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Summary. A good is produced with increasing marginal cost. A group of
agents want at most one unit of that good. The two classic methods that solve
this problem are average cost and random priority. In the first method users
request a unit ex ante and every agent who gets a unit pay average cost of the
number of produced units. Under random priority users are ordered without
bias and the mechanism successively offers the units at price equal to marginal
cost. We compare these mechanisms by the worst absolute surplus loss and find
that random priority unambiguously performs better than average cost for any
cost function and any number of agents. Fixing the cost function, we show that
the ratio of worst absolute surplus losses will be bounded by positive constants
for any number of agents, hence the above advantage of random priority is not
very large.
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1 Introduction

Indivisible goods are produced with increasing marginal cost. A fixed number
of risk neutral buyers want at most one unit of that good. Every agent decides
independently to buy or not buy one unit of the good based on his utility and
the price he faces. A mechanism is a random variable that assigns at most one
unit and some cost to the agents. The total charge collected by mechanism
should cover the production cost.

One interesting application of this problem arises in the context of scheduling
(Lawler et al.[8], Cres and Moulin [1], Moulin [10]). Every user has a job that
takes one unit of time. The planner schedules one job at a time. Each agent has
the option to leave the queue at time 0 or wait until his job has been processed.
The disutility (cost) of the agent is the waiting time until served. Hence those

∗I especially thank Herve Moulin for helpful comments and suggestions.
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agents who expect a waiting time higher than their utility will balk at time 0.
The management of queues in networks, for instance internet, is the canonical
example of this problem (Shenker [15]).

We compare the two classic decentralized mechanisms for this allocation
problem: average cost (ac) and random priority (rp) (Cres and Moulin [1][2]).
Both mechanisms are the most accepted for being easy to implement and by
their incentive properties.

Average cost is more familiar and simpler to implement than random priority.
It is the mechanism in which all agents ex ante pay the same price. Formally it
is the mechanism in which all agents simultaneously decide to buy or not buy a
unit. Those agents who buy will be ordered without bias and pay true marginal
cost. Those who did not buy pays nothing. In the queuing interpretation ac is
the so called unorganized queue (Cres and Moulin [2]). Agents decide to enter
the queue and server picks at random one of the agents remaining in the queue.

Under random priority users are randomly ordered without bias. The mech-
anism starts offering to the agents following this ordering a unit of good at cost
equal to true marginal cost. Every agent decides to buy or not buy the offered
unit. Those who did not get a unit of good pay nothing.1 In the queuing in-
terpretation rp is the so called organized queue (Cres and Moulin [2]). Server
picks a random order without bias of the agents and they decide to enter the
queue after learning their number in the queue.

If both mechanism are available, which one should we choose? Cres and
Moulin [2] compared the welfare performance of these two mechanisms when the
number of agents is large. They showed that neither mechanism outperforms
the other. The relative performance of the two mechanisms depends much on
the configuration of the agent utilities. In a large economy they concluded that
rp manages better the crowded commons. In this case random priority will
collect more surplus and overproduce less than average cost. The more crowded
the economy (as a replicating process), the more rp outperforms ac, up to the
point where ac will overproduce infinitely more than rp. In this limit case, ac
will not collect any surplus relative to the efficient production, whereas rp will
collect a positive share of the efficient surplus. These results give us powerful
arguments to choose rp against ac when the commons are crowded and there
are many agents. But what are we going to choose when they are not crowded?
Several difficulties arise in this case.

We use a simple benchmark to compare the two mechanisms, namely the
worst case scenario. For a fixed number of agents and a given cost function, this
should be the utility profile that wastes the largest amount of surplus relative
to the efficient surplus.

The index used in the recent literature of the price of anarchy (Koutsoupias
and Papadimitriou [4] , Moulin [11]) is the worst relative gain, that is the infi-
mum of the ratios of the relative and efficient surplus. If we use these measure

1A big downplay of rp is that lotteries may no be available, hence we may not be able to
implement it. On the other hand, ac does not have the problem of implementation with or
without lotteries. In this paper, we focus on the problem with lotteries.
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rp outperforms ac. In fact, the worst relative gain of ac is 0 whereas of rp is 1
n

where n is the number of agents.
On the other hand, with a fixed number of agents, we can also define the

worst absolute surplus loss (wal) of a mechanism with respect to the efficient
surplus, that is the supremum of the differences of the efficient surplus and
the surplus of the mechanism in discussion, where the supremum runs over all
utility profiles. This is always positive and bounded for rp and ac without any
assumption on the agent configuration utilities (see lemma 1). Like the relative
gain, this will give a complete order of the mechanisms.

The interpretation of the two indexes relative loss and absolute loss are
interestingly different. While the first measure is normalized to treat low utility
society similar to high utility society, the second does not. The worst absolute
loss takes into account that a big loss in a society should not be considered
equal to irrelevant small losses. To illustrate this, consider the mechanism that
allocates at most one unit to the agents. It selects randomly an agent and offer
him a unit at price equal to the marginal cost of the first unit c1. No offer is
made to the other agents. This mechanism has an expected relative surplus gain
of 1

n
2. Therefore it outperforms ac and is equally ranked to rp in the relative

gain sense. On the other hand, it has an infinite worst absolute surplus loss3

and hence it is outperformed by rp and ac in the wal sense. This mechanism
alert us to the more general fact that whenever a mechanism does not guarantee
a unit of good to those agents with utility large enough, the worst absolute loss
will be infinite and hence inferior to most mechanism in the wal sense, whereas
it may be well ranked in the relative gain sense.

Outline of the results
The main result of the paper shows that the worst absolute surplus loss of

random priority wal(n, c, rp) will be smaller than the worst absolute surplus loss
of average cost wal(n, c, ac) for any number of agents n and any marginal cost
function c. In other words, rp always outperforms ac in the wal sense (Theorem
1).

In the second result we estimate how large is the outperformance given by
Theorem 1. We compute upper bounds for the ratio wal(n,c,ac)

wal(n,c,rp) when the number
of agents n goes to infinity. We show that for any cost function of order m,4 the
sequences {wal(n, c, rp)}n and {wal(n, c, ac)}n will also have order m (Theorem
2). Hence even though random priority outperforms average cost in this worst
case scenario, this is not as strong as in the crowded economy with many agents
of Cres and Moulin [2].

