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ABSTRACT. A new concept of consistency for cost sharing models is discussed,
analyzed, and related to the homonymous property within the rationing context.
Central in the discussion is the Moulin-Shenker (1994) characterization of cost
sharing mechanisms in terms of rationing methods. It is used to characterize the
class of consistent incremental mechanisms, which includes most of the prevalent
solutions such as average, serial, and Shapley-Shubik cost sharing.
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1. INTRODUCTION

This paper studies the connection between two models in the literature on dis-
tributive justice, i.e., that of rationing and cost sharing, respectively. This paper
fits in the stream of axiomatic literature (see Thomson (2001)) which discusses
structural and characterizing properties of solutions. The central property is con-
sistency, pertaining to variations of the relevant set of agents. It envisions the idea
of fairness of solutions at all levels of cooperation, for any subgroup of agents,
according to which ’no subgroup should want to ”re-contract”’ (Young (1985,
p19)). Davis and Maschler (1965) and Hart and Mas-Colell (1989) introduce the
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property of consistency to the field of cooperative games, ideas which Sudhölter
(1998) applied to solutions for cost sharing games. Other examples include Young
(1987, 1988) on taxation problems and Moulin (1987) on a model of surplus shar-
ing. More recently, Friedman (1997) considers consistency properties in hetero-
geneous cost sharing problems. See Thompson (1996) for a general overview on
the property of consistency in economic theory.

Formally, a rationing problem among agents in N = {1, 2, . . . , n} consists of a
profile q of nonnegative individual demands, qi being the demand of agent i in
N, and an amount t to be allocated to the agents. What makes it a rationing
problem is the assumption t ≤ ∑i∈N qi, so that the aggregate demand (weakly)
exceeds the available amount. Many applications fit in this simple framework,
ranging from bankruptcy (O’Neill (1982), Aumann and Maschler (1985)) to taxa-
tion (Young (1988)). Solutions are the proportional, uniform gains, and uniform
losses methods (see e.g. Moulin (2002) and Thomson (2003) for overviews).

Suppose that the agents in N jointly own a production facility for some good Y.
A cost sharing problem among agents in N consists of a demand profile q, qi being
the demand of agent i for good Y, and the description of the technology in terms
of a cost function c, relating each nonnegative level y of production to the mini-
mum required level of inputs or cost c(y). Instead of a fixed amount t, the agents
now have to divide a variable cost c(∑i∈N qi). Many solutions have been pro-
posed in the mechanistic cost sharing literature, including the average cost shar-
ing mechanism, the Shapley-Shubik mechanism (Shubik (1962), Sudhölter (1998),
Young (1985, 1994)), and the serial mechanism (Moulin and Shenker (1992,1994)).

Where a natural and very intuitive formulation of the consistency principle ex-
ists for the rationing model, in the cost sharing literature such unified approach
is absent. This is best illustrated by a number of studies, e.g. by Sudhölter (1998),
Moulin and Shenker (1994), and Tijs and Koster (1998), each of them proposing
a different concept, based on distinct notions of a reduced cost sharing problem
– the basic construct in the notion of consistency. The ambiguity in choosing the
’proper’ reduction is expressed by the many ways that production levels may cor-
respond to an agents’ cost share, each choice leading to a different truncated and
reduced cost function. As these truncations may alter the very nature of the cost
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sharing problem at hand, I suggest, to avoid too much arbitrariness in the choice
of the reduction, to include all ’sensible’ ones. Then under consistency the cor-
responding induced set of solutions includes those derived from the status quo
solution. Where the foregoing notions of a reduction roughly concentrate only on
an agent’s cost share, here I will suggest a more subtle notion requiring a match
with the size of an agents’ demand as well.

Moulin and Shenker (1994) show a class of cost sharing solutions which nat-
urally corresponds to the class of monotonic rationing methods, i.e., the class of
all additive cost sharing mechanisms with the property constant returns. Additiv-
ity is a decomposition property and is usually advocated for the ease of account-
ing, whereas the constant returns property specifies the natural allocation for cost
sharing problems without externalities. Each cost sharing mechanism with these
two properties represents a functional which allows for a Stieltjes-integral repre-
sentation with respect to the rationing method. For example, the average mech-
anism corresponds to the proportional, and the serial mechanism to the uniform
gains method. Moulin (2000) leaves it as an open problem whether a notion of
consistency for cost sharing problems exists which, under the above correspon-
dence, transfers smoothly from the cost sharing model to the rationing model and
vice versa. This paper provides a partial answer.

Overview of the paper and results Section 2 provides the basic setup for ra-
tioning and cost sharing problems, as well as the notion of solution in these con-
texts. Numerous examples of solutions and mechanisms are provided. Section
3 introduces the concept of consistency for cost sharing solutions. Section 4 fo-
cuses on the Moulin-Shenker (1994) characterization of cost sharing mechanisms
in terms of rationing methods, and some refinements thereof. Each consistent
mechanism in the corresponding class is represented by a family of consistent ra-
tioning methods (Young (1987), Moulin (2000)). In addition, the counterpart of
Theorem 1 of Young (1987) is that each family of rationing methods defining a
continuous, consistent and symmetric mechanism is parametric. Section 5 intro-
duces the class of incremental mechanisms, each being characterized by a family of
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piecewise linear rationing methods. Herein the consistent mechanisms induce con-
sistent rationing methods, and vice versa. Then the average, serial, and Shapley-
Shubik mechanism are all consistent as members of this class. Each incremental
mechanism for 2-agent cost sharing problems is uniquely extended to a consis-
tent mechanism – which then is incremental as well. An incremental mechanism
satisfies interval consistency iff it is the composition of average and marginal mech-
anisms. This leads us to conclude that the average sharing mechanism is the
unique incremental and strongly consistent mechanism.

2. RATIONING, COST SHARING, AND PRELIMINARIES

2.1. Rationing. In this paper the focus is on a given finite set of agents N =
{1, 2, . . . , n}. A rationing problem for S ⊆ N consists of a pair (q, t) ∈ RS

+ ×R+

such that q(S) := ∑i∈S qi ≥ t. A rationing method r associates to any rationing
problem (q, t) ∈ RS

+ a vector r(q, t) ∈ RS
+ such that ri(q, t) ≤ qi for all i ∈ S and

∑i∈S ri(q, t) = t. Then r is monotonic whenever t ≤ t′ implies r(q, t) ≤ r(q, t′)
for all t, t′, q ∈ RS

+. Then each such rationing method defines for all q ∈ RS
+ a

monotonic (and continuous) path t 7→ r(q, t) from 0 to q. A rationing method
is called piecewise linear if the path t 7→ r(q, t) is piecewise linear. The para-
metric rationing methods (Young (1987)) constitute a rich class of solutions. Let
f : D → R be a real-valued function where D ⊂ R2 is a set in R+ × [0, Ω]
for some Ω ∈ R+ ∪ {∞}. It is assumed that for any (z, ω) ∈ D it holds that
f (z, 0) = 0, f (z, Ω) = z and ω 7→ f (z, ω) is non-decreasing and continuous. Then
for such an f there is a unique rationing method r such that ri(x, t) = f (xi, ω)
where ω solves ∑i∈S f (xi, ω) = t. This r is then called the parametric rationing
method for f . Notice that the focus is on the continuous formulation of the model,
where t may be arbitrarily divided. In this setting the proportional and uni-
form gains methods are considered as the prevalent symmetric solutions. Moulin
(2000) focuses on discrete formulation of the problem and asymmetric prior-
ity rules (see Moulin (2002) and Thomson (2003) for overviews). The prevalent
symmetric solutions include the proportional rationing method and uniform gains
method. The proportional rationing method is defined by rP(q, t) = q/q(N)t,
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and the uniform gains method is defined by rUG
i (q, t) = min{qi, ω}, where ω

solves ∑j∈N min{qj, ω} = t. Its dual is the uniform losses method defined by
rUL

i (q, t) = qi −min{qi, ω}, where ω solves ∑j∈N(qi −min{qi, ω}) = t. For fur-
ther reference see Moulin (2002).

