for some ~m � t̂��
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Proof Suppose to the contrary that sR�k (m̂+�) = sR�k
�
mk
1

�
and type t̂

prefers sR�k ( ~m) to s
R
�k
�
mk
1

�
for some ~m � t̂ � �. Then it has to be

the case that sR�k
�
mk
1

�
� mk

1, because otherwise, it is better o¤ to take
action t̂ at message mk

1 with respect to s
S
�k. It also has to be the

case that sR�k
�
mk
1

�
> yS

�
t̂
�
. Let ~k be the largest k0 < k such that

mk0
1 < sR�k

�
mk
1

�
. Then m~k

1 < sR�k
�
mk
1

�
and m

~k+1
1 � sR�k

�
mk
1

�
. Then we

have sS�~k
�
t̂
�
= m

~k
1 and s

S
�~k

�
t̂��

�
2
�
sS�k
�
t̂��

�
; t̂��

�
. Then there

exists ŝR�~k 2 BR
R
�
(1� ") sS�k + "sS�~k

�
\ SR

�
~k
�
such that

ŝR�~k
�
mk
1

�
= sR�k

�
mk
1

�
ŝR�~k

�
m
~k
1

�
= t̂

ŝR�~k
�
t̂��

�
� t̂��

. If sR�k ( ~m) � t̂ � �, then type t̂ must prefer action t̂ to action

sR�k ( ~m) to action s
R
�k
�
mk
1

�
. So uS

�
t̂; ŝR�~k

�
m
~k
1

��
> uS

�
t̂; ŝR�~k

�
mk
1

��
and

uS
�
t̂; ŝR�~k

�
m
~k
1

��
> uS

�
t̂; ŝR�~k

�
t̂��

��
and argmaxm uS

�
t̂; ŝR�~k (m)

�
��

t̂; sR�k
�
mk
1

�
��

�
. Therefore, m

~k+1
1 < sR�k

�
mk
1

�
, which contradicts the

construction of ~k.

Step 4 From step 3, we know that either

a. sR�k (m2) � m̂+� and therefore sR�k
�
mk
1

�
= t̂. Thus, argmaxm uS

�
t̂;
�
(1� ")�R0 + "sR�k

�
(m)

�
��

t̂; m̂
�
because �R0 is constant on

�
l
�
1; t̂��

�
; m̂
�
while sR�k

�
t̂��

�
�

t̂�� < t̂ = sR�k
�
t̂
�
.

b. or sR�k (m2) � m̂: We know that type t̂ necessarily prefers action sR�k (m2)
to action sR�k (m) for any m > m2 and sR�k (m) 6= sR�k (m2) because
sR�k (m) > m2 > sR�k (m2) � t̂ and type t̂ prefers action t̂ to action
m2. But there exists m� 2

�
t̂; m̂

�
such that type t̂ prefers sR�k (m

�) to
sR�k
�
t̂��

�
, because from step 3, we know that type t̂must prefer action

sR�k
�
mk
1

�
to action sR�k

�
t̂��

�
. So argmaxm uS

�
t̂;
�
(1� ")�R0 + "sR�k

�
(m)

�
��

t̂; m̂
�
.

Step 5 We conclude from step 4 that argmaxm uS
�
t̂;
�
(1� ")�R0 + "sR�k

�
(m)

�
��

t̂; m̂
�
. Since (1� ")�R0 + "sR�k 2 �SR (k), we�ve shown that property *

holds for k + 1.
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Step 6 By induction, property * holds for 1.

Proof for Claim 5.1 in section 5.1 Suppose it�s true for 1; :::; q and any ŝR

and â, want to show that it is true for q+1 and any ŝR and any â. Suppose
that �̂ 2 ŝR (M (1)) where ŝR 2 SR (1) and [0; g�1 (1; â)��] admits a
size-(q + 1) equilibrium Let ~a � max ŝR ([0; â��] \M (1)). Then ~a �
E ([g�1 (1; ~a) ; g�1 (1; â)��]) because the posterior maximizer is greater
than or equal to E ([g�1 (1; ~a) ; g�1 (1; â)��]) and smaller than â � �.
Therefore if ~a < E ([g�1 (1; ~a) ; g�1 (1; â)��]), can improve upon ŝR

against any sS 2 SS (1) by increasing it to E ([g�1 (1; ~a) ; g�1 (1; â)��]).
Suppose that ~a < �q+1q+1 ([0; g

