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Abstract

In a decentralized market traders are matched into pairs and sellers
make price o¤ers. Traders have a �nite life expectancy, exiting the market
with a constant hazard rate �. With vanishing � it is shown that an equi-
librium exists and that the market converges to the e¢ cient competitive
outcome. Additional assumptions that can be found in the literature and
that are favorable to the e¢ cient outcome are not needed.
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1 Introduction

It is a common claim that decentralized markets clear and become e¢ cient as
"frictions" vanish. Typical decentralized markets are the markets for housing,
used cars, and labor. To support the claim of market clearance, economists
commonly refer to the following informal story: Suppose prices in a market are
constantly too high. Then some sellers must be rationed, i.e. trade less than
they desire. This gives them an incentive to decrease their prices to increase
their trading volume by making their o¤er acceptable to more buyers. This
incentive upsets any equilibrium candidate in which prices are too high. The
story relies on two ingredients: rationing of sellers and the existence of additional
buyers at lower prices. Here, we will show that one can indeed model the
story formally and show that the two ingredients are indeed su¢ cient for a
decentralized market to become e¢ cient once frictions vanish. In particular,
additional favorable assumptions for the competitive outcome that are not part
of the story but that were made in the existing literature on decentralized trading
are not needed for the convergence result. The results of this paper suggest that
convergence to e¢ ciency is a robust property of decentralized trading that is
largely independent of the exact trading rules.

We use the following dynamic matching and bargaining game following Gale
(1987): There is a large pool (a continuum) of traders with a �nite expected
lifetime. These traders want to sell or buy one unit of an indivisible good.
Sellers have zero costs1 and buyers have valuations v 2 [0; 1] and these types
are private information. In every period, all sellers and buyers from the pool are
matched into pairs. The seller in each pair makes a price o¤er p to the buyer. If
the buyer accepts the price, the pair exits the market. If he declines, the match
is broken up and both traders return to the pool and wait to be rematched with
new partners in the next period. While waiting, traders exit with a constant
hazard rate �. The hazard rate introduces costs of waiting for better o¤ers. At
the end of every period an equal mass of new buyers and sellers �ows new into
the market.

With vanishing frictions, that is with � ! 0 , the trading outcome converges
towards e¢ ciency and all trade happens close to the price p = 0. An equilibrium
exists in this game if � is not too large.2

The intuition follows the one given in the introductory paragraph: If all
sellers to set a price p0 > 0, then some of them will be rationed. Rationing
means that the probability to trade sometimes during their life must be strictly
smaller than one. However, setting a slightly lower price p00 would allow them
to trade in addition with those buyers with v 2 [p00; p0] and increases the trading
probability for sellers strictly by the share of these buyers. When � becomes
small and sellers can sample buyers more and more often, then in the limit a
seller will become almost certain to �nd a buyer with v 2 [p00; p0] who accepts
his price p00 slightly below p0. This incentive to decrease prices upsets every
equilibrium candidate with p0 > 0.

1This assumption can be relaxed, see section 3.4.
2Existence is a nontrivial problem in this class of models, see e.g. the discussion in Sat-

terthwaite and Shneyerov (2005, p. 11).
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The simpli�cation we reach in our proof relative to the ones found in the
literature is mainly due to our �ndings about the relation between the evolution
of the population and the incentive compatibility constraints. We consider the
provision of the proof technique to be a major contribution of this paper.

However, the convergence result is not immediate. One has to account for
the possibility that sellers do not set a single price but rather mix over a range
of prices and that they do it just in the right way to give incentives for buyers to
accept high prices (by setting high prices most of the time), while balancing the
distribution of buyers to avoid accumulation of low valuation buyers (by setting
low prices some of the time). The main part of the proof consists in showing
that this is not possible for vanishing �.

Diamond (1971) shows that even with small trading frictions sellers can
have considerable market power, which is re�ected in the well known Diamond
paradox: Given any common price p0 set by sellers and any arbitrarily small
friction �, buyers with v > p0 are willing to pay an additional premium of
� (v � p0) to save the waiting costs. This allows all sellers to mark up the price p0
and provides incentives against the competitive outcome. Because in Diamond�s
model valuations are homogeneous, sellers cannot reach additional buyers by
decreasing their prices. Therefore, prices are equal to their monopolistic level.
Here this is di¤erent because buyers are heterogeneous: When we show

existence of an equilibrium, we prove that for each � there exists a price level
p� (�) at which the incentives for sellers to mark up the price by the waiting
costs are just balanced by the incentives to decrease the price to reach additional
buyers. With decreasing �, the potential premium � (v � p� (�)) decreases while
the incentives to reach additional buyers remain, therefore lim�!0 p

� (�) = 0.

Giving sellers all the bargaining power is our crucial departure from the lit-
erature on dynamic matching and our model is standard in most other respects.
The basic framework of the steady state model with heterogeneous agents, pair-
wise matching, and an exogeneous in�ow of agents was introduced by Gale
(1987). Recent models like Inderst (2001) and Satterthwaite and Shneyerov
(2004, 2005) extended this framework to asymmetric information.3 Following
McA¤ee (1993) and Satterthwaite and Shneyerov (2005) we introduce an exoge-
neous exit rate. Given the exit rate, we drop time discounting as an additional
friction. Also, we assume that all in�owing buyers enter the pool while the ex-
isting literature assumes an additional participation decision of in�owing buyers
to become active part of the pool. For a discussion, see section 4.1.

We start with a section introducing the model, then a statement and proof of
our main theorem, followed by an extensive discussion of our modelling choices
and extensions. In particular, we show which additional assumptions the exist-
ing literature makes to ensure convergence and how these assumptions translate
into forces towards market clearance.

