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Abstract

We propose a two-person game-theoretical model to study information sharing decisions

at an interim stage when information is incomplete. The two agents have pieces of private

information about the state of nature, and that information is improved by combining

the pieces. Agents are both senders and receivers of information. There is an institutional

arrangement that fixes a transfer of wealth from an agent who lies about her private

information. In our model we show that (i) there is a positive relation between information

revelation and the amount of the transfers, (ii) information revelation has a collective

action structure, in particular, the incentives of an agent to reveal are decreasing with

respect to the amount of information disclosed by the other.
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1. Introduction

Consider a two-person game in which each agent has some private payoff-relevant infor-

mation, the combination of the pieces of information being consistent with the true state

and refining the information of each agent. Each agent sends a message to the other and

they take an action after drawing inferences from the messages received. Many economic

encounters under incomplete information are characterized by this kind of informational

exchange between the agents before they decide their actions. The decision over messages

changes the priors of the agents who receive them so that an agent with such a possi-

bility of affecting the beliefs of the others will choose strategically the amount of private

information that she discloses.

The purpose of this paper is two-fold. First, we develop a game-theoretical framework

to study, in a tractable manner, the problem described above. Second, we use the model

to obtain insights on strategic information sharing in an environment of conflict.

We should be interested in this problem since, as has been extensively analyzed, many

economic phenomena are driven by how incomplete is the information available to the

agents, and in many situations that is determined ultimately by their decisions on infor-

mation sharing.

Most of the models on strategic information sharing used in applications (see, for ex-

ample, Gal-Or [6], Li [11], Millon and Thakor [12], Pagano and Jappelli [14], Raith [15],

and Shapiro [17]) assume that agents decide first on an informational regime and, after

that, they get to know their private information, i.e., they consider that agents make

ex-ante calculations of expected payoffs. Thus, agents are supposed not to know their

private information before they decide on its revelation. Instead, we are interested in the

question of interim information revelation; an essential feature of our model is that it

allows agents to condition their decisions about information revelation on their realized

private information.

We propose a model in which two agents have to choose one out of four possible paths,

one of which leads to a prize. A path consists of two coordinates, and, initially, each

agent knows a coordinate of the correct path. Before deciding over paths, the agents are

asked to name the coordinate they know, i.e., their private information. Messages are sent

simultaneously, and actions too are taken simultaneously. An agent obtains utility from

both her decision over paths and her choice over messages. The utility obtained by the

agents if both find the prize is strictly smaller than that which accrues when only one

of them finds it, i.e., the model captures a “competitive” environment. Also, we consider

costs of lying by assuming that an agent has to pay a non-negative penalty to the other

if she “declares” not the coordinate she knows. This provides us with a game in which

agents are allowed to condition their actions on the messages they receive, and in which

payoffs depend on both messages and actions; our model is related to those of signaling1

and cheap talk.2

1See, e.g., Rothschild and Stiglitz [16], Spence [18], and Wilson [19].
2The seminal work on cheap talk is due to Crawford and Sobel [5]. A characterization of equilibria for

a general class of cheap talk games has been provided recently by Aumann and Hart [1].
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Our results show the existence of key features of the problem of information sharing

that cannot be analyzed by using a standard signaling game with a one-way flow of

information. We use sequential equilibrium as solution concept. Under mild assumptions

on the fundamentals of the model, equilibria in which agents reveal in a symmetric way

are characterized in Section 3. We obtain that the incentives of the individuals to reveal

information are increasing with respect to the amount of the penalties. In Section 4 we

analyze equilibria in which the agents transmit their private information in a asymmetric

way. Under slightly stronger assumptions on priors, we show that there is a class of

equilibria such that an agent is more willing to provide information as her opponent

reveals less, Proposition 5 combined with the results in Section 3. This suggests that

the fact that the flow of information is bilateral plays an important role in shaping the

decisions on information revelation. The important point is that the incentives of an

agent to disclose her information do not depend only on exogenous costs (as has been

traditionally studied by the signaling literature), but are also affected by the information

revelation decisions of the other.

The model presented belongs to a class of models, of importance for research in game

theory, that analyze strategic interactions under incomplete information; the decision vari-

able subject matter of our model is the information that the agents provide. In principle,

the exercise is not easy as agents update their priors by using the information that they

receive and this must be taken into account to compute the effects induced on payoffs by

possible strategy deviations. As a consequence, analyzing a model with a more general

specification than ours of possible “states” and/or of the information structure might be

a extremely complicated task since, even for a finite state space, the number of informa-

tion sets at which the agents decide on information transmission, each of them containing

possibly many nodes, may be too large. Therefore, it is not evident that the use of belief-

based backwards induction solution concepts, such as sequential equilibrium, can, in fact,

be managed. We wanted to work with a theoretical structure that be the the simplest one

that allows for (i) a bilateral exchange of information and (ii) certain “homogeneity” in

the asymmetries of information, and that sets in a neat way the source of conflict and

all the relevant incentives of the agents to reveal their information. It can be viewed as a

paradigm for gaining at least preliminary insights into the analysis of information sharing

in situations of conflict. At a more applied level, the results obtained by analyzing the

model in this paper provide insights in a wide range of situations at which two agents

who face a common problem decide on information sharing, search activities being the

most prominent example.

In terms of generalizations, in a model with more than four possible paths, our con-

clusions will continue to apply as the incentives of the agents to reveal their information

would remain unaffected. Such generalizations allow for a broader set of equilibria and,

so long as the combination of the pieces of private information is not sufficient to know

the actual state, they also obscure the source of conflict thus making the problem less

interesting.
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The rest of the paper is organized as follows. Section 2 presents the model and describes

its relation to the literature. In Section 3 we present and discuss our main results on

symmetric information revelation. Section 4 deals with asymmetric information revelation,

and Section 5 concludes with a discussion of the results. The proof of Lemma 1 is relegated

to the Appendix.

