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Abstract

A pillage game is a formal model of Hobbesian anarchy as a coalitional game. The
technology of pillage is specified by a power function that determines the power of each
coalition as a function of its members and their wealth. A coalition can despoil any other
coalition less powerful than itself. The present paper studies the extent to which the
exercise of power can be constrained by a shared concept of legitimacy. The basic pillage
game is augmented by a set of extrinsic variables that can convey information about
past behavior. Depending on the power function, the illegitimate use of power can be
inhibited by legitimizing the subsequent use of power against the transgressors. Legitimacy
is modeled in a static sense, called quasi-legitimacy, using the stable set (von Neumann-
Morgenstern solution) of the augmented pillage game, and in an explicitly dynamic sense,
called simply legitimacy, using a concept of farsighted core. Quasi-legitimacy is shown
to be a necessary but not sufficient condition for legitimacy. The sets of quasi-legitimate
wealth allocations are characterized, and an iterative process is developed for constructing
the largest quasi-legitimate set of allocations for each pillage game. If the power function
gives enough weight to coalition size that no individual can be as powerful as the coalition
of everyone else, then a natural augmentation of the basic pillage game can legitimize the
set of all allocations. However, if the power of each coalition is determined by its total
wealth alone, then even the weaker concept of quasi-legitimacy cannot stabilize anything
other than the stable set of the basic pillage game. The legitimate sets of wealth allocations
are characterized in general, and a weaker condition is shown to characterize the legitimacy
of the largest quasi-legitimate set.



1. Introduction

A pillage game is a natural setting for the study of power. There is only one commod-
ity, wealth, which is allocated among a finite number of players. Since wealth is desired
by all, reallocation can only be effected by force. The technology of force is specified by a
power function that determines the power of each coalition as a function of its members
and their wealth. A coalition can take the wealth of any coalition less powerful than itself.
Pillage is costless and certain, but due to the absence of a commitment technology, it
can also be treacherous. Previous work on pillage games uses the concept of stable set to
identify the set of allocations that can be stabilized as a balance of power (Jordan (2005)
and Jordan and Obadia (2005)). Stable sets are also characterized as having a dynamic
representation as a farsighted core under rational expectations (Jordan (2005, Section 6)).
The balance of power in a pillage game is delicate, as evidenced by the fact that stable
sets can contain at most finitely many allocations. This raises the question whether the
exercise of power can be endogenously constrained to stabilize a larger set of allocations.

The more tightly power is constrained, the larger will be the set of stable allocations.
However, constraints on the use of power can only be enforced by the use of power itself.
An illegitimate use of power can only be discouraged by legitimizing the subsequent use
of power against the transgressors. Loosely speaking, we seek the narrowest concept of
legitimacy in the exercise of power that is still broad enough to be self-enforcing.

It is first necessary to extend the basic pillage game to add variables that can convey
information about past actions. This information is extrinsic to the environment of the
game, in the sense that it is irrelevant to the technology of power and does not enter
the players’ preferences, which are simply increasing in wealth. In Section 3, below, self-
enforcement is represented by the static concept of the stable set of the extended pillage
game. A set of allocations is called quasi-legitimate if it can be stabilized in the extended
game. Theorem 3.7 gives a general characterization of quasi-legitimate sets. Proposition
3.6 shows that the simplest possible extension, adding only a single Boolean variable,
suffices to stabilize every quasi-legitimate set. Proposition 3.9 develops an iterative process
for constructing the largest quasi-legitimate set. The process is based on an induction
argument first used by Roth (1976) to establish the existence of the “supercore” for general
abstract games. In the present setting, the process requires only finitely many steps.
Section 3 also develops a more interesting extension, called the citizenship game. The
extrinsic information identifies each player as either a citizen or an outlaw. Any act of
pillage that victimizes a citizen causes all who benefit from the pillage to become outlaws.
However, any pillage that victimizes only outlaws enables all players to become citizens.
The citizenship game thus provides for both the punishment and redemption of outlaws.
This concept of legitimacy can fail to be self-enforcing if a player can, through pillage,
become wealthy enough to be too powerful to be punished. Accordingly, Proposition 3.17
shows that the set of all allocations in which only citizens possess wealth is a stable set of
the citizenship game if the power function gives at least enough weight to coalitional size
that no one player, even if possessed of the total wealth in the game, can be as powerful
as the coalition of everyone else. This restriction on the power function, called the no-
tyranny condition, is necessary as well as sufficient. Under the no-tyranny condition,
the entire set of allocations is quasi-legitimate, since they are stable if all players are
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designated as citizens. The no-tyranny condition is obviously violated by the wealth-is-
power (WIP) game, in which the power of each coalition is determined by its total wealth
alone. Proposition 3.15 shows that for the WIP game, legitimacy is a fruitless concept,
since no extension is capable of stabilizing any set of allocations other than the unique
stable set of the basic game.

The stable set solution concept has a dynamic interpretation but a static definition.
Harsanyi (1974) observes that in general, the dynamic interpretation can fail to be sup-
ported if players’ expectations are explicitly taken into account. As mentioned above,
stable sets of the basic pillage game are not vulnerable to Harsanyi’s critique, but the
same cannot be said in general for stable sets of extended pillage games. Accordingly,
Section 4 strengthens the concept of quasi-legitimacy by using the more demanding con-
cept of a farsighted core under rational expectations. A set of allocations that can be
stabilized in this fashion is called legitimate. Proposition 4.3 shows that quasi-legitimacy
is a necessary condition for legitimacy. Theorem 4.5 shows that the citizenship game can
be strengthened in such a way that the set of all allocations in which only citizens possess
wealth can be stabilized as a farsighted core, assuming the no-tyranny condition. Unfortu-
nately, quasi-legitimacy is not a sufficient condition for legitimacy. Proposition 4.6 shows
that no legitimate set exists for the Cobb-Douglas pillage game, in which the power of
each coalition is the product of its total wealth and the number of its members, despite
the fact that this game admits a large quasi-legitimate set. Theorem 4.9 gives a general
characterization of legitimate sets.

There is a large and growing theoretical literature on allocation by force, nearly all
of which uses noncooperative games as models (e.g., Garfinkel and Skaperdas (1996)). In
particular, Dixit, Grossman and Gul (2000) and Jack and Lagunoff (2006) develop repeated
game Markov equilibrium models in which a player’s current use of force is limited by the
prospect of punishment by other players in the future. Articles that bear more directly on
the present analysis are mentioned below as they become relevant.

2. Pillage games

This section defines pillage games and records some results from Jordan (2005) that
will be used below. Three examples of pillage games are described at the end of this
section.