3Moreno and Wooders (2001) also analyse convergence with asymmetric information but
in a non-stationary market with one-time in�ow and only two types.
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2 Model

2.1 The Players

Buyers want to buy one unit of the good and their valuation is v 2 [0; 1]. The
mass of in�owing buyers with a valuation v � v0 is G (v0); G (�) is convex and
twice continuously di¤erentiable with a strictly positive density g (�) on [0; 1], so
we can de�ne minv g (v) � gl > 0.4 Sellers are endowed with one unit of a good,
for which they have no use value, so costs are zero. We index them by c 2 [0; 1]
and let the mass of in�owing sellers with an index c � c0 be F (c0) = c0, i.e. the
index is uniformly distributed. This allows us to de�ne distributional strategies
in c.5 Valuations v and index c are private information.
The instantaneous payo¤s of trading at a price p are � (p; c) = p for the seller

and u (v; p) = v � p for the buyer. Payo¤s are zero when traders exit without
trading. Traders maximize their expected payo¤s. Every period they exit with
probability � which makes them inpatient, i.e. the "hazard rate" � acts in a
similar way as discounting. Finally, information of traders is restricted to their
own trading history.

At the beginning of each period the population in the market consists of a
continuum of sellers and buyers, each of equal size. All traders are matched into
pairs. In each pair the seller announces a price p and then the buyer announces
whether he accepts or rejects the o¤er. If he accepts, both receive their payo¤s
�; u. Those players who have traded are removed from the market. Of those
who did not trade another share � is removed (discouraged), before new players
�ow into the market. The in�ow of buyers and sellers has mass one. With the
in�ow of new traders the period ends and the next starts according to the same
rules. The masses of sellers and buyers are identical in each period.6

To summarize, we have the following timing within each period:

1. All sellers and buyers are matched into pairs

2. The seller o¤ers price p

3. The buyer accepts or rejects

4. If he accepts, both are removed from the market

5. If he rejects, each is removed with probability �

6. New sellers and buyers arrive, each with mass one

4Convexity is only needed for our constructuve proof of existence, not for the characteri-
zation.

5The reader is invited to think of c as a cost variable which puri�es the equilibrium. We
will indeed introduce cost heterogeneity later and show that convergence still holds, see section
3.4.

6The assumption of equal in�ows of buyers and sellers can be relaxed, see the note on page
12.
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The payo¤ to a seller in a steady state who sets the same price p every period
can be derived as follows: Denote byD (p) his probability to trade at p in a given
period. Then his expected life-time pro�t is the in�nite sum of the expected
pro�t per period t, pD (p) times the probability to live for t periods, which
consist of the probability not to die before t, (1� �)t ; and of the probability
not to trade before t, (1�D (p))t. Together:

�(p) =
1X
t=0

pD (p) (1�D (p))t (1� �)t

= p
D (p)

1� (1�D (p)) (1� �)| {z }
�q(p)

= q (p) p

where q (p) is the ultimate probability to trade sometimes during the seller�s
life when setting p every period. Similarly, (1� q (p)) is the probability of
such a seller to exit before being able to trade. Sellers use price strategies p (c)
which are are weakly increasing in the index c (possibly reordering the index
appropriately).
Similarly, the expected payo¤ to a buyer is the in�nite sum of his per period

payo¤, weighted by the probability to reach each period. It is well known that
the optimal search strategy of a buyer who samples prices from a known and
constant distribution of prices can be described by a threshold, the reserve
price r, such that he accepts a prices p if and only if p � r, see McMillan and
Rothchild (1994). The expected per period payo¤ of a buyer with a reserve
price r depends on the expected price o¤er, E [pjp � r] and the probability to
receive an acceptable o¤er p � r, denoted S (r).7 His expected overall payo¤ is:

U (r; v) =
1X
t=0

S (r) (1� S (r))t (1� �)t (v � E [pjp � r])

=
S (r)

1� (1� S (r)) (1� �)| {z }
�w(r)

(v � E [pjp � r])

= w (r) (v � E [pjp � r])

where w (r) is the ultimate probability to trade for a buyer who accepts all
prices p � r and (1� w (r)) is the probability that a buyer with reserve price
r exits the market before trading. Let V (v) = maxr U (r; v) be the maximized
expected lifetime payo¤. Given the stationarity of the problem, the solution
r (v) must satisfy:

r (v) = v � (1� �)V (v) (1)

that is at the reserve price r (v) buyers must be indi¤erent between acceptance
and rejection, so v�r (v) = (1� �)V (v) and buyers accept all prices p such that
their payo¤ from accepting the price is (weakly) larger than their continuation
payo¤ from rejection which is (1� �)V (v).

7De�ne E [pjp � r] = r if S (r) = 0.
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Behind the assumption that buyers use such a reserve price in equilibrium is
the notion of sequential rationality. First, we assume that buyers do not update
their belief about the distribution of prices after observing o¤-equilibrium prices.
Second, given their beliefs buyers� acceptance decisions must be optimal. In
particular, buyers� types v who will never trade on the equilibrium path and
have zero expected payo¤s, accept all (o¤-equilibrium) prices p � v that give
them positive payo¤s. In a Nash-equilibrium these assumptions do not need to
hold.8 9

2.2 Steady State Conditions and Equilibrium

The market is in a steady state if the mass of traders, denoted by T , the distrib-
ution of o¤ered prices, denoted S (�) ; and the distribution of reserve prices D (�)
is constant, where D (p) is the share of buyers in the pool with r (v) � p and
S (p) is the share of buyers o¤ering a price p0 � p. Thus, D (p)T is the mass of
buyers accepting a price p. We will give necessary and su¢ cient conditions for
these parameters to describe a steady state.
The evolution of the traders�population in the market is governed by the

in- and out�ow processes: Suppose that the density of buyers with valuations v
was Tt�1�

b
t�1 (v) in the previous period. In period t; Tt�

b
t (v) will consist of the

new in�ow g (v) and those buyers who remained. The share of buyers v who
remain in the population consists of those who did not trade and who did not
become discouraged: (1� St�1 (r (v))) (1� �), that is10

