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1 Introduction

To be added

2 The Setup

2.1 The Environment

There is a finite set N = {1, . . . , n} of players. Let f : Θ → A be a social choice
function, where Θ denotes the set of payoff states, and A denotes the set of outcomes.
Associated with each state θ is a preference profile �θ, which is a list (�θ

1, . . . ,�θ
n)

where �θ
i is player i’s state θ preference relation over A. I read a �θ a

′
as “a is at

least as good as a
′
in state θ.” I read a �θ a

′
as “a is strictly preferred to a

′
in state

θ.

Players do not observe the state directly but are informed of the state via signals.
Player i’s signal set is Si which I set |Si| = |Θ| for each i ∈ N . A signal profile is
an element s = (s1, . . . , sn) ∈ S = ×i∈NSi. Let μ be a prior probability over Θ× S.
I designate sθ to be the signal profile in which each player’s signal sθ

i corresponds
to the state θ. Complete information refers to the environment in which μ(θ, s) = 0
whenever s �= sθ. This specification of the signal space is without loss of generality
as long as I only consider environments with complete information.

Given a game form Γ = (M,g), a designer is interested in the set of Nash
equilibrium (NE) outcomes under complete information. Here M ≡ ×i∈NMi, Mi

is player i’s message space and g : M → A is the outcome function. The designer,
however, entertains the possibility that players face uncertainty about payoffs. Then,
he has to take into account the set of “nearby” incomplete information structures in
which the original complete information structure is subsumed. The designer then
employs (Bayesian) Nash equilibrium (BNE) as a solution concept for those nearby
incomplete information games. He wants to ascertain that his prediction about
players’ strategic behavior changes continuously with respect to some topology.

2.2 Definitions and Notations

Mathematically, the coarser the topology chosen, the larger the set of continuous cor-
respondences with respect to it and therefore, the harder the achievement of robust
implementation with respect to it. By the same token, the finer the topology chosen,
the less it demands that the BNE correspondence be continuous with respect to it.
In order to talk about the topology, I have to explicitly expound the topological
structure of the domain of the BNE correspondence into which the players’ belief
structure is embedded. Let (Θ × S, μ) be a complete information structure. I shall
construct the set of states of the world, called Ω, that is consistently extended from
a given complete information environment. I want to keep track of the complete
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information environment and let it be embedded in Ω so that we are able to coher-
ently discuss the epistemic states of all players when the environment is subject to
incomplete information. 3

Definition 1 A space Θ × S is (algebraically) immersed in Ω if there exists a
one-to-one correspondence h : Θ × S → Ω. h is said to be an immersion of Θ × S
into Ω.

Definition 2 Assume that Θ × S is immersed in Ω. A probability space (Ω,Σ, P ∗)
is a consistent extension from the complete information structure (Θ × S, μ) if
(Ω,Σ, P ∗) is equivalent to the probability space

(
Θ × S, 2Θ×S , μ

)
, where P ∗ ≡ μ◦h−1.

Let (Ω,Σ, P ∗) be a probability space consistently extended from the complete
information structure (Θ × S, μ). I fix a measurable space (Ω,Σ) throughout the
argument while I change the probability distributions. In particular, I am interested
in a net of probability distributions {P k}∞k=1 for which P k → P ∗ as k → ∞ in “a
certain” property preserving way. The very issue is that I have to be specific about
with respect to which topology the two probability distributions are deemed to be
close. Let P be the space of all probability distributions over Ω. Let F be the
space of all partitions of Ω, the elements of which are in Σ. Let F ∗ be the subset
of F such that for any Π ∈ F ∗, ω ∈ Π(ω) for each ω ∈ Ω. An element of the
form Π = (Πi)i∈N ∈ (F ∗)n is called a partition structure. Let Π∗ : Ω → 2Ω be the
finest possibility correspondence that is coarser than Πi for each i ∈ N . An event
E is said to be common knowledge at ω if Π∗(ω) ⊂ E. I fix a partition structure
Π = (Πi)i∈N ∈ (F ∗)n for the moment. Player i’s strategy in the game Γ(P ) is a
function σi : Ω →Mi which is Πi-measurable. Let σ be a strategy profile in a game
Γ(P ).

I take for granted Nash equilibrium as a reasonable solution in a game with
complete information. Therefore, players are assumed to choose their strategy inde-
pendently of other players’ choice provided there is common knowledge about what
game being played. This implies that the amount of incomplete information I allow
for the robustness analysis should not contradict the use of Nash equilibrium un-
der complete information. The formalization of this is summarized by the following
measurability condition on possible strategy profiles.