2.2. Cost sharing. Consider a production facility for some perfectly divisible good
Y, of which the technology is summarized by a cost function c : R+ → R; c(y)
denotes the minimal (monetary) input to generate y units of Y. First of all it is
assumed that there are no fixed costs, or c(0) = 0. In addition we shall assume
absolutely continuous cost functions1. This technical condition implies that a cost
function is differentiable almost everywhere. With slight abuse of notation c′ is
the marginal cost function, i.e., it coincides with the derivative of c whenever the
latter exists, and assumes the value 0 otherwise. In particular, c′ is is Lebesgue-
integrable and costs for output level y may be expressed as c(y) =

∫ y
0 c′(t)dt.2

The set of all cost functions is denoted by C.
A cost sharing problem for S ⊆ N is an ordered pair R = (q, c) ∈ RS

+ × C. The
interpretation of R is that the agents in S jointly own the production facility, and
q = (qi)i∈S summarizes the individual demands of the agents for good Y; then
q(S) is produced and cost c(q(S)) has to be shared. The set of all cost sharing
problems for S is denoted RS, and put R :=

⋃
S⊆N RS. For (q, c) ∈ RS, y ∈ RS

+
is called vector of cost shares if y (S) = c (q (S)). The set of all cost shares for
R ∈ RS is denoted A(R). A solution is a mapping Ψ : R → ∪S⊆NRS

+ such that
Ψ(R) ⊆ A(R) for all R ∈ R; Ψ is a mechanism if it is single-valued, i.e., if the
set Ψ(R) consists of precisely one element for all R ∈ R. The class of all so-
lutions and mechanisms are denoted S and M, respectively. With slight abuse
of notation I shall write Ψ(R) = x whenever x is the unique element in Ψ(R).
The class of solutions and mechanisms, resp., with properties P1, P2, . . . , Pk is de-
noted S(P1, P2, . . . , Pk) and M(P1, P2, . . . , Pk). Now we will discuss the solutions

1For such functions it holds that for all intervals [a, b] ⊂ R+ and ε > 0 there is a δ > 0 such
that for every finite collection of pairwise disjoint intervals (ak, bk) ⊂ [a, b] , k = 1, 2, . . . , n with
∑n

k=1 (bk − ak) < δ, we have ∑n
k=1 | f (bk)− f (ak)| < ε.

2This follows by the Fundamental Theorem in Lebesgue (1904).



6 MAURICE KOSTER UNIVERSITY OF AMSTERDAM

that will be most prominent in this paper. The focus will be on a fixed problem
R = (q, c) ∈ RS.

Examples of multi-valued solutions
These are all motivated by concepts for the cooperative stand alone cost game as
in Young (1985, 1994). The imputation set and core, respectively, are defined by

I(q, c) =
{

x ∈ A(q, c)
∣∣ xi ≤ c(qi) for all i ∈ S

}
C(q, c) =

{
x ∈ A(q, c)

∣∣ x(T) ≤ c(q(T)), for all T ⊂ S
}

.

As in Tijs and Koster (1998), each R = (q, c) ∈ RS is associated with a pessimistic
cost sharing problem (q, cP

R) ∈ RS with cP
R ∈ C defined by

cP
R (y) =

 inf
{∫

T
c′(t) dt

∣∣ T ∈ B([0, q(S)]); λ(T) = y
}

if y ∈ [0, q (S)] ,

c (y) if y > q (S) ,
(1)

i.e. the pessimistic cost function for R. Here B ([0, q (S)]) stands for the Borel-σ-
algebra on the interval [0, q (S)] and λ is the Lebesgue measure. So cP

R relates
each level of aggregate demand y ∈ [0, d (S)] to a specific upper bound on costs,
given by the minimum of corresponding aggregate marginal cost on [0, q(S)]. 3 It
is easy to show that each such pessimistic cost function cP

R is concave on [0, q(S)].
The pessimistic imputation set is the set IP(q, c) = I(q, cP

R), the imputation set of
the pessimistic cost sharing problem. Similarly, the pessimistic core is defined by
CP(q, c) = C(q, cP

R).

Examples of mechanisms
The average cost sharing mechanism µAV determines the vector

µAV (q, c) =

 0 if q (S) = 0,
c (q (S))

q (S)
· q otherwise.

Let Π (S) be the set of all mappings S → {1, 2, . . . , |S|}. For each σ ∈ Π (S) and
q ∈ RS

+ let qσ
0 , qσ

1 , . . . , qσ
|S| be defined by qσ

j = ∑`≤j qσ(j). Then for any σ ∈ Π(S),

3A generalization of the pessimistic cost sharing problem to heterogeneous cost sharing prob-
lems is in Koster (2000).
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the corresponding marginal mechanism µσ ∈ RS is given by

µσ
i (q, c) := c

(
qσ

σ−1(i)

)
− c

(
qσ

σ−1(i)−1

)
. (2)

So for each cost sharing problem µσ (q, c) is the marginal vector with respect
to the stand alone game (see Young (1985)). The Shapley-Shubik mechanism Φ
(Shubik (1962)) averages all marginal or incremental cost shares, i.e., Φ (q, c) =
1
n! ∑σ∈Π(N) µσ (q, c). Define the pessimistic marginal mechanism with respect to σ ∈
Π (N) by µσ

p (q, c) := µσ (q, cP
R) , for all R = (q, c) ∈ RS. The pessimistic Shapley-

Shubik mechanism ΦP is defined by ΦP (q, c) = Φ(q, cP
R). Weber (1988) discusses

the class of random order values consisting of all mechanisms that are a convex
combination of marginal mechanisms.

The serial mechanism µSR (see, e.g., Moulin and Shenker (1992)) is defined as fol-
lows. For q ∈ RS

+ let σ ∈ Π(S) be such that qσ(i) ≤ qσ(j) ⇔ i ≤ j. Define numbers
q∗0 , q∗1 , . . . , q∗|S| by q∗0 = 0 and q∗j = ∑`≤j−1 qσ(`) + (|S| − j + 1)qσ(j). Then put

µSR
i (q, c) = ∑

`≤σ(i)

c(q∗` )− c(q∗`−1)
|S| − ` + 1

for all c ∈ C, i ∈ S. (3)

3. CONSISTENCY IN COST SHARING

In the literature on distributive justice, the invariance property of solutions
with respect to varying sets of agents is usually referred to as consistency. Within
the rationing context the idea of consistency is transparent and intuitive: a ra-
tioning method r is called consistent if for all rationing problems (q, x) among
agents in S, rS\{j}(q, x) = r(qS\{j}, x − rj(q, x)) for all j ∈ S.4 Hence, consistency
states that with removing an agent from the cooperative S, and taking all the
resources that are allocated to this agent, renewed allocation of the remaining
pieces within the reduced society does not make a difference as long as r is used.
As Moulin (2000) puts it, ’changing the status of an agent from active participant
to passive expense of resources does not alter the overall distribution’. Consistency
puts forward an idea of fairness on the level that ’no subgroup of agents should