Related literature
2The agents that get a unit at the efficient surplus will get a unit at price c1 with probability

1
n

, hence it collects at least 1
n

of the efficient surplus. The gain is not more that 1
n

because

in the utility profile with exactly one agent with utility bigger than c1 it collects exactly 1
n

of
the efficient surplus.

3Consider the utility profile with exactly two agents with utility λc1 and the rest with
utility zero. As λ goes to infinity, the efficient mechanism serves the two agents whereas this
mechanism serves at most one of them, hence the loss will be unbounded.

4This is that the cost function is bounded by a polynomial cost function of degree m.
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This work is related to the large and growing literature in computer sciences
of the worst case scenario. Particularly, it is with the recent literature on the
price of anarchy, introduced to measure the effects of selfish routing in a con-
gested network. For instance Koutsoupias and Papadimitriou [4], Roughgarden
and Tardos [13] and Roughgarden [14] offer the first results in this topic.

This paper is also related to the applications of the price of anarchy to
the more general model of cost-sharing, where the agents share the one to one
technology with increasing marginal cost. Every user request independently
an amount of output and the mechanism produces together this amount and
allocates the cost between agents. The combination of the price of anarchy along
with related models can be found at Johari and Tsilikis [5], Johari, Mannor and
Tsilikis [7], Moulin [11].

In particular, the main result of this paper is similar to the findings of Moulin
[11]. He compares four classic mechanism by the worst relative surplus gain in
the more general context of cost sharing with a divisible good. He finds that the
relative surplus gain of the serial mechanism is O( 1

log(n) ) whereas the relative
surplus gain of the other three mechanism: average cost pricing, incremental
cost pricing and marginal cost sharing is O( 1

n ), where n is the number of agents
and the marginal cost function is convex or concave with bounded elasticity.

2 Random Priority and Average Cost

2.1 The Model

The problem consists of the cost function C : N → R homogeneous in the
units of the good produced with increasing marginal cost and a finite set of
potential buyers N ⊂ N. The marginal cost of the i-th unit is denoted by ci,
0 < c1 < c2 < · · · < cn < . . . , C(i) = c1+ · · ·+ci. The derivative of the marginal
cost, that is the cost increment of the i−th unit with respect to the (i− 1)−th
unit is denoted by δi, hence ci = δ1 + . . . δi. A vector of utility profiles is denoted
by u = (u1, . . . , un) ∈ RN

+ . Given such utility profile, the local demand p(c) is the
number of agent whose utility is equal to c. The demand function is the number
of agents whose utility is bigger than or equal to c, that is, d(c) =

∑
x≥c p(x).

The demand for the q − th unit is denoted by dq = d(cq) and the number of
agents with utility in [cq, cq+1) is denoted by pq.

A mechanism (method) is a random variable ξ such that every utility profile
u ∈ RN

+ is mapped to an allocation where every agent get at most one unit of
good and the price for being served y ∈ RN

+ . If the agents in S get a unit of
good then the production cost is covered by the price charged to those agents:
yS =

∑
i∈S yi = C(|S|).

The efficient allocation (eff) produces qeff units and serve the agents giving
priority to higher utility agents, where qeff is chosen such that dq ≥ q for all
q ≤ qeff , and dq < q for all q ≥ qeff + 1.
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2.2 The mechanisms

Average cost (ac) is the mechanism where every agent decides to buy or not
buy at time 0. Those agents who buy will be ordered without bias and assigned
a unit of good at true marginal cost: the agent ranked t gets a good at price
ct. Those who do not buy pay nothing. Since agents are risk neutral we think
this mechanism as the Nash equilibrium of the game (not necessarily unique)
where every agent decides independently to buy or not buy one unit. If qac

agents buy, these agents will pay C(qac)
qac . Those who do not buy pay nothing.

Without loss of generality (see below) we can compute the equilibrium of ac by
the intersection pac = ac(qac) of the demand function and the ac function. It
charges pac to the qac agents with highest utilities.

Another mechanism is random priority (rp). This method draws with uni-
form probability an order of the agents and offer them the goods at price equal
to marginal cost. Hence agent i will get offered a unit at price ck+1 where k is
the number or agents ranked before i who bought a unit.

Throughout the paper we think the agents are not altruistic. Whenever an
agent is indifferent between buying or not buying, he will buy. This implies there
is more overproduction with rp, hence rp collects less surplus. This assumption
is without loss of generality.

rp has unique and unambiguous equilibrium outcomes. However, ac does
not: multiple equilibriums are possible. For instance, if agent 1 has utility
c1+c2+c3

3 − ε and the remaining agents have utility u = c1+c2
2 + ε, ε < 2c3−c1−c2

6 .
Lets assume c1+c2+c3

3 ≤ c2. Then the rp equilibrium serves exactly one agent
and it requires every agent to get a good with probability 1

n . Whereas any
profile where exactly two agents buy a good is an equilibrium for ac. Notice the
equilibriums of ac are also welfare different. This multiplicity of equilibriums
does not affect the computation of the worst case scenario of ac, we simply
assume without loss of generality that the agents with higher utility get a good.

The surplus σξ(u) of the method ξ in the utility profile u is the difference
between aggregate utility and cost paid by those agents who get a good. We
also denote σξ(p) by the surplus of ξ in the utility profile whose local demand
is p. The efficient surplus σeff is easily computed by ordering the agents from
high to low utility. It is given by σeff (u) =

∑
(ui−ci)+ whenever u1 ≥ · · · ≥ un

and (x)+ = max(0, x).
If qac agents buy a unit of good with ac, then σac(u) =

∑qac

i=1(ui − ci)
whenever u1 ≥ · · · ≥ un. Remember we are choosing the equilibrium of ac whose
agents have highest utility (i.e. the equilibrium that collects more surplus).

On the other hand, the surplus of rp is the expected surplus of the mechanism
where every agent is served in the expected order. Formally speaking, let prioθ

the mechanism where the agents are offered the goods following the fixed order θ.
Let θ(k) the agent ranked k by the order θ. Let prioθ

1 = θ(j) where j is smallest
integer such that uθ(j) ≥ c1. Similarly, prioθ

k = θ(m) means the agents ranked
strictly between prioθ

k−1 and θ(m) have utility smaller that ck and uθ(m) ≥ ck.
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The priority surplus is simply σθ(u) =
∑

(uprioθ
i
− ci). The surplus of rp is the

average of the priority surpluses over all orders θ: σrp(u) = 1
n!