2. The Model

Let Γ denote the information sharing game described as follows. There are two agents

i ∈ I := {1, 2}, and there is a set of “paths,” one of which yields a prize. A path is a pair

of coordinates s = (s1, s2) ∈ S and corresponds to a state of nature; therefore, S denotes

the state space that we consider. Each agent i ∈ I starts off by knowing the respective

coordinate si of the “correct” path, and that constitutes her initial private information.

Let S i denote the type space of agent i which we specify by S i := {0, 1} for both i ∈ I.

Accordingly, we specify S := S1 × S2. Each agent will make the decision of choosing a

path from S.

The game is played in three consecutive phases (t = 0, 1, 2). In phase 0 a state s ∈ S is

picked at random according to a probability vector π := ((π(s))s∈S) ∈ R4
++ that specifies

the (common) prior beliefs of agents, and, accordingly, every agent learns her type si ∈ S i.

The two agents are both senders and receivers of information; in phase 1 each agent i ∈ I
sends to the other a message, mi ∈ M i ≡ S i, consisting of the name of one of her possible

types. In phase 2, after processing the information obtained through messages, each agent

i ∈ I chooses an action, ai ∈ A ≡ S, i.e., one of the paths available in S. Messages are

sent simultaneously and actions are chosen simultaneously too. The rules of the game Γ

are commonly known between the two agents, and perfect recall is assumed, i.e., at each

phase, every agent knows what she previously did and what she previously knew.

The utility of each agent is determined by two sources. First, the utility of an agent

depends on whether the path she chooses leads to the prize, and on whether she is the

only one who “finds” the prize. An agent i who finds the prize obtains either its entire

value, which is normalized to 1, if she is the only one who finds it, or some positive amount

smaller than its value, zi ∈ (0, 1), if both find it. An agent who “follows” a path that does

not lead to the prize receives nothing. Second, we let the utility of an agent depend also

upon the combination of messages sent by assuming that an agent i who “declares” a

type that differs from her actual one has to pay a penalty qi ≥ 0 to the other.

Let M := M1 ×M2 and A := A× A. A combination of messages, and a combination

of actions, are denoted, respectively, by m ∈ M, and by a ∈ A. As usual, the profile of

the agent other than i will be denoted by the corresponding superscript −i.

Let vi(a, s) and ci(mi, s) denote the functions that describe formally the payoff that

accrue to agent i, respectively, from the combination of actions, and from her choice over

messages. Then the utility of agent i is given by a function ui : M×A × S → R such

that

ui(m, a, s) = vi(a, s)− ci(mi, s) + c−i(m−i, s),
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which is specified by

vi(a, s) :=

 1 if ai = s 6= a−i

zi if ai = s = a−i

0 if ai 6= s,

and by

ci(mi, s) :=

{
qi if mi 6= si

0 if mi = si.

Thus, each agent wishes to deduce the type of the other from the received message, and

mutual gains to information sharing exist since zi > 0 for all i ∈ I. Yet both agents

have an incentive to mislead the other as zi < 1 for all i ∈ I; i.e., the model captures a

situation of conflict of interests. A source of tension appears in the game from that an

agent incurs a penalty by lying. In some economic and/or social contexts, it is natural to

think that these costs reflect the existence of an institutional arrangement or social code

that punishes agents who transmit false information or “manipulate.”

We set z := (z1, z2) and q := (q1, q2).

A behavior strategy for agent i consists of a pair (σi, αi), where σi : S i×M i → [0, 1] is a

function such that
∑

mi σi(si, mi) = 1 for all si ∈ S i with the interpretation that σi(si, mi)

is the probability that i sends message mi if she is of type si. Also, αi : S i×M×A → [0, 1]

is a function such that
∑

ai αi(si, m, ai) = 1 for all (si, m) ∈ S i×M with the interpretation

that αi(si, m, ai) is the probability that i chooses action ai if she is of type si upon the

message combination m.

Beliefs over states of agent i at phase 0 are formally given by a function pi : S → [0, 1]

where pi(s) denotes the probability that agent i assigns to s = (si, s−i) being the true

state given that she is of type si. Also, a belief function for agent i at phase 1 is a function

µi : S×M−i → [0, 1] where µi(s, m−i) denotes the probability that i assigns to s = (si, s−i)

being the actual state given that she is of type si and receives message m−i.

Let σ := (σ1, σ2), α := (α1, α2), p := (p1, p2), and µ := (µ1, µ2).

For si ∈ S i define r(si) :=
∑es−i π((si, s̃−i)), the prior marginal probability that agent

i be of type si. We assume that a belief function at phase 0 must be consistent with the

“strategy” of Nature and therefore, for every i ∈ I, we specify pi(s) := π(s)/r(si) for all

s = (si, s−i) ∈ S.

For a strategy combination (σ, α), and a belief function µi, let U i(σ, α, µi; si, m) denote

the expected utility of i conditioned on being at decision node (si, m). Analogously, for

(σ, α), and a belief function pi, let U i(σ, α, pi; si) denote the expected utility of i condi-

tioned on being at decision node si. We have

U i(σ, α, µi; si, m) :=
∑
s−i

µi(s, m−i)
∑
ai

∑
a−i

αi(si, m, ai)α−i(s−i, m, a−i)ui(m, a, s),

(2.1)

and

U i(σ, α, pi; si) :=
∑
s−i

pi(s)
∑
mi

∑
m−i

σi(si, mi)σ−i(s−i, m−i)U i(σ, α, µi; si, m). (2.2)
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The equilibrium concept that we shall employ is that of sequential equilibrium due to

Kreps and Wilson [10], which is a Nash equilibrium in the behavior strategies such that

the strategy of every agent, for the beliefs that she uses, is a best response to the strategy

of the other, and such that those beliefs are consistent in the sense that (i) they are

derived from strategies using Bayes’ rule, and (ii) they are robust to slight perturbations

of strategies that induce that the agents choose completely mixed strategies.