4In fact the notion is usually defined in terms of general sets of agents leaving, but is derived
from repeated application of this statement.
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want to ”re-contract”’ (Young (1985, p19)).
Less trivial is the notion of consistency within the cost sharing context. Suppose

that the group of agents S ⊆ N face a cost sharing problem (q, c) ∈ RS and that
the mechanism µ is used to calculate the individual shares. One of the agents in S,
say i, leaves the problem, takes his demand qi and pays µi(q, c). The mechanism
µ is consistent if it determines the same allocation for the agents S\{i} in the new
situation. Then, just as in rationing problems, agents should not bother about
renegotiating as it will not help them to improve upon the status quo µ(q, c). But
the crucial point here is that, in order to be able to apply a solution like µ again,
first there has to be a clear understanding of the new cost sharing problem. This
amounts to a translation of the original problem into a reduced cost sharing problem
(q̄, c̄) ∈ RS\{i} where the pre-paid amount µi(q, c) is taken into account. Al-
though it seems fairly reasonable to use q̄ = qS\{i} as the new demand profile, the
choice of c̄ seems at least debatable. This is illustrated by the literature where sev-
eral reductions are proposed, see, e.g., Moulin and Shenker (1994), Kolpin (1994),
and Sudhölter (1998).

Here I depart from this approach and propose, as long it is not clear which re-
duction fits the situation best, to include all problems that could possibly serve
as a proper reduction. Then I shall call a solution consistent if any vector of cost
shares in the original solution is still available for the remaining agents in the so-
lution induced by some reduced cost sharing problem. A cost sharing problem
is admitted as reduction with respect to agent i if it is derived from the original
problem through truncation of the cost function over qi production levels, match-
ing the cost share µi(q, c) . The following example explains the basic idea.

Example Consider the cost sharing problem (q, c) for N = {1, 2, 3} defined by
c(y) = y2 and q = (1, 2, 3). Assume average cost sharing, so that the cost shares
are determined by µAV(q, c) = (6, 12, 18). Suppose agent 2 leaves the cost sharing,
claiming the production levels X = [2, 4]. These levels reflect his cost share of
12 = c(4)− c(2), the total of marginal costs involved with the production of his
demand 2. In the same way the levels Y = [0, 1] ∪ [5, 6] fit agent 2’s cost share, as
(c(1)− c(0)) + (c(6)− c(5)) = 12. One possible reduction with respect to agent
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2 would be the truncation cX of c over X,

cX(y) =

{
c(y) if y ≤ 2,
c(y + 2)− 12 if y > 2.

Similarly, another reduction cY is defined by the truncation of costs over Y,

cY(y) =

{
c(y + 1)− c(1) if y ≤ 4,
c(y + 2)− 12 if y > 4.

Similarly, in case of reduction by agent 1 the sets U = [21
2 , 31

2 ] and V = [0, 1
2 ] ∪

[51
2 , 6] reflect both his demand and cost share 6. Then truncation of c over these

production levels leads to the reduced cost functions cU and cV , respectively,

cU(y) =

{
c(y) if y ≤ 21

2 ,
c(y + 1)− 6 if y > 21

2 .
cV(y) =

{
c(y + 1

2)− c(1
2) if y ≤ 5,

c(y + 1)− 6 if y > 5.

Summarizing, a plausible reduction will address different levels of output to the
leaving agent, such that the aggregate production equals his demand and corre-
sponding marginal costst reflect his cost share. /

The indicator function I A : R → {0, 1} for A ⊆ R is defined by I A(t) = 1 ⇔ t ∈
A. For any bounded set U ∈ B ([0, ∞)) and y ∈ R+ define Uy ⊂ [0, ∞) as the
smallest interval containing [0, y] such that λ

(
Uy \U

)
= y. Then the reduced cost

function with respect to U, cU, is defined by

cU (y) =
∫

Uy
c′ (t) I R+\U (t) dt for all y ∈ R+.

So cU ∈ C takes for each input level y the total of marginal costs of the first y
levels outside U. For any R = (q, c) ∈ RS and i ∈ S define Q(Ψ, R, i) as the set of
all T ∈ B ([0, q (S)]) such that

(i) λ (T) = qi,
(ii)

∫
T c′ (t) dt ∈ Ψi (q, c) .

Then T ∈ Q(Ψ, R, i) can be interpreted as a set of demand levels that simultane-
ously represent agent i’s individual demand (condition (i)) and his share in total



10 MAURICE KOSTER UNIVERSITY OF AMSTERDAM

costs (condition (ii)). If Q(Ψ, R, i) 6= ∅ for all i ∈ S, then R is called reducible with
respect to Ψ.

A solution Ψ is consistent if each restriction of a share vector in the original solu-
tion is available for some reduced cost sharing problem. Then if this holds for all
reductions, Ψ is called strongly consistent. Formally:

Consistency Ψ ∈ S(CO) if for all R = (q, c) ∈ RS, i ∈ S, and each y ∈ Ψ(R)
there exists U ∈ Q(Ψ, R, i) such that yS\{i} ∈ Ψ(qS\{i}, cU).

Strong Consistency Ψ ∈ S(SCO) if Ψ ∈ S(CO) such that for all R = (q, c) ∈
RS, i ∈ S, and each y ∈ Ψ(R), U ∈ Q(Ψ, R, i) =⇒ yS\{i} ∈ Ψ(qS\{i}, cU).

Note that these notions require that a problem be reducible with respect to the
solution. Lemma 6.4 in the Appendix shows that this is actually not too much
to ask, as each problem R with solution Ψ(R) ⊆ CP(R) is reducible. Below we
focus on a version of consistency weaker than SCO but stronger than CO. It re-
quires not only CO, but also invariance of the solution with respect to all suitable
reductions by intervals:

Interval Consistency Ψ ∈ S(ICO) if Ψ ∈ S(CO) such that for all R = (q, c) ∈
RS, i ∈ S, it holds that Ψ(qS\{i}, cU) ⊆ ΨS\{i}(R) for all U = [t, t + qi] ∈ Q(Ψ, R, i).

Note that S(SCO) ⊂ S(ICO) ⊂ S(CO). Below I will show that most of the
discussed solutions are in full accordance with CO. In particular, it is not hard
to show that A is strongly consistent, and that CP is consistent. In fact, CP is the
maximal consistent solution in IP.

Theorem 3.1 If Ψ ∈ S(CO) and Ψ(R) ⊆ IP(R) for all R ∈ R, then Ψ(R) ⊆ CP(R)
for all R ∈ R.

Example 3.2 The marginal mechanisms µσ are consistent but not strong consis-
tent. Just consider R = (q, c) ∈ RS and define the sets Ti :=

[
qσ

σ−1(i)−1, qσ
σ−1(i)

]
Then for all i ∈ S, Ti ∈ Q (µσ, R, i) and thus

(
qS\{i}, cTi

)
is a reduced cost sharing
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problem with respect to i. Moreover, according to µσ the same ordering of the re-
maining agents is used to calculate the individual shares in the reduction, which
means that nothing changes for the agents k with σ (k) < σ (i) . Now consider an
agent k with σ (k) > σ (i) . Then with yt := ∑j∈S\{i}:σ(j)≤t qj, S we get

µσ
k

(
qS\{i}, cTi

)
= cTi

(
yσ(k)

)
− cTi

(
yσ(k)−1

)
= c

(
qi + yσ(k)

)
− c

(
qi + yσ(k)−1

)
=

= c

 ∑
j:σ(j)≤σ(k)

qj

− c

 ∑
j:σ(j)<σ(k)

qj

 = xσ
k (q, c) .