Definition 3 Let a partition structure Π ∈ Fn and the associated game Γ(P ) be
given. A strategy profile σ is consistent with the complete information structure
if, for any ω, ω

′ ∈ Ω, whenever there exists a profile (θ, sθ) ∈ Θ × S such that
h(θ, sθ) = ω̃ for any ω̃ ∈ Π∗(ω) ∪ Π∗(ω′

), then we have σi(ω) = σi(ω
′
) for each

i ∈ N . When σ is consistent with the complete information structure, we simply say
that it is a consistent strategy profile.

3Players’ epistemic state dictates what they know or believe about the game and about each
other’s actions, knowledge, and beliefs.
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Remember that sθ denotes the signal profile in which each player’s signal corre-
sponds to the state θ. By the focus only on consistent strategy profiles, I exclude
the extent of correlation of equilibrium strategies which invalidates the original equi-
librium analysis under complete information. Otherwise, this robustness analysis
on Nash implementation becomes trivial. Because then the use of Nash equilibrium
under complete information is far from appropriate from the beginning. This is my
stance consistent with the use of Nash equilibrium. 4

In this paper, I take ordinal preferences over the set of (pure) outcomes as a
primitive. In order to analyze players’ behavior under uncertainty, I shall extend the
ordinal preferences into preferences over “acts.” An act is a mapping α : Ω → A.
A belief is a probability distribution β on Ω. I read “α �β

i α
′
” as “player i prefers

α to α
′

under his belief β. I assume that the set of axioms is imposed on possible
acts enough to obtain the subjective expected utility representation. Furthermore, I
assume that any representation for preferences over acts is permissible as long as it is
consistent with the ordinal preferences over pure outcomes. The act αΓ

σ induced by σ
under Γ is defined by αΓ

σ(ω) = g(σ(ω)) for any ω ∈ Ω. With these notations, I shall
define Nash equilibrium (NE) and Bayesian Nash equilibrium (BNE), respectively.

Definition 4 Let a partition structure Π = ×i∈NΠi ∈ (F ∗)n and the associated
game Γ(P ) be given. A consistent strategy profile σ is a Bayesian Nash equilib-
rium (BNE) of Γ(P ) if σi is Πi-measurable for each i ∈ N , and for each i ∈ N , state
ω with P (Πi(ω)) > 0, and strategy σ

′
i which is Πi-measurable, we have αΓ

σ �P (·|Πi(ω))
i

αΓ
σ
′
i ,σ−i

.

The above definition suffices for σ to be a Nash equilibrium of the game Γ(P )
if P is a complete information prior. Define the set of acts A ≡ AΩ. I define
ψBNE

Γ : P → A as the Bayesian Nash equilibrium correspondence associated with
the game form Γ. Here, A is endowed with product topology. I shall introduce a
topology which enables us to determine how close any two probability distributions
are. To define such topologies, I need some definitions and notations.

Monderer and Samet (1989) introduced the concept of “common p-belief ” as an
approximation to common knowledge, which is common 1-belief. Let Bq

i (E) ≡ {ω ∈
Ω|P (E|Πi(ω)) ≥ q} denote the set of states in which player i assigns probability at
least q to the event E. I call this player i’s q-belief operator. In particular, when
q = 1, I call B1

i player i’s 1-belief operator corresponding to player i’s knowledge
operator. 5 An event E is said to be q-evident if E ⊂ Bq

i (E) for all i ∈ N . This
means that whenever E is true, everyone believes with probability at least q that E is
true. An event E is said to be common q-belief at ω if there exists a q-evident event

4Moreover, I restrict my attention only to pure strategy Nash equilibrium. This is consistent
with almost all papers in the implementation literature. Admittedly, it has a substantive effect on
implementability.

5Here we define “knowledge” as belief with probability 1.
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F such that ω ∈ F ⊂ ⋂
i∈N Bq

i (E). I will loosely say that an event E is approximate
common knowledge at ω if E is common q-belief at ω, for q close to 1.

Consider the notion of the closeness of probability distributions. Define d0 by
the rule

d0(P,P
′
) = sup

E⊂Ω
|P (E) − P

′
(E)|.

Let P ∗ be the complete information prior. I will require extra conditions on condi-
tional probabilities. Define as G (η) the set of all states in which there is a common
(1 − η)-belief about what game being played as follows:

G (η) =
{
ω ∈ Ω

∣∣ ∃θ ∈ Θ such that Γ(θ) is common (1 − η)-belief at ω
}
.

Let

d1(P ) = inf{η | P (G (η)) = 1},
and

d∗(P,P
′
) = max{d0(P,P

′
), d1(P ), d1(P

′
)}.