∑
θ σθ(u).

A method ξ outperforms ξ′ if σξ(u) ≥ σξ′(u) for every u ∈ RN
+ . Neither ac

or rp is outperformed by the other. Indeed, consider a profile where all agents
have utility c1+c2

2 + ε, where ε < min{ c2−c1
2 , 2c3−c1−c2

6 }. Then rp serves exactly
one agent. It collects a fully efficient surplus of σrp = c2−c1

2 + ε. On the other
hand ac is fully inefficient, it serves two agents and collects a surplus of σac = ε.
When ε goes to zero, ac does not collect any surplus5 whereas rp collects a
positive surplus.

On the other hand, consider the next example proposed by Cres and Moulin
[2] in the context of queuing. It involves two types of agents. There are n − 1
agents of type 1 with utility c1 + ε and one agent of type 2 with utility c2 + ε,
ε < c2−c1

2 . Under rp, type 2 agent buys at price c1 with probability 1
n and at

price c2 otherwise. Hence the expected surplus with rp is 1
n (c2−c1+ε)+ n−1

n (2ε).
On the other hand, the equilibrium of ac is fully efficient, it involves only the
agent of type 2, hence the surplus is c2− c1 + ε. When ε goes to zero the surplus
of rp goes to c2−c1

n , whereas the surplus of ac goes to c2 − c1.

3 The worst absolute loss

Definition 1 Let n be the number of agents and c the marginal cost function.
The worst absolute loss (wal) of the method ξ is

wal(n, c, ξ) = max
u∈RN

+

σeff (u)− σξ(u)

We say that a mechanism ξ satisfies consumer sovereignty if for every agent
i there is a utility ūi such that ξ(ui, uN\i) allocates a unit of good to agent
i with probability 1 for any utilities of the remaining agents uN\i. Consumer
sovereignty was defined by Moulin [9] and plays a key role in group strategy
proof mechanisms in the similar problem with decreasing marginal cost (Moulin
and Shenker [12], Immorlica et al. [3] ).

The worst absolute loss is positive and bounded for any mechanism that sat-
isfies consumer sovereignty. The mechanisms that does not satisfy this property
will have infinite absolute loss. Hence the order is interestingly different than
the best relative gain (see section 5).

Lemma 1 Any method ξ that satisfies consumer sovereignty satisfies wal(n, c, ξ) <
∞ for any number of agents n and any marginal cost c.

Proof. Let m such that any agent with utility ui > m get a unit of good with
ξ. Let M = max{cn,m}. Notice that any agent with utility bigger than M is
guaranteed a unit of good with eff and ξ.

5Here we observe the famous tragedy of the commons.
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Let u ∈ RN
+ a utility profile. Let S ⊂ N such that us > M for all s ∈ S and

ut ≤ M for all t 6∈ S. Then every agent in S has a guaranteed unit of good with
eff and ξ. Thus for E and T the coalition of agents that get service with eff
and ξ respectively: σeff = uS + uE\S −C(| E |) and σξ = uS + uT\S −C(| T |)
where ui ≤ M for all i ∈ (E ∪ T )\S.

σeff − σξ = uE\S − C(| E |)− (uT\S − C(| T |)) (1)

Since uE\S − C(| E |) ≤ nM and uT\S − C(| T |) ≤ nM, then equation (1)
is bounded above by nM.

In particular, notice that rp and ac satisfy consumer sovereignty hence both
methods have finite worst absolute surplus loss. For the former method notice
that any agent with utility bigger than or equal to cn has a guaranteed object in
any priority method, hence with rp. On the other hand, any agent with utility
bigger than or equal to C(n)

n has a guaranteed object with ac.
wal(n, c, ac) is simpler to calculate than wal(n, c, rp). The biggest surplus

loss will be given in the famous tragedy of the commons.

Lemma 2 The utility profile where all agents have utility ū = C(n)
n gives the

worst absolute loss of ac. At this profile ac collects zero surplus. Hence

wal(n, c, ac) = max
1≤s≤n

s
C(n)

n
− C(s) (2)

Proof. Consider a utility profile u, u1 ≥ · · · ≥ un, and assume the agents
of T form an equilibrium of ac. Without loss of generality we can assume
T = {1, . . . t}, that is it contains the t =| T | agents with highest utility. Then
ui ≥ c1+···+ct

t for all i ∈ T.
Since the production of ac is at least the production of eff then the efficient

production will be contained in T. Hence the loss will be:

σeff (u)− σac(u) = max
S⊆T

U(S)− C(|S|)− (U(T )− C(|T |))

= max
0≤s≤t

(c1 + · · ·+ ct)− (us+1 + · · ·+ ut)− C(s) (3)

≤ max
0≤s≤t

s
c1 + · · ·+ ct

t
− C(s) (4)

Where the last inequality follows because ui ≥ c1+···+ct

t and thus every term
in (4) is not smaller than every term in (3).

Furthermore, notice (4) represents the loss when all agents have utility
c1+···+ct

t (the equilibrium of ac at this profile contains all agents, hence σac = 0).
Finally, equation 2 follows because the efficient surplus is monotone in the

utility profiles. Hence the efficient surplus when all agents have utility ū =
c1+...cn

n is not smaller than the efficient surplus when all agents have utility
ū = c1+...ct

t where t < n.
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3.1 Main Result

The calculation of wal(n, c, rp) is not as explicit as wal(n, c, ac). This comes from
the radically different surpluses of the the n! priority methods in the computa-
tion of the surplus of rp. In general, it is not possible to give a simple formula
for this surplus, however, Cres and Moulin [1] offer a computer algorithm to do
it.

In the proof of theorem 1 we reduce the number of utility profiles needed to
compute wal(n, c, rp). The maximum loss will be given at a utility profile where
all agents have utility in {c1, . . . , cn}. In fact, it is not difficult to check that
wal(n, c, rp) is achieved at a utility profile where there are k agents with utility
cn and n− k agents with utility in {c1, . . . , ck} for some 0 < k < n.