2.1 Definitions: The set of players is the finite set I = {1, . . . , n}, where n ≥ 2. Subsets
of I will be called coalitions. Let C denote the set of coalitions. The set of allocations is
the set A = {w ∈ IRI : wi ≥ 0 for each i, and

∑
i wi = 1}. A power function is a function

π : C × A → IR satisfying

p.1) if C ⊂ C ′ then π(C ′, w) ≥ π(C, w) for all w;

p.2) if w′
i ≥ wi for all i ∈ C then π(C, w′) ≥ π(C, w); and

p.3) if C �= ∅ and w′
i > wi for all i ∈ C then π(C, w′) > π(C, w).
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An allocation w′ dominates an allocation w if

D) π(W, w) > π(L, w),

where W = {i : w′
i > wi} and L = {i : w′

i < wi}. Domination is a binary relation on
A and will be denoted �. Domination is asymmetric but typically not transitive or even
acyclic.

The property (p.3) implies that power cannot be completely independent of wealth,
so the power of each coalition is endogenous. This prevents a pillage game from having a
characteristic function. However, the pair (A,�) is a special case of an abstract game, so
the concepts of core and stable set can be defined as in Lucas (1992).

2.2 Definitions: For any set of allocations E, let U(E) denote the set of allocations
undominated by E, that is, U(E) = {w ∈ A : no w′ ∈ E dominates w}. The core of a
pillage game is the set of undominated allocations, that is, the core is U(A). A set of
allocations E is internally stable if no allocation in E is dominated by an allocation in E,
that is,

IS) E ⊂ U(E).

A set of allocations E is externally stable if every allocation not in E is dominated by some
allocation in E, that is,

ES) U(E) ⊂ E.

A set of allocations E is stable if it is both internally and externally stable, that is,

S) E = U(E).

The core always exists, but can be empty. Since U(∅) = A, external stability (ES)
implies that stable sets cannot be empty, but they can fail to exist. External stability also
implies that a stable set must contain the core.

The core is the set of allocations that can be defended by force. That is, each player
who holds wealth must be at least as powerful as the coalition of everyone else. The
allocations most likely to satisfy this demanding requirement are those that give everything
to one player.

2.3 Definition: For each i, let ei denote the allocation that gives everything to player i,
that is, ei

i = 1. The ei’s are called tyrannical allocations.

The following result establishes that the core is nonempty only if it contains one or
more of the tyrannical allocations.
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2.4 Proposition: The core is the set{
w : {i : wi > 0} = {i : π({i}, w) ≥ π(I\{i}, w)}

}
.

For each i, the core contains ei if and only if π({i}, ei) ≥ π(I\{i}, ei). In particular, the
core is empty if and only if

NT) π({i}, ei) < π(I\{i}, ei) for all i.

Condition (NT), which is equivalent to the emptiness of the core, will be called the
no tyranny condition. The following proposition records the analytically useful fact that
internally stable sets are finite. This contrasts with characteristic function games, whose
stable sets typically contain a continuum of allocations (Lucas (1992)).

2.5 Proposition: An internally stable set can contain at most finitely many allocations.

We close this section with three examples of pillage games, which will be further
discussed in subsequent sections. First, suppose the dependence of power on wealth is
complete, that is, the power of each coalition is simply its total wealth. It is immediate
that the core of this pillage game consists of the tyrannical allocations, together with
the allocations that give half the wealth to each of two players. The unique stable set
consists of all allocations in which each player with positive wealth has wi = ( 1

2 )ki for
some nonnegative integer ki. In particular, the stable set for the four-player game consists
of all permutations of the allocations (1, 0, 0, 0), (1

2 , 1
2 , 0, 0), ( 1

2 , 1
4 , 1

4 , 0), ( 1
2 , 1

4 , 1
8 , 1

8 ), and
( 1
4 , 1

4 , 1
4 , 1

4 ).

2.6 The wealth-is-power pillage game (Jordan (2005)): The wealth-is-power (WIP)
game is specified by the power function

WIP) π(C, w) = Σi∈Cwi.

A number 0 ≤ x ≤ 1 is dyadic if x = 0 or x = 2−k for some nonnegative integer k. An
allocation w is dyadic if each wi is dyadic. Let D denote the set of dyadic allocations. For
each positive integer k, let Dk = {w : w is dyadic and for each i, if wi > 0 then wi ≥ 2−k}.
Then Dk ⊂ Dk+1 for each k, and D = ∪kDk. For the WIP game, D1 is the core and D is
the unique stable set.

At the opposite extreme from the WIP game is the traditional majority game, in
which the power of each coalition is equal to the number of its members. Since power is
independent of wealth in this case, the traditional majority game is not a pillage game.
However, there is a closely related pillage game in which the dependence of power on wealth
is lexicographically secondary to coalition size, that is, relative wealth only determines the
relative power of two coalitions if they have the same size. This majority pillage game
differs from the traditional majority game in a second important respect, namely that a
coalition can commit pillage without having an absolute majority, as long as it is larger
than the set of its victims.
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2.7 The majority pillage game (Jordan and Obadia (2005)): The majority pillage game
is specified by any power function of the form

M) π(C, w) = v#C + Σi∈Cwi, where v > 1.

The core of the majority pillage game is empty. If n is odd, let Sn be the set of allocations
consisting of all player-permutations of the allocation ( 2

n+1 , . . . , 2
n+1 , 0, . . . , 0). If n = 3,

then S3 is the unique stable set. More generally, if n is odd, then Sn is the unique symmetric
stable set. If n is even and n ≥ 4, then no symmetric stable set exists.

The final example is the game in which the power of each coalition is the product of
its size and wealth. The principal interest of this game is that it has no stable set. This is
proved in Jordan (2005), but it also follows from the nonexistence of a legitimate set for
this game, which is proved in Section 4.

2.8 The Cobb-Douglas pillage game (Jordan (2005)): The Cobb-Douglas game is
specified by the power function

CD) π(C, w) = #CΣi∈Cwi.

For the Cobb-Douglas game with n > 2, the core is the set of tyrannical allocations,
{ei : i ∈ I}, but no stable set exists.

Jackson and Morelli (2005) develop a model of the willingness of countries to go to
war for material gain. The decision whether or not to fight is made by a single pivotal
decision-maker in each country. Jackson and Morelli are specifically interested in the
influence on the likelihood of war of “political bias,” which they model as an asymmetry
in the decision-maker’s shares of the gain in victory and the loss in defeat. Although the
decision-makers are analogous to players in a pillage game, Jackson and Morelli model war
as costly and uncertain, so countries can negotiate transfers to remove the incentive for war.
Most of the analysis is confined to the two-country case, but they also consider the case in
which multiple countries are divided into two alliances, and develop conditions that ensure
stability in the sense that neither alliance would go to war against the other in the absence
of transfers, and no individual country would prefer to leave its alliance to stand alone or
join the other alliance (Proposition 7). Thus, by making pillage costly and uncertain and
restricting the possibilities of forming pillaging coalitions, the domination relation can be
narrowed to allow a larger core without the need for dynamic considerations.