Note that d1(P ∗) = 0 by definition. By construction, d∗ is non-negative and sym-
metric, and d∗(P,P ′

) = 0 if and only if P = P
′

and both p and P
′

are complete
information priors. d∗ generates a topology in the following sense: a net {P k| k ∈ K},
where K is a directed index set with partial order �, converges to P ∗ if and only if
for any ε > 0, there is a k̄ ∈ K such that k � k̄ implies d∗(P k, P ∗) < ε. The reader
is referred to Kunimoto (2006) for the topology induced by d∗.

Definition 5 Let Γ be a game form. ψBNE
Γ is upper hemi-continuous at a com-

plete information prior P ∗ with respect to the topology induced by d∗ if, ψBNE
Γ (P k) →

ψNE
Γ (P ∗) as k → ∞ whenever d∗(P k, P ∗) → 0 as k → ∞. Here ψNE

Γ (P ∗) denotes
the set of NE outcomes of the game Γ(P ∗).

The next result is given as a corollary of Theorem 1 in Kunimoto (2006).

Theorem 1 (Kunimoto (2006)) Let Γ be a game form. Then, the Bayesian Nash
equilibrium correspondence associated with Γ is upper hemi-continuous at any com-
plete information prior with respect to the topology induced by d∗.

I want to apply the above result to the notion of robust Nash implementation.
In so doing, I need some definitions. Let NE(Γ(θ)) ⊂ M be the entire set of (pure
strategy) Nash equilibria of the complete information game Γ(θ). First, I shall define
the notion of Nash implementation.

Definition 6 A social choice function f is implementable in Nash equilibrium if
there exists a game form Γ = (M,g) such that for any θ ∈ Θ, (1) there is a Nash
equilibrium mθ of the game Γ(θ) such that g(mθ) = f(θ) and (2) g(NE(Γ(θ)) = f(θ).
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Condition (1) of Nash implementation requires that there be always a Nash
equilibrium outcome which coincides with the socially desirable outcome in each
state. Condition (2) of Nash implementation requires that every Nash equilibrium
outcome coincide with the socially desirable outcome in each state. Having defined
Nash implementation, I introduce the concept of robust Nash implementation as
follows.

Definition 7 A social choice function f is robustly implementable relative to d∗

(d∗∗) if (1) it is implementable in Nash equilibrium and (2) the Bayesian Nash equi-
librium correspondence associated with some Nash implementing game form is upper
hemi-continuous at any complete information prior with respect to the topology in-
duced by d∗ (d∗∗).

In particular, Theorem 1 implies that all Nash implementing game forms are
robust relative to d∗. To strengthen this robustness result on Nash implementation,
I introduce a slightly coarser topology than that induced by d∗. Let

d̃1(P ) = inf
{
η
∣∣P (G (η)) ≥ 1 − η

}
.

Define d∗∗(P,P ′
) as follows:

d∗∗(P,P
′
) = max

{
d0(P,P

′
), d̃1(P ), d̃1(P

′
)
}
.

The reader is referred to Kunimoto (2006) for the topology induced by d∗∗.

Definition 8 Let Γ be a game form. ψBNE
Γ is upper hemi-continuous at a com-

plete information prior P ∗ with respect to the topology induced by d∗∗ if, ψBNE
Γ (P k) →

ψNE
Γ (P ∗) as k → ∞ whenever d∗∗(P k, P ∗) → 0 as k → ∞. Here ψNE

Γ (P ∗) denotes
the set of NE outcomes of the game Γ(P ∗).

3 The Maskinian Game Form

In his “classical” paper, Maskin (1999) showed that monotonicity is a necessary
condition for Nash implementation. 6

Definition 9 A social choice function f is monotonic if for every pair of states θ
and θ

′
such that for each player i,

a �θ
′

i f(θ) ⇒ a �θ
i f(θ),

we have f(θ
′
) = f(θ).

Maskin (1999) also provided sufficient conditions for Nash implementation when
there are at least three players. Before stating his result, I need one more definition.

6Maskin’s original paper had been circulated as a MIT working paper since 1977.
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Definition 10 A social choice function f satisfies no veto power if, for all θ ∈ Θ
and all a ∈ A, whenever there exists i ∈ N such that, for all j �= i and all b ∈ A, if
a �θ

i b, then f(θ) = a.

No veto power says that if an outcome is at the top of n− 1 players’ preference
orderings, then the last player cannot prevent this outcome from being the social
optimum.

Theorem 2 (Maskin (1999)) Let the number of players be at least three, i.e.,
n ≥ 3. Then, any monotonic social choice function f satisfying no veto power is
implementable in Nash equilibrium.