Proposition 1. The behavior strategies (σ∗, α∗) and the system of beliefs µ∗ constitute

a sequential equilibrium of Γ if for every i ∈ I:

(i) for every si ∈ S i;

σi∗ ∈ arg maxσiU i(σi, σ−i∗, α∗, pi; si), (2.3)

(ii) for every (si, m) ∈ S i ×M;

αi∗ ∈ arg maxαiU i(σ∗, αi, α−i∗, µi∗; si, m), (2.4)

(iii) for every ((si, s−i), m−i) ∈ S ×M−i such that
∑es−i σ−i∗(s̃−i, m−i)π((si, s̃−i)) > 0;

µi∗((si, s−i), m−i) = σ−i∗(s−i, m−i)π((si, s−i))
/∑

es−i

σ−i∗(s̃−i, m−i)π((si, s̃−i)). (2.5)

Proof. It suffices to prove that strategies and beliefs are consistent in the sense of

sequential equilibrium. To do so, consider a (σ∗, α∗, µ∗) that satisfies (2.3)-(2.5), and a

sequence {σn} such that, for every i ∈ I, (a) σi
n(si, mi) > 0 for all (si, mi) ∈ S i×M i, and

(b) {σi
n} → σi∗. Let {µn} be a sequence specified, for every i ∈ I, by

µi
n((si, s−i), m−i) := σ−i

n (s−i, m−i)π((si, s−i))
/∑

es−i

σ−i
n (s̃−i, m−i)π((si, s̃−i))

for all ((si, s−i), m−i) ∈ S×M−i, which is well defined since
∑es−i σ−i

n (s̃−i, m−i)π((si, s̃−i)) >

0 for all m−i ∈ M−i and for every i ∈ I, given (a) above. From (b) we obtain that

{µn} → µ∗, and this completes the proof.

Remark 1. We note that a strategy combination (σ, α) and a system of beliefs µ that do

not satisfy the sequential rationality conditions in (2.3) and (2.4) fails to be a sequential

equilibrium of Γ.3

Definition 1. Let (σ∗, α∗) be the strategy combination of a sequential equilibrium of

Γ. We say that agent i reveals completely at equilibrium if σi∗(si, si) = 1 for all si ∈ S i. We

say that agent i pools at equilibrium if there is a message m̂i ∈ M i such that σi∗(si, m̂i) = 1

for all si ∈ S i. We say that agent i reveals partially at equilibrium if there is a type ŝi ∈ S i

such that (i) σi∗(ŝi, ŝi) = 1, and (ii) σi∗(s̃i, ŝi) = λ ∈ (0, 1) for the type {s̃i} := S i \ {ŝi}.

Our model departs from a substantial part of the literature on strategic information

provision (see, for example, Crawford and Sobel [5], and Green and Stokey [7]) in that

lying is costly, and in that the agents who decide over actions are both senders and

receivers of information. It also departs from the burned money models (see, for example,

3More precisely, conditions (2.3) and (2.4) must be necessarily satisfied by a perfect Bayesian Nash
equilibrium of Γ.
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Austen-Smith and Banks [2]) principally in the nature of its signaling costs. Burned money

models have costs which are independent of the private information of the agents, but

which are also endogenously chosen by the sender so that the receiver can potentially infer

some information about the type of her opponent by observing such costs, which allows

for equilibria more informative than in a pure cheap talk framework.

There is a certain parallel between our approach and that followed by Okuno-Fujiwara,

Postlewaite, and Suzumura [13] as they too deal with strategic information sharing at

an interim stage. Their emphasis is in providing sufficient conditions on the information

and game structure under which fully revelation corresponds to a sequential equilibrium.

Important differences with our model are in assuming that the set of types of each agent

is an ordered one, and that only “truthful” messages are taken into account to revise

beliefs. More recently, Koessler [9] considers a model of information sharing at an interim

stage for a class of Bayesian games played at a subsequent stage; he assumes that agents

only reveal “truthful” information which is the crucial difference between his approach

and ours.

Our model is also related to that of Kartik [8], who studies a sender-receiver game

with a one-way flow of information and costs of misreporting which depend on the private

information of the sender. He assumes that, below a given bound, costs are endogenously

chosen by the sender and obtains, using a refinement criterion due to Bernheim and

Severinov [3], insights similar to ours regarding the existence of a positive relation between

information revelation and the amount of the costs.

3. Symmetric Information Revelation

This section analyzes the existence of equilibria in our model in which the agents reveal in a

symmetric way, and characterizes them. We provide necessary and sufficient conditions on

z and q for the existence of equilibria in which both agents pool and of equilibria in which

both agents reveal completely. It is shown that sufficiently high costs of lying are required

for complete revelation of information,4 and that equilibria in which the agents transmit

no information exist for low costs. Also, we characterize the existence of a robust class of

symmetric equilibria in which both agents reveal partially for a set of intermediate costs

under which neither symmetric non-informative equilibria nor symmetric totally revealing

equilibria exist.

As a first step to solving the game Γ we assume that rationality is common knowledge

and, therefore, strictly dominated strategies will not be considered. Then, given the earlier

specification of vi, equation (2.1) can be rewritten as

U i(σ, α, µi; si, m) = V i(α, µi; si, m) + H i(σ, µi; si, m), (3.1)

4In a context without exogenous costs, Okuno-Fujiwara, Postlewaite, and Suzumura [13] showed that
the conditions that ensure information revelation at equilibrium are quite restrictive. While they require
that agents can only reveal true messages, in our model the penalties serve the incentives of the agents
to transmit truthful information.
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where

V i(α, µi; si, m) :=
∑
s−i

µi(s, m−i)αi(si, m, s)[1− (1− zi)α−i(s−i, m, s)] (3.2)

is the function that specifies the expected payoff of i at (si, m), under beliefs µi, due to

the choices over actions α, and

H i(σ, µi; si, m) :=
∑
s−i

µi(s, m−i)[−ci(mi, s) + c−i(m−i, s)] (3.3)

specifies her expected cost at (si, m), using beliefs µi, as a consequence of the choices over

messages σ.

Proposition 2. There exists a sequential equilibrium of Γ such that both agents reveal

completely if and only if qi ≥ [1− zi] for all i ∈ I.