This proves that µσ is consistent. To see that strong consistency is violated, con-
sider the problem R = (q, c) ∈ R{1,2,3} with c (y) =

∫ y
0 I [0,1]∪[2,3] (t) dt and

q = (1, 1, 1) . If σ is the identity permutation, µσ (q, c) = (1, 0, 1) . Then [2, 3] ∈
Q (µσ, R, 1), but xσ

2

(
q{2,3}, c[2,3]

)
= 1 6= µσ

2 (q, c) . In a similar way one may
prove that the pessimistic marginal sharing mechanisms µσ

p are consistent but
not strongly so. /

4. MOULIN & SHENKER (1994) AND CONSISTENCY

The two main characterizing properties in the cost sharing literature are addi-
tivity and constant returns. Additivity is propagated as an accounting convention,
allowing for the decomposition of a cost sharing problem in several cost compo-
nents without altering the final cost allocations. Constant returns declares price
of the good equal to marginal costs in case of linear cost functions. Formally,

Additivity µ ∈ M(ADD) if µ(q, c1 + c2) = µ(q, c1) + µ(q, c2) for all demand pro-
files q and c1, c2 ∈ C.
Constant Returns Ψ ∈ S(CR) if Ψ(q, cϑ) = ϑq for cϑ ∈ C given by cϑ(y) = ϑy.
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All the previously discussed solutions satisfy CR, except for A, whereas most
of the prevalent mechanisms in the literature belong to M(ADD, CR). Exam-
ples are µAV, µσ, µSR and Φ.5 The following result is due to Moulin and Shenker
(1994) and shows the close relationship between M(ADD, CR) and the class of
monotonic rationing methods.

Theorem 4.1 µ ∈ M(ADD, CR) if and only if there is a rationing method r such that
for each S ⊆ N, q ∈ RS

+

µ(q, c) =
∫ q(S)

0
c′(t) dr(q, t) for all c ∈ C. (4)

So each mechanism µ ∈ M(ADD, CR) is fully characterized through its rationing
method r; I shall write µ = µr. The following result shows that, although the set
of mechanisms in Theorem 4.1 can be considered as rather small, the set of cost
shares generated by it is not.

Theorem 4.2 CP(R) = {µ(R)
∣∣ µ ∈ M(ADD, CR)} for all R ∈ RS.

Note that, in our model, except for the labeling of the agents, it is only their
individual demand that may influence a solution, ceteris paribus. Then, if two
agents can not be distinguished for these characteristics it is reasonable that they
be treated equally by the solution:

Equal Treatment Ψ ∈ S(ET) if for all x ∈ Ψ(q, c) it holds qi = qj =⇒ xi = xj.

Ranking (RANK) encompasses the idea that larger demanders have higher
impact on total costs, and should therefore contribute more. ET is weaker than
the anonymity property in Moulin and Shenker (1992) and implied by RANK.
Formally:

5An excellent overview on additive cost sharing is Moulin (2002). In particular this work shows
the power of the additivity as a mathematical tool. Non-additive mechanisms are proposed and
analyzed in, e.g., Sprumont (1998), Tijs and Koster (1998), Koster (2001), and Hougaard and Pe-
tersen (2001).
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Ranking Ψ ∈ S(RANK) if for all x ∈ Ψ(q, c) it holds that qi ≥ qj =⇒ xi ≥ xj.

Refinements of Theorem 4.1 in terms of these properties are easily derived, as
we have:

Proposition 4.3 µ ∈ M(ADD, CR, RANK) if and only if

(i) µ is generated by a rationing method r, i.e., µ = µr,
(ii) if for q ∈ RS

+, qi ≥ qj for some i, j ∈ S, then ri(q, ·) ≥ rj(q, ·).

Corollary 4.4 µ ∈ M(ADD, CR, ET) if and only if

(i) µ is generated by a rationing method r, i.e., µ = µr,
(ii) if for q ∈ RS

+, qi = qj for some i, j ∈ S, then ri(q, ·) = rj(q, ·).

By Theorem 4.1 it is possible to study for properties of cost sharing mechanisms
by looking at corresponding rationing families, and vice versa. In this respect, the
notion of consistency transfers smoothly from the cost sharing to the rationing
model.

Theorem 4.5 If µ = µr is consistent, then r is consistent.

Proof. For all x ∈ [0, q(S)], µ(q, Γx) =
∫ q(S)

0 Γ′x(t)dr(q, t) = r(q, x). Moreover, for
each j ∈ S we have for R = (q, Γx), [x−µj(q, Γx), x] = [x− rj(q, x), x] ∈ Q(µ, R, j).
But then it holds by CO for all x ∈ [0, q(S)] that

rS\{j}(q, x) = µS\{j}(q, Γx) = µ(qS\{j}, Γx−rj(q,x)) = r(qS\{j}, x− rj(q, x)).

Young (1987) characterizes the class of parametric rationing methods by equal
treatment, consistency and continuity, a result that is useful in the present frame-
work of mechanisms as well. A rationing method r is called continuous if it is
jointly continuous in both arguments, i.e., (q, t) 7→ r(q, t) is continuous for all ra-
tioning problems (q, t). Such r is then robust against small changes in the param-
eters defining the rationing problem. For cost sharing mechanisms the approach
is similar. For t ≥ 0, define the base function Γt ∈ C by Γt(y) = min{y, t} for all
y ∈ R+. A mechanism will be called continuous if small changes in demands and
Γt cause only small changes in cost shares. More specifically,
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Continuity µ ∈ M(CONT) if the mapping (q, t) 7→ µ(q, Γt) is continuous on
RS

+ ×R+, for all S ⊆ N.6

Lemma 4.6 If µ = µr ∈ M(ADD, CR, CONT) then r is continuous.

Proof. Without loss of generality it may be assumed that r(q, t) := µ(q, Γt). Then
clearly continuity of µ implies continuity of the method r.

Theorem 4.7 µ ∈ M(ADD, CR, CO, ET, CONT) if µ = µr and r is parametric.

Proof. By Theorem 4.1 there is a monotonic rationing method r such that µ =
µr, and Corollary 4.4 shows that r satisfies equal treatment. Then the proof is
completed by application of Theorem 1 in Young (1987) and Lemma 4.6.

Note that Theorem 4.5 and Theorem 4.7 do not fully characterize the set of
all consistent cost sharing mechanisms within M(ADD, CR). In the next section
I will show that consistency is transferred smoothly between piecewise linear
rationing methods and incremental mechanisms.

5. INCREMENTAL COST SHARING MECHANISMS

All of the earlier examples of additive mechanisms have in common that a
finite number of intermediate levels of output determines the final solution, as
the cost increments of two consecutive levels is split amongst the agents in a fixed
ratio. It is similar to the calculation of the random order values of Weber (1988),
by which cost shares are determined on the basis of the coalitional aggregate
demands as intermediate output levels. Here I will discuss a more general class
of mechanisms, each of one splits increments related to other intermediate levels
of output as well.