For instance, for two agents wal(2, c, rp) is achieved at the local demand p =
(1, 1). Hence wal(2, c, rp) = δ2

2 . Contrary to other cases (see below) wal(2, c, rp) =
wal(2, c, ac) for any marginal cost function c.

For three agents wal(3, c, rp) is achieved at the local demand p = (2, 0, 1) or
p = (0, 1, 2). Then wal(3, c, rp) = max{ 2

3δ2,
2
3δ3}.

With four agents, wal(4, c, rp) is achieved at one of the local demands:
(3, 0, 0, 1), (2, 0, 0, 2), (1, 1, 0, 2), (0, 2, 0, 2), (1, 0, 0, 3), (0, 1, 0, 3) or (0, 0, 1, 3).
Then wal(4, c, rp) will be maximized at one of the corresponding surpluses:
3
4δ2,

1
2δ2 + 1

2δ3,
1
4δ2 + 5

6δ3 + 1
12δ4, δ3 + 1

6δ4,
1
4δ2 + 1

4δ3 + 1
4δ4,

1
2δ3 + 1

2δ4, or 3
4δ4.

In general we can reduce the computation of wal(n, c, rp) to at most 2n−1−1
utility profiles. Hence as the number of agents increases, this computation
becomes hard. However, we can always say that the maximum surplus loss of
rp will be smaller them the maximum surplus loss of ac.

Theorem 1 For any marginal cost function c and the number of agents n bigger
than or equal to three:

wal(n, c, rp) < wal(n, c, ac)

This result differs from previous literature in three ways. The first is that
we do it for any number of agents. Related papers usually works the case of
many agents or a continuous of agents. The second difference is that it holds for
any increasing marginal cost function, we do not require any particular shape
of the cost function.

Finally the most important difference is that we consider the absolute surplus
loss. The relative surplus loss (gain) case is the most common work in the
literature (Moulin [11]).

4 Asymptotic behavior of wal(n,c,ac)
wal(n,c,rp)

In this section we estimate how much rp outperform ac in the wal sense. We
use wal(n,c,ac)

wal(n,c,rp) for a fixed number of agents as a measure of the total overall loss
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n wal(n, c, ac) wal(n, c, rp) wal(n,c,ac)
wal(n,c,rp)

3 1 0.6666 1.5
4 3 1.1666 2.5714
5 3 1.7 1.7666
6 6 2.2833 2.6277
7 6 3.0190 1.9873
8 10 3.7797 2.6456

Table 1: Worst absolute surplus loss comparison of linear marginal cost.

of ac with respect to rp6. Contrary to the crowded commons case where rp
infinitely outperforms ac, in this case rp will weakly outperform ac at most by
a finite constant.

We say that the sequence {cn}n has strong order m if the sequence { cn

nm }n

converges to a positive constant. We say that the sequence {wn}n has order m if
the sequence {wn

nm }n is bounded above and below by strictly positive constants.

Theorem 2 If the marginal cost function c has strong order m, 1 < m <
∞ then wal(n, c, rp) and wal(n, c, ac) have order m + 1 (as a function of n).
Therefore, supn

wal(n,c,ac)
wal(n,c,rp) < ∞.

The property of finite strong order of the marginal cost function is a little
more general than the property of bounded elasticity of marginal cost introduced
by Moulin [11]. This property requires that for marginal cost c inf{ zc′(z)

c(z)−c(0)} =

p > 0 and sup{ zc′(z)
c(z)−c(0)} = p < ∞ for concave and convex marginal marginal

cost function respectively. These properties imply that the marginal cost can
be written as c(z) = zpφ(z) where φ(z) is non decreasing (c concave) or non
increasing (c convex). The property of finite order simply requires that the
marginal cost can be written as: c(z) = zpφ(z) where φ(z) converges to a
positive constant.

4.1 Examples

Tables 1 and 2 show calculations of the worst absolute surplus loss for linear
and quadratic marginal cost (δi = 1 and δi = i − 1 respectively). By theorem
1, wal(n,c,ac)

wal(n,c,rp) ≥ 1 for any number of agents and any cost function. In both cases
we can see that this ratio tends to grow in the number of agents.7 By theorem

6Notice, by the examples discussed before, supu
σeff (u)−σac(u)

σeff (u)−σrp(u)
= ∞ and

infu
σeff (u)−σac(u)

σeff (u)−σrp(u)
= 0, hence these measures are not informative.

7This ratio is not nicely increasing in the number of agents. This problem seems to be
related with the discontinuities that generate having a finite number of agents instead of a
continuos number.
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n wal(n, c, ac) wal(n, c, rp) wal(n,c,ac)
wal(n,c,rp)

3 1.666 1.333 1.25
4 4 2.5 1.600
5 8 4.8 1.6666
6 13.5 8 1.6875
7 22 12 1.8333
8 32.5 17.4285 1.8647

Table 2: Worst absolute surplus loss comparison of quadratic marginal cost.

2 we know these numbers are bounded above. Proposition 3 give us bounds for
these examples.

We finish this section with examples of particular marginal cost functions.
We are particularly interested in the case of many users, hence the calculations
are done when the number of agents is arbitrarily large. The first is linear
marginal cost in which the ratio wal(n,c,ac)

wal(n,c,rp) is bounded above by 2.78. The
second is quadratic marginal cost in which the ratio is bounded above by 2.43.
For exponential marginal cost the maximum surplus losses do not differ in the
limit.

Proposition 3 i. For linear marginal cost ln = n, limn→∞
wal(n,l,ac)
wal(n,l,rp) is

bounded above by 1+
√

5
28−12

√
5
≈ 2.7725

ii. For quadratic marginal cost qn = (n−1)n
2 , limn→∞

wal(n,q,ac)
wal(n,q,rp) is bounded

above by 2.43

iii. For exponential marginal cost en = xn x > 1, limn→∞
wal(n,e,ac)
wal(n,e,rp) is

bounded above by x
x−1 .8 For quadratic exponential marginal cost, e2

n = xn2

x > 1, limn→∞
wal(n,e2,ac)
wal(n,e2,rp) = 1.

In the last proposition of the paper we go back to the case of a fixed finite
number of agents. We show that if marginal cost is too convex, then wal(n, c, ac)
and wal(n, c, rp) will not differ. Therefore, intuitively, the more convex the
marginal cost function, the less rp will outperform ac.9 Hence among polynomial
marginal cost functions, linear marginal cost seems to be the case where rp
outperform most ac in the wal sense.