Proof. The outline of the proof is as follows. Given a strategy combination such that

both agents reveal completely, and given a system of beliefs consistent with such strategies

in the sense of equation (2.5), if an agent i ∈ I deviates to any other choice over messages

then the beliefs of −i must be such that, upon hearing the name of a type, she “thinks”

that the sender is indeed of that type. Since such a deviation must imply that at least

one type of the deviant sends the message that differs from the actual type, then every

type of the opponent will optimally choose a path different from the true one at phase

2. So the deviant obtains the entire prize, of value 1, and the increase in vi amounts to

1− zi at every state which occurs with positive probability. Yet she also suffers a loss in

utility which equals qi due to the cost of lying. Thus we obtain that every agent i ∈ I
finds profitable not to deviate from revealing completely so long as the net benefits from

such a deviation, [1− zi]− qi, are non-positive.

Formally, let (σ∗, α∗, µ∗) be such that α∗ satisfies (2.4) for µ∗, µ∗ satisfies (2.5) for σ∗,

and σi∗(si, si) = 1 for all si ∈ S i for every i ∈ I. For a given agent i ∈ I consider an

arbitrary deviation σ̃i from σi∗. Then, we must have that σ̃i(ŝi, m̃i) > 0 for some type

ŝi ∈ S i and for the message {m̃i} ≡ {s̃i} := S i \ {ŝi}. From (2.5) the beliefs of −i, upon

hearing m̃i, when agent i is of type ŝi and agent −i is of type s−i so that the actual state

is (ŝi, s−i), are given by

µ−i∗((ŝi, s−i), m̃i) = 0π((ŝi, s−i))
/

[0π((ŝi, s−i)) + 1π((s̃i, s−i))] = 0,

and, therefore, by using equation (2.2), we obtain the expected utility of the deviant when

she is type ŝi,

U i(σ̃i, σ−i∗, α∗, pi; ŝi) =
∑
s−i

pi((ŝi, s−i))σ̃i(ŝi, m̃i)U i(σ̃i, σ−i∗, α∗, µi∗; ŝi, (m̃i, s−i))

+
∑
s−i

pi((ŝi, s−i))
[
1− σ̃i(ŝi, m̃i)

]
U i(σ̃i, σ−i∗, α∗, µi∗; ŝi, (ŝi, s−i))

= σ̃i(ŝi, m̃i)[1− qi] +
[
1− σ̃i(ŝi, m̃i)

]
zi,

so that

U i(σ∗, α∗, pi; ŝi)− U i(σ̃i, σ−i∗, α∗, pi; ŝi) =
8



zi −
[
σ̃i(ŝi, m̃i)[1− qi] +

[
1− σ̃i(ŝi, m̃i)

]
zi

]
= σ̃i(ŝi, m̃i)

[
qi − [1− zi]

]
≥ 0

⇔ qi ≥ [1− zi]

as σ̃i(ŝi, m̃i) > 0.

The proof follows by noting that ŝi was arbitrarily chosen, and that a deviation from

σi∗ only affects the expected utility of agent i when she is of the type that sends not the

true message.

Remark 2. Proposition 2 must be interpreted with due care since, for i ∈ I, trivially,

[1− zi] → 0 as zi → 1.

We need to set a bit of extra notation. For ŝi ∈ S i define π(ŝi)+ := maxs∈S {π(s) | si = ŝi},
π(ŝi)− := mins∈S {π(s) | si = ŝi}, and s(ŝi)+ := arg maxs∈S {π(s) | si = ŝi}, the state that

agent i assigns maximum prior probability of occurring if she is of type ŝi.

Assumption 1. For all i ∈ I, π and zi are such that ziπ(si)+ < π(si)− for all si ∈ S i.

Consider the modified game obtained from Γ by removing phase 1, and thus also the

information exchange and the costs due to the choice over messages so that, after receiving

their private information, the agents simply choose one of the available paths before they

receive the utility just derived from their decisions over actions. Then Assumption 1 above

ensures that for a such a modified game, given the strategy of the opponent, the expected

utility of every agent i ∈ I at every decision node si (which uses only the priors) is higher

when she chooses an action different from the one chosen by the opponent. So Assumption

1 describes formally an environment where, the conflict of interests is stronger than that

derived from just considering zi < 1 for all i ∈ I.5 This assumption will be useful to

specify a combination of choices over actions that be sequentially rational according to

the condition in (2.4) when every agent receives no information from her opponent at

phase 1 and, therefore, must use her priors to decide her action at phase 2. We note that,

since zi ∈ (0, 1) for all i ∈ I, a special case of interest in which Assumption 1 holds is

when π is uniformly distributed over states.

Lemma 1. Suppose that Assumption 1 holds and let σ∗ be a combination of choices over

messages such that every type of each agent i ∈ I sends some given message m̂i ∈ M i.

Then, for every type si ∈ S i of each agent i ∈ I, there is a combination of choices over

actions α∗[si] such that:

(i) α∗[si] satisfies (2.4) under a system of beliefs which satisfies (2.5) for σ∗,

(ii) V i(α∗[si], pi; si, m̂) ≡ maxα V i(α, pi; si, m̂) = π(si)+/r(si), and

(iii) V i(α∗[si], pi; si, m̃i, m̂−i) ≡ minα V i(α, pi; si, m̃i, m̂−i) = ziπ(si)+/r(si) for the mes-

sage {m̃i} := M i \ {m̂i}.
We shall now provide the condition on z and q that completely characterizes the exis-

tence of equilibria in which both agents pool. First, we specify some extra notation for

describing bounds on penalties. For i ∈ I, define θi(p)− := minsi∈Si {π(si)+/r(si)} and

θi(p)+ := maxsi∈Si {π(si)+/r(si)}; clearly, θi(p)−, θi(p)+ ∈ (0, 1) for any p ∈ R4
++.

5In intuitive terms, Assumption 1 is satisfied when either (i) the shape of π is such that it is not too
far from being uniform, or (ii) the shares z are sufficiently small.
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Proposition 3. Under Assumption 1, there exists a sequential equilibrium of Γ such

that both agents pool if and only if 0 ≤ qi ≤ [1− zi]θi(p)− for every i ∈ I.