A mechanism µ is called incremental if for each q ∈ RS
+ there is an integer k ∈ N,

6In order to avoid the hybrid character of CONT one may consider the replacement by two
requirements, continuity of the mappings t 7→ µ(q, Γt) and q 7→ µ(q, Γt).
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vectors α1, α2, . . . , αk ∈ ∆(S) := {y ∈ RS
+
∣∣ y(S) = 1} and x ∈ Rk+1

+ such that

µ(q, c) =
k

∑
`=1

α` (c(x`)− c(x`−1)) for all c ∈ C, (5)

and where 0 = x0 ≤ x1 ≤ . . . ≤ xk = q(S). The set of all incremental mech-
anisms, denoted MI , forms a generalization of the class of additive incremental
methods and random order mechanisms as in Weber (1988). An incremental mech-
anism µ satisfies CR if only ∑k

`=1 α` (x` − x`−1) = q(S). In the latter case the
corresponding rationing method r is determined by

∂
∂ t r(q, t) = α` for all t ∈ (x`−1, x`) and x` 6= x`−1. (6)

5.1. Examples of incremental mechanisms. Obviously, Φ is incremental as ran-
dom order value. Moreover, all previously discussed additive mechanisms be-
long to MI :

• µAV: k = 1, xk = q(S), αk = q
q(S) whenever q(S) > 0.

• µσ: For each σ, take x` = ∑p≤σ−1(`) qσ(p) and (α`)i = 1 ⇔ σ(i) = `.
• µSR: For q ∈ RS

+ there is an ordering permutation σ ∈ Π(S) that such
that qσ(i) ≤ qσ(j) ⇔ σ(i) ≤ σ(j) for all i, j ∈ S. Then take k = |S| and
x` = ∑p≤σ−1(`)−1 qσ(p) + (|S| − ` + 1)qσ(`). Define (α`)i = 1/(|S| − ` + 1)
if σ(i) ≥ ` and 0 else.

5.2. Consistent incremental mechanisms. Theorem 4.5 does not represent a full
characterization of the class of consistent mechanisms in M(ADD, CR). How-
ever, those mechanisms being incremental and consistent correspond one-to-one
to consistent and piecewise linear rationing methods.

Theorem 5.1 µ ∈ MI(ADD, CR, CO) if and only if µ = µr and r is consistent and
piecewise linear.

One may easily verify that the rationing methods corresponding to the earlier
mentioned incremental mechanisms are all consistent. Then an implication of
Theorem 5.1 is that the mechanisms µAV, µSR, µσ, Φ are all consistent.
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Theorem 5.2 Let µ̄ be an incremental mechanism for 2-agent cost sharing problems with
the property CR. Then µ̄ uniquely extends to µ ∈ M(ADD, CR, CO). In particular
µ must be incremental.

For instance, this shows that there is only one consistent way of extending se-
rial cost sharing for 2-agent cost sharing problems, and that is by application of
the serial mechanism for all cost sharing problems.

5.3. Reducible incremental mechanisms. Moulin (2000) introduces the notion
of a reducible rationing method. Basically, for such method there is an ordered
partition of the set of agents and for each element in the partition there is give
a (different) rationing method, such that the final allocation can be determined
in two steps: (1) the available units are divided over the different elements in
the partition, (2) the rationing method associated with a specific element in the
partition determines the further allocation for the agents therein. This two step
procedure will be used for the cost sharing model as well. A mechanism will be
called reducible if there is a non-trivial ordered partition N of N, such that cost
shares may be calculated by different mechanisms to certain cost sharing prob-
lems induced by the ordered partition. Formally this procedure is as follows.
Consider an ordered partition N = (N(1), N(2), . . . , N(κ)) of N, where κ is an
integer smaller than |N|. Given N , R = (q, c) ∈ RS define for k = 1, . . . , κ the
cost function ck

R ∈ C by

ck
R(y) = c

(
∑

`≤k−1
q(N(`) ∩ S) + y

)
− c

(
∑

`≤k−1
q(N(`) ∩ S)

)
for all y ∈ R+. A mechanism µ ∈ M is reducible if there is a non-trivial or-
dered partition N = (N(1), N(2), . . . , N(κ)) of N together with mechanisms
µ1, . . . , µκ ∈ M such that for each (q, c) ∈ RS, i ∈ S ∩ N(k) it holds µi(q, c) =
µk

i (qS∩N(k), ck
R). Then µ is considered as the composition of the mechanisms µ1, . . . , µκ.

So, as an analogue to the rationing model, here the ordered partition is used to
address the different cost levels to the elements in the induced partition. The
proof of the following is in the Appendix.
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Theorem 5.3 µ ∈ MI(ADD, CR, ICO) if and only if µ is composition of the average
mechanism and marginal mechanisms.

Corollary 5.4 Suppose Y ∈ {ET, RANK}, then MI(ADD, CR, ICO, Y) = {µAV}.

Proof. This follows from Theorem 5.5 in combination with Proposition 4.3, Corol-
lary 4.4.

Theorem 5.5 MI(ADD, CR, SCO) = {µAV}.

Proof. In order to show that µAV is strongly consistent, consider a reduction of
the problem R = (q, c) ∈ RS with respect to agent i ∈ S, say (qS\{i}, cT), where
T ∈ Q (µAV, R, i) . Then

µAV(qS\{i}, cT) =
qS\{i}

q(S\{i}) cT(q(S\{i})) =
qS\{i}

q(S\{i})

{
c(q(S))− qi

q(S)
c(q(S))

}
=

qS\{i}
q(S\{i})

q(S\{i})
q(S)

c(q(S)) = µAV
S\{i}(q, c).

Finally, proceed along the lines of Example 3.2 in order to show that no other
reducible mechanism is strongly consistent.

Remark In fact one may prove that the unique strongly consistent mechanism in
M(ADD, CR) is µAV. A proof is available upon request.

6. APPENDIX

Lemma 6.1 Let R = (q, c) ∈ RS and take y ∈ CP(R). Then for each i ∈ S there is
a ∈ [0, q(S \ {i})] such that yi = cP

R (a + qi)− cP
R (a) .

Proof. Let i ∈ S and define g : [0, ∞) → R by g (t) = cP
R (t + qi) − cP

R (t) . Then
g (0) = cP

R (qi) ≥ yi and g (q (S\ {i})) = cP
R (q (S)) − cP

R (q (S\ {i})) ≤ yi. The
latter inequality follows from the fact that y ∈ CP (q, c) since cP

R (q (S)) = y (S)
and cP

R (q (S\ {i})) ≥ y (S\ {i}) . Recall that cP
R is concave and thus continuous.

Then by continuity of g there exists a such that g (a) = yi.



18 MAURICE KOSTER UNIVERSITY OF AMSTERDAM

Lemma 6.2 Let R = (q, c) ∈ RS. For each x ∈ [0, q(S)] there is Tx ∈ B([0, q(S)])
such that cP

R(x) =
∫

Tx
c′(t)dt and λ(Tx) = x. The sets can be taken such that x ≤

y =⇒ Tx ⊆ Ty.

Proof. Take x ∈ [0, q(S)]. For z ∈ R+ we define Dz :=
{

t ∈ [0, q(S)]
∣∣ c′(t) ≥ z

}
.

