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Abstract
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pendence assumption on the distribution of preferences for students,
the fraction of colleges that have incentives to misrepresent their pref-
erences approaches zero as the market becomes large. We show that
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1 Introduction

The theory of two-sided matching has influenced the design of several entry-
level labor markets and student assignment systems.1 A central notion in
the theory is stability: a matching is stable if there is no individual agent or
pair of agents who prefer to be assigned to each other than their allocation
in a matching. In real world applications, empirical studies have shown that
stable mechanisms often succeed whereas unstable ones often fail.2

Although stable mechanisms have a number of virtues, they are suscep-
tible to various types of strategic behavior before and during the match.
Dubins and Freedman (1981) and Roth (1982) show that any stable mecha-
nism is manipulable via preference lists: reporting a preference list that does
not reflect the true underlying preferences may be a best response for some
participants. In many-to-one markets, Sönmez (1997b) and Sönmez (1999)
show that there are also other strategic concerns. First, any stable mech-
anism is manipulable via capacities so that colleges may sometimes benefit
by underreporting their quotas. Second, any stable mechanism is manipu-
lable via pre-arranged matches so that a college and a student may benefit
by agreeing to match before receiving their allocations from the centralized
matching mechanism.

Concerns about the potential for these types of manipulation are often
present in real markets. For instance, in New York City (NYC) where the De-
partment of Education has recently adopted a stable mechanism, the Deputy
Chancellor of Schools described principals concealing capacity as a major is-
sue with their previous system (New York Times (11/19/04)):

“Before you might have a situation where a school was going to
take 100 new children for 9th grade, they might have declared only
40 seats, and then placed the other 60 outside of the process.”

Roth and Rothblum (1999) discuss similar anecdotes about preference ma-
nipulation from the National Resident Matching Program (NRMP), which
is an entry-level matching market for hospitals and medical school graduates
in the U.S.

The aim of this paper is to understand why despite these negative results
many stable mechanisms appear to work well in practice. Our results show
that the size of the market makes the mechanism immune to various kinds

1For a survey of this theory, see Roth and Sotomayor (1990). For applications to labor
markets, see Roth (1984a) and Roth and Peranson (1999). For applications to student
assignment, see for example Abdulkadiroğlu and Sönmez (2003), Abdulkadiroglu, Pathak,
Roth, and Sönmez (2005) and Abdulkadiroglu, Pathak, and Roth (2005).

2For a summary of this evidence, see Roth (2002).
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of manipulations. In real-world two-sided matching markets, there are often
a large number of participants, and each participant submits a rank order
list whose length is a small fraction of the market size. For instance, in
the NRMP, the length of the applicant preference list is about 15, while the
number of hospital programs is 3,000 to 4,000 and the number of students is
over 20,000 per year. In NYC, the maximal length of the preference list is 12,
and there are about 500 school programs and over 90,000 students per year.3

These features motivate our study of the limit as the number of participants
grows, but the length of the preference lists does not.

We consider many-to-one matching markets with the student-optimal sta-
ble mechanism, where colleges have arbitrary preferences such that every
student is acceptable, and students have random preferences of fixed length
drawn iteratively from an arbitrary distribution. We show that the expected
proportion of colleges that can manipulate the central clearing house con-
verges to zero as the number of colleges approaches infinity. The key intu-
ition comes from a lemma on the vanishing market power of colleges. Under
our assumptions, the lemma shows that the likelihood that the sequence of
chain reactions caused when a college rejects students it was assigned from
the student-optimal stable matching leads to another student applying to
that college is small.

We also conduct equilibrium analysis in the large market, for which we
require an additional condition. We say that the market is sufficiently thick

if there are enough ex ante desirable colleges where the number of potential
applicants is less than the number of positions. To further understand the
idea of this condition, consider a disruption of the market in which a student
becomes unmatched. If the market is thick, such a student is likely to find a
seat in another college that has room for her. Thus the condition would imply
that a small disruption of the market is likely to be absorbed by a vacant
seat. One example which ensures sufficient thickness is when the distribution
of student preferences is such that there are no extremely popular colleges.
We show that truthful reporting is an approximate equilibrium in a large
market that is sufficiently thick.

We next extend our equilibrium analysis to weaken the distributional
assumption on student preferences. Specifically we allow preferences of dif-
ferent students to be drawn from a number of different distributions. This is
important for studying a number of real world markets, for participants may

3For data regarding NRMP, see http://www.nrmp.org/2006advdata.pdf.
For data regarding New York City high school match, see
http://www.nycenet.edu/Administration/mediarelations/PressReleases/2004-2005/3-
23-2005-12-20-12-570.htm
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often have systematically different preferences according to their residential
location, academic achievement and other characteristics. For instance, in
NYC, Abdulkadiroğlu, Pathak, and Roth (2006) find that the overwhelming
majority of students in a borough rank a program within their own borough
as their top choice. We show that truthful reporting is an approximate equi-
librium in large markets that are sufficiently thick when this sort of hetero-
geneity is present. The environments include, among others, a market made
of two regions in which students in one region have an opposite ranking over
the schools from those in the other region, and a market composed of a finite
number of regions where each student in a region draws their preferences
from the same distribution but each region has a different ranking.

Related literature

Our paper is most closely related to Roth and Peranson (1999) and Im-
morlica and Mahdian (2005). Roth and Peranson (1999) conduct a series
of simulations on data from the NRMP and on randomly generated data
and suggested considering situations where the size of the market is large in
comparison to the length of preference lists. Based on randomly generated
data, their simulations show that very few students and hospitals could have
benefited by submitting false preference lists or by manipulating capacity.
These simulations led them to conjecture that the fraction of participants in
a two-sided market with random preference lists of limited length who can
manipulate tends to zero as the size of the market grows.

Immorlica and Mahdian (2005), which this paper builds upon, theoret-
ically investigate one-to-one matching markets where each college has only
one position and show that as the size of the market becomes large, the pro-
portion of colleges that are matched with different students in different stable
matchings becomes small. Since a college can manipulate via preference lists
if and only if there is more than one student in a stable matching, this result
implies that most colleges cannot manipulate preference lists.

While this paper is motivated by these previous studies, there are a num-
ber of crucial differences. First, our focus in this paper is on many-to-one
markets, which include several real-world markets such as the NRMP and
the school choice program in NYC. In such markets colleges can sometimes
manipulate via preference lists even if there is only one stable matching.4

Moreover, in many-to-one markets there exists the additional possibilities of
capacity manipulation and manipulation via pre-arrangement which are not

4For instance, see the example in Theorem 5.10 of Roth and Sotomayor (1990).
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present in a one-to-one market.5 As a result, having only one set of stable
partners in the limit is necessary but not sufficient to explain the lack of ma-
nipulability in many-to-one markets. We nevertheless show that the scope of
manipulations becomes small in a large market with several technical inno-
vations.

Second, previous research mostly focused on counting the average num-
ber of participants that can manipulate the market, assuming that others
report their preferences truthfully. This leaves open the question of whether
participants will behave truthfully at the equilibrium. A substantial part of
this paper investigates this question and show that truthful reporting is an
approximate equilibrium in a large market that is sufficiently thick.6

Finally, both Roth and Peranson (1999) and Immorlica and Mahdian
(2005) assume that all student preferences are randomly drawn from the
same distribution. We extend the analysis to cases where the distribution
of preferences may differ across students in realistic ways, and show that
truth-telling is still an equilibrium in a large market that is sufficiently thick.

The use of large market arguments like our approach here is common
in the mechanism design literature. For instance, Rustichini, Satterthwaite,
and Williams (1994) establish that in a k-double auction where n buyers
and sellers draw private values independently and identically distributed,
the symmetric, increasing differentiable equilibria are in the limit efficient
and convergence is fast.7 The proofs of these results rely on a symmetric
distribution of values. Our paper allows for an arbitrary preference profiles
for colleges provided that each student is acceptable to each college, and
for significant preference heterogeneity for students. There is also a related
literature on the asymptotic analysis of auctions including Pesendorfer and
Swinkels (2000) and Swinkels (2001). Most recently, Cripps and Swinkels
(2006) relax independence and establish the asymptotic efficiency of large
double auctions with private values.

Finally, there is a literature that analyzes the consequences of manip-
ulations via preference lists and capacities in complete information finite
economies. See Roth (1984b), Roth (1985) and Sönmez (1997a) for games
involving preference manipulation and Konishi and Ünver (2005) and Kojima

5Indeed, Roth and Peranson (1999) explicitly investigate the potential for capacity
manipulation in their simulations.

6Immorlica and Mahdian (2005) claim that truth-telling is an approximate equilibrium
in a one-to-one market even without sufficient thickness. In section 4, we present an
example to show that this is not the case, but truth-telling is an approximate equilibrium
under an additional assumption of sufficient thickness.

7There are a number of related papers including Gresik and Satterthwaite (1989) and
Fudenberg, Mobius, and Szeidl (2006).
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(2005) for games of capacity manipulation.
The paper proceeds as follows. Section 2 presents the model. Section 3

shows the proportion of colleges that can manipulate approaches zero as the
market becomes large. Section 4 conducts equilibrium analysis. Section 5
analyzes situations with heterogeneous student preferences. Section 6 dis-
cusses extensions of the basic model and alternative matching mechanisms.
Section 7 concludes. All proofs are in the Appendix.

2 Model

2.1 Preliminary definitions

A market is tuple Γ = (S, C, PS,≻C). S and C are finite and disjoint sets
of students and colleges. PS = (Ps)s∈S,≻C= (≻c)c∈C . For each student
s ∈ S, Ps is a strict preference relation over C and being unmatched (being
unmatched is denoted by s). For each college, ≻c is a strict preference relation
over the set of subsets of students. If s ≻c ∅, then s is said to be acceptable
to c. Similarly, c is acceptable to s if cPss. Non-strict counterparts of Ps and
≻c are denoted by Rs and �c, respectively. Since rankings of only acceptable
mates matter for our analysis, we often write only acceptable mates to denote
preferences. For example,

s1 : c1, c2,

means that student s1 prefers college c1 most, then c2, and c1 and c2 are the
only acceptable colleges.