It may be useful at this point to compare pillage games with a recent model of alloca-
tion by force due to Piccione and Rubinstein (2006). In their model, force is also costless
and certain, but power is specified by an exogenous linear pecking-order among the players.
In contrast to pillage games, there are multiple commodities, and players may have differ-
ing preferences, which can be satiated, in the sense that players have compact consumption
sets. Allocation proceeds as follows: player 1, the most powerful player, chooses a most-
preferred bundle from the attainable set, after which player 2 chooses from the remaining
attainable set, and so on. The authors show that under appropriate strict convexity and
smoothness conditions, the resulting allocation is unique and Pareto efficient. In pillage
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games, the question of Pareto efficiency does not arise, since all allocations are trivially
Pareto efficient. However, the interest in stabilizing the largest possible set of allocations
is motivated by the prospect of extending pillage games to settings which include the pos-
sibilities of production and exchange, in order to study the trade-offs between power and
efficiency. Loosely speaking, a larger stable set may give greater scope to realize gains from
voluntary production and trade.

3. Quasi-legitimacy

This section extends the basic pillage game by adding a set H of extrinsic social
information that can distinguish between legitimate and illegitimate uses of power. An
allocation w together with social information h constitutes a social state. An act of pillage
at a social state (w, h) results in a dominating allocation w′, together with new social
information h′. The social information plays no role in preferences or the technology of
force, so the chance from w to w′ must conform to the basic domination relation w′ � w.
The set H and the transition from h to h′ are interpreted as a social norm that characterizes
a particular extension. A given pillage game can have many different extensions, including
the trivial extension, which adds no information, or simply ignores the set H.

3.1 Social extensions: A social extension of a pillage game π consists of a set H of social
information, and a recording function σ : A × H × A → H. Define social domination, �s,
by

S) (w′, h′) �s (w, h) if w′ � w and h′ = σ(w, h;w′).

A social extension will be denoted by the pair (A × H,�s), and elements (w, h) of A × H
will be called states.

The definition of a social extension embodies an implicit assumption that social in-
formation is public and the recording function σ is known to all players. The recording
function is interpreted as a way of recording some information about the fact that, at the
state (w, h), an act of pillage changed the allocation to w′.

A social extension (A × H,�s) gives rise to stable sets of social states, that is, sets
S ⊂ A × H that are internally and externally stable under the relation �s. Moreover,
different extensions may stabilize different sets of allocations.

3.2 Definition: Given a pillage game π, a set X ⊂ A is quasi-legitimate if there is a social
extension (A×H,�s) of π with a stable set S ⊂ A×H with X = {w : (w, h) ∈ S for some
h ∈ H}.

The definition of a social extension places no limits on the size of H or the amount
of information that can be recorded. However, the smallest nontrivial set, H = {0, 1},
suffices to stabilize every quasi-legitimate set of allocations. This is a consequence of both
the mathematical elegance and conceptual weakness of the stable set concept.
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3.3 The Boolean extension: Given a pillage game π and a set E ⊂ A, let H = {0, 1}
and define σ : A × H × A → H as follows:

σ(w, h;w′) =

⎧⎨
⎩

0 if w′ � w, w′ ∈ E, and w �∈ E;
¬h if w′ � w and either w ∈ E or w′ �∈ E;
h if w′ �� w,

where ¬h denotes the element of H not equal to h.

The Boolean extension is defined for general sets of allocations E, but is only of
interest when E can be stabilized. This requires a condition called self-protection, which
is a generalization of stability. Suppose an element w ∈ E is dominated by an allocation
w′. If an allocation w′′ ∈ E dominates w′, then w′′ can be very loosely interpreted as
protecting w.

3.4 Definition: A set E ⊂ A is self-protected if for each w ∈ E and each w′ ∈ A such that
w′ � w, there exists some w′′ ∈ E such that w′′ � w′. Equivalently, E is self-protected is
E ⊂ U2(E).

Self-protection does not imply either internal or external stability, but is very useful
when combined with either of them. The following proposition, which is an immediate
consequence of the definitions, records the two properties that result.

3.5 Proposition: A set E ⊂ A is externally stable and self-protected if and only if

ESSP) U(E) ⊂ E ⊂ U2(E).

A set E ⊂ A is internally stable and self-protected if and only if

ISSP) E ⊂ U2(E) ⊂ U(E)

We can now show that quasi-legitimacy is completely characterized by external stabil-
ity and self-protection. We first demonstrate the sufficiency of (ESSP) using the Boolean
extension.

3.6 Proposition: Given a pillage game π, let E ⊂ A and let (A × H,�s) denote the
Boolean extension. Define S =

(
U(E) × {0, 1}

)
∪

(
(E\U(E) × {0}

)
. If E is externally

stable and self-protected, then S is stable, and thus E is quasi-legitimate.

Proof: We first show that S is internally stable. Let (w, h), (w′, h′) ∈ S. Suppose by
way of contradiction that (w′, h′) �s (w, h). Then w′ � w and w, w′ ∈ E. Since E is
self-protected, there is some w′′ ∈ E such that w′′ � w′. Therefore w′ �∈ U(E). Hence
w, w′ ∈ E\U(E), so h = h′ = 0. But this contradicts the definition of �s, which requires
h′ = ¬h.
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We now show that S is externally stable. Let (w, h) �∈ S. Then w �∈ U(E). Therefore
there is some w′ ∈ E with w′ � w. If w �∈ E, then (w′, 0) �s (w, h). If w ∈ E, then
w ∈ E\U(E), so h = 1, which also implies that (w′, 0) �s (w, h). Since (w′, 0) ∈ S, this
proves that S is externally stable.

We now complete the characterization of quasi-legitimacy by showing the necessity of
(ESSP).

3.7 Theorem: A set E ⊂ A is quasi-legitimate if and only if E is externally stable and
self-protected.

Proof: Sufficiency is given by Proposition 3.6, so it remains to show necessity. Let (A ×
H,�s) be a social extension with a stable set S satisfying E = {w : (w, h) ∈ S for some
h ∈ H}. We first show that E is externally stable. Let w �∈ E and let h ∈ H. Then
(w, h) �∈ S, so there is some (w′, h′) ∈ S with (w′, h′) �s (w, h). Then w′ ∈ E and w′ � w,
so E is externally stable. To show that E is self-protected, let w ∈ E, w′ ∈ A with w′ � w.
Since w ∈ E, there is some h ∈ H with (w, h) ∈ S. Since w′ � w, there is some h′ with
(w′, h′) �s (w, h). Since S is internally stable, (w′, h′) �∈ S. Since S is externally stable,
there is some (w′′, h′′) ∈ S satisfying (w′′, h′′) �s (w′, h′). Then w′′ ∈ E and w′′ � w′, so
E is self-protected.

Since stable sets necessarily satisfy (ESSP), the following corollary is immediate.

3.8 Corollary: Every stable set is quasi-legitimate.

A pillage game may have many quasi-legitimate sets, but there is always a unique
largest quasi-legitimate set. Moreover, an inductive argument originally used by Roth
(1976) for general abstract games (see also Asilis and Kahn (1992) for further discussion
and applications) gives a procedure for constructing it. For general abstract games, the
process can involve transfinite induction, but the fact that internally stable sets in pillage
games are always finite (Proposition 2.5) implies that the process described below stops in
a finite number of steps.