The proof of Theorem 2 is based on the construction of a canonical game form
which I call the Maskinian game form. Define the Maskinian game form Γ = (M,g),
in which each message mi ∈Mi allowed to player i consists of an alternative, a payoff
state and a nonnegative integer. Thus, a typical message sent by player i is denoted

mi = (ai, θi, zi),

where ai ∈ A, θi ∈ Θ and zi ∈ {0, 1, 2, . . . }. The outcome function g of the Mask-
inian game form Γ is defined with the following rules, where m = (m1, . . . ,mn):

1. If all players announce the same message, mi = (ai, θi, zi) = (a, θ, 0) for all
i ∈ N , and f(θ) = a, then g(m) = a.

2. If all players but one announce the same message, that is, mj = (a, θ, 0) for all
j �= i with f(θ) = a and player i announces mi = (ai, θi, zi) �= (a, θ, 0), then
we can have three cases:

g(m) =

⎧⎨
⎩

ai if a �θ
i a

i

a if ai �θ
i a

a(i, θ) if a ∼θ
i a

i

where a(i, θ) is the worst outcome for player i in state θ.

3. In all other cases, an integer game is played. That is,

g(m) = ai∗ ,

where i∗ is the lowest index among those who announce the highest integer,
i.e., zi∗ = maxj z

j .

This paper made a slight modification on Rule 2 of the original game form in
Maskin (1999). Rule 2 of the original canonical game form is as follows:

g(m) =
{
ai if a �θ

i a
i

a if ai �θ
i a

It is important to note that regardless of this modification, Maskin’s sufficiency result
(Theorem 2) continues to be valid.
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4 An Impossibility Theorem

In this section, I rather pursue an impossibility theorem on robust Nash implemen-
tation. To establish this impossibility theorem, I shall impose two assumptions on
the social choice functions.

Assumption 1 A social choice function f satisfies the following two conditions:

1. There are two states θ, θ
′
such that f(θ

′
) �θ

i f(θ) and f(θ
′
) �θ

′
i f(θ) for some

player i ∈ N .

2. f(θ) �θ
i a(i, θ) for each i ∈ N and θ ∈ Θ.

Assumption 1-1 says that the social choice function f describes the objective of a
society in which there is some minimal degree of congruence of interests across some
states for some player. Namely, some player i prefers f(θ

′
) to f(θ) across θ and θ

′
.

Assumption 1-2 says that the social choice function f never give the worst outcome
for any player in any state. Most importantly, Assumption 1-2 with Rule 2 of the
Maskinian game form ensures that the truth telling Nash equilibrium mθ is a strict
Nash equilibrium of the game Γ(θ) for any θ ∈ Θ. I also impose some topological
structure on the set of outcomes A.

Assumption 2 The set of outcomes A is compact.

Since the objective of this section is to establish the impossibility result, the
compactness of A is a fairly innocuous assumption. The next theorem is the main
result of the paper.

Theorem 3 Let the number of players be at least three, i.e., n ≥ 3. Let a social
choice function f satisfy Assumption 1. Let Γ = (M,g) be the Maskinian game
form which implements f in Nash equilibrium under complete information. Assume
further that the set of outcomes A satisfies Assumption 2. Then, for any complete
information prior P ∗, there is a net of probability distributions {P k}∞k=1 with the
property that d∗∗(P k, P ∗) → 0 as k → ∞ for which the Bayesian Nash equilibrium
correspondence associated with Γ exhibits a discontinuity at P ∗.

Proof of Theorem 2: Let θ and θ
′
be two payoff states satisfying Assumption

1-1. Suppose that mθ is the truth telling Nash equilibrium of the game Γ(θ) where
mθ

i = (f(θ), θ, 0) for each i ∈ N and mθ
′
is the truth telling Nash equilibrium of the

game Γ(θ
′
) where mθ

′
i = (f(θ

′
), θ

′
, 0) for each i ∈ N . Let us consider a canonical

perturbation of the complete information structure. This canonical perturbation is
constructed so as to preserve the complete information assumption in any state other
than θ and θ

′
. Therefore, without loss of generality, we may continue the rest of the

argument as if there were only two payoff states θ and θ
′
. Define as follows:

p = μ(θ, sθ|{θ, θ′})
1 − p = μ(θ

′
, sθ

′
|{θ, θ′})
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We define Ω = {(0,0), (1, 0), (1, 1), (2, 1), (2, 2)}. Let us define h as a mapping from
Θ × S to Ω.

h−1(0, 0) = (θ
′
, sθ

′
i , s

θ
′

−i),

h−1(1, 0) = (θ, sθ
i , s

θ
′

−i),

h−1(1, 1) = h−1(2, 1) = h−1(2, 2) = (θ, sθ
i , s

θ
−i).

Therefore, h is an immersion from Θ×S into Ω. We consider the following probability
distribution P ε ∈ Ω:

• P ε(0, 0) = 1 − p;

• P ε(1, 0) = pε;

• P ε(1, 1) = pε(1 − ε);

• P ε(2, 1) = pε(1 − ε)2;

• P ε(2, 2) = p(1 − ε)3.