For each college c ∈ C and any positive integer qc, its preference relation
≻c is responsive with quota qc if (i) for any s, s′ ≻c ∅, and any S ′ ≻c ∅
with s, s′ /∈ S ′, |S ′| < qc we have s∪S ′ �c s′∪S ′ ⇔ s �c s′, (ii) for any s ∈ S
and any S ′ ≻c ∅ with s /∈ S ′ and |S ′| < qc, we have s∪S ′ �c S ′ ⇔ s �c ∅, and
(iii) for any S ′ ⊆ S with |S ′| > qc we have ∅ ≻c S ′ (Roth 1985). That is, the
ranking of a student is independent of her colleagues, and any set of students
exceeding quota is unacceptable. Let Pc be the corresponding preference
list of college c, which is the preference relation over singleton sets and the
empty set. The non-strict counterpart is denoted by Rc. Sometimes only the
preference list structure and quotas are relevant for the analysis. We therefore
sometimes abuse notation and denote by Γ = (S, C, P, q) an arbitrary market
in which the preferences induce preference lists P = (Pi)i∈S∪C and quotas
q = (qc)c∈C . We say that (S, C, PS,≻C) induces (S, C, P, q) in such a case.
We also use the following notation; P−i = (Pj)j∈S∪C\i, q−c = (qc′)c′∈C\c, PC =
(Pc)c∈C , PC−c = (Pc′)c′∈C,c′ 6=c and so on.
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A matching µ is a mapping from C ∪ S to C ∪ S such that (i) for every
s, |µ(s)| = 1, and µ(s) = s if µ(s) /∈ C, (ii) µ(c) ⊆ S for every c ∈ C, and
(iii) µ(s) = c if and only if s ∈ µ(c). For any matchings µ and µ′, we write
µ ≻c µ′ if and only if µ(c) ≻c µ′(c) for any c ∈ C, and µPsµ

′ if and only if
µ(s)Psµ

′(s) for any c ∈ C and s ∈ S.
Given a matching µ, we say that it is blocked by (s, c) if s prefers c to

µ(s) and either (i) c prefers s to some s′ ∈ µ(c) or (ii) |µ(c)| < qc and s is
acceptable to c. A matching µ is individually rational if for each student
s ∈ S ∪ C, µ(s)Rs∅ and for each c ∈ C and each S ′ ⊆ µ(c),, µ(c) �c S ′.
A matching µ is stable if it is individually rational and is not blocked. A
mechanism is a systematic way of assigning students to colleges. A stable
mechanism is a mechanism that yields a stable matching for any market.

We consider the following student optimal stable mechanism (SOSM),
denoted by φ, which is analyzed by Gale and Shapley (1962).8

• Step 1: Each student applies to her first choice college. Each college
rejects the lowest-ranking students in excess of its capacity and all
unacceptable students among those who applied to it, keeping the rest
of students temporarily (so students not rejected at this step may be
rejected in later steps.)

In general,

• Step t: Each student who was rejected in Step (t-1) applies to her next
highest choice. Each college considers these students and students who
are temporarily held from the previous step together, and rejects the
lowest-ranking students in excess of its capacity and all unacceptable
students, keeping the rest of students temporarily (so students not
rejected at this step may be rejected in later steps.)

The algorithm terminates either when every student is matched to a col-
lege or every unmatched student has been rejected by every acceptable col-
lege. The algorithm always terminates in a finite number of steps. Gale and
Shapley (1962) show that the resulting matching is stable. It is also known
that the outcome is the same for different markets Γ = (S, C, (Ps)s∈S, (≻c

)c∈C) and Γ′ = (S, C, (Ps)s∈S, (≻′
c)c∈C) as long as ≻ and ≻′ induce the same

pair of preference lists and quotas P and q. Thus we sometimes write the
resulting matching by

φ(S, C, (Ps)s∈S, (Pc)c∈C , (qc)c∈C), or φ(S, C, P, q).

8SOSM is known to produce a stable matching that is unanimously most preferred by
every student among all stable matchings (Gale and Shapley (1962)).
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φ(S, C, P, q)(i) is the assignment given to i ∈ S ∪ C under matching
φ(S, C, P, q).

2.2 Random markets

To investigate “how likely can a college benefit by manipulation?”, we con-
sider the following random environment. A random market is a tuple
Γ̃ = (C, S,≻, k,D), where k is a positive integer and D = (pc)c∈C is a prob-
ability distribution on C. We assume that pc > 0 for each c ∈ C.9 Assume
that students in S are ordered in an arbitrarily fixed manner. Each ran-
dom market induces a market by randomly generating students’ preferences.
More specifically, for each student s ∈ S, we construct preferences of s over
colleges as described below, following Immorlica and Mahdian (2005):

• Step 1: Select a college c(1) independently according to D; add this
college c(1) as the top ranked college for student s.

In general,

• Step t ≤ k: Select college c(t) independently according to D until a
college is drawn that has not been previously drawn in steps 1 through
t − 1. Add c(t) to the end of the preference list for student s.

Ps is constructed by the above procedure, namely,

s : c(1), c(2), . . . , c(k).

Note that the length of the preference list is a fixed number k. In other
words, only k colleges are acceptable.

For example, if D is the uniform distribution, then the preference list
is drawn from the uniform distribution over the set of all lists of size k of
colleges. Without loss of generality, we assume the set of colleges C are
ordered in decreasing popularity: if c′ < c, then pc′ ≥ pc. With abuse of
notation, we write c = m, c > m and c < m for m ∈ N to mean, respectively,
that c is the mth college, c is ordered after mth and c is ordered before
m. We sometimes write pm, which is the probability associated with the
mth college. For each realization PS of student preferences, a market with
complete information (C, S, PS,≻) is obtained.

A sequence of random markets is denoted by (Γ̃1, Γ̃2, . . . ), where Γ̃n =
(Cn, Sn,≻n, kn,Dn) is a random market with |Cn| = n for any n. Consider
the following regularity conditions.10

9We impose this assumption to compare our analysis with existing literature. All our
analyses remain unchanged when one allows for probabilities to be zero.

10Unless otherwise specified, our convention is that superscripts are used for the number
of colleges present in the market whereas subscripts are used for agents.
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Definition 1. A sequence of random markets (Γ̃1, Γ̃2, . . . ) is regular if there
exist positive integers k and q̄ such that

(1) kn = k for all n,

(2) qc ≤ q̄ for all n and c ∈ Cn,

(3) |Sn| ≤ q̄n for all n, and

(4) for all n and c ∈ Cn, every s ∈ Sn is acceptable to c.

(1) assumes that the length of students’ preference lists does not grow
when the number of market participants grow. (2) requires that the number
of positions of each college is bounded across colleges and markets. (3) re-
quires that the number of students does not grow much faster than that of
colleges. (4) requires colleges to find acceptable any student, but preferences
are otherwise arbitrary.11

This paper focuses on regular sequences of random markets and makes use
of each condition in our arguments. For instance, the conclusion of our result
is known to fail if (1) is not satisfied but instead kn = n, that is, students
regard every college as acceptable (Knuth, Motwani, and Pittel 1990).12 The
examples mentioned in the introduction motivate our assumption of bounded
preference lists. One reason why students do not submit long preferences lists
is that it may be costly for them do to so. For example, medical school stu-
dents in the U.S. have to interview to be considered by residency programs,
and financial and time constraints can limit the number of interviews. Like-
wise, in public school choice, to form preference lists, students need to learn
about the programs they may choose from and in many instances they may
have to interview or audition for seats.

3 Proportion of colleges that can manipulate

The literature on two-sided matching has focused on two types of manipu-
lations: (1) those within the centralized clearinghouse and (2) those outside
the centralized clearinghouse.

11Some of the assumptions can be relaxed. For instance, (1) can be relaxed without
difficulty to state: for any n and any student, the length of her preference list is at most
k, rather than exactly k. Similarly, (3) can be relaxed to state: there exists q̃ such that
N ≤ q̃n for any n. We adopt N ≤ q̄n just for simplicity.

12Roth and Peranson (1999) conduct simulations on random data illustrating this point.
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3.1 General manipulation within the centralized mar-
ket

Dubins and Freedman (1981) show that the SOSM is manipulable via
preference lists: there exist a market inducing (S, C, P, q), c ∈ C and some
P ′

c such that
φ(S, C, (P ′

c, P−c), q) ≻c φ(S, C, P, q).

Roth (1982) further shows that any stable mechanism is manipulable in
this way if both colleges and students behave strategically. Despite these
negative results, Dubins and Freedman (1981) and Roth (1982) show that
students cannot manipulate the SOSM φ. Thus it is colleges that can poten-
tially manipulate φ.

When colleges have quotas of more than one, other types of manipula-
tions are possible. Sönmez (1997b) shows that SOSM is manipulable via
capacities: there exist (S, C, Ps,≻) inducing (S, C, P, q), c ∈ C and some q′c
such that

φ(S, C, P, (q′c, q−c)) ≻c φ(S, C, P, q).

It is easy to show that q′c should be smaller than qc. Sönmez (1997b) further
shows that any stable mechanism is manipulable via capacities.

In many real markets, colleges can manipulate both their preference lists
and capacities. Therefore we consider a general manipulation of the form
(P ′

c, q
′
c) of college c ∈ C.

Let

αk(n) = E|{c ∈ C|φ(S, C, (P ′
c, P−c), (q

′
c, q−c)) ≻c φ(S, C, P, q)

for some (P ′
c, q

′
c) in a market induced by Γ̃n.}|.

In words, αk(n) is the expected number of colleges that can manipulate in the
market induced by random market Γ̃n under φ when others report preferences
truthfully.

Theorem 1. Suppose that (Γ̃1, Γ̃2, . . . ) is regular. Then

lim
n→∞

αk(n)/n = 0.

This theorem implies that manipulation of any sort within the matching
mechanism becomes unprofitable to most colleges, as the number of partici-
pating colleges becomes large.

Consider the one-to-one market where each college has only one position.
It is well-known that, in one-to-one matching, a college can manipulate the
market if and only if it is matched to more than one student in different stable
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matchings. Therefore the following is an immmediate corollary of Theorem
1, whose setting satisfies our regularity conditions.

Corollary 1 (Theorem 3.1 of Immorlica and Mahdian (2005)). Suppose that

(Γ̃1, Γ̃2, . . . ) satisfies that kn = k, qc = 1 for all c ∈ Cn, |Sn| = n, and

every student is acceptable to every college for any n. Then the expected

proportion of colleges that are matched to more than one student in different

stable matchings converges to zero as n approaches infinity.