3.9 Proposition: Given a pillage game π, let G0 = ∅ and let E0 = A. For each integer
t > 0, let Gt = U2(Gt−1) and Et = U2(Et−1). Then for each t ≥ 0, Gt ⊂ Gt+1 ⊂ Et+1 ⊂
Et. Also, for each t, Et = U(Gt) and Gt+1 = U(Et). Moreover, there exists T > 0 such
that Gt = GT and Et = ET for all t > T . In particular,

Gt ⊂ GT ⊂ ET ⊂ Et for all t.

Moreover, GT is internally stable and self-protected, and ET is externally stable and self-
protected.

Proof: Note that for any sets X, X ′ ⊂ A, if X ⊂ X ′ then U(X ′) ⊂ U(X), so U2(X) ⊂
U2(X ′). Since G0 = ∅, G0 ⊂ U2(G0) = G1. Hence by iteration, Gt ⊂ Gt+1 for all t.
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Since G0 = ∅, G0 is internally stable and self-protected. Since the (ISSP) inclusions are
preserved by U2(·), it follows that Gt is internally stable and self-protected for all t. Let
G∗ = ∪tGt. Since each Gt is internally stable and the sequence of sets is increasing, it
follows that G∗ is internally stable. By Proposition 2.5, all internally stable sets are finite,
so G∗ is finite, which implies that G∗ = GT for some integer T .

Since E0 = A, E1 = U2(E0) ⊂ E0. Since U2(·) preserves inclusion, the Et+1 ⊂ Et for
all t. Also, since E0 = A, E0 is externally stable, that is, U(E0) ⊂ E0. Since U2(·) preserves
this inclusion, Et is externally stable for all t. Since ∅ = G0 ⊂ E0 = A, applying the U2(·)
operator successively to this inclusion shows that Gt ⊂ Et for all t. Note that E0 = U(G0).
Hence U(E0) = U2(G0) = G1 and E1 = U2(E0) = U(G1). Hence Et = U(Gt) for all t,
so the required ET is ET = U(GT ). Finally, since ET = ET+1 = U2(ET ), ET is self-
protected.

3.10 Theorem: Given a pillage game π, let E ⊂ A be quasi-legitimate. Then GT ⊂ E ⊂
ET . In particular, ET is the largest quasi-legitimate set.

Proof: Since E is quasi-legitimate, Theorem 3.7 implies that E satisfies (ESSP). We will
prove the result by induction on t. Suppose that for some t, Gt ⊂ E ⊂ Et. Since E is
self-protected, E ⊂ U2(E). Since E ⊂ Et, U2(E) ⊂ U2(Et) = Et+1, so E ⊂ Et+1. Since
E is externally stable and E ⊂ Et, Gt+1 = U(Et) ⊂ E. Thus, if Gt ⊂ E ⊂ Et, then
Gt+1 ⊂ E ⊂ Et+1. Since G0 = ∅ and E0 = A, G0 ⊂ E ⊂ E0, it follows by induction that
GT ⊂ E ⊂ ET . The final assertion follows from the fact that ET satisfies (ESSP).

The following useful corollary is immediate.

3.11 Corollary: If GT = ET , then ET is the unique quasi-legitimate set and also the
unique stable set.

3.12 Corollary: If π satisfies the no-tyranny condition (NT), then A is quasi-legitimate.

Proof: By Proposition 2.4, (NT) implies that the core, U(A), is empty, so the iterative
process terminates at the first step, with ET = E0 = A.

3.13 Definitions: For any set E ⊂ A, define D(E) = {w : w′ � w for some w′ ∈ E}.
Note that D(E) = A\U(E). Let FT = ET \GT , and let BT = A\ET .

3.14 Proposition:

i) BT = D(GT ), and

ii) FT ⊂ D(FT ).

Proof: By Proposition 3.9, ET = U(GT ), so BT = A\U(GT ), which proves (i). By
Proposition 3.9, GT = U(ET ), so FT ⊂ D(ET ). Since FT ∩ D(GT ) = ∅ by (i), it follows
that FT ⊂ D(FT ).
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The decomposition A = GT ∪ BT ∪ FT is due to Asilis and Kahn (1992) for abstract
games. They call GT the “good set,” BT the “bad set,” and FT the “ugly set.” The only
originality in the present Propositions 3.9 and 3.14 is the application of Proposition 2.5 to
conclude that the iterative construction is finite.

The iterative construction of ET can be applied to the three specific pillage games
defined in the preceding section. The majority pillage game with at least three players
satisfies the no tyranny condition, so the entire set of allocations is quasi-legitimate. For
the Cobb-Douglas pillage game, the iteration terminates after the first step, yielding a
large quasi-legitimate set, despite the absence of a stable set for this game. The WIP
game, in contrast, allows no room for quasi-legitimacy beyond the unique stable set.

3.15 Proposition:

a) For the WIP game GT = ET = D.

b) For the majority game with n > 2, ET = A.

c) For the CD game,

ET = {ei : i ∈ I} ∪ {w : wi ≤
p(w) − 1

p(w)
for all i},

where p(w) = #{i : wi > 0}.

Proof: The proof given in (Jordan (2005)) that D is the unique stable set for the WIP
game uses an iterative construction that can be slightly modified to show (a). The majority
pillage game with n > 2 is a special case of Corollary 3.12. For the CD game, if n = 2,
it is immediate that G1 = E1 = {(1, 0), (0, 1), ( 1

2 , 1
2 )}. If n ≥ 3, the core is G1 = U(A) =

{ei : i ∈ I}. An allocation w is undominated by ei if and only if wi ≤ p(w)−1
p(w) , so

E1 = U(G1) = G1 ∪ {w : wi ≤ p(w)−1
p(w) for all i}. Now suppose that n = 3. Then

G2 = U(E1) = G1∪{w : wi = 2
3 and wj = wk = 1

6 for some i, j, k}, and E2 = U(G2) = E1,
so ET = E1. If n > 3, then G2 = U(E1) = G1, so again ET = E1.

The abstract simplicity of the Boolean extension is helpful in characterizing quasi-
legitimacy, but yields little insight about how power can be constrained. The following
more explicit, albeit less general, extension is much easier to interpret. Suppose that each
player can be designated as either a citizen or an outlaw. A social state then consists of
an allocation together with a given designation for each player. The player designations
change with pillage in the following way. If any citizen is pillaged, all players who benefit
from the pillage become outlaws. However, if only outlaws are pillaged, then all players
become citizens. This social norm protects the property of citizens, provided that the
no-tyranny condition is satisfied. Any player who participates in the pillage of a citizen
becomes an outlaw, and is thus left open to pillage by anyone. Of course, even under the
no tyranny condition, it may not be possible for the remaining citizens to pillage all of
the outlaws. For example, in the three-player majority pillage game, suppose that player
1 is a citizen and is pillaged by the coalition of the other two players. Then player 1 will
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need to enlist the aid of one of the two outlaws, say player 2, to get some of his property
back. In this case, player 2 benefits a second time by betraying his fellow outlaw, but this
prospect discourages player 3 from participating in the original pillage.