�1 (1; â)��]). Since [0; g�1 (1; â)��] ad-
mits a size-(q + 1) equilibrium and q + 1 � 2, g�1 (1; ~a) > 0 because ~a �
E ([0; g�1 (1; â)��]) and type 0 prefers 0 to E ([0; g�1 (1; â)��]). So
there existsm < ~a, m 2M (1) and sR 2 SR (1) such that sR (m) 6= sR (~a).
So g�1 (1; ~a) has to prefer action ~a to sR (~a��) for some sR 2 SR (1).
sR (~a��) � E ([0; g�1 (1; ~a)��]). So type g�1 (1; ~a) has to prefer ac-
tion ~a to action E ([0; g�1 (1; ~a)��]). So g�1 (1; ~a) � � 21 (~a). If ~a <
�22 ([0; g

�1 (1; â)��]), then the system f0; � 21 (~a) ; � 22 (~a)g (this is a system
such that E ([� 21 (~�) + �; �

2
2 (~�)]) = ~�) is such that �

2
2 (~a) < g�1 (1; ~a)��

and hence E ([g�1 (1; ~a) ; g�1 (1; â)��]) > ~a, which is a contradiction.
So ~a � �22 ([0; g

�1 (1; â)��]). But then [0; g�1 (1; ~a)��] admits a
size-2 equilibrium. Suppose [0; g�1 (1; ~a)��] admits a size-j equilib-
rium where j � q. Then by assumption, max sR ([0; ~a��] \M (1)) �
�jj ([0; g

�1 (1; ~a)��]) for all sR 2 SR (1) such that ~a 2 sR (M (1)).
So it has to be the case that type g�1 (1; ~a) prefers action ~a to action
�jj ([0; g

�1 (1; ~a)��]). Let�
0; tj1

��
0; g�1 (1; ~a)��

��
; tj2
��
0; g�1 (1; ~a)��

��
; :::; g�1 (1; ~a)��; �t

	
be a system where E ([g�1 (1; ~a) ; �t]) = ~a. If j < q, then this system is of
size j+1 < q+1. Since [0; g�1 (1; â)��] admits a size-(q + 1) equilibrium,
�t < g�1 (1; â)��. Therefore

~a � E
��
g�1 (1; ~a) ; g�1 (1; â)

��
> E

��
g�1 (1; ~a) ; �t

��
= ~a,

which is a contradiction. So j = q, and by assumption,��ŝR ([0; ~a��] \M (1))
�� � q.
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Thus type g�1 (1; ~a) prefers ~a to �qq ([0; g�1 (1; ~a)��]). Moreover, type
g�1 (1; ~a) prefers action E ([g�1 (1; ~a) ; g�1 (1; â)��]) to action

�qq
��
0; g�1 (1; ~a)��

��
since

~a � E
��
g�1 (1; ~a) ; g�1 (1; â)��

��
.

By condition (M),

g�1 (1; ~a) � tq+1q

��
g�1 (1; ~a) ; g�1 (1; â)��

��
,

and hence ~a � �q+1q+1 ([g
�1 (1; ~a) ; g�1 (1; â)��]). Therefore,��ŝR ([0; â��] \M (1))

�� � q + 1.

We are then done with the induction. So if [0; 1] admits a maximum of size-
N (b) equilibrium, then

��sR (M (1))
�� � N (b) and max sR (M (1)) � �

N(b)
N(b).

8.4. EIAL Results

8.4.1. Proof for Lemma 7

Proof. The idea is that, if sR2 is not �
S � compatible, then there must exist an

action a2 taken by sR2 exactly on some interval I2 such that a2 does not maximize
expected utility conditional on I2. If " is small enough, URjI2

�
"
�
�S; �S0

�
; a
�
is

very close to URjI2
�
�S; a

�
as a function of a, then a2 cannot maximize expected

utility conditional on I2, hence sR2 is not "
�
�S; �S0

�
� compatible either.

uR is bounded, so

�DR � max
(t;a);(t0;a0)2T�A

��uR (t; a)� uR (t0; a0)
��

is well-de�ned. Then for any
�
�S1 ; �

R
1

�
;
�
�S2 ; �

R
2

�
2 �SL,��UR ��S1 ; �R1 �� UR
�
�S2 ; �

R
2

���
� �DR

Given an interval I � M , let URjI be the expected Receiver utility conditional
on receiving a message in I. Let a denote both action a 2 A and the constant
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strategy which reacts to every message with action a. Then��URjI ��S; a�� URjI
�
�S"
�
�S0
�
; a
���

=
��URjI ��S; a�� (1� ")URjI

�
�S; a

�
� "URjI

�
�S0; a

���
= "

��URjI ��S; a�� URjI
�
�S0; a

���
� " �DR

The bound is does not depend on �S; �S0; a or I. AR is �nite, so a best response
a 2 A to any conjecture �S gives a strictly higher expected utility than any non-
best response a0. Let dI;�S denote the di¤erence in expected utility conditional
on I against conjecture �S between the best action and the second best action.
Formally, de�ne

dI;�S � min
a2 =2argmaxa0 URjI(�S ;a0)

��
max
a00

URjI
�
�S; a00

��
� URjI

�
�S; a2

��
Then dI;�S > 0.

For all " < 1
2

d
I;�S

�DR , a =2 argmaxa0 URjI
�
�S; a0

�
and a� 2 argmaxa0 URjI

�
�S; a0

�
,

URjI
�
"
�
�S; �S0

�
; a
�
� URjI

�
"
�
�S; �S0

�
; a�
�

= URjI
�
"
�
�S; �S0

�
; a
�
� URjI

�
�S; a

�
+ URjI

�
�S; a

�
� URjI

�
�S; a�

�
+URjI

�
�S; a�

�
� URjI

�
"
�
�S; �S0

�
; a�
�

� " �DR � dI;�S + " �DR

<
dI;�S

2
� dI;�S +

dI;�S

2
= 0

So
argmax

a
URjI

�
"
�
�S; �S0

�
; a
�
� argmax

a
URjI

�
�S; a

�
(8.2)

De�ne
�"�S � min

I�M
dI;�S

Since M is �nite, �"�S is well de�ned. So the containment relation 8.2 holds for
any " < �"�S , and for any �S0 2 �SS. If sR1 is "

�
�S; �S0

�
for some " < �"�S , then

for any m̂ which is sent by some type with strictly positive probability given the
conjecture "

�
�S; �S0

�
, and for the interval Im̂ on which sR1 takes the same value

as sR1 (m̂),

sR1 (m̂) 2 argmax
a
URjIm̂

�
"
�
�S; �S0

�
; a
�

� argmax
a
URjIm̂

�
�S; a

�
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Since "
�
�S; �S0

�
(t) = (1� ")�S (t) + "�S0 (t) for all t, any message that receives

positive probability given the conjecture �S (t) also receives positive probability
under "

�
�S; �S0

�
(t), it is just shown that sR1 is also �

S � compatible.

8.4.2. Proof for Proposition 5

Proof. Assume to the contrary there exist m1 < m2 2 M (k � 1) which receive
di¤erent reactions under some sR 2 SR (k), i.e. sR (m1) 6= sR (m2). Consider m̂k

being such that m̂k always attains the minimum onM (k � 1) for any sR 2 SR (k)
and that there exists sR 2 SR (k) such that sR (m̂k) 6= sR (m̂k). Suppose t̂ is the
highest type that sends messages smaller or equal to m̂k. Then since m̂k always
takes on the minimum of sR for any sR in C�R (k), the highest values m̂k and m̂k+�
can take on when sR (m̂k) 6= sR (m̂k +�) would be E

��
0; t̂k

��
and E

��
t̂k +�; 1

��
respectively. But since there is only babbling equilibria, for every Sender type t,
she prefers being thought of as pooling with all higher types than pooling with all
lower types. So t̂k would prefer E

��
t̂k +�; 1

��
to E

��
0; t̂k

��
, where E

��
0; t̂k

��
is the best t̂k can hope for from sending message m̂k (because E

��
0; t̂k

��
� t̂k

is on the increasing part of t̂k�s utility curve) and E
��
t̂k +�; 1

��
is the worst

t̂k would anticipate from sending message m̂k + � when m̂k induces a di¤erent
action from m̂k + �. So sending message m̂k is weakly dominated by sending
message m̂k + � for type t̂k. Hence in �t2TSS (k + 1; t), the highest type that
sends messages smaller or equal to m̂k would be strictly smaller than t̂k and thus
�t2TS