All proofs are in the Appendix. Here we explain intuition. First, if a col-
lege can manipulate the market, then it can do so by a dropping strategy,
which simply declares some acceptable students as unacceptable (Lemma 1:
Dropping strategies are exhaustive). Thus when considering manipulations,
we can restrict attention to a particular class of strategies. Specifically, this
lemma implies that successful manipulation will be attained simply by reject-
ing students who are acceptable under the true preference. This is analogous
to a result by Roth and Vande Vate (1991) that preference manipulations in
one-to-one markets are exhausted by truncation strategies, which agree
with the true preference list from the top student down to a certain student,
and then declare every other student as unacceptable.

The second step relates dropping strategies to the rejection chains al-
gorithm (Algorithm 1). The algorithm proceeds as follows: first, run SOSM
under the true preferences. Next, fix a college c and a dropping strategy, say
P ′

c. Let c reject a set of students who are matched under SOSM but unac-
ceptable under P ′

c. Let each of these students, say s, apply to her next best
choice, say c′. If s is preferred by c′ to one of its current mates, say s′, let
c′ be matched to s and reject s′. Let s′ apply to yet another college, and so
on. We say that Algorithm 1 returns to c if one of the displaced students
during the algorithm applies to c. It turns out that if this chain reaction
does not return to c under any dropping strategy, then c cannot profitably
manipulate by a dropping strategy (Lemma 3: Rejection chains).

Finally, we complete the proof by bounding the probability that the above
algorithm does return to the original college c. Suppose that there are a
large number of colleges in the market. Then there are also a large number
of colleges with vacant positions. We say that a college is popular if it is
given a high probability in the distribution on which students preferences
are drawn. Any student is much more likely to apply to one of those colleges
with vacant positions rather than c unless c is extremely popular in a large
market, since there are a large number of such colleges. Since every student
is acceptable to any college by assumption, the algorithm terminates without
returning to c in such a case. Thus, except for a small proportion of very
popular colleges, the probability that the algorithm returns is very small
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(Lemma 7: Vanishing market power). Note that the expected proportion
of colleges that can manipulate is equal to the sum of probabilities that
individual colleges can manipulate. Together with our earlier reasoning in
Lemmas 1 and 3, we conclude that the expected proportion of colleges that
can successfully manipulate converges to zero when the number of colleges
grows.

Our technical innovation over Immorlica and Mahdian (2005) is worth
noting. Immorlica and Mahdian (2005)’s argument utilizes two results in the
literature. The first is that, in one-to-one markets, a college can profitably
manipulate if and only if it is matched to more than one student in different
stable matchings. The second is an algorithm to count the number of mates
under different stable matchings proposed by Knuth, Motwani, and Pittel
(1990). Immorlica and Mahdian (2005) use the latter algorithm to show that
most colleges have only one stable mate in a large market, which implies
that most colleges cannot manipulate the market by the former fact. While
our Algorithm 1 is a natural extension of that of Knuth, Motwani, and Pit-
tel (1990) and Immorlica and Mahdian (2005), the former equivalence does
not extend to many-to-one markets. As we mentioned in the introduction,
colleges can sometimes manipulate the market even when there is only one
stable matching in many-to-one markets. Moreover, colleges have more op-
tions to manipulate than in one-to-one markets, not only via preference lists
but also via capacities, or via combinations of both. Our proof critically re-
lies on the fact that we only need to consider dropping strategies (Lemma 1).
Also we have developed a relationship between the result of an algorithm and
the scope for manipulation (Lemma 3). Finally we generalize the technique
of Immorlica and Mahdian (2005) (Lemma 7) to bound the probability that
each college can manipulate, thereby showing a more general result.

Both Roth and Peranson (1999) and Immorlica and Mahdian (2005) at-
tribute the lack of manipulability to the “core-convergence” property. This
means that matching markets have small cores in large markets. While this
interpretation is valid in one-to-one markets, smallness of the core is neces-
sary but not sufficient for immunity to manipulation in many-to-one markets.
Instead our arguments show that lack of manipulability comes from the “van-
ishing market power” in the sense that the impact of strategically rejecting a
student will be absorbed elsewhere and rarely affects the college that manipu-
lated when the market is large. This intuition underlies the formal mechanics
of one of our key lemmas, Lemma 7.

Roth and Peranson (1999) analyze NRMP data and argued that of the
3,000-4,000 participating programs, less than one percent could benefit by
truncating preference lists or via capacities, assuming the data are true pref-
erences. They also conducted simulations using randomly generated data
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in one-to-one matching, and observed that αk(n) quickly approaches zero as
n becomes large. The first theoretical account of this observation is given
by Immorlica and Mahdian (2005), who show Corollary 1. Theorem 1 im-
proves upon their results and fully explains observations of Roth and Peran-
son (1999) in the following senses: (1) it studies manipulations via preference
lists in many-to-one markets, and (2) it studies manipulations via capacities,
neither of which was previously investigated theoretically. Furthermore we
strengthen assertions of Roth and Peranson (1999) and Immorlica and Mah-
dian (2005) by showing that large markets are immune to arbitrary manipu-
lations and not just truncation of preference lists or misreporting capacities.

3.2 Manipulation via pre-arranged matches

When colleges seek more than one student, there is concern for manipulation
not only within the matching mechanism, but also outside the formal pro-
cess. Sönmez (1999) introduces the idea of manipulation via pre-arranged
matches. Suppose that c and s arrange a match before the central match-
ing mechanism is executed. Then s does not participate in the centralized
matching mechanism and c participates in the centralized mechanism with
the number of positions reduced by one. SOSM is manipulable via pre-
arranged matches, or manipulable via pre-arrangement, that is, for
some market (S, C, P, q), college c ∈ C and student s ∈ S we have

φ(S \ s, C, P−s, (qc − 1, q−c)) ∪ s ≻c φ(S, C, P, q), and

c �s φ(S, C, P, q).

In words, both parties that engage in pre-arrangement have incentives
to do so: the student is at least as well off in pre-arrangement as when
she is matched through the centralized mechanism, and the college strictly
prefers s and the assignment of the centralized mechanism to those with-
out pre-arrangement. Sönmez (1999) shows that any stable mechanism is
manipulable via pre-arrangement.

In some markets, matching outside the centralized mechanism is discour-
aged or even legally prohibited. Even so, the student and college can ef-
fectively “pre-arrange” a match by listing each other on the top of their
preference lists under stable mechanisms such as SOSM. Thus the scope of
manipulation via pre-arrangement is potentially large.

However, we have the following positive result in large markets. Let βk(n)
be the expected number of colleges that can manipulate via pre-arrangement
in markets induced by Γ̃n under φ when others do not pre-arrange.
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Theorem 2. Suppose that (Γ̃1, Γ̃2, . . . ) is regular. Then

lim
n→∞

βk(n)/n = 0.

The intuition is similar to that of Theorem 1. It can be shown that
any student involved in pre-arrangement under the SOSM is strictly less
preferred by c to any student who would be matched in the absence of the
pre-arrangement (Lemma 8). Therefore, in order to profitably manipulate, c
should be matched to a better set of students in the central matching. By a
similar reasoning as Theorem 1, the probability of being matched to better
students in the centralized mechanism is small in a large market for most
colleges.

4 Equilibrium analysis

The last section investigated individual colleges’ incentives to manipulate
the market, assuming that others behave truthfully. This section allows all
participants to behave strategically and investigates equilibrium behavior in
large markets. This section focuses on the simplest case to highlight the
analysis of equilibrium behavior. The reader can proceed to Section 5, where
we give a more general analysis incorporating heterogeneous distributions of
student preferences.

To investigate equilibrium behavior, we first define a normal-form game
as follows. Assume that each college c ∈ C has an additive utility function
uc : 2S → R ∪ {−∞} on sets of students. More specifically, we assume that
there exists ûc : S → R ∪ {−∞} such that

uc(S
′) =

{

∑

s∈S′ ûc(s) if |S ′| ≤ qc,

−∞ otherwise.

We have that sPcs
′ ⇐⇒ ûc(s) > ûc(s

′). If s is acceptable to c, ûc(s) > 0. If
s is unacceptable, ûc(s) = −∞.13 Further suppose that supn∈N,s∈Sn,c∈Cn ûc(s)
is finite.

The normal-form game is specified by a random market Γ̃ coupled with
utility functions (uc)c∈C and defined as follows. The set of players is C, with
von Neumann-Morgenstern expected utility functions induced by the above

13We set utility for individually irrational matchings at negative infinity for simplicity.
All the results are unchanged as long as the payoff for an unacceptable student is negative
and payoff of matchings exceeding the quota is lower than a matching given by a subset
meeting the quota.
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utility functions. All the colleges move simultaneously. College c submits a
preference list and quota pair (P ′

c, q
′
c) with 0 ≤ q′c ≤ qc. After the preference

profile is submitted, random preferences of students are realized according
to the given distribution D. The outcome is the assignment resulting from φ
under reported preferences of colleges and realized students preferences. We
assume that college preferences and distributions of student random prefer-
ences are common knowledge, but colleges do not know realizations of student
preferences when they submit their preferences.14 Note that we assume that
students are passive players and always submit their preferences truthfully. A
justification for this assumption is that truthful reporting is weakly dominant
for students under φ (Dubins and Freedman 1981, Roth 1982).

Given ε > 0, a profile of preferences (P ′
C, q′C) = (P ′

c, q
′
c)c∈C is an ε-Nash

equilibrium if there is no c ∈ C and (P ′′
c , q′′c ) such that

Euc(φ(S, C, (PS, P ′′
c , P ′

C−c), (q
′′
c , q

′
−c))) > Euc(φ(S, C, (PS, P ′

C), q′)) + ε,

where the expectation is taken with respect to random preference lists of
students.

Is truthful reporting an approximate equilibrium in a large market for an
arbitrary regular sequence of random markets? The answer is negative, as
shown by the following examples.15

Example 1. Consider the following market Γ̃n for any n. |Cn| = |Sn| = n.
qc = 1 for each c ∈ Cn. Preference lists of c1 and c2 are given as follows:16

c1 : s2, s1, . . . ,

c2 : s1, s2, . . . .

Suppose that pn
c1

= pn
c2

= 1/3 and pn
c = 1/3(n − 2) for any n ≥ 3 and

each c 6= c1, c2. With probability [pn
c1

pn
c2

/(1−pn
c1

)]× [pn
c1

pn
c2

/(1−pn
c2

)] = 1/36,
preferences of s1 and s2 are given by

s1 : c1, c2, . . . ,

s2 : c2, c1, . . . .