Proof. Let (σ∗, µ∗) be such that σi∗(si, m̂i) = 1 for all si ∈ S i and for some given

message m̂i ∈ M i, and for both i ∈ I, and such that σ∗ and µ∗ satisfy (2.5).

Consider a given agent i ∈ I, we have that the type {s̃i} ≡ {m̃i} := M i\{m̂i} is sending

a message that does not coincides with that type so that she incurs the penalty qi. To study

how the utility of i changes when she deviates to revealing some information, it suffices to

analyze the change in her expected utility at the decision node s̃i. Suppose that i deviates

from σi∗ to a σ̃i such that σ̃i(s̃i, m̃i) > 0, then her expected utility at s̃i is additively

increased by σ̃i(s̃i, m̃i)qi. However, i also suffers a loss in her expected utility at s̃i due to

the change induced by the deviation on the choice of −i over actions. Given Lemma 1,

we know that there is a combination of choices over actions α∗[s̃i] which satisfies (2.4) for

the beliefs µi∗, and such that V i(α∗[s̃i], pi; s̃i, m̂) ≡ maxα V i(α, pi; si, m̂) = π(s̃i)+/r(s̃i),

and V i(α∗[s̃i], pi; s̃i, m̃i, m̂−i) ≡ minα V i(α, pi; si, m̃i, m̂−i) = ziπ(s̃i)+/r(s̃i). Therefore, by

using the choice over actions α∗[s̃i] identified in Lemma 1, the additive loss in the expected

utility of i from deviating to σi∗ amounts to −σ̃i(s̃i, m̃i)[1 − zi]π(s̃i)+/r(s̃i) so that the

deviation is strictly profitable to i if and only if qi > [1−zi]π(s̃i)+/r(s̃i), and (α∗[s̃i], σ∗, µ∗)

is a sequential equilibrium of Γ if qi ≤ [1− zi]π(s̃i)+/r(s̃i).

The result follows by noting that the strategy choice over actions identified in Lemma

1 implies the maximum loss in utility of the type that deviates from pooling to revealing

some information, and that if qi ≤ [1 − zi]π(si)+/r(si) for all si ∈ S i and every i ∈ I,

then no type of any agent has strict incentives to deviate from pooling.

The following Lemma will be useful to establish Proposition 4.

Lemma 2. For every probability distribution π ∈ R4
++ there exists a specification of the

state space S := {(ŝ1, ŝ2), (ŝ1, s̃2), (s̃1, ŝ2), (s̃1, s̃2)} satisfying s(s̃i)+ = (s̃i, ŝ−i) for both

i ∈ I.

Proof. The result yields by noting that if it does not hold for some π̃ then, necessarily,

the relation ≥ fails transitivity on the set {π̃(s) | s ∈ S}.

Before stating our results on the existence of symmetric partially revealing equilibria,

we introduce a definition that will be useful to specify bounds on penalties. For a type

si ∈ S i let Ψsi
: [0, 1] → R be the function specified by

Ψsi

(λ) := (1− λ) + λπ(si)+/r(si).

The function Ψsi
is strictly decreasing with respect to λ for every si ∈ S i and each i ∈ I,

and it satisfies that, for a given s̃i ∈ S i, if λ → 0 then Ψesi
(λ) → [1 − zi] while if λ → 1

then Ψesi
(λ) → [1− zi]π(s̃i)+/r(s̃i).

Proposition 4. There exists a sequential equilibrium of Γ such that both agents i ∈ I
reveal partially by choosing, for some given type ŝi ∈ S i, (i) σi∗(ŝi, m̂i) = 1 where m̂i ≡ ŝi,

and (ii) σi∗(s̃i, m̂i) = λ ∈ (0, 1) for the type {s̃i} := S i \ {ŝi}, and choose symmetrically

over actions, if and only if qi ≥ [1− zi]Ψbsi
(λ) and qi ≡ [1− zi]Ψesi

(λ) for all i ∈ I.
10



Proof. Given Lemma 2, fix a type ŝi ∈ S i for each agent i ∈ I, and set {s̃i} := S i \ {ŝi}
in a way such that s(s̃i)+ = (s̃i, ŝ−i) for both i ∈ I. Also, set m̂i ≡ ŝi and m̃i ≡ s̃i for

every i ∈ I.

Now consider a given agent i ∈ I, and let (σ∗, α∗, µ∗) be such that σ−i∗(ŝ−i, m̂−i) = 1,

σ−i∗(s̃−i, m̂−i) = λ ∈ (0, 1), and such that µ∗ and σ∗ satisfy (2.5). Then, using (2.2) com-

bined with (3.1), upon substituting each H i(σ∗, µi∗; si, m) according to (3.3), we obtain

that, for each si ∈ S i and for {s̆i} := S i \ {si},

U i(σ∗, α∗, pi; si) = σi∗(si, s̆i)

[
pi((si, ŝ−i))[V i(α∗, µi∗; si, (s̆i, m̂−i))− qi]

+ pi((si, s̃−i))
[
λ[V i(α∗, µi∗; si, (s̆i, m̂−i))− qi + q−i]+

(1− λ)[V i(α∗, µi∗; si, (s̆i, m̃−i))− qi]
]]

+ σi∗(si, si)

[
pi((si, ŝ−i))V i(α∗, µi∗; si, (si, m̂−i))

+ pi((si, s̃−i))
[
λ[V i(α∗, µi∗; si, (si, m̂−i)) + q−i]+

(1− λ)V i(α∗, µi∗; si, (si, m̃−i))
]]

.