Players’ partition structure Π is given as follows:

• Πi(0, 0) = {(0,0)},Πi(1, 0) = Πi(1, 1) = {(1,0), (1, 1)},Πi(2, 1) = Πi(2, 2) =
{(2,1), (2, 2)};

• Πj(0, 0) = Πj(1, 0) = {(0,0), (1, 0)},Πj (1, 1) = Πj(2, 1) = {(1,1), (2, 1)},
Πj(2, 2) = {(2,2)} for all j �= i.

Fix this partition structure Π throughout the rest of the argument. The matrix
below displays the type space for the nearby incomplete information games we have
explained. The row is i’s signal and the column is everybody else’s signal.

j’s signal (∀j �= i)
0 1 2

0 1 − p 0 0
i’s signal 1 pε pε(1 − ε) 0

2 0 pε(1 − ε)2 p(1 − ε)3

In the appendix, we show that this perturbation of the complete information
structure is characterized by a convergent net of probability distributions with re-
spect to the topology induced by d∗∗. Namely, d∗∗(P ε, P ∗) → 0 as ε → 0. 7

For strategy profile σ to be consistent with complete information, any strategy
7This perturbation is first used in a simple example in Kunimoto (2005) for achieving a different

objective.
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profile σ : Ω → M in the Bayesian game Γ(P ε) must satisfy the property that
σj(2, 1) = σj(2, 2) for any j �= i. The next proposition explicitly constructs a
Bayesian Nash equilibrium σ∗ of the game Γ(P ε) for any ε > 0 sufficiently small.
Let mθ

i denote player i’s message for which mθ
i = (f(θ), θ, 0) for all i ∈ N .

Proposition 1 There exists sufficiently small ε̄ > 0 such that for any ε ∈ (0, ε̄]
there exists a Bayesian Nash equilibrium σ∗ of the game Γ(P ε) with the following
properties:

• σ∗i (0, 0) = mθ
′

i

• σ∗i (1, 0) = σ∗i (1, 1) = m∗
i

• σ∗i (2, 1) = σ∗i (2, 2) = mθ
i

• σ∗j (0, 0) = σ∗j (1, 0) = mθ
′

j for any j �= i

• σ∗j (1, 1) = σ∗j (2, 1) = σ∗j (2, 2) = mθ
j for any j �= i

Proof of Proposition 1: Until the end of the proof, we keep assuming m∗
i =

mθ
′

i . It will turn out that this assumption can be modified without changing all the

conclusions. First, we claim that for any j �= i, σ∗j (0, 0) = σ∗j (1, 0) = mθ
′

j is a best

response to σ∗−j(0, 0) = σ∗−j(1, 0) = mθ
′

−j if ε is sufficiently small.

Fix any player j �= i. Playing mθ
′

j conditional upon {(0,0), (1, 0)} gives the
following lottery:

• g(mθ
′
) with probability (1 − p)/(1 − p+ pε) at (0, 0) in Γ(θ

′
)

• g(mθ
′
) with probability pε/(1 − p+ pε) at (1, 0) in Γ(θ)

Consider any other message mj. Playing mj conditional upon {(0,0), (1, 0)} gives
the following lottery:

• g(mj ,m
θ
′

−j) with probability (1 − p)/(1 − p+ pε) at (0, 0) in Γ(θ
′
)

• g(mj ,m
θ
′

−j) with probability pε/(1 − p+ pε) at (1, 0) in Γ(θ)

Because mθ
′

is the truth telling Nash equilibrium of the game Γ(θ
′
) and if we

apply Rule 2 of the Maskinian game form Γ with Assumption 1-2, we have

g(mθ
′
) �θ

′
j g(mj ,m

θ
′

−j) ∀mj �= mθ
′

j .

By continuity of preferences over acts, we show that mθ
′

j is a best response to the
strategies of other players specified above for ε sufficiently small.
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Second we claim that σ∗j (1, 1) = σ∗j (2, 1) = σ∗j (2, 2) = mθ
j for any j �= i is a best

response to σ∗i (1, 1) = mθ
′

i and σ∗i (2, 1) = σ∗i (2, 2) = mθ
i and σ∗k(1, 1) = σ∗k(2, 1) =

σ∗k(2, 2) = mθ
k for any k /∈ {i, j}. The partition structure Π requires us to satisfy

σ∗j (1, 1) = σ∗j (2, 1). Moreover, by consistency of strategy profiles and the partition
structure Π, we must have σ∗j (1, 1) = σ∗j (2, 1) for any j �= i. In sum, we must satisfy
σ∗j (1, 1) = σ∗j (2, 1) = σ∗j (2, 2) for any j �= i. Note that mθ constitutes the truth
telling Nash equilibrium of the game Γ(θ).