14Consider a game with incomplete information, in which each college knows other
colleges’ preferences only probabilistically. The analysis can be easily modified for this
environment.

15These examples show that Claims 3.1 and 3.3 in Immorlica and Mahdian (2005) are
not correct.

16“. . . ” in a preference list means that the rest of the preference list is arbitrary after
those written explicitly.
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Under the student-optimal matching µ, we have µ(c1) = s1 and µ(c2) =
s2. Now, suppose that c1 submits the following preference list:

c1 : s2.

Then, under the new matching µ′, c1 is matched to µ′(c1) = s2, which is
preferred to µ(c1) = s1. Since the probability of preference profiles where
this occurs is 1/36 > 0, regardless of n ≥ 3, the opportunity for preference
manipulation for c1 does not vanish even when n becomes large. Therefore
truth-telling is not an ε-Nash equilibrium if ε > 0 is sufficiently small and
ûc1(s2) is sufficiently higher than ûc1(s1), as c1 has an incentive to deviate.

The above example shows that, while the proportion of colleges who can
manipulate via preferences becomes small, for an individual college the op-
portunity for such manipulation may remain large. Note on the other hand
that this is consistent with Theorems 1 and 2 since the scope for manipulation
becomes small for any c 6= c1, c2.

The next example shows that, under the same assumptions, manipu-
lations via capacities or pre-arrangement may also be profitable for some
colleges even in a large market.

Example 2. Consider the following market Γ̃n for any n. |Cn| = |Sn| = n.
qc1 = 2 and qc = 1 for each c 6= c1. c1’s preference list is

c1 : s1, s2, s3, s4, . . . ,

and s1 ≻c1 {s2, s3}.
c2’s preferences are

c2 : s3, s1, s2, . . . .

Further suppose that pn
c1

= pn
c2

= 1/3 and pn
c = 1/3(n − 2) for any n and

each c 6= c1, c2.
With the above setup, with probability [pn

c1
pn

c2
/(1 − pn

c1
)] × [pn

c1
pn

c2
/(1 −

pn
c2)]

3 = 1/64, students preferences are given by

s1 : c2, c1, . . . ,

s2 : c1, c2, . . . ,

s3 : c1, c2, . . . ,

s4 : c1, c2, . . . .

If everyone is truthful, then c1 is matched to {s2, s3}. Now

(1) Suppose that c1 reports a quota of one. Then c1 is matched to s1, which
is preferred to {s2, s3}.
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(2) Suppose that c1 pre-arranges a match with s4. Then c1 is matched to
{s1, s4}, which is preferred to {s2, s3}.

Since the probability of preference profiles where this occurs is 1/64 > 0
regardless of n ≥ 3, the opportunity for manipulations via capacities or pre-
arrangement for c1 does not vanish when n becomes large.17

A natural question is under what conditions one can expect a positive
result. Let

X∗(n; T ) = {c ∈ Cn|pn
1/p

n
c ≤ T, |{s ∈ Sn|cPss}| < qc},

Y ∗(n; T ) = |X∗(n; T )|,
X∗(n; T ) is a random set which denotes the set of colleges sufficiently

popular ex ante (pn
1/p

n
c ≤ T ) where there are less potential applicants than

number of positions (|{s ∈ Sn|cPss}| < qc). Y ∗(n; T ) is a random variable
giving the number of such colleges.

Definition 2. A sequence of random markets is sufficiently thick if there
exists T ∈ R such that

E[Y ∗(n; T )] → ∞,

as n → ∞.

The condition requires that the expected number of colleges that are
desirable enough, yet have fewer potential applicants than seats grows fast
enough as the market becomes large. Consider a disruption of the market in
which a student becomes unmatched. If the market is thick, such a student
is likely to find a seat in another college that has room for her. Thus the
condition would imply that a small disruption of the market is likely to be
absorbed by a vacant seats.18 The following is a leading example of thickness.

Example 3 (Nonvanishing proportion of popular colleges). The sequence
of random markets is said to have nonvanishing proportion of popular
colleges if there exists T ∈ R and a ∈ (0, 1) such that

pn
1/p

n
[an] ≤ T,

17Manipulation via preference list is also possible in this example. Suppose c1 reports
preferences

c1 : s1, s4, . . . .

Then c1 is matched to {s1, s4}, which is preferred to {s2, s3}.
18This condition refers to the limit as the size of the market becomes large, so this notion

is not relevant to a particular finite market. In particular, thickness and the size of the
market are not related. It is even possible that the market does not become “thick” even
when the market becomes large, in the sense that the limit in the above definition is finite
as n goes to infinity.
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where [x] denotes the largest integer that does not exceed x. This condition
is satisfied if there are not a small number of colleges which are much more
popular than all of the other colleges.

Proposition 1. The sequence of random markets in Example 3 is sufficiently

thick.

The intuition for this proposition is the following. By assumption, there
are a large number of ex ante popular colleges. With high probability, a sub-
stantial part of the positions of these colleges will be vacant. This makes the
market thick by having a large number of vacant positions in fairly popular
colleges in expectation.

There are even thick random markets where the proportion of popular
colleges converges to zero, provided that the convergence is sufficiently slow.
For example, if there exists T ∈ R such that

pn
1/p

n
[γn/ lnn] ≤ T

where γ > 0 is a sufficiently large constant, the sequence satisfies sufficient
thickness.19

The above examples are meant to be suggestive and thick markets include
other examples of interest, some of which we describe in the next section. The
uniform distribution environment examined by Roth and Peranson (1999)
with simulations is a special case of Example 3.

Theorem 3. Suppose that (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick. For

any ε > 0, there exists n0 such that truth-telling is an ε-Nash equilibrium for

any game with n > n0.

The proof of Theorem 3 is similar to that of Theorem 1 except for one
point. We show that when the market is thick, the probability that Algorithm
1 returns is small for every college (Lemma 10: Uniform vanishing market
power), as opposed to only for unpopular ones as in Lemma 7. This is
because in a large market there are many vacant positions that are popular
enough for students to apply to with a high probability and hence terminate
the algorithm. In other words, the key difference between Lemma 10 and
Lemma 7 is that the former gives an upper bound of manipulability for every

college, while the latter gives an upper bound only for unpopular colleges.
Given this uniform bound, the rest of the proof is analogous to Theorem 1.

A conclusion similar in spirit to Theorem 3 can be derived for pre-
arrangement. Suppose that (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick. Con-
sider the SOSM. For any ε > 0, there exists n0 such that for any n > n0 and

19The proof is analogous to Example 3 and omitted.
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c ∈ Cn, the probability that c can profitably manipulate via pre-arrangement
is smaller than ε. The proof is similar to Theorems 2 and 3 and hence omit-
ted.20

5 Heterogeneous student preference distribu-

tions

So far we have focused on a simple case in which student preferences are
drawn from the same distribution. This section extends our analysis to cases
in which student preferences are drawn from a number of different distribu-
tions.

The model is the same as before except for how student preferences are
drawn. We let Γ̃n = (Cn, Sn,≻, kn, (Dn(r))Rn

r=1), where Rn is a positive inte-
ger. Each random market is endowed with Rn different distributions. To rep-
resent student preferences, we partition students into Rn regions, where each
student is a member of one and only one region.21 Write Dn(r) = (pn

c (r))c∈Cn

as the probability distribution on Cn for students in region r. For each
student s ∈ Sn in region r, we construct preferences of s over colleges as
described below:

• Step 1: Select a college c(1) independently according to Dn(r); add this
college as the top ranked college for student s.

In general,

• Step t ≤ k: Select college c(t) independently according to Dn(r) until a
college is drawn that has not been previously drawn in steps 1 through
t − 1. Add this c(t) to the end of the preference list for student s.

The case with Rn = 1 corresponds to our earlier model with one distri-
bution.

Our regularity assumptions extend naturally: in addition to conditions
in the previous definition, we also require that, for some positive integer R,
Rn = R for every n in a regular market. Finally, our assumption of sufficient
thickness generalizes easily to the current environment. Let

X∗(n; T ) = {c ∈ Cn|pn
1 (r)/pn

c (r) ≤ T for all r, |{s ∈ Sn|cPss}| < qc},
Y ∗(n; T ) = |X∗(n; T )|.

20The result on pre-arrangement can also be generalized to cases where student prefer-
ences are drawn from several distributions, as discussed in Section 5.

21We frame the heterogeneity of student preferences in terms of multiple regions where
students live. Of course alternative interpretations are possible, such as heterogeneity de-
pending on gender, race or academic performance or combinations of these characteristics.
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Definition 3. A sequence of random markets is sufficiently thick if there
exists T ∈ R such that

E[Y ∗(n; T )] → ∞,

as n → ∞.

Definition 3 is a multi-region generalization of sufficient thickness for one-
region setting (Definition 2). The following examples satisfy this version of
sufficient thickness.

Example 4 (Two regions with opposite popularity). There are two regions,
R = {1, 2}. Cn = {1, 2, . . . , n} and the probability distributions are:

p1
c(1) =

n − c + 1
∑

c′∈Cn n − c′ + 1
=

n − c + 1
n(n+1)

2

,

p1
c(2) =

c
∑

c′∈Cn c′
=

c
n(n+1)

2

.

Students in the first region prefer the first college over the second college and
so forth on average, while students in the second region have the opposite
preferences. There is an extreme form of differences in preferences in this
market.

Example 5 (Multiple regions with within-region symmetry). Assume there
are R regions, R ≥ 2. Each college is based in one of the regions. Let r(c)
be the region in which college c is. Let p̃m(r), r, m ∈ {1, . . . , R} be strictly
positive for every r, m. From this, we define the probability pn

c (r) for any
n ∈ N as follows:

pn
c (r) =

p̃r(c)(r)
∑

m∈R p̃m(r)νn
m

,

where νn
m = {c ∈ Cn|r(c) = m} denotes the number of colleges in Γ̃n that is

based in region m.

This environment has the following interpretation. Each college is based
in one of the regions, and each student lives in one region. Colleges in a given
region are equivalent to one another. The “base popularity” of a college in
region m for a student living in region r is given by p̃m(r). Then we normalize
these to obtain pn

c (r) by the above equation. For any pair of colleges c and
c′ and region r, we have that

pn
c (r)/pn

c′(r) = p̃r(c)(r)/p̃r(c′)(r).
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Such heterogeneous preferences may be present in labor markets or in
large urban school districts, where students in the same region have similar
preferences while substantial differences are present across regions.