Proposition 4 If the number of agents n is fixed then limk→∞
wal(n,ck,ac)
wal(n,ck,rp)

= 1
for marginal cost function ck

n = nk.

8I conjecture that limn→∞
wal(n,e,ac)
wal(n,e,rp)

= 1. This conjecture is in spirit similar to propo-

sition 4: As we increase the power of a polynomial cost fuction there will be no difference
between rp and ac.

9This observation is similar to one on Moulin [11]. He cannot guarantee a surplus gain for
the serial mechanism in this case, e.g. the exponential case mentioned before.
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5 Proofs

Theorem 1.

Proof.
We fix the number of agents n and the marginal cost function c, so we write

wal(n, c, ξ) simply as wal(ξ).
We consider an auxiliary mechanism called random assignment (ra). It

draws with uniform probability an order θ of the agents and computes the
surplus σraθ

of the mechanism raθ as follows: Agent i ranked θ(i) is offered
a unit of good at price cθ(i). Hence agent i buys a unit of good with raθ if
ui ≥ cθ(i). Since the marginal cost is increasing, production cost is not bigger
than collected money, hence it is feasible to allocate the goods for any θ. Notice
this mechanism is strategy proof but is not budget balanced, the budget surplus
will not be redistributed.

To prove the theorem, we will prove that wal(rp) < wal(ra) = wal(ac).
In steps 1a and 1b we prove that wal(rp) and wal(ra) are achieved at a

utility profile such that every agent i has utility equal to a marginal cost ch,
for some 1 ≤ h ≤ n. We denote the set of such utility profiles by their local
demand:

PN = {p ∈ NN |
∑
i∈N

pi = n}

Step 1a. wal(rp) = maxp∈P N σeff (p)− σrp(p).

Let u ∈ RN a utility profile that maximizes wal(rp), and assume cj < ui <
cj+1 for some agent i. Without loss of generality, assume there is no other agent
with utility strictly between (cj , ui). We analyze the next two cases.

Case 1. Agent i gets a unit of good with eff(u).
First notice that for any order of N , agent i gets a unit of good with rp.

Otherwise, consider the utility profile ū where only the utility of agents i in-
creases by ε = cj+1−ui

2 with respect to u. Then σrp(ū) will increase by less that
ε with respect to σrp(u) because in the order that he does not get the unit of
good with u, he will neither get a unit with ū. On the other hand, σeff (ū)
will increase by exactly ε because agent i still gets a unit with eff. Therefore
σeff (ū)− σrp(ū) > σeff (u)− σrp(u).

Hence agent i certainly get a unit with rp. Now, consider the utility profile ũ
where only the utility of agent i is reduced to cj with respect to u. Then σrp(ũ)
will be reduced by ui − cj because agent i will still certainly get a unit with rp,
and so will σeff (ũ). Hence σeff (ũ)− σrp(ũ) = σeff (u)− σrp(u).

Case 2. Agent i does not get a unit of good with eff(u).
Consider the utility profile û where only the utility of agent i is reduced

by ε = ui−cj

2 with respect to u. Then σrp(û) strictly decreases with respect
to σrp(u) because it does in every order that he gets a good. On the other

11



hand, i still does not get a unit with eff(û), so σeff (û) = σeff (u). Hence
σeff (û)− σrp(û) > σeff (u)− σrp(u).

Step 1b. wal(ra) = maxp∈P N σeff (p)− σra(p).

The proof is very similar to step 1a. Consider a utility profile u ∈ RN and
let cj < ui < cj+1. Then agent i has a guaranteed unit with ra only if j ≥ n. If
this is the case, then consider the utility profile ũ where only the utility of agent
i is reduced to cn with respect to u. Then σra(ũ) will be reduced by ui − cn

because agent i will still certainly get a unit with ra, and so will σeff (ũ). Hence
σeff (ũ)− σra(ũ) = σeff (u)− σra(u).

If cj < ui < cj+1 where j < n then we can increase the loss when agent
i does not get a unit with eff(u). Indeed, consider the utility profile where
only the utility of agent i is reduced by ε = ui−cj

2 . This profile keeps the same
efficient surplus while reducing the the surplus of ra.

If agent i gets a unit with eff(u) then we can increase the loss by increasing
only the utility of agent i by ε = cj+1−ui

2 . In this case the efficient surplus
increases by ε. On the other hand, σra will increase by less than ε because
agent i does not get a unit of good when he is at position j.

Step 2.

wal(ac) = max
1≤s≤n−1

n− s

n

s∑
t=1

(t− 1)δt +
s

n

n∑
t=s+1

(n− t + 1)δt. (5)

We rewrite wal(ac) in lemma 2 as a function of δ1, . . . , δn.

wal(ac) = max
u

σeff − σac

= max
1≤s≤n−1

s
c1 + · · ·+ cn

n
− (c1 + · · ·+ cs)

= max
1≤s≤n−1

s

n
(cs+1 + · · ·+ cn)− n− s

n
(c1 + · · ·+ cs)

= max
1≤s≤n−1

s

n
[(n− s)(δ1 + · · ·+ δs) + (n− s)δs+1 + · · ·+ δn]

−n− s

n
[sδ1 + (s− 1)δ2 + · · ·+ δs]

= max
1≤s≤n−1

n− s

n
[δ2 + · · ·+ (s− 1)δs] +

s

n
[(n− s)δs+1 + · · ·+ δn]

Step 3. wal(rp) ≤ wal(ra)

Since marginal cost is increasing, the surplus generated by ra will not be
bigger than the surplus generated by rp in every utility profile and every order
of the agents. Indeed, take such order θ of the agents. Notice that those agents

12



who get a unit with raθ will also get a unit with prioθ. If an agent get a unit with
raθ, he will pay less with prioθ than with raθ, hence this agent contribute more
to σθ than to σraθ

. The remaining agents who get a unit with prioθ contribute
a nonnegative amount to σθ that do not contribute to σraθ

. Thus σθ ≥ σraθ

.
Hence the average of the surplus generated by every order will keep the same

relation, that is σrp(u) ≥ σra(u) for every u ∈ RN
+ . Therefore the worst absolute

loss of rp is bounded above by the worst absolute loss of ra.

Step 4. wal(ra) = wal(ac).