(3.4)

We exploit the indifference condition for type s̃i to randomize between sending messages

m̂i and m̃i and, therefore, we obtain from (3.4) that

qi ≡
[
pi((s̃i, ŝ−i)) + λpi(s̃)

] [
V i(α∗, µi∗; s̃i, m̂)− V i(α∗, µi∗; s̃i, (m̃i, m̂−i))

]
+

(1− λ)pi(s̃)
[
V i(α∗, µi∗; s̃i, (m̂i, m̃−i))− V i(α∗, µi∗; s̃i, m̃)

] (3.5)

is a necessary and sufficient condition for σi∗(s̃i, m̂i) = λ ∈ (0, 1) in equilibrium. As for

type ŝi, from (3.4) it follows that

qi ≥
[
pi(ŝ) + λpi((ŝi, s̃−i))

] [
V i(α∗, µi∗; ŝi, (m̃i, m̂−i))− V i(α∗, µi∗; ŝi, m̂)

]
+

(1− λ)pi((ŝi, s̃−i))
[
V i(α∗, µi∗; ŝi, m̃)− V i(α∗, µi∗; ŝi, (m̂i, m̃−i))

] (3.6)

is a necessary and sufficient condition for σi∗(ŝi, m̂i) = 1 in equilibrium.

We turn to analyze the expected payoffs of the agents due to a symmetric choice over

actions in equilibrium. First, note that, since µi∗ and σ−i∗ satisfy (2.5) for every i ∈ I, it

follows that, for all si ∈ S i,

µi∗((si, s̃−i), m̃−i) = (1− λ)π((si, s̃−i))
/

[(1− λ)π((si, s̃−i)) + 0π((si, ŝ−i))] = 1.

Second, for the received message m̂−i, we have, for all si ∈ S i, and every i ∈ I,

µi∗((si, ŝ−i), m̂−i) = π((si, ŝ−i))
/

[π((si, ŝ−i)) + λπ((si, s̃−i))].

Using this, together with the fact that λ < 1 and π((s̃i, ŝ−i)) ≥ π(s̃), it follows that

αi∗(si, (mi, m̃−i), (si, s̃−i)) = 1, and αi∗(si, (mi, m̂−i), (si, ŝ−i)) = 1,

for all mi ∈ M i, all si ∈ S i, and for each i ∈ I, specifies the unique symmetric combination

of choices over actions that satisfies equation (2.4) for µ∗. Thus, by using (3.2), we obtain,
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for every si ∈ S i, and every i ∈ I, under the α∗ specified above,

V i(α∗, µi∗; si, (s̆i, m̂−i)) = π((si, ŝ−i))
/

[π((si, ŝ−i)) + λπ((si, s̃−i))],

V i(α∗, µi∗; si, (si, m̂−i)) =
[
π((si, ŝ−i))

/
[π((si, ŝ−i)) + λπ((si, s̃−i))]

]
zi,

V i(α∗, µi∗; si, (s̆i, m̃−i)) = 1, and V i(α∗, µi∗; si, (si, m̃−i)) = zi,

so that, by doing the algebra, the conditions in (3.5) and in (3.6) become, respectively,

qi ≡ [1− zi]Ψesi
(λ) and qi ≥ [1− zi]Ψbsi

(λ) as required.

Remark 3. From the specification of Ψsi
, the requirement qi ≥ [1 − zi]Ψbsi

(λ) in the

statement of Proposition 4 can be replaced by θi(p)+ = π(s̃i)+/r(s̃i).

Remark 4. Proposition 4 establishes the existence of a class of equilibria in which the

agents behave symmetrically with respect to both the choice over messages and the choice

over actions whenever [1−zi]θi(p)+ < qi < [1−zi], i.e., a region for qi under which Proposi-

tion 2 together with Proposition 3 have established the non-existence of symmetric pooling

and of symmetric completely revealing equilibria. Further, we see that the informativeness

of such equilibria is increasing with respect to q.

Remark 5. Proposition 4 provides conditions on q and z that characterize completely the

existence of a particular class of equilibria of Γ under which both agents reveal partially in

a symmetric way. Nonetheless, since signaling games exhibit typically multiple equilibria

and Γ is a bilateral signaling game, there is every reason to think that it may have other

classes of equilibria such that both agents reveal partially.

4. Asymmetric Information Revelation

This section establishes the existence of equilibria in which the agents reveal their private

information in a asymmetric way. It is shown that there exists a class of equilibria of Γ in

which an agent reveals completely for costs above a bound that is positively related to the

amount of information transmitted by her opponent. While we cannot offer a complete

exercise of comparative statics as a multiplicity of equilibria is to be expected for Γ, the

results we obtain enable us to answer a few questions on comparative statics given the

non-existence results shown in Proposition 2 and in Proposition 3.

The following assumption will be useful to strengthen the results obtained in this sec-

tion.

Assumption 2. There exists a given type ŝi ∈ S i of some agent i ∈ I such that

s(s−i)+ = (ŝi, s−i) for all s−i ∈ S−i.

Assumption 2 says that priors are such that there is a type of an agent which is assigned

maximum prior probability by her opponent, independently of the initial private informa-

tion of the latter. It enables us to construct a particular choice over actions that be part

of an equilibrium when an agent faces an opponent who transmits her no information.

We note that Assumption 2 is trivially satisfied if π is uniformly distributed over states.

12



Proposition 5. Suppose that (i) qi ≡ [1− zi] for some given agent i ∈ I, and that (ii)

q−i ≥ [1−z−i]Ψs−i
(λ) for all s−i ∈ S−i, and all λ ∈ [0, λ̂] where λ̂ > 0 is sufficiently small.

Then there exists a sequential equilibrium of Γ such that i chooses (1) σi∗(ŝi, m̂i) = 1,

for a given type ŝi ∈ S i and for m̂i ≡ ŝi, and (2) σi∗(s̃i, m̂i) = λ ∈ [0, λ̂] for the type

{s̃i} := S i \ {ŝi}, and −i reveals completely.

Further, if Assumption 2 is satisfied for the type ŝi then the result above holds for all

λ ∈ [0, 1].

Proof. Let (σ∗, α∗, µ∗) be such that σ1∗(0, 0) = 1, σ1∗(1, 0) = λ ∈ [0, λ̂] for (a) λ̂ > 0

sufficiently small, as hypothesized without loss of generality in the proposition, such that

σ2∗(s2, s2) = 1 for all s2 ∈ S2, and such that and µ∗ and σ∗ satisfy (2.5).