Then let z(x) := sup
{

z ∈ R+
∣∣ λ(Dz) ≥ x

}
. We distinguish two cases, λ(Dz) =

x and λ(Dz(x)) > x. We will show that the choice of Tx := Dz(x) serves our goal.
To see this, just take an arbitrary T ∈ B([0, q(S)]) with λ(T) = x, T 6= Tx. Then in
particular for t ∈ T \ Tx it holds that c′(t) < z(x) and therefore∫

T\Tx
c′(t)dt ≤ z(x) · λ(Tx \ T) ≤

∫
Tx\T

c′(t)dt.

As a consequence
∫

Tx\T c′(t)dt =
∫

T∩Tx
c′(t)dt +

∫
T\Tx

c′(t)dt ≤
∫

T∩Tx
c′(t)dt +∫

Tx\T c′(t)dt =
∫

Tx
c′(t)dt. So cP

R(x) = sup
{∫

T c′(t)dt
∣∣ λ(T) = x

}
=
∫

Tx
c′(t)dt.

Now for the second case assume that λ(Dz(x)) > x. This means that

λ({t ∈ [0, q(S)]
∣∣ c′(t) = z(x)}) > λ(Dz(x))− x.

Determine t′ ∈ [0, q(S)] with λ([0, t′]∩
{

t ∈ [0, q(S)]
∣∣ c′(t) = z(x)

}
) = λ(Dz(x))−

x. Now take Tx := Dz(x) \ ([0, t′] ∩ {t ∈ [0, q(S)]
∣∣ c′(t) = z(x)}). Then λ(Tx) = x

and the rest is proved analogously to the first case. Besides, it should be clear
from the presented construction that Tx ⊆ Ty whenever x ≤ y.

Lemma 6.3 Let c : [0, y] → R be increasing and concave such that c(0) = 0. Then
for any α ∈ [0, 1] there is an interval I = [t, t + αy] ⊆ [0, y] such that αc(y) =
c(t + αy)− c(t).

Proof. Define g : [0, (1− α)y] → R+ by g(t) = c(t + αy) − c(t). Concavity of c
implies g(0) = c(αy) ≥ αc(y) = c(y)− (1− α)c(y) ≥ c(y)− c((1− α)y) = g((1−
α)y). Hence by continuity of g there is t ∈ [0, (1− α)y] such that g(t) = αc(y).

Lemma 6.4 Let R ∈ RS. If µ(R) ∈ CP(R) then Q(µ, R, i) 6= ∅ for all i ∈ S.

Proof. Take R = (q, c) ∈ RS, i ∈ S, and assume µ(R) ∈ CP(R). By Lemma 6.1 there
is an interval T = [a, a + qi] such that

∫
T c′(t)dt = cP

R(a + qi)− cP
R(a). Moreover
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we may choose sets U, V ∈ B([0, q(S)]), U ⊆ V such that
∫

U c′(t)dt = cP
R(a) and∫

V c′(t)dt = cP
R(a + qi). Then V \U ∈ Q(µ, R, i).

Proof of Theorem 3.1
Part (i): Take y ∈ CP (q, c) for (q, c) ∈ RS, S ⊆ N. Let i ∈ S, Q ⊂ S \ {i} . Ac-
cording to Lemma 6.1 there is an interval [a, a + qi] ⊆ [0, q (S)] such that yi =
cP

R (a + qi)− cP
R (a) . Consider a family of measurable sets {Tz}z∈[0,q(S)] as in Lemma

6.2. Consider T = Ta+qi \ Ta. Then it holds
∫

T c′ (s) ds = yi ∈ CP (q, c)i . More-
over λ (T) = qi, so T ∈ Q (CP, S, i) . Let RT := (q, cT) . By y ∈ CP (q, c) it holds
y (Q ∪ {i}) ≥ cP

R (q (Q ∪ {i})) , so

y (Q) ≥ cP
R (q (Q ∪ {i}))− yi =

=
∫

Tq(Q∪{i})
c′ (s) ds−

∫
T

c′ (s) ds =
∫

Tq(Q∪{i})\T
c′ (s) ds

≥ inf
{∫

U
c′ (s) ds

∣∣U ∈ B ([0, q (S)] \ T) , λ (U) = q (Q)
}

= inf
{∫

U

(
c′T
)
(s) ds

∣∣U ∈ B ([0, q (S \ {i})]) , λ (U) = q (Q)
}

= (cT)P
RT

(q (Q)) .

By variation of Q and the fact that y (S \ {i}) = cT (q (S \ {i})) we conclude that
yS\{i} ∈ CP (RT) .
Part (ii): Let Ψ be a consistent solution. Then we need to show that Ψ(R) ⊆ CP (R)
for all problems R = (q, c) ∈ R. We will start with a proof for R ∈ RN and
a similar reasoning applies for arbitrary R ∈ RS. So assume Ψ ∈ S(CO), R ∈
RN, and x ∈ Ψ(R) ⊆ IP(R). Then it suffices to prove that for any S ⊆ N,
x(S) ≤ cP

R(q (S)). By consistency it holds that there is a T1 ∈ Q (Ψ, R, {1}) such
that xN\{i} ∈ Ψ(qN\{1}, cT1). Put R1 = (q, cT1), then by consistency there is a T2 ∈
Q
(
Ψ, R1, {2}

)
such that xN\{1,2} ∈ Ψ(qN\{1,2}, (cT1)T2). Put R2 = (qN\{1,2}, (cT1)T2).

This procedure may now be repeated for the agents 3, 4, ..., n. In this way we ob-
tain profit sharing problems R0, R1, . . . , Rn−1, and Rn, such that R0 = R, and
for i ∈ N, Ri = (qN\{1,2,...,i}, ci) ∈ RN\{1,2,...,i} is such that ci = ci−1

Ti−1
for some

Ti−1 ∈ Q(Ψ, Ri−1, {i}) with the property that xN\{1,2,...,i} ∈ Ψ(Ri). In particular
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by definition of a reduction it holds for all i ∈ N

xi =
∫

Ti

(
ci
)′

(s)ds. (7)

Define increasing bijections gi : [0, q(N\{1, 2, . . . , i− 1}] → [0, q(N\{1, 2, . . . , i−
1})− λ(Ti)] by gi(s) = λ([0, s]\Ti) for all s ∈ [0, q(N\{1, 2, . . . , i− 1})]. Note that

λ(gi(U)) = λ(U) for all i ∈ N. (8)

Next, define T∗i := g−1
1 ◦ g−1

2 ◦ . . . ◦ g−1
i−1(Ti) for i ∈ N. The collection {T∗1 , T∗2 , . . . , T∗n}

satisfies the following three properties:

(a) λ(T∗i ∩ T∗j ) = 0 for all i 6=, j, since g`’s are bijections,
(b) λ(T∗i ) = qi for all i ∈ N, by (8) , and
(c) xi =

∫
T∗i

c′(s)ds for all i ∈ N, by (7) .

Hence x(S) = ∑
i∈S

∫
T∗i

c′(s)ds ≥ inf
{∫

Tc′(s)ds
∣∣ T ∈ B([0, q(N)]); λ(T) = q(S)

}
=

cP
R(q (S)).