Proposition 2. Sequences of random markets in Examples 4 and 5 are suf-

ficiently thick.

These are among the simplest examples incorporating heterogeneity. The
two region case shows that directly opposing preferences satisfy sufficient
thickness. The multiple region case illustrates that a great deal of hetero-
geneity in student preferences are allowed.

The equilibrium analysis in the one-region setting (Theorem 3) extends
to heterogeneous preference distributions such that the market is sufficiently
thick.

Theorem 4. Suppose that (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick. For

any ε > 0, there exists n0 such that truth-telling is an ε-Nash equilibrium for

any game with n > n0.

6 Discussion

6.1 Manipulations by coalitions

The basic model shows that individual colleges have little opportunity to ma-
nipulate a large market. One natural question is whether coalitions of colleges
can manipulate by coordinating their reports. Formally, a coalition C ′ ⊆ C
manipulates the market (S, C, P, q) if there exists (P ′

C′, q′C′) = (P ′
c, q

′
c)c∈C′

such that
φ(S, C, (P ′

C′, P−C′), (q′C′, q−C′)) ≻c φ(S, C, P, q),

for some c ∈ C ′.

Theorem 5. Suppose that (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick.22

Consider the SOSM. Then, for any positive integer m and any ε > 0, there

exists n0 such that for any n > n0 and C ′ ⊆ Cn with |C ′| ≤ m, the probability

that C ′ can profitably manipulate is smaller than ε.

The notion of coalitional manipulation we consider allows for a broad
range of coalitions, for a coalition is said to manipulate even if only some of
its members are made strictly better off and others in the coalition are made

22Without the assumption of sufficient thickness, we can obtain a correspondingly
weaker conclusion.
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strictly worse off when they misreport their preferences jointly. Our result
shows that successful coalitional manipulation is rare: with high probability,
not a single college in the coalition is made strictly better off. Thus it is
hard for coalitions to manipulate even when monetary transfers are possible
among colleges.

6.2 The Boston mechanism

Our results have established the virtues of the student optimal stable mecha-
nism in a large market. This finding may serve as one criterion to support its
use as a market design, since other mechanisms may not share the same prop-
erties in a large market. To see this point, consider the so-called Boston
mechanism (Abdulkadiroğlu and Sönmez 2003), which is often used for
real-life matching markets. The Boston mechanism is a priority matching
mechanism, where school priorities are interpreted as preferences.23 When
colleges are asked to rank students, the mechanism proceeds as follows:

• Step 1: Each student applies to her first choice college. Each college
rejects the lowest-ranking students in excess of its capacity and all
unacceptable students.

In general,

• Step t: Each student who was rejected in the last step proposes to
her next highest choice. Each college considers these students, only

as long as there are vacant positions not filled by students who are
already matched by the previous steps, and rejects the lowest- ranking
students in excess of its capacity and all unacceptable students.

The algorithm terminates either when every student is matched to a col-
lege or every unmatched student has been rejected by every acceptable col-
lege. The algorithm always terminates in a finite number of steps.

Note the difference between this mechanism and SOSM. At each step of
the Boston mechanism, students who are not rejected are guaranteed posi-
tions; the match of these students and colleges are permanent rather than
temporary, unlike in the student-optimal stable mechanism.

Under the Boston mechanism, it turns out that colleges have no incentive
to manipulate via preferences nor via capacity even in a small market with

an arbitrary preference profile. More specifically,

23With slight abuse of terminology we will refer to this class of priority mechanisms
where colleges rank students as the Boston mechanism even though the Boston mechanism
was introduced as a one-sided matching mechanism.
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Remark 1. Suppose that the Boston mechanism is employed, and preferences

are drawn arbitrarily. Then no college can manipulate by reporting (P ′
c, q

′
c)

different from its true preference (Pc, qc), regardless of what other colleges do.

This is a slight extension of the result shown by Ergin and Sönmez (2006),
who show that colleges cannot manipulate via preference lists under the
Boston mechanism.24 While colleges have incentives to report their true
preferences, we argue that this mechanism performs badly both in small and
large markets. The problem is that students have incentives to misrepresent
their preferences, and there is evidence that some participants react to these
incentives (Abdulkadiroğlu, Pathak, Roth, and Sönmez 2006). The following
example shows that students have incentives to manipulate the mechanism
even in large markets.

Example 6. Consider market Γ̃n, where |Sn| = |Cn| = n for each n. qc = 1
for every n and c ∈ Cn. Preference lists are common among colleges and
given by

c : s1, s2, . . . , sn,

for every c ∈ Cn.

pn
c1

= (1/2)1/n, pn
c2

= (1−(1/2)1/n)(1/2)1/n, and pn
c = (1−pn

c1
−pn

c2
)/(n−2)

for each c 6= c1, c2. Then, with probability [pn
c1p

n
c2/(1− pn

c1)]
n = 1/4, students

preferences are
s : c1, c2, . . . ,

for each s ∈ Sn. If every student is truth-telling, then s1 and s2 are matched
to c1 and c2, respectively, and other students are matched to their third or
less preferred choices. If s 6= s1, s2 deviates from truth-telling unilaterally
and reports preference list

s : c2, . . . ,

then s is matched to her second choice c2, which is preferred to the match
under truth-telling. This occurs with probability of at least 1/4, and every
student except s1 and s2 has an incentive not to be truth-telling.

7 Conclusion

Why do many stable matching mechanisms work in practice even though the
theory suggests that they can be manipulated in many ways? This paper
established that the fraction of participants who can profitably manipulate

24The proof of this assertion is a straightforward extension of Ergin and Sönmez (2006)
and hence omitted.
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the student-optimal stable mechanism in a large two-sided matching market
is small under some regularity conditions. We further showed that truthful
reporting is an approximate equilibrium in large markets that are sufficiently
thick. Since a stable matching is efficient, this paper suggests that large
matching markets achieve a high level of efficiency.

Is convergence fast enough for our results to be useful in applications?
The answer to this question will depend on the particular institutional fea-
tures of the market and the distribution of preferences. Proofs in Appendix
establish that the order of convergence of the probability of profitable manip-
ulation is O(1/n) in several interesting cases (Examples 3, 4 and 5). Further
investigation of the rate of convergence is left for future research.

Most of our analysis focused on the student-optimal stable mechanism,
the mechanism that forms the core of the NRMP and the NYC high school
choice plan. It would be interesting to know what types of limit results apply
to other stable mechanisms. Our analysis can be extended to show that the
scope of manipulations by colleges decreases as the market becomes large in
any stable mechanism. However, since students may also have incentives to
manipulate in an arbitrary stable mechanism, this type of extension would
need to examine when the opportunity for students to successfully manipu-
late is small. Such a result might provide some guidance in the selection of
a matching mechanism within the class of stable ones.

A Appendix: Proofs

A.1 Proof of Theorem 1

We prove Theorem 1 through several steps. Specifically, we prove three key
lemmas, Lemmas 1, 3 and 7 and then use them to show the theorem.

A.1.1 Lemma 1: Dropping strategies are exhaustive

Let (Pc, qc) be a pair of the true preference list and true quota of college c. A
report (P ′

c, q
′
c) is said to be a dropping strategy if (i) q′c = qc, (ii) sPcs

′ and
sP ′

c∅ imply sP ′
cs

′, and (iii) ∅Pcs implies ∅P ′
cs. In words, a dropping strategy

simply declares some students who are acceptable under Pc as unacceptable.
In particular, it does not change quotas or change the relative ordering of
acceptable students or declare unacceptable students as acceptable.

Lemma 1 (Dropping strategies are exhaustive). Consider an arbitrary stable

mechanism. Fix preferences of colleges other than c. Suppose the mechanism

produces µ under some arbitrary report of c. Then there exists a dropping
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strategy (P ′
c, qc) such that µ′ �c µ according to the true preferences of c, where

µ′ is the matching induced by (P ′
c, qc) under the stable mechanism.

Proof. Denote the strategy profile of colleges other than c by (P−c, q−c). Let
dropping strategy (P ′

c, qc) be such that P ′
c lists all the students in µ(c) ∩

{s ∈ S|sPc∅} as acceptable in the same relative order as in Pc, and report
every other student as unacceptable. We will show that µ′(c) = µ(c) ∩ {s ∈
S|sPc∅} where µ′ is the matching under SOSM with this dropping strategy.
This implies that µ′ �c µ, since µ′(c) can only differ from µ(c) in having
no unacceptable students under the true preference list Pc. Let (P ′, q) =
(P ′

c, P−c, q).
Consider a matching µ′′ defined by

µ′′(c′) =

{

µ(c) ∩ {s ∈ S|sPs∅} c′ = c,

µ(c′) c′ 6= c.

That is, µ′′ is a matching obtained by letting c reject students in µ(c) that
are unacceptable under Pc. Consider its property under (P ′, q). Clearly µ′′

is individually rational under (P ′, q). There is no blocking pair involving c,
since µ′′(c) is exactly the set of students acceptable under P ′

c. Since µ is stable
under (P, q) and preferences are unchanged between (P, q) and (P ′, q) for any
c′ 6= c, the only blocking pairs for µ′′ involves µ(c)\µ′′(c), who are unmatched
under µ′′. These imply that µ′′ is student-quasi-stable (Blum, Roth, and
Rothblum 1997) or, equivalently, simple (Sotomayor 1996). Theorem 4.3
of Blum, Roth, and Rothblum (1997) implies that given any student-quasi-
stable matching, there exists a stable matching that is weakly preferred by
every college. Let µ′′′ be one such stable matching under (P ′, q). Since µ′′(c)
exhausts all the acceptable students under P ′

c and hence µ′′(c) is the most
preferred matching for c under (P ′

c, qc), µ′′′(c) = µ′′(c).
So far we have shown that c is matched to µ′′(c) under a matching µ′′′,

which is stable under (P ′, q). Roth (1984a) shows that, for any college, the
same number of students are matched to it across different stable matchings.
By this result, c is matched to the same number of students under µ′ as in µ′′′,
both of which are stable under (P ′, q). Since there are just |µ′′′(c)| acceptable
students under P ′

c, this implies that µ′(c) = µ′′′(c) = µ′′(c), completing the
proof.

Lemma 1 simplifies the analysis by enabling us to focus on a particular
class of strategies to investigate manipulations. This lemma is analogous to
a result by Roth and Vande Vate (1991) that an agent can manipulate by
truncation strategies whenever she can do so by some strategy in one-to-one
markets. Lemma 1 is of independent interest, for this is a first result on
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restricting profitable strategies in many-to-one settings, and the conclusion
holds for an arbitrary stable mechanism while most of our analysis focuses
on a particular stable mechanism, SOSM.