S (k + 1; t) $ �t2TSS (k � 1; t) (in particular, SS
�
k + 1; t̂

�
$ SS

�
k � 1; t̂

�
)

and the process does not stop at round k.
Formally, de�ne

m̂k := min

8>><>>:
m 2M (k � 1) j

9sR 2 SR (k) such that
m 2 argminm02M(k) s

R (m0)
and sR (m) 6= sR (m+�)

9>>=>>;
From the de�nition, sR (m̂k) = minm02M(k�1) s

R (m0) for all sR 2 SR (k) and there
exists ŝR 2 SR (k) such that ŝR (m̂k) 6= ŝR (m̂k +�). From weak monotonicity
of ŝR and the construction,

ŝR (minM (k � 1)) = min
m02M(k�1)

ŝR (m0)

= ŝR (m̂k)

6= ŝR (m̂k)
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That is, the interval that ŝR takes on the same value as on m̂k is [minM� (k � 1) ; m̂k].
Let the interval that ŝR takes on the sme value as on m̂k + � be [m̂k +�; �mk].
By the procedure, there exists �̂S 2 �t2T

�
�+SS (k � 1; t)

�
to which ŝR is �̂S �

compatible. It then follows that

ŝ (m̂k) 2 argmax
a2A

URj[minM(k�1);m̂k]

�
�̂S; a

�
URj[minM(k�1);m̂k]

�
�̂S; a

�
=

X
sS2�t2TSS(k�1;t)

�̂S
�
sS
� X

t2T :
sS(t)2[minM(k�1);m̂k]

� (t)uR (t; a)

=
X

sS2�t2TSS(k�1;t)

X
t�

sS(t)2[minM�(k�1);m̂k]

�̂S
�
sS
�

8.4.3. Proof for Proposition 6

Proposition 6 follows immediately from the following claim.

Claim For all k, there exists sR 2 SR such that.

1. sR 2 ESR (k), and sR (M (k)) =
�
�1; :::; aN(b)

	
where �i = E ([ti�1; ti ��]);

2. 8m 2 [�i; �i+1 ��], either there existsm0 < m such that uS
�
ti ��; sR (m)

�
�

uS
�
ti ��; sR (m0)

�
for all sR 2 ESR (k), or sR (m) = �i�1.

Proof Show by induction. Suppose they hold for k. Then there exists ŝR 2
ESR (k) satisfying condition 1 and 2. From the de�nition that

�
t0; :::; tN(b)

	
is a forward solution and that �i = E ([ti�1; ti ��]) 8i = 1; :::; N (b), every
type t 2 [ti�1; ti ��] strictly prefers action �i the most in the range of
ŝR. Therefore, there exists one message m such that ŝR (m) = �i and
m 2 ESS (k + 1; t). Since ŝR (�i+1) = �i+1 > �i, such message must be
smaller than �i+1��. Thus l (k + 1; t) � �i+1�� for all t 2 [ti�1; ti ��].
Therefore, we can de�ne

sSbig (t) � max
�

m 2 ESS (k + 1; t) ;m � �i+1 ��
where i is such that t 2 [ti�1; ti ��]

�
8t.

By de�nition, sSbig 2 ESS (k + 1), and thus sSbig 2 ESS (k).
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Claim sSbig is increasing in t.

Proof Given t̂. Let i be such that t̂ + � 2 [ti�1; ti ��]. To show that
sSbig

�
t̂+�

�
� sSbig

�
t̂
�
, it su¢ ces to show that

�
sSbig

�
t̂
�
; �i+1 ��

�
\

ESS
�
t̂+�; k

�
6= ;. We break the discussion into two cases.

Case 1 ŝR
�
sSbig

�
t̂
��
� �i��. Then

�
ŝR
��1

(�i) �
�
sSbig

�
t̂
�
+�; �i+1 ��

�
by the construction of ŝR and the assumption that ŝR

�
sSbig

�
t̂
��
�

�i ��. Since �
ŝR
��1

(�i) \ ESS
�
k; t̂+�

�
6= ;,

we know that�
sSbig

�
t̂
�
+�; �i+1 ��

�
\ ESS

�
k; t̂+�

�
6= ;.