Proof of Theorem 4.2.
The proof of the inclusion ”⊇” is easy and essentially done in Tijs and Koster
(1998). We will now prove ”⊆”. Basically the argument is to choose a partition of
the interval [0, q (S)], such that each member in this partition is associated with a
particular agent for which the corresponding marginal costs equal his cost share
according to y ∈ CP (q, c) . Then, given q, we define solutions to the rationing
problems (q, t) for t ≥ 0 by r(q, ·). By variation of q we obtain a rationing method
r. At this point we may assume without loss of generality that S = N and that
we made a choice for r(q′, ·) for all q′ 6= q. Our objective is to find r(q, ·) such that
µπ (R) = y. Let T1 = [a1, a1 + q1] be an interval as in Lemma 6.1 for agent 1 and
let c1 = cP

R. Define a new cost sharing problem R2 = (q2, c2) by q2 := qN\{1} and

c2 (y) =

{
c1 (y) if y ≤ a1,
c1 (a1) + c1 (y + q1)− c (a1 + q1) if y > a1.

Notice that c2 is concave and that for this reason cP
R2

= c2. Application of Lemma
6.1 to R2 and agent 2 gives us a set T2 = [a2, a2 + q2] such that c2 (a2 + q2) −
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c2 (a2) = y2. Then we proceed as follows. Having defined R2, R3, . . . , Ri and inter-
vals T1, T2, . . . , Ti, Tk = [ak, ak + qk] ⊆

[
0, ∑j≥kqj

]
, we define Ri+1 by

(
qN\{1,2,...,i}, ci+1

)
where ci+1 ∈ C is given by

ci+1 (y) =

{
ci (y) if 0 ≤ y ≤ ai,
ci (ai) + ci (y + qi)− ci (ai + qi) if y > ai.

Notice that ci+1 is concave on
[
0, ∑j≥i+1qj

]
such that cP

Ri+1
= ci+1. Then by ap-

plication of Lemma 6.1 there is a ai+1 ∈
[
0, ∑j≥i+2qj

]
with the property that

ci+1 (ai+1 + qi+1)− ci+1 (ai+1) = yi+1. Then define Ti+1 = [ai+1, ai+1 + qi+1] . De-
fine for each i ∈ N a function gi : [0, ∞) → R+ by

gi (y) =

{
y if y ≤ ai,
y + qi if y > ai.

In addition define U1 := T1 and for i ∈ N\ {1} let Ui ⊆ [0, q (N)] be defined by
Ui := (g2 ◦ g3 ◦ . . . ◦ gi) (Ti) . Then these sets U1, U2, . . . , Un have the following
properties λ(Ui ∩Uj) = 0 if i 6= j, and λ(Ui) = λ(Ti) = qi for all i ∈ N. Assume
w.l.o.g. that {Ui}i∈N constitutes a partition of [0, q(S)], and define the rationing
method rk(q, ·) by rk(q, t) =

∫ t
0 I Uk(s)ds for all t ∈ [0, q(S)], k ∈ N. Then

yk =
∫

Tk

c′k (t) dt =
∫

gk(Tk)
c′k−1 (t) dt = . . . =

∫
(g2◦g3◦...◦gk)(Tk)

c′1 (t) dt

=
∫

Uk

(
cP

R
)′ (t) dt =

∫ q(S)

0
I Uk(t)

(
cP

R
)′ (t) dt =

∫ q(S)

0

(
cP

R
)′ (t) drk(q, t).

Proof of Proposition 4.3 The combination of properties ADD, CR implies the
functional representation as in Theorem 4.1. Now suppose there is q ∈ RS

+ and
i, j ∈ S with qi ≥ qj but not ri(q, ·) ≥ rj(q, ·). Then by continuity there is an
interval U ⊂ [0, q (S)] such that ri(q, ·) < rj(q, ·) on U. Consider c ∈ C defined

by c (y) =
∫ y

0 I U (t) dt for all y ∈ R+. Then µi (q, c) =
∫ q(S)

0 I U (t) dri(q, t) <∫ q(S)
0 I U (t) drj(q, t) = µj (q, c) , which gives the desired contradiction.
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Proof of Theorem 5.1
’⇒’: If µ ∈ MI(ADD, CR, CO) then by Theorem 4.5 µ = µr with consistent ra-
tioning method r. Since µ is incremental, r must be piecewise linear.

’⇐’: Suppose r is a consistent and piecewise linear rationing method. Fix q ∈ RS
+

and take x0, x1, . . . , xk with 0 = x0 < . . . < xk = q(S) and α1, . . . , αk ∈ ∆(S) such
that for any ` ∈ {1, 2, . . . , k} and t ∈ [x`−1, x`], r(q, t) = ∑`−1

h=1 αh(xh − xh−1) +
α`(t − x`−1). In particular µ = µr implies µ(q, c) = ∑k

`=1 α`(c(x`) − c(x`)) for
all c ∈ C. First notice that by piecewise linearity the mappings t 7→ ri(q, t) and
f : y 7→ ri(qS\{j}, y) are both differentiable almost everywhere, for each i ∈ S\{j}.
Then consistency implies that for almost all t ∈ [x`−1, x`]

(α`)i =
d
dt

ri(q, t) = f ′(t− rj(q, t)) · d
dt

(t− rj(q, t))

= f ′(t− rj(q, t)) · (1− (α`)j) = f ′(t− rj(q, t)) · α`(S \ {j}).

Then f ′ is constant on (x`−1− rj(q, x`−1), x`− rj(q, x`)), and equals (α`)i/α`(S\{j})
whenever α`(S\{j}) > 0. Define x̃`, α̃` by

x̃` = x` − rj(q, x`) = ∑
1≤p≤`

(1− (αp)j)
(
xp − xp−1

)
, (9)

α̃` =


α`

α`(S \ {j}) if α`(S \ {j}) > 0,

0 else.
(10)

Then for all t ∈ [x̃`−1, x̃`]

r(qS\{j}, t) =
`−1

∑
h=1

α̃h(x̃h − x̃h−1) + α̃`(t− x̃`−1). (11)

As a result µ(qS\{j}, c) = ∑k
`=1 α̃`(c(x̃`) − c(x̃`−1)) for all c ∈ C. Claim: there

is a set U ∈ Q(µ, R, j) such that µS\{j}(q, c) = µ(qS\{j}, cU). Define for each
` ∈ {1, 2, . . . , k} the convex function c` : [x`−1, x`] → R by

c`(y) = inf
{∫

T
c′(t)dt

∣∣ T ∈ B([x`−1, x`]), λ(T) = y
}

.
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According to Lemma 6.3 (in the Appendix) there is for each ` an interval I` =
[t`, t` +(α`)j (x` − x`−1)] ⊂ [x`−1, x`] such that c`(t` +(α`)j (x` − x`−1))− c`(t`) =
(α`)jc` (x` − x`−1). As in Lemma 6.2 each interval I` corresponds to a set U` ∈
B([x`−1, x`]) such that

∫
U`

c′(t)dt = (α`)jc`((x` − x`−1) = (α`)j (c(x`)− c(x`−1)) ,
and in particular U = ∪`U` ∈ Q(µ, R, j). By construction we have

cU(x̃`)− cU(x̃`−1) =
(
1− (α`)j

)
(c(x`)− c(x`−1)) .

Hence for all i ∈ S \ {j},

µi(qS\{j}, cU) =
k

∑
`=1

(α̃`)i (cU(x̃`)− cU(x̃`−1))

= ∑
`;(α`)j 6=1

(α`)i

1− (α`)j
·
(
1− (α`)j

)
(c(x`)− c(x`−1))

= ∑
`;(α`)j 6=1

(α`)i (c(x`)− c(x`−1))

=
k

∑
`=1

(α`)i (c(x`)− c(x`−1)) = µi(q, c).