A.1.2 Lemma 3: Rejection chains

Suppose that SOSM is run and the stable matching µ is obtained. Let B1
c

be an arbitrary subset of µ(c). The rejection chains associated with B1
c is

defined as follows.

Algorithm 1. Rejection Chains

(1) Initialization:

(a) Let the student-optimal stable matching µ be the initial match of
the algorithm. Let B1

c be a given subset of µ(c). Let i = 0. Let c
reject all the students in B1

c .

(2) Increment i by one.

(a) If Bi
c = ∅, then terminate the algorithm.

(b) If not, let s be the least preferred student by c among Bi
c, and let

Bi+1
c = Bi

c \ s.

(c) Iterate the following steps (call this iteration “Round i”.)

i. Choosing the applied:

A. If s has already applied to every acceptable college, then
finish the iteration and go back to the beginning of Step
2.

B. If not, let c′ be the most preferred college of s among
those which s has not yet applied while running SOSM or
previously within this algorithm. If c′ = c, terminate the
algorithm.

ii. Acceptance and/or rejection:

A. If c′ prefers each of its current mates to s and there is no
vacant position, then c′ rejects s; go back to the beginning
of Step 2c.

B. If c′ has a vacant position or it prefers s to one of its cur-
rent mates, then c′ accepts s. Now if c′ had no vacant
position before accepting s, then c′ rejects the least pre-
ferred student among those who were matched to c. Let
this rejected student be s and go back to the beginning
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of Step 2c. If c′ had a vacant position, then finish the
iteration and go back to the beginning of Step 2.

Algorithm 1 terminates either at Step 2a or at Step 2(c)iB. We say that
Algorithm 1 returns to c if it terminates at Step 2(c)iB and does not
return to c if it terminates at Step 2a.

Suppose that realization of students preferences are such that Algorithm
1 associated with every initial B1

c fails to return to c. Given any dropping
strategy (P ′

c, qc), there exists B1
c such that B1

c = {s ∈ µ(c)|∅P ′
cs}. Let µ′ be

a matching obtained at the end of Algorithm 1 associated with B1
c = {s ∈

µ(c)|∅P ′
cs}.

Lemma 2. Under (S, C, P ′
c, P−c, q),

(1) µ′ is individually rational,

(2) no c′ 6= c is a part of a blocking pair of µ′, and

(3) if (s, c) blocks µ′, then arg minPc
µ(c)Pcs and arg minP ′

c
µ′(c)P ′

cs.
25

Proof. Part (1): For c′ 6= c, c′ only accepts students who are acceptable
in each step of SOSM and Algorithm 1. c rejects every student who is
unacceptable under P ′

c at the outset of Algorithm 1, and accepts no other
student by the assumption that Algorithm 1 does not return to c. Therefore
µ′ is individually rational.

Part (2): Suppose that for some s ∈ S and c′ ∈ C, c′Psµ
′(s). Then, by

the definition of SOSM and Algorithm 1, s is rejected by c′ either during
SOSM or in Algorithm 1. For any c′ 6= c, this implies that |µ′(c′)| = qc′ and
arg minPc′

µ′(c)Pc′s, implying that s and c′ does not block µ′.
Part (3): Suppose cPsµ

′(s) for some s ∈ S. As in Part (2), this im-
plies that s is rejected by c′ either during SOSM or in Algorithm 1. Since
Algorithm 1 does not return to c by assumption, s is rejected either dur-
ing SOSM or at the beginning of Algorithm 1. (s, c) is not a blocking pair
in the latter case since s is declared unacceptable under P ′

c. In the former
case, the fact that s is rejected during SOSM implies that arg minPc

µ(c)Pcs.
Finally, condition (ii) of the definition of dropping strategies implies that
arg minP ′

c
µ′(c)P ′

cs since (P ′
c, qc) is a dropping strategy, arg minP ′

c
µ′(c)Pcs and

arg minP ′

c
µ′(c)P ′

c∅.
Lemma 3 (Rejection chains). For any market and any c ∈ C, if Algorithm

1 does not return to c for any B1
c ⊆ µ(c), then c cannot profitably manipulate

by a dropping strategy.

25For any binary relation R on X and and X ′ ⊆ X , arg minR X ′ = {x ∈
X ′|yRx for any y ∈ X ′}.
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Proof. Consider an arbitrary dropping strategy (P ′
c, qc). By assumption, Al-

gorithm 1 associated with B1
c = {s ∈ µ(c)|∅P ′

cs} does not return to c. Let
µ′ be the matching resulting from Algorithm 1 associated with B1

c = {s ∈
µ(c)|∅P ′

cs}.
Let c block µ′ and form a new matching µ′′ by admitting its most preferred

students who are willing to be matched, that is,

µ′′(c′) =

{

µ′(c) ∪ arg max(P ′

c,qc−|µ′(c)|){s ∈ S|cPsµ
′(s)} c′ = c,

µ′(c′) \ µ′′(c) c′ 6= c,

where arg max(P ′

c,qc−|µ′(c)|) X denotes qc − |µ′(c)| students that are most pre-
ferred under P ′

c in set X. Lemma 2 implies that µ′′ is firm-quasi-stable match-
ing (Blum, Roth, and Rothblum 1997), such that c is not a part of a blocking
pair for µ′′. Theorem 5.6 of Blum, Roth, and Rothblum (1997) implies that
there exists a stable matching µ′′′ such that every position of colleges is
matched to a weakly less preferred student than at µ′′, if the college is not a
blocking pair for µ′′. Since the matching produced by SOSM is the weakly
least preferred by every college among stable matchings, φ(S, C, P ′

c, P−c, q)(c)
is composed of even less preferred students than µ′′′(c).

Now recall that µ′(c) ⊆ µ(c) by definition. Moreover, Part (3) of Lemma
2 shows that, under µ′′, |µ′(c)| positions of c are filled with µ′(c) and the
remaining |µ(c) − µ′(c)| positions are filled with students less preferred to
arg minPc

µ(c). As shown above, µ′′′(c) and φ(S, C, P ′
c, P−c, q)(c) are even less

preferred under P ′
c, and (since every matched student is acceptable) under

Pc. These imply that µ �c φ(S, C, P ′
c, P−c, q), showing that (P ′

c, qc) is not a
profitable strategy.

A.1.3 Lemma 7: Vanishing market power

We are interested in how often the algorithm ends at Step 2(c)iB, as a student
draws c from distribution Dn. Let

πc = Pr[Algorithm 1 returns to c for some B1
c ⊆ µ(c)].

Since Algorithm 1 returns to c for some B1
c whenever c can manipulate

SOSM (Lemmas 1 and 3), πc gives an upper bound of the probability that
c can manipulate SOSM when others are truthful conditional on µ being
realized as the matching under SOSM. Here we will show Lemma 7, which
bounds πc for most colleges in large markets.

Consider the following algorithm, which is a stochastic variant of the
SOSM.26

26To be more precise this is a stochastic version of the algorithm proposed by McVitie
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Algorithm 2. Stochastic Student-Optimal Gale-Shapley Algo-

rithm

(1) Initialization: Let l = 1. For every s ∈ S, let As = ∅.

(2) Choosing the applicant:

(a) If l ≤ N , then let s be the l’th student and increment l by one.27

(b) If not, then terminate the algorithm.

(3) Choosing the applied:

(a) If |As| ≥ k, then return to Step 2.

(b) If not, select c randomly from distribution Dn until c /∈ As, and
add c to As.

(4) Acceptance and/or rejection:

(a) If c prefers each of her current mates to s and there is no vacant
position, then c rejects s. Go back to Step 3.

(b) If c has a vacant position or it prefers s to one of its current mates,
then c accepts s. Now if c had no vacant position before accepting
s, then c rejects the least preferred student among those who were
matched to c. Let this student be s and go back to Step 3. If c
had a vacant position, then go back to Step 2.

As records colleges that s has already drawn from Dn. When |As| = k is
reached, As is the set of colleges acceptable to s.

Under SOSM, a student’s application to her tth most preferred college is
independent of her preferences after (t+1)th choice on. Therefore the above
algorithm terminates, producing the student-optimal stable matching of any
realized preference profile which would follow from completing the draws for
random preferences. Let µ be the student-optimal stable matching obtained
by the above algorithm.

Suppose that Algorithm 2 is run and the stable matching µ is obtained.
Now fix a college c ∈ C and let B1

c be an arbitrary subset of µ(c). The
stochastic rejection chains associated with B1

c is defined as follows. As
the name suggests, this is a stochastic version of Algorithm 1.

Algorithm 3. Stochastic Rejection Chains

and Wilson (1970), which they show produces the same matching as the original SOSM
proposed by Gale and Shapley (1962).

27Recall that students are ordered in an arbitrarily fixed manner.
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(1) Initialization:

(a) Keep all the preference lists generated in Algorithm 2, that is, for
each s ∈ S, let As be the one generated at the end of Algorithm
2. Let the student-optimal match µ be the initial match of the
algorithm. Let B1

c be a given subset of µ(c). Let i = 0. Let c
reject all the students in B1

c .

(2) Increment i by one.

(a) If Bi
c = ∅, then terminate the algorithm.

(b) If not, let s be the least preferred student by c among Bi
c, and let

Bi+1
c = Bi

c \ s.

(c) Iterate the following steps (call this iteration “Round i”.)

i. Choosing the applied:

A. If |As| ≥ k, then finish the iteration and go back to the
beginning of Step 2.

B. If not, select c′ randomly from distribution Dn until c′ /∈
As, and add c′ to As. If c is selected, terminate the algo-
rithm.

ii. Acceptance and/or rejection:

A. If c′ prefers each of its current mates to s and there is no
vacant position, then c′ rejects s; go back to the beginning
of Step 2c.

B. If c′ has a vacant position or it prefers s to one of its cur-
rent mates, then c′ accepts s. Now if c′ had no vacant
position before accepting s, then c′ rejects the least pre-
ferred student among those who were matched to c. Let
this rejected student be s and go back to the beginning
of Step 2c. If c′ had a vacant position, then finish the
iteration and go back to the beginning of Step 2.

Algorithm 3 terminates either at Step 2a or at Step 2(c)iB. Similarly to
Algorithm 1, we say that Algorithm 1 returns to c if it terminates at Step
2(c)iB and does not return to c if it terminates at Step 2a.