Fix any player j �= i. Playing mθ
j conditional upon {(1,1), (2, 1), (2, 2)} gives the

following lottery:

• g(mθ
′

i ,m
θ
−i) with probability ε at (1, 1) in Γ(θ)

• g(mθ) with probability ε(1 − ε) at (2, 1) in Γ(θ)

• g(mθ) with probability (1 − ε)2 at (2, 2) in Γ(θ)

Consider any other messagemj. Playingmj conditional upon {(1,1), (2, 1), (2, 2)}
gives the following lottery:

• g(mθ
′

i ,mj,m
θ
−{i,j}) with probability ε at (1, 1) in Γ(θ)

• g(mj ,m
θ
−j) with probability ε(1 − ε) at (2, 1) in Γ(θ)

• g(mj ,m
θ
−j) with probability (1 − ε)2 at (2, 2) in Γ(θ)

Because mθ is the truth telling Nash equilibrium of the game Γ(θ) and if we
apply Rule 2 of the Maskinian game form Γ with Assumption 1-2, we have

g(mθ) �θ
j g(mj ,m

θ
−j) ∀mj �= mθ

′
j .

By continuity of preferences over acts, we show that mθ
j is a best response to the

strategies of other players specified above for ε sufficiently small.

Third, we claim that σ∗i (1, 0) = σ∗i (1, 1) = mθ
′

i “can” be a best response to

σ∗−i(0, 0) = σ∗−i(1, 0) = mθ
′

−i and σ∗−i(1, 1) = σ∗−i(2, 1) = σ∗−i(2, 2) = mθ
j . At states

{(1,0), (1, 1)}, player i knows that the game Γ(θ) is played. However, player i does
not know if all other players know that the game Γ(θ) is played. Conditional on
{(1,0), (1, 1)}, player i believes with probability z that all other players do not know
which game is being played and with probability 1 − z that all other players know
the game Γ(θ) is played. We can calculate z as follows:

z =
ε

ε+ ε(1 − ε)
=

1
2 − ε

> 1/2 as long as ε > 0

Playing mθ
′

i conditional upon {(1,0), (1, 1)} gives the following lottery:

10



• g(mθ
′
) with probability z > 1/2 at (1, 0)

• g(mθ
′

i ,m
θ
−i) with probability 1 − z < 1/2 at (1, 1)

Playing mθ
i conditional upon {(1,0), (1, 1)} gives the following lottery:

• g(mθ
i ,m

θ
′

−i) with probability z > 1/2 at (1, 0)

• g(mθ) with probability 1 − z < 1/2 at (1, 1)

Applying Rule 2 of the Maskinian game form Γ with Assumption 1-1, we can
rewrite the above expressions:

Playing mθ
′

i conditional upon {(1,0), (1, 1)} gives the following lottery:

• g(mθ
′
) with probability z > 1/2 at (1, 0)

• g(mθ
′

i ,m
θ
−i) with probability 1 − z < 1/2 at (1, 1)

Playing mθ
i conditional upon {(1,0), (1, 1)} gives the following lottery:

• g(mθ) with probability z > 1/2 at (1, 0)

• g(mθ) with probability 1 − z < 1/2 at (1, 1)

Since mθ is the truth telling Nash equilibrium of the game Γ(θ) and due to Rule
2 of the Maskinian game form with Assumption 1-2, we have g(mθ) �θ

i g(m
θ
′

i ,m
θ
−i).

We assign the following utility value to each outcome as follows:

ui(g(mθ); θ) = ui(g(mθ
i ,m

θ
′

−i); θ) = 0,

ui(g(mθ
′
); θ) = 3, and

ui(mθ
′

i ,m
θ
−i; θ) = −1.

Playing mθ
i conditional upon {(1,0), (1, 1)} gives the following expected utility:

0 × z + 0 × (1 − z) = 0

Playing mθ
′

i conditional upon {(1,0), (1, 1)} gives the following expected utility:

3 × z − 1 × (1 − z) = 4z − 1 > 1 ∵ z > 1/2

Therefore, mθ
′

i is a “better” response to the belief specified above than mθ
i . In

other words, mθ
i is “not” a best response. Note that the assignment of utilities here

is not important. That is, even if we perturb the utilities slightly, the same argument
goes through. If mθ

′
i is indeed a best response, this shows σ∗i (1, 0) = σ∗i (1, 1) = mθ

′
i

11



can be a candidate for part of the Bayesian Nash equilibrium. Suppose, to the
contrary, that mθ

′
i is not a best response. Assume that ui(·; θ) : A→ R is continuous.