Notice that the fourth equality is due to the fact that (α`)j = 1 implies (α`)i = 0.
This proves the claim, and the theorem.

Proof of Theorem 5.2 Let µ = µr and let r̄ be the rationing method for µ̄. Take
q ∈ RS

+, j ∈ S, and assume without loss of generality that q(S) > 0. For ev-

ery i ∈ S\{j} there are h(i) ∈ N, ᾱi ∈ ∆({i, j})h(i), x̄i ∈ R
h(i)
+ determining

µ̄(q{i,j}, ·) as an incremental mechanism. Then define for ` = 1, . . . , h(i), Ii
` :=

{t ∈ [0, q(S)]
∣∣ ri(q, t) + rj(q, t) ∈ (x̄`−1, x̄`)}, each being a closed interval by

monotonicity of r. Let {b0, b1, . . . , bp} be the set of endpoints of all the intervals
Ii
`, such that 0 = b0 < b1 < . . . < bp = q(S). Then for each i ∈ S\{j}, ` ∈
{1, 2, . . . , p} denote `(i) ∈ {1, 2, . . . , h(i)} for the index with B` := [b`−1, b`] ⊆
Ii
`(i). For any t ∈ [0, q(S)], by repeated application of CO,

ri(q, t) = µi(q, Γt) = µi(q{i,j}, Γri(q,t)+rj(q,t))

= µ̄(q{i,j}, Γri(q,t)+rj(q,t)) = r̄i(q{i,j}, ri(q, t) + rj(q, t)).
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The mappings t 7→ ri(q, t) are monotonic and therefore differentiable almost ev-
erywhere. Hence, for almost all t ∈ B`, ` ∈ {1, 2, . . . , p}, by application of the
chain rule, it holds that

d
dt

ri(q, t) =
d
dt

r̄i(q{i,j}, ri(q, t) + rj(q, t)) = (ᾱi
`(i))i

(
∂ri

∂t
(q, t) +

∂rj

∂t
(q, t)

)
.

By rearranging terms, we obtain

(ᾱi
`(i))j

∂ri

∂t
(q, t) = (ᾱi

`(i))i
∂rj

∂t
(q, t) for all i ∈ S\{j}. (12)

We distinguish between two cases. Case (a): (ᾱi
`(i))j = 0. Then (12) implies

∂rj/∂t(q, t) = 0 for t ∈ B`, which means that rj(q, ·) is constant on B`. Case (b):
(ᾱi

`(i))j > 0. Then by (12), for all i 6= j,

∂ri

∂t
(q, t) =

(ᾱi
`(i))i

(ᾱi
`(i))j

∂rj

∂t
(q, t). (13)

Since ∑k∈S rk(q, t) = t it must hold for almost all t ∈ [0, q(S)] that ∑k∈S ∂rk/∂t = 1.
Hence for almost all t ∈ B`, (13) yields

∂rj

∂t
(q, t) =

(
∑
i 6=j

(ᾱi
`(i))i

(ᾱi
`(i))j

+ 1

)−1

.

This means that rj(q, ·) is linear on B`. Then as a result from (a) and (b) rj(q, ·) is
piecewise linear. By varying j over S, r(q, ·) is fully determined and, in particular,
piecewise linear. Then µ is uniquely determined, and a member of MI .

Proof of Theorem 5.3
Suppose µ ∈ MI(ICO), hence µ ∈ MI(CO). Consider q ∈ RS

+. Then there
is k ∈ N and for each ` ∈ {1, 2, . . . , k} a real number x` ∈ [0, q(S)] and vector
α` ∈ ∆(S) such that µ(q, c) = ∑k

`=1 α` {c(x`)− c(x`−1)} , for all c ∈ C. Consider
functions cp : R+ → R by cp(x) = epx − 1 for all x ≥ 0, p ∈ N and define
Rp = (q, cp). Then cp is convex so that for each j ∈ N there is a unique interval
I(p, j) = [tj

p, tj
p + qj] ∈ Q(µ, Rp, j) for each p ∈ N. Define cj

p =
(
cp
)

I(p,j) for each
p ∈ N. Distinguish the following cases: (i) there is only one agent j with positive
(αk)j, or (αk)j = 1, and (ii) there are at least two agents i and j with (αk)i, (αk)j > 0.
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Case (i): Suppose that xk − xk−1 < qj. Then tj
p < xk−1 for all p ∈ N and for large p

it holds µj(q, cp) ≥ (αk)j
{

cp(xk)− cp(xk−1)
}

= cp(xk)− cp(xk−1) > cp(tj
p + qj)−

cp(tj
p). But this means that I(p, j) 6∈ Q(µ, Rp, j) for large p, contradiction. Hence

it must be that xk − xk−1 = qj. Then (α`)j = 0 for all ` 6= k.

Case (ii): Suppose that there is a subsequence {tj
h(p)}p∈N of {tj

p}p∈N such that

tj
h(p) ≤ x̃k−1 for all p ∈ N. Since µ is interval consistent we have for each p ∈ N

that µS\{j}(q, cp) = µ(qS\{j}, cj
p). Following the proof of Theorem 5.1 it must hold

for all p ∈ N, i ∈ S \ {j},

k

∑
`=1

α`i
{

cp(x`)− cp(x`−1)
}
− α̃`i

{
cj

p(x̃`)− cj
p(x̃`−1)

}
= 0.

By distinguishing the powers in this sum we must have

lim
n→∞

(αk)i
{

cp(xk)− cp(xk−1)
}
− (α̃k)i

{
cj

p(x̃k)− cj
p(x̃k−1)

}
= 0. (14)

For all p we have

cj
h(p)(x̃k)− cj

h(p)(x̃k−1) = ch(p)(x̃k + qj)− ch(p)(x̃k−1)− µj(q, ch(p)).

Then use the expression for µj(q, ch(p)) to see that (14) is equivalent with

lim
p→∞

(αk)i

{
ch(p)(xk)− ch(p)(xk−1)

}
+

−(α̃k)i

{
ch(p)(xk)− ch(p)(xk−1 − qj + (αk)j(xk − xk−1))− (αk)j(ch(p)(xk)− ch(p)(xk−1))

}
= 0.

Since (αk)i − (α̃k)i(1− (αj)`) = 0, the terms with the highest argument xk vanish,
so we get

lim
p→∞

−(αk)ich(p)(xk−1)− (α̃k)i

{
−ch(p)(xk−1 − qj + (αk)j(xk − xk−1)) + (αk)jch(p)(xk−1)

}
= 0.

Since (αk)i > 0 it must hold that (αk)j(xk − xk−1) = qj. By interchanging the role
of i and j we see that also (αk)i(xk − xk−1) = qi. In particular for any agent t with
(αk)t > 0 it holds that (αk)t(xk − xk−1) = qt and therefore

xk − xk−1 = ∑
j∈S;(αk)j>0

(αk)j(xk − xk−1) = ∑
j∈S;(αk)j>0

qj,



26 MAURICE KOSTER UNIVERSITY OF AMSTERDAM

hence for each i with (αk)i > 0 it holds that

(αk)i =
qi

∑j∈S;(αk)j>0 qj
and (α`)i = 0 for all ` 6= k.
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