Tt�
b
t (v) = g (v) + Tt�1�

b
t�1 (v) (1� St�1 (r (v))) (1� �) (2)

The pool is in a steady state if �bt = �
b
t�1, which is the case if the out�ow and

the in�ow matches. Reformulating (2) gives:

�b (v) =
g (v)

T (S (r (v)) + (1� S (r (v))) �) (3)

Integrating over �b (v) yields D (p) : 11

D (p) =

Z 1

inffvjr(v)�pg

g (v)

T (S (r (v)) + (1� S (r (v))) �)dv (4)

For sellers�densities �s we have the following �ow conditions:

Tt�
s
t (c) = Tt�1�

s
t�1 (c) (1�Dt�1 (p (c))) (1� �) + 1 (5)

8 In a Nash equilibrium we could sustain an equilibrium in which all sellers o¤er some
arbitrary price pn: Because without the �rst assumption, we could postulate that whenever
a seller deviates from pn to o¤er a lower price, buyers belief that from now on all sellers o¤er
prices 0, so that they reject the o¤er. Without the second assumption we could assume that
buyers with valuations v < pn always reject all prices below pn. Then again sellers would
have no incentives to decrease their prices.

9Serrano (2002) assumes that traders use a double auction in which both traders submit
their bids simultaneously and trade happens at the midpoint of the bids, provided the seller
bids below the buyer. As Serrano notes, the simultaneity of bidding precludes the use of
sequential rationality and non-competitive equilibria may exist.
10 In accordance with the literature on dynamic matching games with a continuum of players

we take these evolution conditions of the population as fundamentals of the model instead
of deriving it from individual players�matching and trading probabilities (the "law of large
number convention").
11The integral is well de�ned because the denominator is monotone.
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from where we can derive a similar condition for �s (c) in the steady state and
derive S (p) by integrating over �s (c):

�s (c) =
1

T (D (p (c)) + (1�D (p (c))) �) (6)

) S (p) =

Z supfcjp(c)�pg

0

1

T (D (p (c)) + (1�D (p (c))) �)dc (7)

In addition, for S (�) and D (�) to be proper cumulative distribution functions
it must be that

S (1) = 1 (8)

D (0) = 1 (9)

Evaluating (7) at p = 1 this implies for T :

T =

Z 1

0

1

(D (p (c)) + (1�D (p (c))) �)dc (10)

The conditions for S (�), D (�), and T given in this section are necessary and
su¢ cient for the market to be in a steady state. They are necessary, because we
derived them as direct implication of the steady state. And they are su¢ cient:
Given S (�), D (�), and T we can derive �b (�) and �s (�) using (3) and (6). By
their de�nitions, these �b (�) and �s (�) lead to a steady state. And if conditions
(4), (7), (8), and (9) hold, D (�) and S (�) are indeed the shares derived from
�b (�) and �s (�).

Given the steady state conditions we are ready to de�ne an equilibrium:

De�nition 1 A steady state equilibrium is described by the pair p (�) and r (�),
the pair of steady state distributions S (�) and D (�), and the mass T of traders,
such that

� p (c) 2 argmax� (p) 8c

� r (v) = v � (1� �)V (v) 8v

� the steady state conditions (4), (7),(8) and (9) hold.

We can show that such an equilibrium exists for � not too large:

Theorem 1 There exists a �g such that for every � � �g there exists a steady
state equilibrium.

Proof: See Appendix
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3 Main Results

We want to characterize the set of equilibria with � ! 0. For this, we will look
at a strictly decreasing sequence of exit rates f�kg1k=1 with limk!1 �k = 0
and �1 � �g. We know that for each �k there exists at least one equilib-
rium and we select one equilibrium for each k, which gives us a sequence
f(pk (�) ; rk (�) ; Sk (�) ; Dk (�) ; Tk)g1k=1.
We will show that for every such sequence the support of prices at which

trade happens shrinks to a singleton, i.e. a "law of one price" holds. This is the
�rst theorem. Given that this "law" holds, we then show that the "one price"
must be the Walrasian price of zero, which is stated in the second theorem. And
�nally, given that all sellers are willing to trade at a price of zero, it follows that
the equilibria become e¢ cient, i.e. all buyers and sellers are actually able to
trade, which is stated in the last theorem.

Before we prove the theorems, we introduce some notation and make some
general observations. To de�ne the support of trading prices, we de�ne hk to
be the highest accepted price, hk = rk (1) and lk to be the lowest o¤ered price,
lk = pk (0). Then, for every k and in every equilibrium sellers must make strictly
positive pro�ts: Because even if all other sellers were to o¤er a price of zero,
most buyers are willing to pay some p0 > 0 to avoid delay given �k > 0. This
means that all sellers o¤er prices pk (c) � hk. By their de�nitions, wk (�) is
monotone increasing and qk (�) is decreasing. In addition, reserve prices rk (�)
are increasing in buyers valuations (by increasing di¤erences of U (r; v)).

3.1 The Law of One Price

Theorem 2 For every sequence of sequential steady state equilibria with hk �
rk (1) and lk � pk (0) :

lim
k!1

(hk � lk) = 0

We prove the theorem by contradiction, i.e. we want to show that it cannot
be that along a (sub)sequence indexed by k0, (hk0 � lk0) � C for some C > 0.
Without loss of generality, the subsequence k0 is k itself. We will introduce two
lemmas that state the implication of this hypothesis and then show that these
implications lead to a contradiction.