Since Rule 2 of the Maskinian game form is only relevant here, the choice of messages
is equivalent to the choice of outcomes. Since A is compact by Assumption 2, by
Waierstrass theorem, there must exist m∗

i �= mθ
′

i such that

m∗
i ∈ arg max

m̃i∈Mi

z × ui

(
g(m̃i,m

θ
′

−i); θ
)

+ (1 − z) × ui

(
g(m̃i,m

θ
−i); θ

)

In this case, all we have to do is to replace mθ
′

i with m∗
i and check that player j’s

best responses are unchanged at all states. We claim that for any j �= i, σ∗j (0, 0) =

σ∗j (1, 0) = mθ
′

j is a best response to σ∗i (0, 0) = mθ
′

i , σ
∗
i (1, 0) = σ∗i (1, 1) = m∗

i and

σ∗k(0, 0) = σ∗k(1, 0) = mθ
′

k for any k /∈ {i, j} if ε is sufficiently small.

Fix any player j �= i. Playing mθ
′

j conditional upon {(0,0), (1, 0)} gives the
following lottery:

• g(mθ
′
) with probability (1 − p)/(1 − p+ pε) at (0, 0) in Γ(θ

′
)

• g(m∗
i ,m

θ
′

−i) with probability pε/(1 − p+ pε) at (1, 0) in Γ(θ)

Consider any other message mj. Playing mj conditional upon {(0,0), (1, 0)} gives
the following lottery:

• g(mj ,m
θ
′

−j) with probability (1 − p)/(1 − p+ pε) at (0, 0) in Γ(θ
′
)

• g(m∗
i ,mj ,m

θ
′

−{i,j}) with probability pε/(1 − p+ pε) at (1, 0) in Γ(θ)

Because mθ
′

is the truth telling Nash equilibrium of the game Γ(θ
′
) and if we

apply Rule 2 of the Maskinian game form Γ with Assumption 1-2, we have

g(mθ
′
) �θ

′
j g(mj ,m

θ
′

−j) ∀mj �= mθ
′

j .

By continuity of preferences over acts, we show that mθ
′

j is a best response to the
belief specified above for ε sufficiently small.

We claim that σ∗j (1, 1) = σ∗j (2, 1) = σ∗j (2, 2) = mθ
j for any j �= i is a best response

to σ∗i (1, 1) = m∗
i and σ∗i (2, 1) = σ∗i (2, 2) = mθ

i and σ∗k(1, 1) = σ∗k(2, 1) = σ∗k(2, 2) =
mθ

k for any k /∈ {i, j}.

Fix any player j �= i. Playing mθ
j conditional upon {(1,1), (2, 1), (2, 2)} gives the

following lottery:
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• g(m∗
i ,m

θ
−i) with probability ε at (1, 1) in Γ(θ)

• g(mθ) with probability ε(1 − ε) at (2, 1) in Γ(θ)

• g(mθ) with probability (1 − ε)2 at (2, 2) in Γ(θ)

Consider any other messagemj. Playingmj conditional upon {(1,1), (2, 1), (2, 2)}
gives the following lottery:

• g(m∗
i ,mj ,m

θ
−{i,j}) with probability ε at (1, 1) in Γ(θ)

• g(mj ,m
θ
−j) with probability ε(1 − ε) at (2, 1) in Γ(θ)

• g(mj ,m
θ
−j) with probability (1 − ε)2 at (2, 2) in Γ(θ)

Because mθ is the truth telling Nash equilibrium of the game Γ(θ) and if we
apply Rule 2 of the Maskinian game form Γ with Assumption 1-2, we have

g(mθ) �θ
j g(mj ,m

θ
−j) ∀mj �= mθ

′
j .

By continuity of preferences over acts, we show that mθ
j is a best response to the

strategies of other players specified above for ε sufficiently small.

Finally, we check that at state (0, 0), mθ
′

i is a best response to σ∗−i(0, 0) =

σ∗−i(1, 0) = mθ
′

−i. Since mθ′ is the truth telling Nash equilibrium of the game Γ(θ
′
)

and if we apply Rule 2 of the Maskinian game form with Assumption 1-2, we have

g(mθ
′
) �θ

′
i g(mi,m

θ
′

−i) ∀mi �= mθ
′

i .

This completes the proof of Proposition 1. �

To complete the proof of the theorem, it remains to check that a non-Nash
equilibrium outcome is supported by the Bayesian Nash equilibrium σ∗. In fact, we
have the following:

g(σ∗(1, 1)) = g(m∗
i ,m

θ
−i) �= g(NE(Γ(θ))) = g(mθ),

where h(θ, sθ) = (1, 1). Because if we apply Rule 2 of the Maskinian game form with
Condition 2 of Assumption 1, we have

g(mθ) �θ
i g(m

∗
i ,m

θ
−i).