The citizenship extension, like the Boolean extension, makes the entire set of allo-
cations quasi-legitimate under the no-tyranny condition. However, unlike the Boolean
extension, the citizenship extension is easily modified to make the entire set of allocations
legitimate (Theorem 4.5).

3.16 The citizenship extension: Let H = C and define σ : A×H ×A → H as follows:

σ(w, C;w′) =

⎧⎨
⎩

I\W if L ∩ C �= ∅;
I if L �= ∅ and L ∩ C = ∅;
C if L = ∅,

where W = {i : w′
i > wi} and L = {i : w′

i < wi}.

3.17 Proposition: Let (A × C,�s) be the citizenship extension of a pillage game π. Let
S =

{
(w, C) : {i : wi > 0} ⊂ C

}
. The set S is a stable set if and only if π satisfies the no

tyranny condition (NT).

Proof: First assume that π has an empty core. Let (w, C) ∈ S and let (w′, C ′) be a
social state that dominates (w, C). Let W = {i : w′

i > wi} and L = {i : w′
i < wi}.

Since (w, C) ∈ S, L ⊂ C so C ′ ∩ W = ∅. Then for each i ∈ W , w′
i > 0 and i �∈ C ′, so

(w′, C ′) �∈ S. Thus S satisfies internal stability. Let (w, C) �∈ S. Then wi > 0 for some
i �∈ C. Let C ′ = I\{i} and let w′ satisfy w′

i = 0 and w′
j > wj for each j �= i. Then

(w′, C ′) ∈ S. By (NT), π(C ′, ei) > π({i}, ei), so w′ � w. Hence (w′, C ′) �s (w, C), so S
satisfies external stability.

Now suppose that π does not satisfy (NT), so π(I\{i}, ei) ≤ π({i}, ei) for some i. Then
ei is undominated, so the social state (ei, I\{i}) is undominated. Since (ei, I\{i}) �∈ S, it
follows that S does not satisfy external stability.

4. Legitimacy

Quasi-legitimacy is analytically convenient but conceptually inadequate. Quasi-
legitimate sets have a simple and complete characterization, and there is a finite iterative
procedure that generates the largest quasi-legitimate set. Unfortunately a stable set of a
social extension, unlike a stable set of the basic pillage game, is vulnerable to Harsanyi’s
criticique of the stable set concept (Harsanyi (1974)). To put Harsanyi’s criticique in the
present context, let (A × H,�s) be a social extension, and let S ⊂ A × H be a stable
set. The set S is interpreted as self-enforcing based in part on the following argument. If
(w, h) ∈ S is dominated by some (w′, h′), then since S is internally stable, (w′, h′) �∈ S.
Since S is externally stable, there is some (w′′, h′′) ∈ S that dominates (w′, h′). Since S is
internally stable (w′′, h′′) does not dominate (w, h), so the prospect of moving to (w′′, h′′)
discourages the move to (w′, h′). Harsanyi observed that if the players who benefit from
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the move to (w′, h′) benefit still further, or at least don’t lose anything in the subsequent
move to (w′′, h′′), they will happily force the move to (w′, h′) in order to achieve in two
moves what internal stability prevents them from achieving in one. Of course, the natural
way to resolve this confusion is simply to make the expectation of the subsequent move
from (w′, h′) to (w′′, h′′) explicit for all players.

Harsanyi’s critique of the stable set concept stimulated the development of solu-
tion concepts based on indirect dominance, including notable contributions by Greenberg
(1990), Chwe (1994) and Xue (1998). The work mostly closely related to the present
analysis is that of Konishi and Ray (2003). They model coalition formation as an explicit
dynamic process, in which coalition members form expectations over discounted payoff
streams. As in pillage games, a coalition can form to make a change in the current state,
but cannot make commitments beyond that transition. Whether or not a coalition forms
and what action they take are thus explicitly dependent on the expectations of coalition
members about what subsequent coalitions will form and what actions they will take.
However, the expectations of players outside the coalition are irrelevant, since the set of
actions that are feasible for a given coalition is independent of the expectations of outsiders.
Konishi and Ray formulate their model for abstract games, in which this assumption is
conventional. In pillage games, in contrast, the expectations of outside players are crucial.

For example, consider the three-person wealth-is-power game, at the stable allocation
( 1
2 , 1

4 , 1
4 ). Player 1 has sufficient power to pillage player 2 to obtain the non stable allocation

( 3
4 , 0, 1

4 ), as long as player 3 remains neutral, which is assumed in the definition of the
domination relation �. However, if players expect that the initial pillage will be followed
by the pillage of player 3, resulting in the allocation (1, 0, 0), then player 3 will join with
player 2 to successfully oppose the initial pillage, stabilizing the allocation (1

2 , 1
4 , 1

4 ). More
generally, when a pillage game is extended to incorporate players’ expectations of future
pillages, the neutrality assumption must be recast in terms of the expected final allocation.

For the basic pillage game, in which social information is absent, Jordan (2005, Section
6) shows that stable sets not only survive the Harsanyi critique but can be characterized as
the only sets that do. Unfortunately, the stable sets of social extensions fare much worse.
The vulnerability of the Boolean extension to the Harsanyi critique is pervasive and in some
cases irreparable. The largest quasi-legitimate set for the Cobb-Douglas pillage game is
very large, as described by Proposition 3.15, but Proposition 4.6 below shows that the
Harsanyi critique prevents the existence of any legitimate set.

The citizenship game, as described in the preceding section, has an interesting de-
ficiency that is subject to the Harsanyi critique as well. The recording function σ uses
the allocations w and w′ to identify the pillaging coalition and its victims. If actions are
motivated by the anticipation of subsequent actions, the allocation w′ is only a step on
the way to w′′. The definition of σ allows farsighted players to force an action w′ with
the object of diverting punishment from themselves and enabling themselves to benefit
from the punishment of players they have caused to be wrongly identified as transgres-
sors. For example, consider the three-player majority pillage game at the stable social
state (w, C) = ( 1

3 , 1
3 , 1

3 ; {1, 2, 3}). A pillage resulting in the allocation ( 5
12 , 1

6 , 5
12 ) will iden-

tify players 1 and 3 as outlaws for having pillaged player 2, resulting in the social state
( 5
12 , 1

6 , 5
12 ; {2}). The ensuing punishment will be effected by player 2 colluding with one of
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the outlaws to betray the other outlaw. For example, suppose the expected punishment in-
volves players 1 and 2 pillaging player 3 to produce the social state (1

2 , 1
2 , 0; {1, 2, 3}). This

expectation could be manipulated by players 1 and 2. At the initial allocation (1
3 , 1

3 , 1
3 ),

players 1 and 2 could force player 3 to accept the allocation ( 5
12 , 1

6 , 5
12 ), leading to the even-

tual allocation (1
2 , 1

2 , 0). This sort of manipulation could be excluded by assuming that no
player can be forced to accept more wealth, even temporarily, but that would involve an
additional implicit assumption about the technology of power. Instead, we will rely on the
assumption of complete information to allow the recording function to correctly identify
the coalition that forced an action and the players who unsuccessfully resisted it.