Before giving the lemmas in detail, we provide some intuition. With �k ! 0,
no buyer would accept hk � lk + C if all sellers would o¤er a common price
lk. Therefore prices must be dispersed. Now, take some "1 > 0 and "2 > 0.
As said in the introduction, prices can be dispersed when k ! 1 only if two
opposing conditions hold: rk (1) = hk requires that low prices p � hk � "1 are
o¤ered rarely enough to make waiting for good prices unpro�table for the buyer.
At the same time, pk (0) = lk requires that buyers who have a reservation price
above lk+"2 trade frequently enough so that they do not accumulate in the pool
and the seller would not want to deviate from lk to lk + "2. The following two
lemmas correspond to these conditions: In the �rst lemma we conclude from
the scarcity of low prices, that there are some buyers who accept prices above
lk + "2, while they do not �nd such prices frequently. Given that these buyers
trade rarely, the second lemma shows that these buyers accumulate and have a
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strictly positive share in the pool. Finally, we conclude that sellers would indeed
deviate from pk (0) = lk to lk + "2. So the two conditions for price dispersion
cannot be ful�lled simultaneously and we have (hk � lk)! 0.

The �rst lemma states that for some "1 > 0 the ultimate trading probability
for the type v = hk � "1 < hk is bounded away from one for k large enough. In
addition, the type v = hk � 2"1 accepts a price above the very best o¤er, i.e.
rk (hk � 2"1) > lk:

Lemma 1 Given (hk � lk) � C 8k, there exist some "1 > 0,"2 > 0, �w < 1, and
�k such that for all k � �k :

wk (rk (hk � "1)) � �w < 1

rk (hk � 2"1) � lk + "2

Proof : As said, for some buyer to accept hk = rk (1) all lower prices must
be rare. Otherwise, the buyer would just wait for a better o¤er. Buyers care
only about the ultimate trading probability wk (r), so scarcity means that the
ultimate trading probability with reservation prices r < hk must be small and
in particular bounded away from one.
The two statements in the lemma follow as implications of this scarcity:

First, the ultimate trading probability of buyers with valuations v 2 (lk; hk) is
bounded away from one, because their reservation price must be below their val-
uation, rk (v) � v and so rk (v) < hk. From before, we know that r < hk implies
that wk (r) is bounded away from one. Formally, take any "1 2

�
0; 13C

�
and sup-

pose the �rst statement would not hold. Then lim supk!1 wk (rk (hk � "1)) = 1
and by rk (hk � "1) < hk, Uk (rk (hk � "1) ; 1) � wk (rk (hk � "1)) (1� (hk � "1)),
lim supk!1 Uk (rk (hk � "1) ; 1) � (1� hk + "1), so lim supVk (1) � (1� hk + "1).
However, rk (1) = hk requires Vk (1) � 1�hk

1��k by de�nition and therefore lim supk!1 Vk (1) �
(1� hk), leaving us with a contradiction.
Second, taking the type vk = hk � 2"1 > lk, we can �nd a bound on his

payo¤s. This bound on payo¤s is also a bound on the prices he accepts. We
can bound Vk (v) = supr U (r; v) = wk (r) (v � Ek [pjp � r]) by using that lk
is the lowest o¤ered price, i.e. E [pjp � r] � lk and by using the bound from
before on wk (�): Because the reservation price of vk = hk � 2"1 is lower than
the reservation price of v = hk � ", the trading probability of vk is lower as well
and therefore �w is also a bound on wk (rk (vk)). Together, type vk can trade
with probability no more than �w at a price not better than lk, i.e. for all k � �k:

Vk (vk) = sup
r
U (r; vk) � �w (vk � lk) < vk � lk

So the payo¤ for type vk is strictly smaller than the payo¤ from accepting a price
lk. Because of the strict inequality, acceptance of some o¤er even slightly above
lk will still make vk better of, so for some "2, rk (vk) � lk+"2. Formally, substi-
tuting the bound on Vk into the de�nition of rk (v) and rewriting terms yields
rk (vk) � lk + (1� �w) (vk � lk) + �kVk (vk) and de�ning "2 � (1� �w) (vk � lk)
gives rk (vk) � lk + "2 for all k � �k�

The next lemma states that the mass of buyers of a certain type in the pool
is connected to their ultimate probability of trading. Intuitively, the less likely
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some buyers are to trade, the larger is their share because they stay longer in the
pool. Speci�cally, if the trading probability qk (v) for a set of buyers is bounded
away from one, we can �nd a lower bound on their mass in the pool.
The total mass of all buyers is maximal if no buyer ever trades. Then every

period only a share �k exits while a mass 1 enters and the total mass is 1
�k
.

Now, suppose there is some interval [xk; yk] of types which has some mass M in
the in�ow and every v 2 [xk; yk] has a trading probability of at most �w. Then
every period at least a mass (1� �w)M enters the pool who will stay until they
become discouraged with rate �k. Therefore the mass of types v 2 [xk; yk] is
at least (1� �w)M

�k
. From before, the total mass of buyers is 1

�k
. So the share of

types v 2 [xk; yk] is at least (1� �w)M
�k

h
1
�k

i�1
= (1� �w)M which is independent

of �k and strictly positive.
And �nally: If the reserve price of the lowest type v = xk is rk (x), then also

all higher v 2 [xk; yk] accept rk (x). Therefore, the share of buyers accepting
pk = rk (x) is at least (1� �w)M , i.e. Dk (rk (x)) � (1� �w)M . Stated formally:

Lemma 2 If the ultimate probability of trading is bounded for some interval of
buyers, wk (v) � �w < 1 8v 2 [xk; yk], then for pk = rk (x):