Let p ∈ PN . To compute σra, we notice that with probability pi

n agent of
type ci will be in the first position, and will contribute δ2+ · · ·+δi to the surplus
σra. Thus the expected surplus of the first position is given by:

1
n

[p2δ2 + p3(δ2 + δ3) + · · ·+ pn(δ2 + .. + δn)].

Similarly, the expected surplus of the position k is:

1
n

[pk+1δk+1 + pk+2(δk+1 + δk+2) + · · ·+ pn(δk+1 + .. + δn)].

Adding the n expected surplus we obtain:

σra(p) =
1
n

[(
n∑

i=2

pi)δ2 + 2(
n∑

i=3

pi)δ3 + · · ·+ (n− 1)(
n∑

i=n

pi)δn]

=
1
n

[d2δ2 + 2d3δ3 + · · ·+ (n− 1)dnδn]. (6)

On the other hand, the efficient production i∗ is determined by di ≥ i for all
i ≤ i∗ and dj < j for all j > i∗. Hence the efficient surplus σeff is given by:

σeff (p) = pncn + ... + pi∗+1ci∗+1 + (i∗ − di∗+1)ci∗ − (c1 + · · ·+ ci∗)
= (1)δ2 + · · ·+ (i∗ − 1)δi∗ + (pi∗+1 + · · ·+ pn)δi∗+1 + · · ·+ pnδn

= (1)δ2 + · · ·+ (i∗ − 1)δi∗ + di∗+1δi∗+1 + · · ·+ dnδn (7)

Subtracting (6) to (7) we get:

σeff (p)− σra(p) =
1
n

[(n− d2)δ2 + · · ·+ (i∗ − 1)(n− di∗)δi∗ +

+di∗+1(n− i∗)δi∗+1 + · · ·+ dn(1)δn] (8)

Consider the local demand pi∗ where n − i∗ agents have utility c1 and i∗

agents have utility cn. Then
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σeff (p)− σra(p) =
1
n

[(n− i∗)(δ2 + · · ·+ (i∗ − 1)δi∗) +

+i∗((n− i∗)δi∗+1 + · · ·+ (1)δn)] (9)

Then equation (9) is an strict upper bound of equation (8) for any p such
that pi∗ 6= p. Indeed, notice the coefficients of δk are increasing in k for k ≤ i∗

and decreasing in k for k > i∗. Also, n− di∗ ≤ n− i∗ and di∗+1 ≤ i∗. Therefore
every coefficient in (8) is less or equal than its corresponding coefficient in (9).
Hence by maximizing over each pi∗ we conclude that wal(ra) is given by:

max
p

σeff−σra = max
1≤s≤n−1

n− s

n
[1δ2+· · ·+(s−1)δs]+

s

n
[(n−s)δs+1+· · ·+(1)δn]

Step 5. wal(rp) < wal(ac).

Combining steps 3 and 4, we have that wal(rp) ≤ wal(ra) = wal(ac).
To prove the strict inequality, by step 3 and the comparison of equations (9)

and (8), for all p ∈ PN with efficient production i∗ and p 6= pi∗ :

σeff (p)− σrp(p) ≤ σeff (p)− σra(p) < σeff (pi∗)− σra(pi∗)

Therefore, we just have to prove that σeff (pi∗) − σrp(pi∗) < σeff (pi∗) −
σra(pi∗). Indeed, consider the demand pi∗ and an order of the agents θ such
that an agent with utility c1 is at position 2 and an agent with utility cn is
at position 3 (we can do this because n ≥ 3). Then at this order the agent
with utility cn is guaranteed a unit of good at price c2 or less with prioθ while
he will get a unit at price c3 with raθ. Therefore σraθ

(pi∗) < σθ(pi∗) and
σraφ

(pi∗) ≤ σφ(pi∗) for any other order φ 6= θ. Hence σra(pi∗) < σrp(pi∗).

Theorem 2.

Proof.
The lower bound of wal(n, c, rp) will be given by restricting the domain of

demands to the set of local demands with only two types of agents. We denote
by pk,a the demand where k agents have utility cn and n− k agents have utility
ca, 1 ≤ a ≤ k.

Step 1.

σeff (pk,a)− σrp(pk,a) =
∑

s

(
n−k
a−s

)(
k
s

)(
n
a

) (ck+1 + · · ·+ ck+a−s − (a− s)ca) (10)

Consider an order θ of the agents in pk,a where exactly a − s agents with
utility a get a unit with rpθ. Then the production at this profile is k +a− s and
the surplus is given by
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σθ(pk,a) = kcn + (a− s)ca − (c1 + ... + ck+a−s) (11)

On the other hand, the probability to choose such order θ is equal to (n−k
a−s)(k

s)
(n

a)
.

Indeed, notice such order θ should put exactly s agents with utility n and a− s
agents with utility a in the first a positions. We can choose such configuration
of agents in

(
n−k
a−s

)(
k
s

)
ways. Given the two groups of agents, the first with a

agents and the second with n− a agents, we do not care for the order of agents
between groups. That is, a permutation of agents in the same group still gives s
agents with utility n and a− s agents with utility a in the first a positions. We
can permute this two groups in a!(n − a)!. Hence there are

(
n−k
a−s

)(
k
s

)
a!(n − a)!

orders where the first a positions are filled by s agents with utility n and a− s
agents with utility a. Hence the probability of choosing such order θ is given
by: (

n−k
a−s

)(
k
s

)
a!(n− a)!
n!

=

(
n−k
a−s

)(
k
s

)(
n
a

) .

Finally, notice that the efficient production with pk,a is k units, hence
σeff (pk,a) = kcn − (c1 + · · ·+ ck). Step 1 follows from last two equations.

Step 2. wal(n, c, rp) has order at least m + 1.

Consider a local demand pk,k where k = [λn], where λ ∈ Q∩( 1
2 , 1). As we in-

crease the number of agents n, we are reproducing the economy and the utilities
are scaled taking marginal cost as a reference. The claim is that wal(n, c, pk,k)
has order m + 1.