An expectation, which is assumed to be the same for all players, is represented as a
function f : A × H → A × H. We require that f2 = f , so that the step (w, h) �→ f(w, h)
is final. At a state (w, h), suppose that a coalition is considering forcing a move to an
allocation w′. The recording function will generate a new history h′, resulting in the
new social state (w′, h′). Under the expectation f , this may result in a further move to
(w′′, h′′) = f(w′, h′). Thus all players will evaluate the move from (w, h) to (w′, h′) by
comparing w to w′′ rather than w′.

4.1 Definitions: A dynamic extension of a pillage game π consists of a set H and a
recording function δ : A×H×C2×A → H. An expectation is a function f : A×H → A×H
satisfying f2 = f . Since f2 = f , the set f(A × H) is the set of stationary states. Given
an expectation f and states (w, h) and (w′, h′), let (w′′, h′′) = f(w′, h′). The state (w′, h′)
dominates (w, h) in expectation if there exist coalitions F (the forcing coalition) and R
(the resisting coalition) satisfying

i) δ(w, h, F, R, w′) = h′;

ii) F ∩ R = ∅;
iii) π(F, w) > π(R, w); and

iv) F ⊂ {i : w′′
i > wi} and {i : w′′

i < wi} ⊂ R.

Note that if 4.1(ii-iv) are satisfied by F and R, they will remain satisfied if F is
replaced by {i : w′′

i > wi} and R is replaced by {i : w′′
i < wi}.

The concept of domination in expectation is only of interest if the expectations are
fulfilled. The following definition of consistent expectations provides the requisite rational
expectation condition.

4.2 Definitions: An expectation f is consistent if for each (w, h), either

i) f(w, h) dominates (w, h) in expectation; or

ii) (w, h) is undominated in expectation and f(w, h) = (w, δ(w, h, ∅, ∅, w)).

Given a consistent expectation f , the farsighted core is the set of states Kf ⊂ A×H that
are undominated in expectation. If Kf is the farsighted core for a consistent expectation
f , the set {w : (w, h) ∈ Kf for some h ∈ H} is said to be legitimate. Note that since
f2 = f , (i-ii) imply that f(A × H) ⊂ Kf .
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The following result shows that quasi-legitimacy is a necessary condition for legitimacy.

4.3 Proposition: Every legitimate set is also quasi-legitimate.

Proof: Let E ⊂ A be legitimate, and let Kf be the farsighted core for a consistent
expectation f with E = {w : (w, h) ∈ Kf for some h ∈ H}. By Theorem 3.7, it suffices
to show that E is externally stable and self-protected. Let w �∈ E and let h ∈ H. Then
(w, h) �∈ Kf . Then by 4.2(i), f(w, h) = (w′, h′) for some (w′, h′) that dominates (w, h)
in expectation. Since f2 = f , (w′, h′) ∈ Kf , so w′ ∈ E and w′ dominates w, which
proves that E is externally stable. Now let w ∈ E and let w′ dominate w. If w′ �∈ E
then since E is externally stable, there is some w′′ ∈ E that dominates w′. Suppose
w′ ∈ E. Let F = {i : w′

i > wi}, R = {i : w′
i < wi}, and h ∈ H with (w, h) ∈ Kf . Let

h′ = δ(w, h, F, R, w′). Then (w′, h′) �∈ Kf , otherwise (w′, h′) would dominate (w, h) in
expectation. Therefore, as above, there is some w′′ ∈ E that dominates w′.

The following definition adapts the recording function of the citizenship game as re-
quired for a dynamic extension. The resulting version of the citizenship game is then shown
to stabilize the full set of allocations as a farsighted core, provided, as before, that the no
tyranny condition is satisfied.

4.4 Definition: The dynamic citizenship extension is defined as follows. Let H = C and
define δ : A × H × C2 × A → H by

δ(w, C, F, R, w′) =

{
I\F if R ∩ C �= ∅;
I if R �= ∅ and R ∩ C = ∅;
C if R = ∅.

As in Proposition 3.17, let S =
{
(w, C) : {i : wi > 0} ⊂ C

}
.

4.5 Theorem: Let π be a pillage game that satisfies the no tyranny condition (NT). For
the dynamic citizenship extension, define the expectation f : A × H → A × H by

f(w, C) =

⎧⎪⎨
⎪⎩

(w, C) if (w, C) ∈ S;
(w′, I) for some w′ that dominates w and satisfies

{i : w′
i < wi} ⊂ I\C and w′

i = 0 for some i ∈ I\C,
if (w, C) �∈ S.

Then f is consistent and S is the farsighted core. In particular, the entire set A is legitimate.

Proof: We first show that f is a well-defined expectation. By the definition of S, (w, I) ∈ S
for all w, so f2 = f . Second, let (w, C) �∈ S. We need to show that the allocation w′

required in the definition of f exists. Since (w, C) �∈ S, there is some io with wio > 0
and io �∈ C. Let w′ = (w1 + wio

n−1 , . . . , wio−1 + wio

n−1 , 0, wio+1 + wio

n−1 , . . . , wn + wio

n−1 ). Since
π satisfies (NT), w′ dominates w, and w′ clearly satisfies the other required properties as
well. Therefore f is a well-defined expectation.
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We now show that states in S are undominated in expectation. Let (w, C) ∈ S
and (w′, C ′) ∈ A × C. First suppose that (w′, C ′) ∈ S. Then (w′, C ′) cannot domi-
nate (w, C) in expectation, since (w′, C ′) is stationary, and since (w, C) ∈ S, if w′ dom-
inates w then {i : w′

i < wi} ⊂ C, so by the definition of δ, (w′, C ′) �∈ S. Now sup-
pose (w′, C ′) �∈ S and suppose by way of contradiction that (w′, C ′) dominates (w, C)
in expectation. Since (w′, C ′) �∈ S, f(w′, C ′) dominates (w′, C ′) in expectation and
f(w′, C ′) ∈ S. Let (w′′, C ′′) = f(w′, C ′). Since (w′, C ′) dominates (w, C) in expecta-
tion, C ′ = δ(w, C, F, R, w′),where F ⊂ {i : w′′

i > wi} and {i : w′′
i < wi} ⊂ R. Since

(w, C) ∈ S, R ∩ C �= ∅, so by the definition of δ, I\F = C ′. Since π(F, w) > π(R, w),
F �= ∅. Then , by the definition of f , there is some i ∈ F with w′′

i = 0, which contradicts
the requirement that F ⊂ {i : w′′

i > wi}, and proves that all states in S are undominated
in expectation.