Dk (rk (x)) � gl (y � x) (1� �w) (11)

Proof : Immediate from substituting w (�) into the de�nition of D (�) and using
the bound �w�

Proof of Theorem 2: Now we connect the two lemmas to show that sellers
would indeed want to deviate if (hk � lk) � C 8k. By the �rst lemma, for all
v 2 [hk � 2"1; hk � "1], wk (v) � �w so the interval [hk � 2"1; hk � "1] meets the
requirement of the second lemma, so for all k � �k:

Dk (rk (hk � 2"1)) � gl"1 (1� �w) > 0

Demand Dk (p) is higher for lower prices, so by rk (hk � 2"1) � lk + "2 from
the �rst lemma, we have Dk (lk + "2) � Dk (r (hk � 2")) and therefore:

D (lk + "2) � "1gl (1� �w)

So a seller who o¤ers a price p0k = lk + "2 has a strictly positive probability to
be matched with a buyer who accepts his o¤er. This is true for all k and with
k !1, the seller can be sure to trade because he can wait inde�nitely long:

lim
k!1

qk (lk + "2) = lim
k!1

Dk (p
0
k)

1� (1�Dk (p0k)) (1� �k)
= 1 (12)

But if a seller can be sure to trade at some p0 > lk, o¤ering lk = pk (0) cannot
be optimal. So we have found a contradiction when (hk � lk) does not vanish,
proving the "law of one price".�
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3.2 Convergence to the Walrasian Price

Theorem 3 For every sequence of sequential steady state equilibria, prices con-
verge to the Walrasian Price:

lim
k!1

p (c) = 0 8c

For the second theorem it is su¢ cient to prove lim supk!1 hk ! 0, given
hk � pk (c) � 0 Again, we prove the theorem by contradiction and assume that
lim supk!1 hk = pc > 0. Under this assumption, there exists a convergent
subsequence indexed by k0 with limk0 hk0 = limk0 lk0 = pc using theorem (2)
and without loss of generality k0 is equal to k. We construct the contradiction
through two lemmas, proven in the appendix.

For the �rst lemma, observe that along this sequence, for any p0 < pc, buyers
with v 2 (p0; lk) do not trade but accumulate in the market. Hence, they accept
a price p0 � v and have a strictly positive share in the pool. Therefore, with
�k ! 0, a seller o¤ering any p0 slightly below pc can be sure to trade in the
limit, i.e. qk (p0) ! 1. Therefore, every seller can guarantee himself a trade at
a price close to his equilibrium price p 2 [lk; hk] and hence, sellers must be sure
to trade in equilibrium:

Lemma 3 If limk!1 lk = limk hk = pc > 0 along some (sub-)sequence k it
must be that:

lim
k!1

qk (pk (c)) = 1 8c 2 [0; 1]

On the other hand, if pc > 0 then pc is above the "market clearing level",
i.e. the mass of buyers who are willing to trade is strictly smaller than the mass
of sellers, i.e. (1�G (pc)) < 1 by g (v) � gl. But the mass of buyers and sellers
who trade in equilibrium must be equal. Therefore some of the sellers must be
rationed, implying the second lemma:

Lemma 4 If limk!1 lk = limk hk = pc > 0 along some (sub-)sequence k it
must be that:

lim
k!1

q (pk (c)) 6= 1 for some c

So lim supk!1 lk = 0. Otherwise, the two lemmas give us a contradiction�

3.3 E¢ ciency

Theorem 4 For every sequence of sequential steady state equilibria, the equi-
librium outcome becomes e¢ cient for � ! 0:

lim
k!1

wk (v) = 1 8v 2 (0; 1]

lim
k!1

qk (c) = 1 a:e:

11



Proof : For the last theorem, just note that hk = rk (1)! 0 implies that

lim
k!1

rk (v) = 0 8v

and by de�nition of rk (v) = v � (1� �)Vk (v):

lim
k!1

Vk (v) = v

and this implies that all types v > 0 trade with probability converging to one,
wk (v) ! 1. And if the mass of trading buyers in the in�ow becomes one, the
mass of trading sellers must become one as well, so qk (c)! 1�

3.4 Heterogeneous Cost

We can show that our characterization result holds also with cost heterogeneity.
For this we do not need to alter the proof. Let costs c 2 [0; 1] be distributed
according to some cdf F (�) with continuous density f (c).12 Sellers�pro�ts are
given by

�(p; c) = q (p) (p� c)

Denote by pw the market clearing price such that the masses of buyers and
sellers who would be willing to trade at pw are equal:

F (pw) = 1�G (pw)

Assume that this price is interior, pw 2 (0; 1). Now we can proof that all
equilibria must be market clearing as well: The reader might want to check that
we did not use the sellers�costs in the �rst part of the proof. We only used that
qk (p

0)! 1 for some p0 > lk implies that lk cannot be a pro�t maximizing price,
independent of the the cost of the seller. So the "law of one price" holds, i.e.
(rk (1)� pk (0))! 0 even with heterogeneous costs.
For the second part, we can state an equivalent to lemma 3. Let pc =

lim sup pk (0) = lim sup rk (1). We reason similar to before that it must be that
qk (pk (c)) ! 1 for all c > pc and wk (rk (v)) ! 1 for all v < pc. Again, by
deviating to any lower price p0 < pc sellers could be sure to trade with buyers
with v 2 [p0; pc] who have a strictly positive share in the pool. For buyers,
lk ! hk implies that the expected trading price is approximately hk for all
v > pc. If at this price the ultimate trading probability wk (hk) is strictly
smaller than one, the payo¤ of type v = 1 will be strictly smaller than (1� hk)
and v = 1 would accept prices p0 > hk, contradicting the de�nition of hk.
Taken together, the requirement that all buyers with v > pc and all sellers

with c < pc must be able to trade implies immediately that pc must be the
market clearing price pw. Otherwise, one of the trading sides would have to be
rationed. The proof of convergence is thus a straightforward extension, building
upon the same intuition as the proof with homogeneous sellers.