By step 1, it suffices to prove that the next equation has order m + 1 :

k∑
s=2k−n

(
n−k
k−s

)(
k
s

)(
n
k

) (ck+1 + · · ·+ ck+k−s − (k − s)ck) (12)

Since cn has order m, then we can represent cn = nmh(n) where h : N → R+

is such that limn→∞ h(n) = L > 0. Thus for any δ > 0, there is N large such
that:

[L+δ][(k+1)m + · · ·+(k+k−s)m−(k−s)km] ≥ ck+1 + · · ·+ck+k−s−(k−s)ck

for all s, 2k − n < s < k and for all n > N.
Hence the order of (12) is bigger than or equal to the order of the equation:

∑
s

(
n−k
k−s

)(
k
s

)(
n
k

) [(k + 1)m + · · ·+ (k + k − s)m − (k − s)km] (13)
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Let ε > 0 be small. We write s = γn. Since 2k − n ≤ s < k then 2λ − 1 ≤
γ < λ. We abuse of notation by writing the set {γ | 2λ−1 = γ < λ−ε, γn ∈ N}
simply as {2λ− 1 = γ < λ− ε}.

1
km(εn)

∑
s

(
n−k
k−s

)(
k
s

)(
n
k

) [(k + 1)m + · · ·+ (k + k − s)m − (k − s)km] ≥

∑
2λ−1=γ<λ−ε

(
n−k
k−s

)(
k
s

)(
n
k

) [
(1 + 1

k )m + · · ·+ (1 + k−s
k )m

k − s
− 1] +

∑
λ>γ>λ−ε

(
n−k
k−s

)(
k
s

)(
n
k

) (1 + 1
k )m + · · ·+ (1 + k−s

k )m − (k − s)km

εn
(14)

Notice for every γ such that 2λ − 1 = γ < λ − ε, limn→∞(1 + k−s
k )m =

(1 + λ−γ
λ )m > 1, then:

lim
n→∞

(1 + 1
k )m + · · ·+ (1 + k−s

k )m

k − s
= (

∫ λ−γ
λ

0

(1 + x)mdx)(
λ

λ− γ
) (15)

= (
(1 + λ−γ

λ )m+1

m + 1
− 1

m + 1
)(

λ

λ− γ
)

> (
(1 + (m + 1)λ−γ

λ

m + 1
− 1

m + 1
)(

λ

λ− γ
) = 1

(16)

Where equation (15) holds because (1+ 1
k )m+···+(1+ k−s

k )m

(k−s)
λ−γ

λ is a superior

(upper) sum of the interval [0, λ−γ
λ ] with partition of size k − s ≈ (λ− γ)n and

function f(x) = (1+x)m. As n increases, the partition becomes finer and hence
such sum converges to such integral.

Then equation (14) is bigger than equation (17) because the partition is a
superior sum (thus it is bigger than the integral) and the second term in right
hand side of equation (14) is positive.

∑
2λ−1=γ<λ−ε

(
n−k
k−s

)(
k
s

)(
n
k

) ν(γ) (17)

where ν(γ) = ( (1+ λ−γ
λ )m+1

m+1 − 1
m+1 )( λ

λ−γ )− 1 > 0 for all γ < λ.

Since
∑

2λ−1=γ≤λ
(n−k

k−s)(k
s)

(n
k)

= 1 for all n because this is the sum of prob-

abilities that sum up to 1. Then limn→∞
∑

2λ−1=γ<λ
(n−k

k−s)(k
s)

(n
k)

= 1 because
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limn→∞
1

(n
k)

= 0. Thus limn→∞
∑

2λ−1=γ<λ
(n−k

k−s)(k
s)

(n
k)

ν(γ) > 0 because ν(γ) > 0

for all γ ∈ [2λ− 1, λ).
Therefore we can choose small ε > 0 such that

lim
n→∞

∑
2λ−1=γ<λ−ε

(
n−k
k−s

)(
k
s

)(
n
k

) ν(γ) > 0.

Hence the sequence has order at least m + 1.

Step 3. wal(n, c, ac) has order at most m + 1.

By lemma 2,

wal(n, c, ac) = max
1≤s≤n−1

s

n
C(n)− C(s). (18)

For every n, let s∗n the number that maximizes wal(n, c, ac). Since 1 ≤ s∗n ≤
n− 1, then the sequence { s∗n

n }n has order at most 1, therefore s∗n
n C(n)− C(s∗n)

has order at most m + 1, and so does {wal(n, c, ac)}n.
We complete the proof of theorem by noticing that wal(n, c, ac) ≥ wal(n, c, rp)

for any n and any c, then the order of {wal(n, c, ac)}n is bigger than or equal
to the order of {wal(n, c, rp)}n. Therefore along with steps 2 and 3 both orders
are equal to m + 1.

Proposition 3

Proof.

Part (i)

Step 1. wal(n, l, ac) ≤ n2

8 .

wal(n, l, ac) = max
1≤s≤n−1

n− s

n

s∑
t=1

(t− 1) +
s

n

n∑
t=s+1

(n− t + 1)

= max
1≤s≤n−1

1
2
(s)(n− s). (19)

This equation is parabolic with vertex in s = n
2 . Hence

wal(n, l, ac) =
1
2
([

n

2
])([

n

2
] + 1) <

n2

8
.

Step 2.

σeff (pk,a)− σrp(pk,a) =
(k − a + 1)(n− k)a

n
+

a(a− 1)(n− k)(n− k − 1)
2n(n− 1)

(20)
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By step 1 on proof of theorem 2,

σeff − σrp(pk,a) =
∑

s

(
n−k
a−s

)(
k
s

)(
n
a

) (ck+1 + · · ·+ ck+a−s − (a− s)ca)

=
∑

s

(
n−k
a−s

)(
k
s

)(
n
a

) ((a− s)k +
(a− s)(a− s + 1)

2
− (a− s)a)

= (k − a +
1
2
)
∑

s

(
n−k
a−s

)(
k
s

)(
n
a

) (a− s) +
1
2

∑
s

(
n−k
a−s

)(
k
s

)(
n
a

) (a− s)2

On the other hand, notice that:

∑
s

(
n−k
a−s

)(
k
s

)(
n
a

) (a− s) =
∑

s

(
n−k−1
a−s−1

)(
k
s

)(
n
a

) (n− k)

=
∑

s

(
n−k−1
a−s−1

)(
k
s

)(
n−1
a−1

) (n− k)

(
n−1
a−1

)(
n
a

)
= (n− k)

(
n−1
a−1

)(
n
a

) (21)

=
(n− k)a

n
(22)

where (21) holds because the previous sum of combinatorial coefficients rep-
resents same probabilities but with n− 1 agents and a− 1 positions, hence they
sum up to 1. We use the same trick in the next equations.