We are interested in how often the algorithm returns to c, as a student
draws c from distribution Dn. It is clear that the probability that Algorithm
1 returns to c is equal to the probability that Algorithm 3 returns to c. That
is,

πc = Pr[Algorithm 3 returns to c for some B1
c ⊆ µ(c)].
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This latter expression is useful since we can investigate the procedure step
by step, utilizing conditional probabilities and conditional expectations. Let

Xc = {c′ ∈ C|c′ ≤ c, c′ /∈ As for every s ∈ S at the end of Algorithm 2}, and

Yc = |Xc|.

Xc is a random set of colleges that are more popular than c ex ante but listed
on no student’s preference list at the end of Algorithm 2. Yc is a random
variable indicating the number of such colleges.28

Lemma 4. For any c > 4k, we have

E[Yc] ≥
c

2
e−

8q̄nk

c .

Proof. Let Qn =
∑k

c=1 pn
c . Then the probability that c′ is not a student’s

i’th choice given her first (i− 1) choices c(1), . . . , c(i−1) is bounded as follows;

1 − pn
c′

1 − ∑i−1
j=1 pn

c(j)

≥ 1 − pc′

1 − Qn
.

Let Ec′ be the event that c′ /∈ As for every s ∈ S. Since there are at most
q̄nk draws from Dn in Algorithm 2, the above inequality implies that

Pr(Ec′) ≥
(

1 − pc′

1 − Qn

)q̄nk

.

Now if c′ > 2k we have

pn
c′ ≤

1 − Qn

c′ − k
.

Therefore for any c′ > 2k we have

Pr(Ec′) ≥
(

1 − 1

c′ − k

)q̄nk

≥ e−
2q̄nk

c′−k ≥ e−
4q̄nk

c′ .

Combining these inequalities, for any c > 4k, we have

E[Yc] ≥
c

∑

c′=1

Pr(Ec′) ≥
c

∑

c′=2k

e−
4q̄nk

c′ ≥
c

∑

c′=c/2

e−
8q̄nk

c =
c

2
e−

8q̄nk

c .

28We abuse notation and denote random variable and its realization by the same letter
when there is no confusion.
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For B1
c ⊆ µ(c), let

πB1
c

c = Pr[Algorithm 3 associated with B1
c returns to c|Yc > EYc/2, µ].

π
B1

c
c gives an upper bound of the probability that c can manipulate SOSM

when others are truthful, conditional on µ being realized and there are not
too small a number of colleges (Yc > EYc/2) that are more popular than c
and appear nowhere on students’ preference lists at the end of Algorithm 2.

Let c∗(n) = 16q̄nk/ ln(q̄n). As it turns out in the sequel, c∗(n) is a
number of “very popular colleges” in a market with n colleges. Note that
c∗(n)/n converges to zero as n → ∞, so the proportion of such colleges goes
to zero. Except for these c∗(n) colleges, the following lemma gives a useful
upper bound for manipulability in a large market.

Lemma 5. Suppose that n is sufficiently large and c > c∗(n). Then we have

πB1
c

c ≤ 4q̄

EYc
,

for any B1
c ⊆ µ(c).

Proof. Consider Round 1, beginning with the least preferred student s of

B1
c ⊆ µ(c) (if B1

c = ∅, then the inequality is obvious since π
B1

c
c = 0.). Since

pn
c′ ≥ pn

c for any c′ ∈ Xc, Round 1 ends at 2(c)iiB as a student applies to
some college with vacant positions, at least with probability 1 − 1

Yc/2+1
>

1 − 1
EYc/2+1

.

Now assume that all Rounds 1, . . . , i end at Step 2(c)iiB. Then there are
still at least Yc − i colleges more popular than c and with a vacant position,
since at most i colleges in Xc have had their positions filled at Rounds 1, . . . , i.
Therefore Round (i+1) initiated by the least preferred student in Bi+1

c ends
at Step 2(c)iiB with probability of at least 1 − 1

EYc/2−i+1
. Since there are at

most q̄ rounds, Algorithm 3 fails to return to c with probability of at least

q̄
∏

i=1

(

1 − 1

EYc/2 − (i − 1) + 1

)

≥
(

1 − 1

EYc/4

)q̄

,

for every sufficiently n, since EYc/2 − (i − 1) + 1 ≥ EYc/4 > 0 for any
sufficiently large n and c > c∗(n) by Lemma 4. Therefore we have that

πB1
c

c ≤ 1 −
(

1 − 1

EYc/4

)q̄

≤ 4q̄

EYc
,
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where the last inequality holds since 1− (1−x)y ≤ yx for any x ∈ (0, 1) and
y ≥ 1.29

We state without proof the following lemma (this is a straightforward
generalization of Lemma 4.4 of Immorlica and Mahdian (2005)).

Lemma 6. For every c, we have V ar(Yc) ≤ E[Yc].

Now we are ready to present and prove the last of the three key lemmas.

Lemma 7 (Vanishing market power). If n is sufficiently large and c > c∗(n),
then

πc ≤
[q̄(2q̄ − 1) + 1] ln(q̄n)

2k
√

q̄n
.

Proof. By the Chebychev inequality, Lemma 6 and the fact that any proba-
bility is less than or equal to one, we have

Pr

[

Yc ≤
EYc

2

]

≤ Pr

[

|Yc − E[Yc]| ≥
EYc

2

]

≤ V ar(Yc)

(E[Yc]/2)2
≤ 4

E[Yc]
.

Since the probability of a union of events is at most the sum of the
probabilities of individual events (Boole’s inequality), Lemma 5 implies

Pr[Algorithm 3 returns to c for some B1
c ⊆ µ(c)|Yc ≥ EYc/2, µ]

≤
∑

B1
c⊆µ(c)

πB1
c

c

≤ 4q̄(2q̄ − 1)/EYc.

This inequality holds for any matching µ under SOSM. Therefore, we
have the same upper bound for probability conditional on Yc > EYc/2 but
unconditional on µ, that is,

Pr[Algorithm 3 returns to c for some B1
c ⊆ µ(c)|Yc ≥ EYc/2]

≤ 4q̄(2q̄ − 1)/EYc.

By the above inequalities and the fact that probabilities get value of at
most one,

πc ≤ Pr[Yc ≤ EYc/2] + Pr[Yc > EYc/2] × 4q̄(2q̄ − 1)/EYc

≤ 4

EYc

+ 4q̄(2q̄ − 1)/EYc

≤ 4(q̄(2q̄ − 1) + 1)

EYc
.

29Note that conditions for this inequality is satisfied since 4/EYc ∈ (0, 1) for any suffi-
ciently large n and c > c∗(n).
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Applying Lemma 4 and noting that EYc is increasing in c so EYc∗(n) ≤
EYc for any c > c∗(n), we complete the proof of Lemma 7.30

A.1.4 Theorem 1

Now we prove Theorem 1. By Lemma 1, it suffices to consider dropping
strategies. By Lemma 3, the probability that c ∈ C can successfully manip-
ulate by some dropping strategy is at most πc. Using Lemma 7, we obtain

αk(n) =
∑

c∈Cn

Pr[c successfully manipulates]

≤ c∗(n) +

n
∑

c≥c∗(n)

πc

≤ 16q̄nk

ln(q̄n)
+

(q̄(2q̄ − 1) + 1) ln(q̄n)
√

q̄n

2q̄k

= o(n),

completing the proof.

A.2 Proof of Theorem 2

A.2.1 Lemma 8

The following lemma says that a student that is involved in pre-arrangement
is less preferred by the college to any student who is matched to it without
pre-arrangement.

Lemma 8. If c ∈ C can manipulate via pre-arrangement with s ∈ S, then

s′Pcs for every s′ ∈ φ(S, C, P, q)(c).

Proof. Let µ(c) = φ(S, C, P, q)(c). Theorem 2 of Sönmez (1999) shows that,
for any stable mechanism, if c can manipulate via pre-arrangement with
student s, then either s ∈ µ(c) or s′Pcs for every s′ ∈ µ(c). To show s /∈ µ(c),
suppose on the contrary that s ∈ µ(c). Consider matching µ′ given by

µ′(c′) =

{

µ(c) \ s if c′ = c,

µ(c′) otherwise.

30Note that Lemma 4 can be applied since for sufficiently large n and c ≥ c∗(n), we
have c > 4k.
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It is easy to see, from stability of µ in (S, C, P, q), that µ′ is stable in (S \
s, C, P−s, qc − 1, q−c).

Since the matching under SOSM is weakly less preferred to any stable
matching by colleges (attributed to Conway in Knuth (1976)) and preferences
are responsive,

φ(S, C, P, q) = µ′(c′) ∪ s

�c φ(S \ s, C, P−s, qc − 1, q−c) ∪ s.

Therefore c cannot manipulate. This is a contradiction, completing the proof.

Therefore, in order to profitably manipulate, a college has to pre-arrange
a match with a strictly less preferred student. Then the disadvantage of being
matched with a less desirable student should be compensated by matching
to a better set of students in the centralized matching mechanism after pre-
arrangement.

A.2.2 Theorem 2

Now we prove Theorem 2. Since every college is made weakly better off under
SOSM when the set of participating students increases (Gale and Sotomayor
1985), we obtain

φ(S, C, P, qc − 1, q−c) �c φ(S \ s, C, P−s, qc − 1, q−c).

By Lemma 3 we have

φ(S, C, P, qc − 1, q−c) =

{

φ(S, C, P, q), or

φ(S, C, P, q) \ arg minPc
φ(S, C, P, q),

with probability of at least 1−πc. In the former case it is clear that c cannot
manipulate. In the latter case we have

φ(S, C, P, q) = φ(S, C, P, qc − 1, q−c) ∪ arg min
Pc

φ(S, C, P, q)

�c φ(S \ s, C, P−s, qc − 1, q−c) ∪ s,

where the last comparison holds by responsiveness of preferences, the above
preference relation in the beginning of the proof and Lemma 8. Therefore
the probability that c benefits via pre-arrangement is at most πc. Finally, by
Lemma 7 we complete the proof (this last argument is similar to the one for
Theorem 1 and hence omitted).
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A.3 Proof of Theorems 3 and 4

Since Theorem 4 is a multi-region generalization of Theorem 3, we prove only
the former.

A.3.1 Lemma 10: Uniform vanishing market power

We have a variant of Lemma 7 under the sufficient thickness assumption,
which plays a crucial role in the proof of the theorems.