12Our model can capture unbalanced in�ows as follows: Suppose that the mass of one side
is a and the mass of the other is b. W.l.o.g., a � b and we can normalize the larger side to
one and the smaller to b

a
. Now, if the smaller side is the buyers�side, we can "�ll" the in�ow

with buyers with v = 0 until their total mass is also one (and similarly for sellers with c = 1).
Now our proof holds, observing that pw being interior implies that we do not need to worry
about non-di¤erentiability at the extremes.
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Note however, that our constructive proof of existence does not work for
heterogeneous sellers. While we needed to construct only one single price with
homogeneous sellers, heterogeneity would require us to construct a full price
schedule, one price p (c) for each c. For this reason, we restricted our analysis
to the homogeneous seller case.

4 Discussion

4.1 Existing Literature and Other Market Clearing Forces

We show that the incentives to reach out for additional buyers is all that is
needed to guarantee the e¢ cient outcome. In the existing literature, one can
�nd two assumption that give sellers additional incentives to decrease their
prices. In the main strand of the literature13 within each pair both sides of
the market have a chance to make an o¤er. In recent models only sellers can
make the o¤er but in addition, buyers have the chance to simultaneously receive
several o¤ers from competing sellers.14

For illustration, take the basic model with homogeneous sellers where the
market clearing price is zero. Suppose that sellers would set a common price
p0 > 0 even for small �. At this price, not all sellers will be able to trade so
their ultimate trading probability is bounded away from one. This implies that
their pro�ts are strictly smaller than p0. Therefore, a seller would accept price
o¤ers p00 from buyers which are considerably less than p0. Given � close enough
to zero, buyers now have the chance to trade at a price p00 in the future when
it is their turn to propose. This makes them unwilling to accept p0 and gives
strong incentives to seller to propose price below p0 themselves.
In a model with a positive chance that a seller competes directly with the

o¤er of another seller, we have another pressure on prices: given the common
price level p0, an incremental decrease below p0 increases the trading probability
strictly whenever p0 is strictly positive. This is the additional incentive for sellers
to decrease prices when directly competing with other sellers.
Of course, in both kinds of models it has to be proven that there is no

price dispersion. But our proof of the law of one price can be applied to both
situations to yield this conclusion.

So we can distinguish three forces towards the competitive price level, the
incentive to reach additional buyers analyzed here, the incentive to undercut
the competitors, and the better outside option for buyers if they have some
bargaining power. Rationing on the sellers�side is their common starting point.
But there is an important qualitative di¤erence between the three forces: While
the existence of additional buyers at lower prices is a basic feature shared by
most markets, the possibility of directly competing o¤ers or the distribution of
bargaining power between traders depends on the �ne details of the situation
and the model. By showing that the convergence results do not depend on

13Mortensen (1982), Rubinstein&Wolinsky (1985) and Gale (1986, 1987) initiated the analy-
sis for complete information. Serrano (2002), Moreno&Wooders (2002) and Inderst (2001)
extended it towards incomplete information.
14See Satterthwaite and Shneyerov (2004, 2005). Though without convergence results, this

structure can be found in the literature on nosiy search, e.g. in Burdett and Judd (1983) and
the literature on dynamic labor search, e.g. in Cahuc, Zylberberg (2004).
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these latter details, we provide evidence for the robustness of the prediction
that decentralized trading is e¢ cient.

Clearly, whenever the �rst market clearing force is present, convergence is
only strengthened when we introduce additional market clearing forces. There-
fore, our result extend to a setting where sellers are matched with a random
number of buyers and hold optimal auctions. This is a slight generalization
of Satterthwaite and Shneyerov (2005) who restrict sellers to set competitive
(hidden) reserve prices and also restrict the set of (sequences of) equilibria.

When modelling the evolution of the pool of traders we follow McAfee (1993)
and assume that there is some death rate, letting the rate converge to zero. This
seems a natural condition when analyzing steady states. The main alternative
would be to follow Gale (1987) and later authors who assume that traders are
literally in�nitely lived. However, these authors need to assume that not all
traders enter in order to ensure existence of a steady state with �nite popu-
lations. Under the assumption of an additional entry decision, we could have
sustained equilibria in which only buyers above some threshold pc 2 (0; 1) en-
ter: Given that only such buyers are available in the pool, sellers would have no
incentives to decrease their price below such a threshold pc and all pc could be
sustained. But such an equilibria might be considered unstable because it relies
on a literal impossibility of sellers to reach those inactive buyers with valuations
v < pc who accumulate outside the market. If sellers could e.g. advertise their
prices at some cost k per ad to buyers and k ! 0 we could restore the conver-
gence result. The assumption of exogenous entry in our model might therefore
be considered as shorthand for a more complex model that has in�nitely lived
agents, endogeneous entry, and advertising.

Also, the alternative assumption of in�nitely lived agents has direct impli-
cations for the set of possible equilibria by introducing a sort of "zero pro�t
condition" for sellers: To ensure a steady state, the in�ows of buyers and sell-
ers must be identical with in�nitely lived agents. Then either all buyers have
a strictly positive probability of trading. In this case, sellers must o¤er prices
close to zero, make zero pro�ts, and the equilibrium outcome is close to e¢ -
ciency. Otherwise, not all buyers enter. Then some sellers must choose to stay
out of the market to balance the in�ows of sellers and buyers. But sellers will
stay out only if their equilibrium pro�ts are zero.
So already by the seemingly technical assumption of in�nitely lived agents

we know that sellers must make zero pro�ts, independent of further strategic
considerations and even away from the limit. Given this observation, it is then
possible to show again that prices are zero and the equilibrium outcome must
be e¢ cient with vanishing frictions, see Satterthwaite, Shneyerov (2004). Il-
lustrating these stronger implications for convergence, in Lauermann (2005) we
argue that because of this implicit "zero pro�t condition", decentralized trading
can be e¢ cient with literally in�nitely lived agents even when it is not so with
�nitely lived agents.