Case 2 ŝR
�
sSbig

�
t̂
��
� �i. Then ŝR

�
sSbig

�
t̂
��
= �i, because t̂ � ti��

and by construction of sSbig, s
S
big

�
t̂
�
� �i+1��, and the assumption

that ŝR satis�es condition 2. Let ~�R 2 �+ESR (k � 1) such that

sSbig
�
t̂
�
2 argmax

m
US
�
t̂; ~�R (m)

�
.

(Existence is guaranteed by the de�nition of sSbig
�
t̂
�
) Then by

super modularity of US and weak monotonicity of sR in the sup-
port of ~�R, US

�
t̂+�; ~�R

�
sSbig

�
t̂
���

> US
�
t̂+�; ~�R (m)

�
for all

m < sSbig
�
t̂
�
. Since ŝR

�
sSbig

�
t̂
��
= �i, we know that sSbig

�
t̂
�
2

argmaxm U
S
�
t̂+�; ŝR (m)

�
. Therefore, for " very small,

argmax
m

US
�
t̂+�;

�
(1� ") ŝR + "~�R

�
(m)

�
�
�
sSbig

�
t̂
�
; �i+1 ��

�
.

Since (1� ") ŝR + "~�R 2 �+ESR (k � 1),

argmax
m

US
�
t̂+�;

�
(1� ") ŝR + "~�R

�
(m)

�
\ ESS

�
k; t̂+�

�
6= ;

and thus �
sSbig

�
t̂
�
; �i+1 ��

�
\ ESS

�
k; t̂+�

�
6= ;.

61



Lemma 7 implies that ESR (k + 1) must contain one Receiver strategy
that is weakly sequentially rational with respect to sSbig. Suppose s

R
big 2

argmax sR2SR
sR is interim rational

w.r.t. sSbig

UR
�
sSbig; s

R
�
, then sRbig

�
sSbig (t)

�
is increasing in

t because sRbig is increasing and s
S
big (t) is increasing in t. Therefore, s

R
big

partitions the type space into f� 0; :::; �ng where � 0 = 0 and �n = 1.
By de�nition, sRbig

�
sSbig (t)

�
= sRbig

�
sSbig (t

0)
�
if and only if t and t0 both

belong to the same step [� i�1; � i ��] for some i and sRbig
�
sSbig (� i�1)

�
=

E ([� i�1; � i ��]) for i = 1; :::; n.
Claim [0; � i+1 ��] has a forward solution of size i+ 1 and

� i � ti+1i ([0; � i+1 ��]) fori = 1; :::; n.

Proof Show by induction. Suppose [0; � j+1 ��] has a forward solution
of size j + 1 and � j � tj+1j ([0; � j+1 ��]) for all j = 1; :::; i � 1.
Condition (M) implies that � j+1 > tj for all j = 1; :::; i � 1 because�
t0; :::; tN(b)

	
is the largest forward solution on [0; 1]. First we want to

show that type � i �� must weakly prefer action E ([� i�1; � i ��]) to
action E ([� i; � i+1 ��]).
Case 1 � i 6= tq for any q.

Therefore, there exists q such that � i ��; � i 2 [tq�1; tq ��]. By
construction, sSbig (� i) < �q+1 � �. By the construction of ŝR,
ŝR
�
sSbig (� i)

�
= �q. Suppose to the contrary that type � i � �

prefers action E ([� i; � i+1 ��]) to action E ([� i�1; � i ��]). By
the de�nition of f� 0; � 1; :::�ng and the construction that sRbig is
sequentially rational w.r.t. sSbig, we know that sRbig

�
sSbig (� i)

�
=

E ([� i; � i+1 ��]) and sRbig
�
sSbig (� i ��)

�
= E ([� i�1; � i ��]). There-

fore, given the Receiver strategy sRbig, type � i �� prefers message
sSbig (� i) to message s

S
big, and

argmax
m

US
�
� i ��;

�
(1� ") ŝR + "sRbig

�
(m)

�
�
�
sSbig (� i ��) +�; �i+1 ��

�
.

Since sRbig 2 ESR (k + 1) � ESR (k),�
sSbig (� i ��) +�; �i+1 ��

�
\ ESS (k + 1; � i ��)

6= ;.
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But this contradicts the construction of sSbig (� i ��).
Case 2 � i = tq for some q.