Let (w, C) �∈ S. We will complete the proof by showing that f(w, C) dominates (w, C)
in expectation. Let (w′, I) = f(w, C). Then (w′, I) is stationary and w′ dominates w. Let
F = {i : w′

i > wi} and R = {i : w′
i < wi}. Then I = δ(w, C, F, R, w′), so (w′, I) dominates

(w, C) in expectation.

If a pillage game π fails to satisfy the no tyranny condition, then the expectation
f in Theorem 4.5 is not well-defined. In particular, if π({i}, ei) ≥ π(I\{i}, ei), then
the required allocation w′ in the definition of f(ei, ∅) does not exist. Moreover, for any
consistent expectation, the social state (ei, ∅) is undominated in expectation, so S cannot
be a farsighted core.

The following result shows that the Cobb-Douglas pillage game with more than two
players has no legitimate sets. This result also implies that quasi-legitimacy is not sufficient
for legitimacy.

4.6 Proposition: For the CD game with n > 2, no legitimate set exists.

Proof: We will show there does not exist a consistent expectation for the Cobb-Douglas
game with more than two players. Let w ∈ ET satisfy

(∗) w1 ≥ w2 ≥ · · · ≥ wn > 0, w1 =
n − 1

n
, and

1
n

> w2 >
n − 2

n(n − 1)
.

Then π({1}, w) = π({2, . . . , n}, w) and π({2}, w) > π({3, . . . , n}, w). Let w′ ∈ ET

also satisfy (∗) with w′
2 > w2 and Σi>2w

′
i < wn. Let F = {2} and R = {3, . . . , n}.

Suppose by way of contradiction that f is a consistent expectation for some dynamic
extension. Let h ∈ H, and let h′ = δ(w, h, F, R, w′). We will first show that (w′, h′)
dominates (w, h) in expectation. If f(w′, h′) = (w′, h′), this is immediate, since w′ � w
and h′ = δ(w, h, F, R, w′). Suppose instead that f(w′, h′) = (w′′, h′′) �= (w′, h′). Then
since f2 = f , f(w′′, h′′) = (w′′, h′′), so (w′′, h′′) is an element of the farsighted core and
w′′ � w′. By Proposition 4.3 and Theorem 3.10, w′′ ∈ ET . Then Proposition 3.15, together
with the fact that w′′ � w′, implies that w′′ also satisfies (∗), with w′′

2 ≥ w′
2 > w2 and

w′′
i < Σj>2w

′
j < wi for all i > 2. Since h′ = δ(w, h, F, R, w′), this again shows that (w′, h′)

15



dominates (w, h) in expectation. If (w′, h′) = f(w′, h′) then since f is consistent, (w′, h′)
is undominated in expectation. However, since w′ satisfies (∗), the above argument can be
repeated to construct a state (w′′′, h′′) that dominates (w′, h′) in expectation. Therefore
(w′′, h′′) = f(w′, h′) �= (w′, h′) and (w′′, h′′) is in the farsighted core. However, w′′ also
satisfies (∗), so (w′′, h′′) is also dominated in expectation, which proves that f is not a
consistent expectation.

A stable set of a pillage game is shown to be a farsighted core in Jordan (2005, Section
6). The trivial dynamic extension, H = {0}, extends this result to show that every stable
set of a pillage game is legitimate. For this reason, the nonexistence of a legitimate set in
the Cobb-Douglas game also implies the nonexistence of a stable set.

The following definition strengthens the ESSP condition to the concept of dynamic
protection, which will be shown to characterize legitimate sets.

4.7 Definition: A set E ⊂ A is internally dynamically protected (IDP) if for each w, w′ ∈ E
and any coalitions F, R satisfying

i) F ∩ R = ∅;
ii) π(F, w) > π(R, w); and

iii) F ⊂ {i : w′
i > wi} and {i : w′

i < wi} ⊂ R,

there exists w′′ ∈ E satisfying

iv) w′′ � w′; and

v) either F �⊂ {i : w′′
i > wi} or {i : w′′

i < wi} �⊂ R.

Note that (i-iii) imply that w′ � w. A set E ⊂ A is externally dynamically protected (EDP)
if E is externally stable and for each w ∈ E, w′ �∈ E and any coalitions F , R satisfying (i)
and (ii), there exists w′′ ∈ E satisfying (iv) and (v).

The reason for splitting dynamic protection into IDP and EDP is that the latter
property is automatically satisfied by the largest quasi-legitimate set, as is shown below.

4.8 Proposition: For any pillage game π, the set ET is externally dynamically protected.

Proof: Given a pillage game π, let w ∈ ET and let w′ �∈ ET , that is, w′ ∈ BT . By
Proposition 3.14(i), there is some w′′ ∈ GT ⊂ ET satisfying w′′ � w′. In particular, ET is
externally stable. By Proposition 3.9, ET = U(GT ), so w′′ �� w. Therefore all coalitions
F and R satisfying 4.7(i) and 4.7(ii) must also satisfy 4.7(v).

Dynamic protection supports legitimacy by enabling the punishment of illegitimate
pillages. Internal dynamic protection enables the construction of punishments for illegit-
imate pillages within the set E. Let w ∈ E and let (w, h) be a “legitimate” social state.
Suppose that a coalition is contemplating a pillage to an allocation w′ ∈ E. The recording
function will generate a new history h′ that identifies the pillage as illegitimate. The new
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history h′ will also record the original allocation w, the coalition F that forced the move
to w′ and the coalition R that unsuccessfully resisted it. IDP allows an appropriate pun-
ishment to be constructed as follows. First suppose F �⊂ {i : w′

i > wi}. This means that
some players in F were looking ahead to a subsequent allocation w′′. These players can
be punished, and the pillage discouraged, by stabilizing the allocation w′ as legitimate. In
this case f(w′, h′) = (w′, h′′) where h′′ marks the social state (w′, h′′) as legitimate and
thus stationary. On the other hand, if {i : w′

i < wi} �⊂ R, then some players chose not to
resist the move to w′ because they expected a further move to an allocation w′′. Again,
such players can be punished, and the pillage discouraged, by legitimizing the allocation
w′. Finally, suppose that F ⊂ {i : w′

i > wi} and {i : w′
i < wi} ⊂ R. Then the new history

h′ will mark the allocation w′ as illegitimate, leading to a subsequent move to an allocation
w′′ ∈ E with w′′ � w′ and either F �⊂ {i : w′′

i > wi} or {i : w′′
i < wi} �⊂ R, the existence of

which is ensured by IDP. If the allocation w′ �∈ E, then punishment by legitimizing w′ is
not an option, so a punishing move to an allocation w′′ ∈ E is required. In this case, the
existence of the requisite w′′ is ensured by EDP.