Finally, our model might be considered as going back to the very roots
of the dynamic matching and bargaining literature. Already in the seventies
and long before Wolinsky and Rubinstein (1985) published their seminal paper
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on dynamic matching and bargaining, Butters began working on a model where
only sellers make price o¤ers and other market clearing forces are absent. He also
allowed for non-stationary in�ows, a more general matching technique and two-
sided heterogeneity. Thus, relative to later authors building upon his un�nished
typescript, his analysis was much more ambitious. But it remained cumbersome
and was not published. Although we have not reached the level of generality
envisioned by Butters yet, this note might be a step in the direction of the
analysis he had in mind.

4.2 Full Information

In this paper we assume that sellers do not observe the buyers�valuation before
making an o¤er. In Lauermann (2005b) we explore a situation where sellers
can perfectly observe the types. Surprisingly, we �nd that with symmetric
information the outcome does not converge to the competitive outcome but
stays bounded away from it. The reason is that asymmetric information shields
the buyers from price discrimination by sellers. However, we also show that
whenever sellers receive a imperfect signal about v with an arbitrarily small
amount of noise, the convergence result is restored.
Basically, with asymmetric information sellers who want to trade with buyers

with low valuations must set low prices for all buyers. This is not so with sym-
metric information. Therefore, rationing at a common high price pc translates
into incentives for price decreases only under asymmetric information. Under
symmetric information, sellers can target lower valuation buyers individually.

4.3 Conclusion

In our analysis, we checked the robustness of the market clearing hypothesis
and the underlying intuition. We were able to prove asymptotic e¢ ciency of
decentralized trading by appealing to the basic economic forces of rationing of
traders at non-market clearing prices.
While we were able to prove e¢ ciency in a setting with extreme market

power, the existing literature suggests that there are important conditions which
are not checked in this paper: Gale (2000) suggests in his book that a complete
model of decentralized trading should include the problem of coordination across
markets (and time) for di¤erent products, e.g. the market for labor and the mar-
ket for consumption goods. This problem is central to a market economy and
it is not even remotely included in the existing models.15 Second, Wolinsky�s
(1990) analysis suggests that decentralized markets might not work e¢ ciently
with aggregate uncertainty. Again, robustness to aggregate uncertainty is cen-
tral to the e¢ ciency of market economies and it is not included in the analysis
given here.

A Existence and Characterization of a Pure Strat-
egy Equilibrium

Here we will derive and characterize an equilibrium to prove:

15However, in recent auction theory the static version of the coordination problem receives
much attention in the discussion of demand for complementary goods.
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Proposition 5 There exists a �g such that for every � � �g there exists a
sequential steady state equilibrium in which all sellers set a common price p�� 2
(0; 1) and this price converges to zero: limk!1 p

�
� = 0.

Proof : To derive the equilibrium, we start with the hypothesis that all sell-
ers o¤er a common price p� and use the �rst order condition to characterize
the equilibrium. The pro�t of a seller o¤ering p� every period is the sum
of the expected pro�t of the current period, D (p�) p� plus the expected fu-
ture pro�t q (p�) p�weighted by the probability to be active in the next period
(1� �) (1�D (p�)):

� (p�) = D (p�) p� + (1� �) (1�D (p�)) q (p�) p�

It is straightforward to derive the ultimate probability of trading q (p�), by
observing that exactly a mass 1�G (p�) of the in�owing buyers trades. Because
the mass of trading buyers and sellers must be identical, it follows that a mass
1�G (p�) of the in�owing sellers trade as well, i.e.

q (p�) = 1�G (p�)

Now, we look at the pro�t of deviating from p� to p once today, keeping the
common price p� from tomorrow onward:

� (pjp�) = D (p) p+ (1� �) (1�D (p)) q (p�) p�

With pb � argmaxp � (pjp�), we want to show that there exist a p� such that
pb = p�. For pb to be a solution to argmaxp � (pjp�) it is su¢ cient that the �rst
order condition holds:

d

dp
�
�
pbjp�

�
= 0

and that � (pjp�) is globally concave given p�:

d

dp2
� (pjp�) < 0 for p � r (1)

Because a seller can make strictly positive pro�ts for every p�, we cannot
have boundary solutions at p = 0 or p � r (1) where pro�ts would be zero.
To derive the pro�t function we need to derive the "demand function"

D (�jp�). In the following we drop its dependency on p� for better readability.
The �rst important observation regards the buyers�reserve price r (v). From
(1) we have r+ (v) = v � (1� �) (v � p�) for v � p� and r� (v) = v for v � p�.
We can de�ne its inverse v+ (p) = p�p�(1��)

� as the type for which r+ (v) = p.
Note the regime change at p� which we capture by the superscripts.
Using the steady state conditions we can now derive D (�) and its derivatives:

D+ (p) =
1

T

Z 1

v+(p)

g (v) dv d+ (p) = �g
�
v+ (p)

� 1
�T

for p � p�

D� (p) = 1� G (p)
T�

d� (p) = �g (p) 1
�T

for p � p�

T =
G (p�)

�
+ (1�G (p�))
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These conditions are derived as follows: For the �rst line, we use the identity of
the out�ow of buyers with v � p and their in�ow. Because all buyers with v � p
trade immediately, the mass of their out�ow is TD+ (p) which has to match the
in�ow, which is

R 1
v(p)

g (v) dv. So we have

TD+ (p) =

Z 1

v(p)

g (v) dv

and reformulating gives D+ (�). For the derivative note that d
dpv

+ (p) = 1
� .