For B1
c ⊆ µ(c), let

πB1
c

c =

Pr[Algorithm 3 associated with B1
c returns to c|Y ∗(n; T ) > EY ∗(n; T )/2, µ].

First we show a variant of Lemma 5.

Lemma 9. Suppose (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick. Let T be

such that EY ∗(n; T ) → ∞ as n → ∞. Suppose that n is sufficiently large.

Then we have

πB1
c

c ≤ 4T q̄

EY ∗(n; T )
,

for any c and B1
c ⊆ µ(c).

Proof. Consider Round 1, beginning with the least preferred student s of

B1
c ⊆ µ(c) (if B1

c = ∅, then the inequality is obvious since π
B1

c
c = 0.). Since

pn
c′(r) ≥ pn

c (r)/T for any c′ ∈ X∗(n; T ) and r = 1, . . . , R, Round 1 ends at
2(c)iiB as a student applies to some college with vacant positions, at least
with probability 1 − 1

Y ∗(n;T )/2T+1
> 1 − 1

EY ∗(n;T )/2T+1
.

Now assume that all Rounds 1, . . . , i ends at Step 2(c)iiB. Then there
are still at least Y ∗(n; T ) − i colleges more popular than c and with a va-
cant position, since at most i colleges in X∗(n; T ) have had their positions
filled at Rounds 1, . . . , i. Therefore Round (i + 1) initiated by the least
preferred student in Bi+1

c ends at Step 2(c)iiB with probability of at least
1 − 1

EY ∗(n;T )/2T−i+1
. Since there are at most q̄ rounds, Algorithm 3 fails to

return to c with probability of at least

q̄
∏

i=1

(

1 − 1

EY ∗(n; T )/2T − (i − 1) + 1

)

≥
(

1 − 1

EY ∗(n; T )/2T − q̄ + 2

)q̄

≥
(

1 − 1

EY ∗(n; T )/4T

)q̄

.
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The first inequality follows since (Γ̃1, Γ̃2, . . . ) is sufficiently thick, n is suf-
ficiently large and i ≤ q̄ for each i. The second inequality holds since
EY ∗(n; T )/2 − q̄ ≥ EY ∗(n; T )/4 > 0, which follows since (Γ̃1, Γ̃2, . . . ) is
sufficiently thick and n is sufficiently large. Therefore we have that

πB1
c

c ≤ 1 − (1 − 1

EY ∗(n; T )/4T
)q̄

≤ 4T q̄

EY ∗(n; T )
,

where the last inequality holds since 1− (1−x)y ≤ yx for any x ∈ (0, 1) and
y ≥ 1.

Lemma 10 (Uniform vanishing market power). Suppose that (Γ̃1, Γ̃2, . . . ) is

regular and sufficiently thick. For any sufficiently large n and any c ∈ C, we

have

πc ≤
4 [T q̄(2q̄ − 1) + 1]

EY ∗(n; T )
.

Proof. By Lemma 9 and an argument similar to Lemma 7, we obtain

Pr[Algorithm 3 returns to c|Y ∗(n; T ) > EY ∗(n; T )/2] ≤ 4T q̄(2q̄ − 1)

EY ∗(n; T )
.

Therefore we have

πc ≤ Pr[Y ∗(n; T ) ≤ EY ∗(n; T )/2] + Pr[Y ∗(n; T ) > EY ∗(n; T )/2] × 4T q̄(2q̄ − 1)

EY ∗(n; T )

≤ 4

EY ∗(n; T )
+

4T q̄(2q̄ − 1)

EY ∗(n; T )

≤ 4 [T q̄(2q̄ − 1) + 1]

EY ∗(n; T )
,

completing the proof.

A.3.2 Theorems 3 and 4

We only prove Theorem 4, since Theorems 3 is a special case when R = 1.
Suppose that colleges other than c are truth-telling, that is, any c′ 6= c reports
(Pc′, qc′). Lemmas 1 and 3 apply here since they do not rely on assumptions
about student preferences. These lemmas imply that the probability that c
profitably manipulates is at most πc. By Lemma 10 and sufficient thickness,
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for any ε > 0, there exists n0 such that for any market Γn with n > n0, we
have

Pr [u(φ(S, C, P ′
c, P−c, q)(c)) > u(φ(S, C, P, q)(c)) for some P ′

c] <
ε

q̄ supn∈N,s∈Sn,c∈Cn ûc(s)
.

Such n0 can be chosen independent of c ∈ Cn. For any n > n0,

Euc(φ(S, C, (P ′
c, P−c), (q

′
c, q−c))(c)) − Euc(φ(S, C, P, q))

< Pr [uc(φ(S, C, (P ′
c, P−c), (q

′
c, q−c))(c) > uc(φ(S, C, P, q)(c))] q̄ sup

n∈N,s∈Sn,c∈Cn

ûc(s)

<ε,

which implies that truthful reporting is an ε-Nash equilibrium.

A.4 Proofs of Propositions 1 and 2

A.4.1 Proposition 1

Let a and T satisfy the condition of nonvanishing proportion of popular
colleges. Let c = [an]. Then it is obvious that Xc ⊆ X∗(n; T ) and hence
Yc ≤ Y ∗(n; T ). For sufficiently large n, Lemma 4 shows that

E[Y ∗(n; T )] ≥ E[Yc] ≥
c

2
e−

8q̄nk

c .

c = [an] implies that c
2
e−

8q̄nk

c → ∞ as n → ∞ with the order of convergence
O(n). Therefore E[Y ∗(n; T )] → ∞ as n → ∞, completing the proof.

A.4.2 Proposition 2

Let
X∗∗(n; T ) = {c ∈ Cn|pn

1 (r)/pn
c (r) ≤ T for all r}.

Then we have X∗(n; T ) = {c ∈ X∗∗(n; T )||{s ∈ Sn|cPss}| < qc}. Let ηr(c) =
|{c′ ∈ Cn|pn

c (r) ≤ pn
c′(r)}| be the order of c with respect to popularity in

distribution Dn(r). For example, if college c is the most popular among
students in region 1 and the least popular among those in region 2, then
η1(c) = 1 and η2(c) = n.

Part (1): Example 4. Let T = 4, for example. Then, X∗∗(n; 4) =
{n/4, n/4 + 1, . . . , 3n/4}. Consider any college c ∈ X∗∗(n; 4). Let s belong
to region r ∈ {1, 2}. Since s picks colleges k times according to Dn(r), the
probability that c does not appear in the preference list of student s, denoted
by Pr(Fc,s), is bounded as follows:

Pr(Fc,s) ≥
(

1 − pn
c (r)

1 − Qn(r)

)k

,
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where
Qn(r) =

∑

c:ηr(c)≤k

pn
c (r).

For any sufficiently large n, we have that ηr(c) > 2k for any c ∈ X∗∗(n; 4)
and r = 1, 2 since n − 2k > 3n/4 > c > n/4 > 2k. For such colleges,

pn
c (r) ≤ 1 − Qn(r)

ηr(c) − k
≤ 1 − Qn(r)

ηr(c)/2
.

So

Pr(Fc,s) ≥
(

1 − 2

ηr(c)

)k

.

Since ηr(c) ≥ n/4 for any c ∈ X∗∗(n; 4) and any r = 1, 2, we have

Pr(Fc,s) ≥
(

1 − 8

n

)k

.

Let Ec be the event that c is not listed by any student. Then, since
students draw colleges independently, we have

Pr(Ec) =
∏

s∈Sn

Pr(Fc,s) ≥ (1 − 8/n)kq̄n → e−8kq̄,

as n → ∞. Therefore,

E[Y ∗(n; T )] =
∑

c∈X∗∗(n;4)

Pr(Ec) ≥
n

2
(1 − 8/n)kq̄n → ∞,

as n → ∞ (with the order of convergence being O(n)), completing the proof.
Part (2): Example 5. As discussed in Example 5, for any colleges c

and c′ and region r, we have that

pn
c (r)/pn

c′(r) = p̃r(c)(r)/p̃r(c′)(r) > 0.

Since there are only finite regions, X∗∗(n; T ) = Cn for any sufficiently large
T . Fix such T .

As in the proof of Part (1), for any c and s we have

Pr(Fc,s) ≥
[

1 − pn
c (r(s))

1 − Qn(r(s))

]k

.
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Since we have that pn
c (r)/pn

c′(r) < T for any c, c′ ∈ Cn,

pn
c (r)

1 − Qn(r)
≤ pn

c (r)

(n − k)pn
c (r)/T

≤ 2T

n
,

for any sufficiently large n. So we have

Pr(Ec) =
∏

s∈Sn

Pr(Fc,s) ≥
∏

s∈Sn

(1 − 2T

n
)k ≥ (1 − 2T/n)kq̄n → e−2kq̄T ,

as n → ∞. Therefore

E[Y ∗(n; T )] =
∑

c∈Cn

Pr(Ec)

approaches infinity with the order O(n), completing the proof.

Remark 2. In Examples 3, 4 and 5, the order of convergence of EY ∗(n; T )
is O(n). This implies that, by Lemma 10, the order of convergence of the
probability of profitable manipulation is O(1/n). This is the same order as
in the uniform distribution case, analyzed by Roth and Peranson (1999) and
Immorlica and Mahdian (2005).

A.5 Proof of Theorem 5

The proof is based on a series of arguments similar to the one for Theorem
1. First, dropping strategies are still exhaustive.

Lemma 11 (Dropping strategies are exhaustive for coalitional manipula-
tions). Consider an arbitrary stable mechanism. Fix preferences of colleges

other than C ′ ⊆ C. Suppose the mechanism produces µ under some arbitrary

report (PC′ , qC′). Then there exists (PC′′, qC), where (P ′′
c , qc) is a dropping

strategy for each c ∈ C ′ such that µ′ �c µ where µ′ is the matching induced

by (P ′′
c , qc) under the stable mechanism.

Then consider a variant of Algorithm 1 where B1
C′ ⊆

⋃

c∈C′ µ(c) replaces
B1

c and terminates either when Bi
C′ = ∅ (the rejection chains do not return

to C ′) or a student draws a college c ∈ C ′ (the rejection chains return to
C ′). Then Lemmas 3 and 10 extend naturally to this modified algorithm: a
manipulation is profitable only if the rejection chains returns to C ′, and the
probability that the rejection chains return can be bounded appropriately.
Finally we combine these to prove Theorem 5 in much the same way as in
proving Theorem 3.
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