From this it follows that µ1∗((s1, s2), m2) = 1 for every s1 ∈ S1, and for all s2 ∈ S2 and

m2 ∈ M2 such that m2 ≡ s2, so that (b) α1∗(s1, (m1, s2), (s1, s2)) = 1, for all (s1, m1) ∈
S1×M1 and all s2 ∈ S2, is obtained by imposing (2.4) to α∗. Also, it follows that, for all

s2 ∈ S2, (c) µ2∗((0, s2), 0) = π((0, s2))/[π((0, s2)) + λπ((1, s2))], and (d) µ2∗((1, s2), 1) =

(1 − λ)π((1, s2))/[(1 − λ)π((1, s2)) + 0π((0, s2))] = 1. Therefore, by combining (a), (b),

and (c) above, we obtain that if (2.4) is satisfied then α2∗(s2, (0, s2), (0, s2)) = 1 for all

s2 ∈ S2. In addition, by using (d) above, we know that α2∗(s2, (1, s2), (1, s2)) = 1, for all

s2 ∈ S2, must hold necessarily when (2.4) is satisfied. This completes a specification of

α∗ that satisfies the sequential rationality condition in (2.4) for the beliefs µ∗ obtained

above. Furthermore, we note that if Assumption 2 is satisfied for the type ŝi then that

specification of α∗ continue to satisfy the condition in (2.4) under µ∗ for any λ ∈ [0, 1].

Now, for agent 1, given the α∗ specified above, we know, by using (2.2) combined

with (3.1), upon substituting each H1(σ, µ1∗; s1, m) according to (3.3), that σ1∗(0, 0) = 1

satisfies the sequential rationality condition in (2.3) if

q1 ≥
∑
s2

p1((0, s2))
[
V 1(α∗, µ1∗; 0, (1, s2))− V 1(α∗, µ1∗; 0, (0, s2))

]
= [1− z1]. (4.1)

In addition, for the α∗ specified above, σ1∗(1, 0) = λ ∈ [0, 1] is compatible with (2.3) if

q1 ≡
∑
s2

p1((1, s2))
[
V 1(α∗, µ1∗; 1, (0, s2))− V 1(α∗, µ1∗; 1, (1, s2))

]
= [1− z1]. (4.2)

Obviously, (4.1) and (4.2) are simultaneously satisfied if and only if q1 ≡ [1− z1].

As for agent 2, given the α∗ specified above, by using (2.2), (3.1) and (3.3), it follows

that σ2∗(s2, s2) = 1 for all s2 ∈ S2 satisfies condition (2.3) if, for all s2 ∈ S2 and for

{s̆2} := S2 \ {s2},

q2 ≥
[
p2((0, s2)) + λp2((1, s2))

][
V 2(α∗, µ2∗; s2, (0, s̆2))− V 2(α∗, µ2∗; s2, (0, s2))

]
+ (1− λ)p2((1, s2))

[
V 2(α∗, µ2∗; s2, (1, s̆2))− V 2(α∗, µ2∗; s2, (1, s2))

]
=

[
(1− λ) + λ

π((0, s2))

r(s2)

]
[1− z2]

= [1− z2]Ψs2

(λ).
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The result follows since, under the required hypotheses, we have specified without loss

of generality an equilibrium as described in the statement of Proposition 5.

Remark 6. If qi ≡ [1− zi] for some given agent i ∈ I then Proposition 5 combined with

the result in Proposition 2 show the existence of a class of equilibria in which agent −i

reveals completely for penalties that decrease as agent i reveals less amount of information.

Further, we see that there are equilibria in which agent i does not reveal totally and agent

−i reveals completely for penalties lower than [1− z−i] which would be incompatible with

−i’s best response if it were the case that i reveals totally, as shown in Proposition 2.

Also, Proposition 5 shows the existence of equilibria in which agent i pools, provided

that she receives some information from −i, for penalties higher than [1− zi]θi(p)− which

cannot correspond to her best response if it were the case that the choice of −i be totally

uninformative, as shown in Proposition 3.

Remark 7. It is natural to address the question of what costs ensure ex-ante Pareto

optimality in our model. However, since for a given q uniqueness of equilibria of Γ is not

guaranteed, such an exercise needs further qualification of our investigation (e.g., by in-

voking equilibria selection criteria using, possibly, a refinement of sequential equilibrium).

5. Discussion

This paper attempts to study the nature of the incentives to share private information

in situations of conflict under incomplete information. We wanted to work with a model

in which the agents (i) were both senders and receivers of information, (ii) were able to

condition their information sharing decisions on their realized private information, and (iii)

may choose not to reveal the truth. Our results suggest that there is a positive relation

between information revelation and the amount of the costs of lying, and that symmetric

fully revelation requires one to impose sufficiently “high” transfers.6 Also, we have shown

that, for intermediate income transfers or costs, there are equilibria in which the agents

wish to communicate symmetrically in a partial manner. Another interesting conclusion

suggested by our model is that information disclosure has a collective bilateral structure.7

This is due to that the information that every agent reveals affects the beliefs of the

other and thus the computation of expected utility that they use to decide the amount of

information that they provide.

The model we have proposed is special in several respects. For example, we have as-

sumed very specific information structures and payoffs. Clearly a detailed analysis of in-

formation structures and of the nature of the payoffs present in relevant economic and/or

social encounters is required. Also, a worthwhile extension of our investigation should

attempt to select among the equilibria of Γ, which would allow for both a more detailed

comparative statics exercise and for an appropriate analysis of ex-ante Pareto optimality.

We believe that all these are subjects for future research.

6In a sender-receiver game with a one-way flow of information, Crawford and Sobel [5] argue that fully
revelation is not to be expected when the interests of the agents do not coincide.

7Aumann and Hart [1] have noted the importance of considering bilateral “conversations” in their
work on information revelation in cheap talk games.
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6. Appendix

This appendix is devoted to the proof of Lemma 1.