This implies the failure of the upper hemi-continuity of the Bayesian Nash equilib-
rium correspondence at any complete information prior. This completes the proof
of Theorem 2. �

When I combine Theorem 2 with Maskin’s sufficiency result on Nash implemen-
tation, called Theorem 1 in this paper, I have the following corollary.
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Corollary 1 Let the number of players be at least three, i.e., n ≥ 3. Let the set
of outcomes A satisfy Assumption 2. Suppose that f is a monotonic social choice
function satisfying no veto power and Assumption 1. Then, f is not robustly imple-
mentable relative to d∗∗ by the Maskinian game form.

The implication of the above corollary is as follows: If I am concerned with
achieving robust implementation relative to d∗∗, I have to devise another canonical
game form which must be different from the Maskinian game from. One open ques-
tion this paper has not addressed is to ask what additional modifications must be
imposed on the Maskinian game form such that the modified Maskinian game form
is robust to incomplete information.

5 Concluding Remarks

To be added

6 Appendix

In this appendix, I will show that the canonical perturbation of the complete infor-
mation structure is characterized by the topology induced by d∗∗.

Lemma 1 There is approximate common knowledge at (0, 0) and (2, 2) about which
game being played.

Proof : Since player i knows that the game Γ(θ
′
) is played at (0, 0), we denote

B1
i ({(0,0)}) = {(0,0)}, i.e., {(0,0)} is the state in which player i assigns probability

1 to event {(0,0)}. A fortiori, we must have Bq
i ({(0,0)}) = {(0,0)} for any q < 1.

Since all other players do not know which game being played at (0, 0), we want to
know any such j’s (j �= i) q-belief operator Bq

j ({(0,0)}). Set

q(ε) =
1 − p

1 − p+ pε
.

Note that q(ε) → 1 as ε → 0. Consider j’s 1-belief operator. Then we have
B1

j ({(0,0)}) = ∅. But we have for j’s q-belief operator thatBq
j ({(0,0)}) = {(0,0), (1, 0)}

for q = q(ε). Note that {(0,0)} is q(ε)-evident because {(0,0)} ⊂ B
q(ε)
k ({(0,0)}) for

k ∈ N . Since Bq
i ({(0,0)}) ∩ ⋂

j �=iB
q
j ({(0,0)}) = {(0,0)} for q = q(ε), we claim that

when ε is sufficiently small, it is a common q(ε)-belif at (0, 0) that the game Γ(θ
′
) is

played.

Consider the event {(2,2)}. Since all other players but i are able to distinguish
between {(2,2)} and others, we have B1

j ({(2,2)}) = {(2,2)} for any j �= i. Further-
more, we have that Bq

j ({(2,2)}) = {(2,2)} for any q < 1. Next consider player i. We
have i’s 1-belief operator as B1

i ({(2,2)}) = ∅. Next consider i’s q-belief operator. We
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have that Bq
i ({(2,2)}) = {(2,1), (2, 2)} for q = 1 − ε. Since {(2,2)} ⊂ Bq

k({(2,2)})
for each k ∈ N and for q = 1 − ε, the event {(2,2)} is (1 − ε)-evident. Note that
Bq

i ({(2,2)})∩⋂
j �=iB

q
j ({(2,2)}) = {(2,2)} for q = 1−ε. Hence, when ε is sufficiently

small, it is a common (1− ε)-belief at state {(2,2)} that the game Γ(θ) is played. �

Corollary 2 d∗∗(P ε, P ∗) → 0 as ε → 0. That is, there exists a sequence {qk}∞k=1

converging to 1 such that with probability at least qk, there is a common qk-belief
about which game being played.

Proof : Define {ε(k)}∞k=1 as a seququence such that ε(k) → 0 as k → ∞. Let

qI(ε) = 1 − ε.

Then, there is a common qI(ε)-belief at (2, 2) that the game Γ(θ) being played. Let

qJ(ε) =
1 − p

1 − p+ pε
.

Then, there is common qJ(ε)-belief at (0, 0) that the game Γ(θ
′
) being played. Define

q∗(ε) as follows:

q∗(ε) = min{1 − p+ p(1 − ε)3, qI(ε), qJ (ε)}.
We set qk ≡ q∗(ε(k)) for each k. Then, with probability at least qk, there is a common
qk-belief about which game being played for each k. Define {P k}∞k=1 ≡ {P ε(k)}∞k=1.
Therefore, we can confirm that {P k}∞k=1 is a convergent net of probability distri-
butions converging to the complete information prior P ∗ according to the topology
induced by d∗∗. �
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