Therefore d
dpD

+ = �g (v+ (p)) 1
�T . For prices p < p� note that buyers with

v < p� never trade, so the mass of their out�ow comes only through exit:
T (1�D� (p)) � which must be equalized with their in�owG (p): T (1�D� (p)) � =
G (p), reformulating gives the second line and its derivative. For T , note that
the total mass T is equal to the accumulating mass of buyers with v � p�, G(p

�)
�

plus the mass of the in�ow of new buyers with v � p�, (1�G (p�)).
Because d+ (p�) is equal to d� (p�) we have continuity of the full marginal

"demand" function d
dpD (p). The �rst derivative of � (pjp

�) writes now as:

d

dp
� (pjp�) = d (p) p+D (p)� d (p) (1� �) q (p�) p�

Substituting D and d and solving for p� shows that the �rst order condition
d
dp� (pjp

�) jp=p� = 0 implies:

(1�G (p�)) �
(G (p�) + � (1�G (p�))) g (p�) = p

� (13)

From continuity of K (p�; �) � (1�G(p�))�
(G(p�)+�(1�G(p�)))g(p�) in p� and the fact

that K (0; �) > 0 and K (1; �) = 0 it follows that a solution exists.
Now �x a solution p�� for every � and look at its behavior. We want to show

that p�� converges to zero, lim�!1 p
�
� = 0. This can be derived from inspection

of K (p�; �) : Suppose p� would not converge and p��0 � c > 0 for a subsequence
�0. Then lim�0!1K

�
p�; �0

�
= 0 for p� � c:

lim
�0!1

(1�G�0 (p�)) �0�
G�0 (p�) + �

0 (1�G�0 (p�))
�
g�0 (p�)

=
(1�G�0 (p�)) 0

(G�0 (p�) + 0) g�0 (p�)

= 0 < p��0

which yields a contradiction to (13).

To check concavity on p 2 [0; rk (1jp�)], we derive d2

dp2� (pjp
�) as follows:

d2

dp2
� (pjp�)+ = �g0

�
v+ (p)

� 1
�
(p� (1� �) q (p�) p�)� 2g

�
v+ (p)

�
for p 2 [p�; r (1jp�)]

d2

dp2
� (pjp�)� = �g0 (p) (p� (1� �) (1�G (p�)) p�)� 2g (p) for p 2 (0; p�)

For p 2 [p�; r (1jp�)], the �rst term is negative because (p� (1� �) q (p�) p�) �
0 and �g0 (v+ (p)) � 0 by assumption. Therefore d2

dp2� (pjp
�)
+
< 0. For
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p 2 (0; p�), lim� p� (�) ! 0, implies that lim� r� (1jp�) = 0, so p � r (1jp�) and
therefore (p� (1� �) (1�G (p�)) p�) is close to zero for � small enough. Be-
cause of G (�) being C2, g0 (�) is continuous on [0; 1] and so �g0 (p) is bounded.
Therefore lim�!0�g0 (p) (p� (1� �) (1�G (p�)) p�) = 0 and we can �nd some
�g such that for all � � �g, �g0 (p) (p� (1� �) (1�G (p�)) p�) < 2gL � 2g (p).
Therefore, d2

dp2� (pjp
�)
�
< 0 for � � �g�16

B Algebra

B.1 Proof of Lemma 3

For given � > 0, if lk ! pc > 0, there is some �k2 (�) such that p0 � pc � �
2 < lk

for all k � �k2 (�). Therefore wk (v) = 0 for all v 2
�
lk � �; lk � �

2

�
and k � �k2.

Using lemma 2:

Dk (p
c � �) � �

2
gl > 0

Similar to the derivation of (12), the inequality implies qk (pc � �) ! 1. By
pro�t maximization, �k (pk (1)) � �k (pc � �) so

qk (pk (1)) pk (1) � qk (pc � �) (pc � �) 8�

and by limk!1 pk (1) = p
c:

lim
k!1

qk (pk (1)) pk (1) � lim
k!1

qk (p
c � �)| {z }
!1

(pc � �)

) lim
k!1

qk (pk (1)) � 1� �

pc
8� 2 (0; 1)

implies that qk (pk (1)) ! 1 by choosing � small enough. By monotonicity,
qk (pk (c)) � qk (pk (1)) for c 2 [0; 1], extending this to qk (pk (c))! 1�

B.2 Proof of Lemma 4

Lets de�ne the masses of in�owing sellers and buyers who will ultimately trade
by TBk =

R 1
lk
wk (rk (v)) g (v) dv and TSk =

R 1
0
qk (pk (c)) dc. Suppose the lemma

did not hold, then limk!1 q (pk (c)) = 1 for all c and

lim
k!1

TSk = lim
k!1

Z 1

0

qk (pk (c)) dc

= 1

But TBk =
R 1
lk
wk (rk (v)) g (v) dv � (1�G (lk)) and with lk ! pc > 0, for every

� 2 (0; 1) there is a �k3 such that for all k � �k3 : T
B
k � 1 � G (pc) + � and

choosing � small enough, TBk � 1�G (pc) + � < 1 for all k � �k3 (�). Hence the
identity of TSk and T

B
k is violated because

TBk 9 1

�
16The requirement that G (�) be convex is equivalent to the requirement needed to show that

the monopolistic pricing problem � (p) = (1�G (p)) p is globally concave and the monopolistic
price can be derived from the �rst order condition d

dp
� (p) = 0.
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