Proof of Lemma 1. Let σ∗ be such such that for each i ∈ I there is a given message

m̂i ∈ M i such that σi∗(si, m̂i) = 1 for all si ∈ S i. First, we note that if µ∗ is a system

of beliefs consistent with σ∗ as required by equation (2.5) then, necessarily, µi∗(s, m̂−i) =

pi(s) for all s ∈ S, for each i ∈ I.

Now, fix a type ŝi of a given agent i ∈ I, and let s(ŝi)+ =: (ŝi, ŝ−i) for some type

ŝ−i ∈ S−i. Set {s̃i} := S i \ {ŝi} for every i ∈ I. We begin specifying α∗[ŝi] by imposing:

(a) αi∗[ŝi](ŝi, m̂, s(ŝi)+) = 1,

(b) α−i∗[ŝi](ŝ−i, m̂, s(ŝi)+) = 0,

(c) α−i∗[ŝi](s̃−i, m̂, (ŝi, s̃−i)) = 1, and

(d) αi∗[ŝi](s̃i, m̂, (s̃i, s̃−i)) = 1.

Then, using (3.1) and (3.2) together with the specification of α∗[ŝi] given in (b) and (c)

above, we obtain

U i(σ∗,αi, α−i∗[ŝi], pi; ŝi, m̂) = H i(σ∗, pi; ŝi, m̂)+

1

r(ŝi)

[ [
π(ŝi)+ − π((ŝi, s̃−i))zi

]
αi(ŝi, m̂, s(ŝi)+) + π((ŝi, s̃−i))zi

]
,

(6.1)

an expression which is maximized by choosing αi∗[ŝi](ŝi, m̂, s(ŝi)+) = 1 since π(ŝi)+ ≥
π((ŝi, s̃−i)) and zi < 1, as stated in (a) above. Analogously, consider agent −i. From the

specification of α∗[ŝi] in (a) and (d) above, we have

U−i(σ∗,α−i, αi∗[ŝi], p−i; ŝ−i, m̂) = H−i(σ∗, p−i; ŝ−i, m̂)+

1

r(ŝ−i)

[ [
π(ŝi)+z−i − π((s̃i, ŝ−i))

]
α−i(ŝ−i, m̂, s(ŝi)+) + π(ŝi)+z−i

]
,

so that the sequential rationality condition in (2.4) is satisfied at node (ŝ−i, m̂) by choos-

ing α−i∗[ŝi](ŝ−i, m̂, s(ŝi)+) = 0, as stated in (b) above, since, from Assumption 1, we

know that π(ŝi)+z−i − π((s̃i, ŝ−i)) < 0. Using Assumption 1, it can be shown in a

completely analogous manner that, for the message combination m̂, the combination

of choices over actions specified by (a)-(d) above also satisfies (2.4) for the types s̃i

and s̃−i. Furthermore, from (6.1) it follows, by taking αi∗[ŝi](ŝi, m̂, s(ŝi)+) = 1, that

V i(α∗[ŝi], pi; ŝi, m̂) = π(ŝi)+/r(ŝi) ≥ V i(α, pi; ŝi, m̂) for all α, as stated in Lemma 1, (ii).

We specify α∗[ŝi] for the message combination (m̃i, m̂−i), where {m̃i} := M i \ {m̂i} by:

(e) α−i∗[ŝi](ŝ−i, (m̃i, m̂−i), s(ŝi)+) = 1,

(f) α−i∗[ŝi](s̃−i, (m̃i, m̂−i), (ŝi, s̃−i)) = 1, and

(g) αi∗[ŝi](ŝi, (m̃i, m̂−i), s(ŝi)+) = 1.

First, note that if µ∗ and σ∗ satisfy (2.5) then µ−i∗(·, m̃i) can be determined arbitrarily

since
∑

si σi∗(si, m̃i)π((si, s−i)) = 0 for every s−i ∈ S−i. Thus, we set µ−i∗ ((ŝi, s−i), m̃i) =

1 for every s−i ∈ S−i, it follows from this that if α∗[ŝi] is as specified in (e) and (f)

above then agent −i chooses a best response to any αi∗[ŝi] at both (ŝ−i, (m̃i, m̂−i)) and

(s̃−i, (m̃i, m̂−i)), as required by (2.4). Second, from the specification of α∗[ŝi] in (e) and

(f) above we obtain
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U i(σ∗,αi, α−i∗[ŝi], pi; ŝi, (m̃i, m̂−i)) = H i(σ∗, pi; ŝi, (m̃i, m̂−i))+

1

r(ŝi)

[
zi

[
π(ŝi)+ − π((ŝi, s̃−i))

]
αi(ŝi, (m̃i, m̂−i), s(ŝi)+) + π((ŝi, s̃−i))zi

]
,

(6.2)

so that, since π(ŝi)+ ≥ π((ŝi, s̃−i)), it follows that (2.4) is also satisfied at (ŝi, (m̃i, m̂−i)) if

αi∗[ŝi](ŝi, (m̃i, m̂−i), s(ŝi)+) = 1, as stated in (g) above. Furthermore, from (6.2) it follows

that V i(α∗[ŝi], pi; ŝi, (m̃i, m̂−i)) = ziπ(ŝi)+/r(ŝi) ≤ V i(α, pi; ŝi, (m̃i, m̂−i)) for all α, as

given in the statement of Lemma 1, (iii).

The specification of α∗[ŝi] is completed by choosing αi∗[ŝi](s̃i, (m̃i, m̂−i), s(s̃i)+) = 1,

i.e., by inducing s̃i to follow the path that she assigns maximum prior probability of

being the “correct” one. Also, the choice over actions of −i, given a message combination

(m̂i, m̃−i) where {m̃−i} := M−i \ {m̂−i}, can be specified in a symmetric manner to those

of i so that all the arguments above continue to work for −i. Finally, we note that for the

message combination m̃, the beliefs of both agents can be arbitrarily determined, thereby,

by setting appropriately the choices over actions along with those beliefs, the sequential

rationality condition in equation (2.4) is satisfied at every node (si, m̃), for every si ∈ S i,

and every i ∈ I. This completes the proof.
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