4.9 Theorem: For any pillage game π, a set of allocations is legitimate if and only if it is
dynamically protected.

Proof: We first prove sufficiency. Given a pillage game π, suppose that E ⊂ A is dynam-
ically protected. Define a dynamic extension of π as follows. Let H = {(wo, F o, Ro, �) ∈
A×C2×{0, 1} : either F o = Ro = ∅ and � = 0, or F o∩Ro = ∅ and π(F o, wo) > π(Ro, wo)}.
In defining δ : A × H × C2 × A → H, it suffices to consider only points (w, h, F, R, w′)
satisfying either F = R = ∅ and w′ = w, or F ∩ R = ∅, π(F, w) > π(R, w) and w′ �= w,
since these are the only two cases that will arise. Let

δ(w;wo, F o, Ro, �;F, R, w′) =

⎧⎪⎨
⎪⎩

(w, F, R, 1) if w′ �= w, w ∈ E, and � = 0;
(w, F, R, 1) if w′ �= w, w, w′ ∈ E, � = 1, and either

F o �⊂ {i : wi > wo
i } or {i : wi < wo

i } �⊂ Ro;
(w′, ∅, ∅, 0) otherwise.

Now define an expectation f as follows. Let (w, h) = (w;wo, F o, Ro, �) ∈ A × H.
First suppose that w �∈ E. If wo ∈ E, F o ∩ Ro = ∅, and π(F o, wo) > π(Ro, wo), then
since E is EDP, there exists w′ ∈ E satisfying w′ � w and either F o �⊂ {i : w′

i > wo
i } or

{i : w′
i < wo

i } �⊂ Ro. Let f(w, h) = (w′;w′, ∅, ∅, 0). Otherwise, let f(w, h) = (w′;w′, ∅, ∅, 0)
for any w′ ∈ E, with w′ � w. Such a w′ exists since w �∈ E and E is EDP, and therefore
externally stable.

Now suppose that w ∈ E. If w = wo or � = 0, let f(w, h) = f(w;w, ∅, ∅, 0). Suppose
that w �= wo, � = 1, F o ∩Ro = ∅ and π(F o, wo) > π(Ro, wo). If either F o �⊂ {i : wi > wo

i }
or {i : wi < wo

i } �⊂ Ro, then let f(w, h) = f(w;w, ∅, ∅, 0). Otherwise, there exists w′ ∈ E
satisfying w′ � w and either F o �⊂ {i : w′

i > wo
i } or {i : w′

i < wo
i } �⊂ Ro. The existence of w′

follows from IDP if wo ∈ E and EDP otherwise. In this case, let f(w, h) = (w′;w′, ∅, ∅, 0).
To see that f2 = f , observe that for every (w, h), f2(w, h) = f(w′;w′, ∅, ∅, 0) =

(w′;w′, ∅, ∅, 0) for some allocation w′. Therefore f is a well-defined expectation.
To show that f is consistent, for any (w, h) let (w′, h′) = f(w, h). In each case

that w′ �= w, the definition of f ensures that w′ � w and h′ = δ(w, h, F, R, w′), where
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F = {i : w′
i > wi} and R = {i : w′

i < wi}. Since f(w′, h′) = f2(w, h) = (h′, w′), it follows
that (w′, h′) dominates (w, h) in expectation. Now suppose f(w, h) = (w;w, ∅, ∅, 0). We
need to show that (w, h) is undominated in expectation. Suppose by way of contradiction
that there is some (w′, h′) that dominates (w, h) in expectation. Let (w′′, h′′) = f(w′, h′)
and let F and R be the forcing and resisting coalitions, respectively, given by Definition
4.1. Since (w, δ(w, h, ∅, ∅, w)) = f(w, h), it follows that w ∈ E. If w′ �∈ E then by
the definition of f , w′′ ∈ E, and either F �⊂ {i : w′′

i > w} or {i : w′′
i < wi} �⊂ R in

contradiction to 4.1(iv). Hence w′ ∈ E. If w′ = w, then h′ = δ(w, h, F, R, w) = (w, ∅, ∅, 0),
so f(w′, h′) = (w, h′) = (w′′, h′′), so w′′ �� w, contradicting 4.1(iii,iv). Hence w′ �= w, and
w, w′ ∈ E. First suppose that � = 0. Then h′ = δ(w, h, F, R, w′) = (w, F, R, 1). If either
F �⊂ {i : w′

i > wi} or {i : w′
i < wi} �⊂, then (w′′, h′′) = f(w′, h′) = (w′, (w′, ∅, ∅, 0)), which

contradicts 4.1(iv). On the other hand, if F ⊂ {i : w′
i > wi} and {i : w′

i < wi} ⊂ R,
then, by the above definition of f , either F �⊂ {i : w′′

i > wi} or {i : w′′
i < wi} �⊂ R, which

again contradicts 4.1(iv). Hence � = 1. Since f(w, h) = (w;w, ∅, ∅, 0), it follows from the
definition of f that either F o �⊂ {i : wi > wo

i } or {i : wi < wo
i } �⊂ Ro (this includes the

case w = wo, since � = 1 implies that F �= ∅). Since w′ �= w, the definition of δ implies
that h′ = (w, F, R, 1). Then repeating the argument for the case � = 0 again contradicts
4.1. This proves that f is a consistent expectation.

It remains to show that E = {w : (w, h) ∈ Kf for some h}. Since Kf = f(A × H) =
{(w, h) : w ∈ E and h = (w, ∅, ∅, 0)}, the result follows. This proves sufficiency.

To prove necessity, let E ⊂ A and let π be a pillage game for which E is legitimate.
Let (H, δ) be a dynamic extension and let f be a consistent expectation satisfying E = {w :
(w, h) ∈ Kf}. First let w �∈ E and let h ∈ H. Then (w, h) �∈ Kf . Let (w′, h′) = f(w, h).
Then (w′, h′) ∈ Kf , so w′ ∈ E and (w′, h′) dominates (w, h) in expectations, so w′ � w,
which implies that E is externally stable. Let w ∈ E and let h ∈ H with (w, h) ∈ Kf .
Let w′ ∈ A, let coalitions F and R satisfy 4.7(i,ii), and let h′ = δ(w, h, F, R, w′). Let
(w′′, h′′) = f(w′, h′). Since (w, h) ∈ Kf , (w′, h′) does not dominate (w, h) in expectation.
First suppose that w′ ∈ E and that F and R satisfy 4.7(iii). Then w′ � w. Since (w′, h′)
does not dominate (w, h) in expectation, w′′ �= w′ and 4.7(v) is satisfied. Since f is
consistent and w′′ �= w′, w′′ � w′, so 4.7(iv) is satisfied. This proves E is IDP. Finally,
suppose that w′ �∈ E. Since (w′′, h′′) ∈ f(A × H) = Kf , it follows that w′′ ∈ E and
w′′ �= w′. Since f is consistent w′′ � w′, so 4.7(iv) is satisfied, and since (w′, h′) does not
dominate (w, h) in expectation, 4.7(v) is satisfied. This proves E is EDP.

The following corollary is an immediate consequence of the Theorem and Proposition
4.8.

4.10 Corollary: For any pillage game π, the set ET is legitimate if and only if it is
internally dynamically protected.
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