∑
s

(
n−k
a−s

)(
k
s

)(
n
a

) (a− s)2 =
∑

s

(
n−k
a−s

)(
k
s

)(
n
a

) ((a− s) + (a− s)(a− s− 1))

=
(n− k)a

n
+

∑
s

(
n−k
a−s

)(
k
s

)(
n
a

) (a− s)(a− s− 1)

=
(n− k)a

n
+ (

∑
s

(
n−k−2
a−s−2

)(
k
s

)(
n−2
a−2

) )

(
n−2
a−2

)
(n− k)(n− k − 1)(

n
a

)
=

(n− k)a
n

+

(
n−2
a−2

)
(n− k)(n− k − 1)(

n
a

)
=

(n− k)a
n

+
(a)(a− 1)(n− k)(n− k − 1)

n(n− 1)
(23)
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Finally, we substitute equations (22) and (23) in the expected loss equation
to prove equation (20).

Consider a(n) =
√

5−1√
5+1

n and k(n) =
√

5−1
2 n. Clearly, 1 < a(n) < k(n) < n.

To simplify notation we write a∗ = a(n) and k∗ = k(n). Then:

lim
n→∞

n2

8
a∗(a∗−1)(n−k∗)(n−k∗−1)

2n(n−1) − (a∗−k∗−1)(n−k∗)a∗

n

=
1 +

√
5

28− 12
√

5
. (24)

Finally, notice that replacing a∗ and k∗ in (24) by its respective integer parts,
will not modify such limit. Therefore the limit

lim
n→∞

wal(n, l, ac)
wal(n, l, rp)

(25)

is bounded by 1+
√

5
28−12

√
5
.

Part (ii)

By space reasons, this part is available upon request to the author.

Part (iii)

With exponential cost function, from (5) we have:

wal(n, e, ac) = max
1≤s≤n−1

n− s

n

s∑
t=1

(t− 1)δt +
s

n

n∑
t=s+1

(n− t + 1)δt

Let δt = (x− 1)xt−1. Then

s∑
t=1

(t− 1)δt =
−xs+1 + xs+1s− xss + x

(x− 1)

and

n∑
t=s+1

(n− t + 1)δt =
xn+1 − xs+1n + xsn− xs+1 + xs+1s− xss

(x− 1)
.

Hence

wal(n, e, ac) = max
1≤s≤n−1

−xs+1n + nx− sx + sxn+1

n (x− 1)

= max
1≤s≤n−1

x(s(xn − 1)− n(xs − 1))
n (x− 1)

(26)
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Since x > 1, when n is large s(xn−1)−n(xs−1) is maximized at s = n−1.
Hence

wal(n, e, ac) =
−xnn + x + xn+1n− xn+1

n (x− 1)2
.

Finally, notice σeff (pn−1,n−1)− σrp(pn−1,n−1) = n−1
n δn = (n−1)(x−1)xn−1

n .

Therefore limn→∞
wal(n,e,ac)
wal(n,e,rp) ≤ limn→∞

−xnn+x+xn+1n−xn+1

n(x−1)2 n−1
n xn−1 = x

x−1 .

On the other hand, for quadratic exponential function, we know δn+1 =
x(n+1)2 − xn2

, therefore limn→∞
δn+1
n2δn

= ∞.
The remaining part is an argument similar to proof of proposition 4. For a

fixed large number of agents n, we are maximizing over a set of n−1 linear equa-
tions in δi, i ∈ {1 . . . n} The coefficient of each δi is smaller than n. The above
limit tells us δn will be bigger than any linear combination of {δ1, . . . , δn−1}
with coefficients smaller than n (any of such linear combinations is smaller than
n2δn−1.)

The equation in (5) that has the biggest coefficient in δn is when s = n− 1.
Thus,

lim
n→∞

wal(n, e2, ac)
n−1

n δn

= 1 (27)

On the other hand, notice wal(n, e2, rp) ≥ σeff (pn−1,n−1)−σrp(pn−1,n−1) =
n−1

n δn. Therefore wal(n,e2,rp)
n−1

n δn
≥ 1 for all n. This equation along with theorem 1

and equation (27) implies: limn→∞
wal(n,e2,ac)
wal(n,e2,rp) = 1.

Proposition 4

Proof.
First notice that by equation (5) the calculation of wal(n, ck, ac) involves

the maximization over n linear equations on δ1, . . . , δn. The coefficient of δi on
each equation is independent of the cost function.

Let δk
1 . . . δk

n such coefficients associated to the marginal cost ck. Then:

lim
k→∞

δk
i+1

δk
i

= lim
k→∞

(i + 1)k − ik

ik − (i− 1)k
= lim

k→∞

(1 + 1
i )

k − 1
1− (1− 1

i )
k

= ∞ ∀ i (28)

This implies that as k goes to infinite, δk
n will be infinitely bigger with respect

to any linear combination of the remaining coefficients δk
1 , . . . , δk

n−1. Hence for
arbitrarily large k, wal(n, ck, ac) will be achieved on the equation that has the
biggest coefficient on δk

n. From equation (5) we can check that such equation is
given when s = n− 1. That is, for every 1 ≤ s < n− 1

lim
k→∞

n−s
n

∑s
t=1(t− 1)δk

t + s
n

∑n
t=s+1(n− t + 1)δk

t
n−1

n δk
n

=
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= lim
k→∞

(n− s)
∑s

t=1(t− 1) δk
t

δk
n

+ s
∑n

t=s+1(n− t + 1) δk
t

δk
n

(n− 1)
=

s

n− 1
< 1

Hence,

lim
k→∞

wal(n, ck, ac)
n−1

n δk
n

= 1 (29)

On the other hand, notice wal(n, ck, rp) ≥ σeff (pn−1,n−1)−σrp(pn−1,n−1) =
n−1

n δk
n. Therefore

wal(n, ck, rp)
n−1

n δk
n

≥ 1 ∀ k (30)

The proposition follows immediately by equation (29), (30) and theorem 1:
wal(n, ck, ac) > wal(n, ck, rp) for all k.
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