We�ve shown that � i > ti�1. So q � i. Suppose q > i. But then
sRbig can be improved upon by partitioning [0; � i] as f0; t1; :::; tqg by
the monotonicity condition (M), and there exists a Receiver strat-
egy that is interim rational w.r.t. sSbig which does that partition.
So q = i. But then by the same argument, � j = tj for all j < i. In
particular, � i�1 = ti�1. Suppose to the contrary, type ti�� prefers
action E ([ti; � i+1 ��]) to action E ([ti�1; ti ��]). Then it has to
be the case that E ([ti; � i+1 ��]) < E ([ti; ti+1 ��]) = �i+1. By
the literal condition of the language assumption, sRbig (E ([ti; � i+1 ��])) =
E ([ti; � i+1 ��]). Therefore, given sRbig, type ti�� prefers message
E ([ti; � i+1 ��]) to message sSbig (ti ��). So there exists some
message m � E ([ti; � i+1 ��]) such that m 2 ESS (k; ti ��).
Since E ([ti; � i+1 ��]) � �i+1��, from the assumption that con-
dition 2 holds for k, ŝR (E ([ti; � i+1 ��])) = �i. So

argmax
m

US
�
ti ��;

�
(1� ") ŝR + "sRbig

�
(m)

�
�
�
sSbig (ti ��) +�; �i+1 ��

�
.

And it follows that�
sSbig (ti ��) +�; �i+1 ��

�
\ ESS (k + 1; � i ��)

6= ;.

A contradiction.

By assumption, � i�1 � tii�1 ([0; � i ��]). SoE ([� i�1; � i ��]) � �ii ([0; � i ��]).
We have just shown that type � i � � prefers E ([� i�1; � i ��]) to
E ([� i; � i+1 ��]). Thus, type � i�� must prefer action �ii ([0; � i ��])
to action E ([� i; � i+1 ��]) because

E ([� i�1; � i ��]) � �ii ([0; � i ��]) < � i � E ([� i; � i+1 ��]) .

So there exists �t 2 [� i; � i+1 ��] such that type � i � � prefers action
�ii ([0; � i ��]) to action E ([� i; �t]) and type � i prefers action E ([� i; �t])
to action �ii ([0; � i ��]). By de�nition of �t, � i = ti+1i ([0; �t]). By the
monotonicity condition (M), ti+1i ([0; �t]) � ti+1i ([0; � i+1 ��]) because
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�t � � i+1 ��. It follows that � i � ti+1i ([0; � i+1 ��]). Moreover, [0; �t]
has a forward solution of size i + 1, so [0; � i+1] has a forward solution
of size i+ 1.

Claim 8.4.3 implies that �n�1 � tnn�1 ([0; �n ��]) = tnn�1 ([0; 1]) and that
[0; 1] has a forward solution of size n. Since N (b) is the maximum of
the size of a forward solution on [0; 1], n � N (b). So � i � ti for all
i = 1; :::; n. Condition (M) implies that UR

�
sSbig; s

R
big

�
� UR

�
sSbig; ŝ

R
�

because ŝR
�
sSbig
�
partitions the type space into

�
0; t1; :::; tN(b)�1; 1

	
and this is a better partition. But by assumption, ŝR 2 ESR (k)
where ŝR (M (k)) =

�
�1; :::; aN(b)

	
and �i = E ([ti�1; ti ��]) 8i =

1; :::; N (b). ŝR is weakly interim rational with respect to sSright, so

max
sR2ESR(k);

sR is weakly interim rational
w.r.t. sSbig

UR
�
sSbig; s

R
�
� UR

�
sSbig; ŝ

R
�
.

Therefore, equality holds and for any ~sR 2 ESR (k + 1) such that ~sR

is weakly sequentially rational w.r.t. sSbig, ~s
R partitions the type space

into
�
0; t1; :::; tN(b)�1; 1

	
.

Suppose m 2 [�i; �i+1 ��] is such that there exists ~sR 2 ESR (k + 1)
where uS

�
ti ��; ~sR (m)

�
> uS

�
ti ��; ~sR (m��)

�
. Since statement

2 holds for k, ŝR (m) = �i. So

argmax
m

US
�
ti ��;

�
(1� ") ŝR + ~sR

�
(m)

�
� [m;�i+1 ��] .

Therefore, ESS (k + 1; ti ��) \ [m;�i+1 ��] 6= ;. It follows that
sSbig (ti ��) � m and therefore sRbig (m) � sRbig

�
sSbig (ti ��)

�
= �i. We

have thus shown that statement 2 holds for k + 1.
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